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ABSTRACT

Motivated by recent studies in the data mining community which

require to efficiently list allk-cliques, we revisit the iconic algorithm
of Chiba and Nishizeki and develop the most efficient parallel algo-

rithm for such a problem. Our theoretical analysis provides the best

asymptotic upper bound on the running time of our algorithm for

the case when the input graph is sparse. Our experimental evalua-

tion on large real-world graphs shows that our parallel algorithm is

faster than state-of-the-art algorithms, while boasting an excellent

degree of parallelism. In particular, we are able to list all k-cliques
(for any k) in graphs containing up to tens of millions of edges as

well as all 10-cliques in graphs containing billions of edges, within

a few minutes and a few hours respectively. Finally, we show how

our algorithm can be employed as an effective subroutine for find-

ing the k-clique core decomposition and an approximate k-clique
densest subgraphs in very large real-world graphs.
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1 INTRODUCTION

Finding dense subgraphs is an important research area in graphmin-

ing [19, 37], with applications in community detection [20], spam-

link farms in web graphs [27], real-time story identification [5, 39],

motif detection in biological networks [26], epilepsy prediction [30],

graph compression [13], distance query indexing [32], finding cor-

related genes [45], finance [21] and many others.

Cliques are the dense subgraphs par excellence. The concept of

a clique has been originally introduced by sociologists to measure

social cohesiveness before the advent of computers [52]. In our

work, we study the problem of listing all k-cliques in a graph, which
are subgraphs with k nodes, each pair of which being connected

with an edge. Such a problem is a natural generalization of the

problem of listing triangles, which has been intensively studied by

the research community. In particular, state-of-the-art algorithms

can list all triangles in real-world graphs containing several billions
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of edges [36, 40, 49] within a few hours. In contrast, listing all k-
cliques is often deemed not feasible with most of the works focusing

on approximately counting cliques [31, 42].

Recent works in the data mining and database community call

for efficient algorithms for listing or counting all k-cliques in the

input graph. In particular, in [51] the author develops an algorithm

for finding subgraphs with maximum average number of k-cliques,
with listing k-cliques being an important building block. In [46] an

algorithm for organizing cliques into hierarchical structures is pre-

sented, which requires to list allk-cliques. In [5], algorithms for find-

ing cliques and quasi-cliques (i.e. cliques where a few edges might

be missing) with at most k nodes are used for story-identification in

social media. Algorithms for listing k-cliques (and more generally

k-motifs) may also be used to reveal the latent higher-order organi-

zation in real-world graphs [8] or to compute percolated k-clique
communities [28, 43].

Motivated by the aforementioned studies, we develop the most

efficient algorithm for listing and counting all k-cliques in large

sparse real-world graphs, with k being an input parameter. In fact,

real-world graphs are often “sparse” and rarely contain very large

cliques which allows us to solve such a problem efficiently. In our

work, the sparsity of a graph is measured by its core value. We

revisit the iconic algorithm developed by Chiba and Nishizeki [16],

which is one of the most efficient algorithms for this problem. By

means of several improvements on such an algorithm, we are able

to provide the best asymptotic upper bound on the running time,

in the case when the input graph has “low” core value. Moreover,

our algorithm can be efficiently parallelized resulting in even better

performances in practice.

Our extensive experimental evaluation shows that both the se-

quential and parallel versions of our algorithm outperform signif-

icantly state-of-the-art approaches for the same problem. In par-

ticular, our parallel algorithm is able to list all cliques in graphs

containing up to tens millions edges, as well as all 10-cliques in

graphs containing billions of edges, within a few minutes or a few

hours, respectively, while achieving an excellent degree of paral-

lelism. We show that our algorithm can be employed as an effective

subroutine for computing a k-clique core decomposition in large

graphs, an approximation of the k-clique densest subgraph [51], as

well as, for finding quasi-cliques. Finally, we are able to estimate

the accuracy of the approach proposed in [31] in approximating

the number of k-cliques, for those graphs whose exact count of
k-cliques was not known before our work.

The rest of the paper is organized as follows. We present the

related work in Section 2 and the notations we use in Section 3. In

Section 4, we present our algorithm for listing k-cliques and prove



its theoretical guarantees in Section 5. We then evaluate the perfor-

mance of our algorithm against the state-of-the-art (Section 6). In

Section 6.5 we adapt our algorithm so as to compute the k-clique
core decomposition of a graph and compute an approximation of

the k-clique densest subgraph. In Section 6.6, we estimate the ac-

curacy of the approach proposed in [31] for those graphs whose

exact count of k-cliques was not known before our work. Finally,

we conclude and present future work in Section 7.

2 RELATEDWORK

We organize the related work into the following sections: listing all

k-cliques, listing all maximal cliques, counting k-cliques, counting
k-motifs and finding k-clique densest subgraphs. Given that the

related work in this research area is vast, our related work might

not be comprehensive and will focus only on the most relevant

works to our study.

Listing all k-cliques. Prior to our work, the sequential algorithm

with the best known asymptotic running time for listing k-cliques
in sparse graphs was the algorithm of Chiba and Nishizeki [16], to

the best of our knowledge. Its running time is inO (k ·m · a(G )k−2),
where a(G ) is the arboricity of the graph. For our algorithm, we are

able to provide an asymptotic upper bound ofO (k ·m · (
c (G )
2

)k−2),
where c (G ) is the core value of the graph. Given that c (G ) ≤
2a(G ) − 1 for any G, our upper bound becomes better when k
is large enough. We defer to future work, a more rigorous study of

the running time of the two algorithms. In practice, our algorithm

is nearly an order of magnitude faster, while our parallel algorithm

achieves an optimal degree of parallelism. We provide an efficient

implementation of [16] in C, which to the best of our knowledge

was not publicly available.

The approach presented in [40, 49] has been proved to be efficient

in practice. Although initially devised for counting and listing maxi-

mal cliques it can also be adapted to k-clique listing and counting. It
is based on the well-known Bron-Kerbosch algorithm [12, 15, 40, 50]

for counting maximal cliques. An efficient implementation of such

an algorithm is available at [1]. According to our experiments, such

an approach appears to be less efficient than our implementation

of the algorithm of Chiba and Nishizeki.

Observe that those algorithms are sequential. Our experimen-

tal evaluation shows that one can highly benefit from uniformly

distributing the computational load across several threads.

Triangle listing and counting (i.e. 3-clique listing) have been

studied intensively in recent years, with the algorithms proposed

in [16, 36, 40] being perhaps the most efficient ones in practice,

when the input graph fits into main memory. In particular, the

compact-forward algorithm developed in [36] has running time of

O (m ·
√
m), while in the case when the degree distribution of the

input graphG follows a power law distribution with exponent α (G )

the running time is inO (m ·n
1

α (G ) ). The algorithm presented in [16]

has running time O (m · a(G )), where a(G ) is the arboricity of the

graph andm is the number of edges. In [40, 49], authors develop an

algorithm to list all maximal cliques, while an implementation of

their algorithm to count triangles efficiently is available at [1]. From

a theoretical point of view, the state of the art algorithm for triangle

counting and listing are [4] and [10], respectively. The running time

of [4] is O (m
2ω
ω+1 ), where ω denotes the fast matrix multiplication

exponent. The algorithms proposed in [10] are output sensitive,

i.e., they are fast if the number of triangles in the input graph is

small. It is unclear whether the two latter algorithms work well

in practice. Several algorithms have been proposed in the case

when the graph does not fit into main memory, such as [34] in the

MapReduce architecture, [7] in the semi-streaming model as well

as the I/O-efficient algorithm presented in [17]. Generally speaking,

MapReduce algorithms seem to be slower than main-memory based

algorithms, however, they could scale to larger graphs [42].

Listing all maximal cliques.Most algorithms for listing all max-

imal cliques are based on the seminal algorithm developed by Bron

and Kerbosch [12, 15, 40, 50]. The state of the art algorithm for this

problem has running time O (c (G ) · n · 3
c (G )
3 ) [23], where c (G ) is

the core number of the input graph. Such running time is almost

tight as the largest number of maximal cliques in a graph with core

number c (G ) is (n − c (G )) · 3
c (G )
3 . There are also efficient parallel

versions of such an algorithm [47]. In practice, algorithms for maxi-

mal cliques enumeration or counting can deal with large real-world

graphs but hardly scale to very large graphs [24]. Recent works

have focused on devising distributed algorithms that can deal with

large real-world graphs via a distributed computation on smaller

blocks of data [15, 18].

Countingk-cliques. Listing allk-cliques in a graph is often deemed

not feasible with most of the works focusing on approximately

counting cliques [31, 42]. Armed with our efficient algorithm for

listing all k-cliques in a graph, we are able to estimate the accuracy

of the approach proposed in [31] for those graphs whose exact

count of k-cliques was not known before our work. An algorithm

for computing the exact count of k-cliques has been developed

in [25] for the MapReduce framework.

Counting k-motifs. k-cliques are a special case of k-motifs, there-

fore we also include the related work for counting k-motifs (also

called graphlets). In [2], the authors develop an algorithm for count-

ing each of all possible 4-motifs in large graphs which was later

generalized to 5-motifs [44]. In [11], the authors provide algorithms

with statistical guarantees for the approximate counting of k-motifs.

The former work is based on color coding [3], a randomized algo-

rithm for finding simple paths or cycles of length k .

k-clique densest subgraph and core decomposition. In [51],

the author studies the k-clique densest subgraph problem, which

consists of finding a subgraph with maximum ratio between the

number of its k-cliques and its number of nodes. This is a gener-

alization of the well-known densest subgraph problem, which has

received increasing attention in recent years [6, 19, 22]. In [51],

the author develops an algorithm to compute the k-clique core

decomposition, which is a generalization of the well-known core

decomposition. In our work, we show how to significantly speed

up the computation of the two aforementioned problems by means

of our algorithm for listing k-cliques.
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3 DEFINITIONS AND NOTATION

We assume w.l.g. that the input graph is connected with its size

being O (m), wherem is the number of edges. Otherwise, our al-

gorithm can be executed on each of the connected components,

separately. We denote withV (G ) and E (G ) the set of nodes and the
set of edges of an undirected graphG , respectively. We denote with

∆G (u) the set of neighbors of a node u in G, while G[S] denotes
the subgraph induced by the set of nodes S ⊆ V (G ).

We shall use the notation G⃗ to denote a directed graph (where

the set of edges are ordered pairs). A Directed Acyclic Graphs (DAG)

is a directed graph with no directed cycles. We denote with ∆+
G⃗
(u)

and ∆−
G⃗
(u) the set of out-neighbors and the set of in-neighbors

of node u in G⃗, respectively, while δ+ (u) and δ− (u) denote the

number of out-neighbors and in-neighbors of u, respectively. We

shall only refer to ∆+
G⃗
(u) in the rest of our paper, therefore we

shall use the notation ∆G⃗ (u) := ∆+
G⃗
(u). Similarly to the case of

undirected graphs, G⃗[S] denotes the induced subgraph by the set

of nodes S in G⃗.
The arboricity a(G ) of a graph G is defined as the minimum

number of forests into which the set of edges ofG can be partitioned.

The core value c (G ) (also called degeneracy) of a graphG is defined as

the maximum integer c such that there exists an induced subgraph

H of G with all nodes having degree at least c . It is known that for

any graph G, c (G ) is in [a(G ),2a(G ) − 1] ([53]).
The core value of a graph can be computed in linear time by the

algorithm that repeatedly removes a node with minimum degree

until the graph becomes empty. We shall refer to any ordering on

the nodes induced by such an algorithm, as core ordering.

Let G be an undirected graph, let η : V (G ) 7→ [1, |V (G ) |] be a

total ordering on the nodes of G and let G⃗ be a directed graph. We

say that G⃗ is induced by the ordering η, if V (G ) := V (G⃗ ) and there

is an edge v → u if η(v ) < η(u) and (u,v ) ∈ E (G ). Observe that G⃗
is a DAG. Moreover, observe that, if η is the core ordering, then the

maximum out-degree in G⃗ is the core value of G.
Our theoretical analysis is in the worst case, unless otherwise

specified. We study the parameterized complexity of our problem.

We measure the running time of our algorithm as a function of the

input sizem, as well as the parameters k and c (G ) which signifi-

cantly affect its running time.

4 ALGORITHMS

4.1 Algorithm of Chiba and Nishizeki

We start by providing a compact description of the algorithm de-

veloped by Chiba and Nishizeki for listing k-cliques [16]. The algo-
rithm processes the nodes in non-increasing order of degree. For

each node u, the algorithm computes the subgraph induced by its

neighbors, and then it recurses on such a subgraph. When pro-

cessing the nodes of a given subgraph, its nodes might have to be

reordered in non-increasing order of degree (line 7 of Algorithm 1).

After processing a node u, u is deleted from the current graph so

as to prevent that any clique containing u is listed more than once

(line 10 of Algorithm 1). A pseudocode of the algorithm is shown

in Algorithm 1.

Such an algorithm is relatively simple, yet it turns out to be

one of the most efficient algorithms for listing k-cliques in sparse

real-world graphs. This is obtained by using some efficient data

structures, in particular, to compute the subgraphs induced on the

neighbors of a given node (line 9 of Algorithm 1). An appealing

feature of the algorithm is that its running time can be bounded as

a function of the arboricity of the input graph, which is a natural

way to measure the sparsity of a graph.

Theorem 4.1. (Running time of Algorithm 1 ([16])) Algorithm 1

lists all k-cliques in O (k ·m · a(G )k−2) time (where a(G ) is the ar-
boricity of the input graph G), while it requires linear memory.

Algorithm 1 Algorithm of Chiba and Nishizeki [16]

1: listing(k ,G,∅)
2: function listing(l ,G,C)
3: if l = 2 then

4: for each edge (u,v ) of G do

5: output k-clique C ∪ {u,v}

6: else

7: u1, . . . ,u |V (G ) | ← nodes in G s.t. δ (ui ) ≥ δ (ui+1)
8: for i = 1, . . . , |V (G ) | do
9: listing(l − 1,G[∆G (ui )],C ∪ {ui })
10: V (G ) ← V (G ) \ {ui }

We shall focus our efforts on improving the following three

aspects of Algorithm 1.

(1) Can the algorithm be efficiently parallelized? Line 10 of Al-

gorithm 1 introduces a sequential dependency between the

nodes in the input graph, which makes an efficient paral-

lelization of the algorithm non-straightforward. In particular,

it does not seem trivial to balance the workload across the

different threads in a multicore implementation.

(2) Is there a more efficient way of processing the nodes of

the input graph? Algorithm 1 processes the nodes by non-

increasing degree. Although this simplifies the analysis of

the running time of the algorithm, it might not be an optimal

ordering in practice.

(3) Can the number of operations be decreased even further? In

particular, we are planning to consider a directed version of

the input graphwhich shall guide us in avoiding unnecessary

computations.

4.2 The kClist Algorithm

A pseudocode of our algorithm, called kClist, is shown in Al-

gorithm 2. Observe the following differences. Our algorithm can

receive in input any total ordering η on the nodes of the graph.

According to our analysis and experiments, the core ordering is an

ordering that performs well, however, other orderings on the nodes

might be considered. A theoretical study on the best ordering is

given in Section 5. Observe that such an ordering is used to obtain a

DAG. The function listing is then modified as nodes are not sorted

again inside the function (line 7 of Algorithm 1). Moreover, the DAG

G⃗ prevents that a same clique is listed more than once, which makes

the deletion step in line 10 of Algorithm 1 not necessary anymore.
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This in turn, allows for a more efficient parallel implementation of

our algorithm.

Algorithm 2 Our algorithm for listing k-cliques

1: Let η be a total ordering on the nodes of the input graph G

2: G⃗ ← directed version of G, where v → u if η(v ) < η(u)

3: listing(k ,G⃗,∅)

4: function listing(l ,G⃗,C)
5: if l = 2 then

6: for each edge (u,v ) of G⃗ do

7: output k-clique C ∪ {u,v}

8: else

9: for each node u ∈ V (G⃗ ) do

10: listing(l − 1,G⃗[∆G⃗ (u)],C ∪ {u})

Efficient Implementation. The algorithm can be implemented

efficiently using the following data structures and operations which

are an adaptation of the ones used in the algorithm of Chiba and

Nishizeki [16]. The DAG G⃗ created in line 2 is represented as an

adjacency list storing for each node u, its out-degree δ+ (u) and all

its out-neighbors in an array ∆(u). No other adjacency lists will be

created. In particular, given the current graph G⃗ in the recursion,

we make sure that the out-neighbors of any node v in G⃗ always

appear first in the array ∆(v ). This is obtained by reordering each

time inside the recursion, which can be done efficiently. Given G⃗,

G⃗[∆G⃗ (u)] is built as follows.

• Use an array with a label for each node initially set to k .

• For each out-neighbor v of node u in G⃗, set its label to l − 1
if the label was equal to l . We thus have that if a label of a

node v is equal to l − 1 it means that node v is in the new

DAG G⃗[∆G⃗ (u)].
• For each out-neighbor v of u, move all the out-neighbors

of v with label equal to l − 1 in the first part of ∆(v ) (by
swapping nodes) and compute the out-degree of node v in

the new DAG G⃗[∆G⃗ (u)] updating d (v ). The first d (v ) nodes

in ∆(v ) are thus the out-neighbors of v in G⃗[∆G⃗ (u)] .

4.3 Efficient Parallel Algorithm

One appealing feature of our algorithm is that the G⃗[∆G⃗ (u)]’s can be
processed independently. The same clique would not be listed more

than once, thanks to the fact that G⃗ is a directed graph. Such a prob-

lem has been circumvented in Algorithm 1 by line 10 (where each

node is deleted after being processed), which unfortunately makes

an efficient parallelization non-trivial. It does not seem straightfor-

ward to achieve good workload balancing across the threads.

We refer to the variant of our algorithm where the G⃗[∆G⃗ (u)]’s
are processed in parallel as Node-Parallel. It turns out that such

a first attempt in parallelizing the algorithm suffers from a poor

degree of parallelism, in particular when the number of threads

is large (in our experiments larger than 10). This is due to the

fact that the number of k-cliques in the input graph might not

be distributed uniformly across the G⃗[∆G⃗ (u)]’s, resulting in an

unbalanced workload across the threads.

Such a problem is alleviated in what we call the Edge-Parallel

variant of our algorithm. In such a variant, each subgraph G⃗[∆G⃗ (uv )]

is processed independently in parallel, where ∆G⃗ (uv ) = ∆G⃗ (u) ∩

∆G⃗ (v ) denotes the set of out-neighbors of u and v with (u,v ) ∈

E (G ). Since the G⃗[∆G⃗ (uv )]’s are “smaller” than the G⃗[∆G⃗ (u)]’s, we
achieve a higher degree of parallelism. A pseudocode is shown in

Algorithm 3, where the function listing has been defined in Algo-

rithm 2. A pseudocode for Node-Parallel can be easily obtained

by replacing listing(k − 2,G⃗[∆G⃗ (uv )], {u,v}) with listing(k −

1,G⃗[∆G⃗ (u)], {u}) in line 4 of Algorithm 3 (and looping in parallel

over the nodes instead of the edges in line 3). Note that in the edge-

parallel version when k = 3 (i.e. we seek to list triangles), we need

to modify the recursive function listing so that it outputs triangles

and terminates when l = 1 and not l = 2 (line 5 of Algorithm 2).

At any point in time, each thread processes one of the G⃗[∆G⃗ (uv )]

subgraphs. Therefore, for each threadwe need additionallyO (c (G )2)
space, in the case when the core ordering is used.

In Section 6 we evaluate both the Node-Parallel and Edge-

Parallel variants of our algorithm, showing that Edge-Parallel

boasts an excellent degree of parallelism on 40 threads or more.

Algorithm 3 Our parallel algorithm (EdgeParallel)

1: Let η be a total ordering on the nodes of the input graph G

2: G⃗ ← directed version of G, where v → u if η(v ) < η(u)

3: for each edge (u,v ) ∈ E (G⃗ ) in parallel do

4: listing(k − 2,G⃗[∆G⃗ (uv )],{u,v})

5 ANALYSIS OF THE ALGORITHM

Lemma 5.1. (Correctness) Algorithm 2 lists every k-clique exactly
once.

Proof. Let v1, . . . ,vk be the nodes of a k-clique. Suppose w.l.g
that ∀l ∈ [[2,k]], η(vl−1) > η(vl ). Observe that this is the only

ordering such that ∀l ∈ [[3,k]], vl−1 ∈ ∆G⃗ (vl ) (line 10) and v1 ∈

∆G⃗ (v2) (line 7) . Therefore, such a k-clique is produced in output

exactly once. □

Lemma 5.2. Let G⃗ be a DAG. LetC be any subset of the nodes in G⃗

with |C | ≤ (k − 2). The running time of the function listing(l ,G⃗,C)

in Algorithm 2 can be upper bounded by T (l ,G⃗ ) for which we can

write the following recurrence:




T (2, G⃗ ) = Θ(k · |E (G⃗ ) |)

T (l, G⃗ ) = Θ
*..
,

∑
u∈V (G⃗ )

∑
v∈∆G⃗ (u )

|∆G⃗ (v ) |
+//
-
+
∑

u∈V (G⃗ )

T
(
l − 1, G⃗[∆G⃗ (u )]

)
.

Proof. The time to output a k-clique for each edge in G⃗ (line 7)

is Θ(k · |E (G⃗ ) |). The algorithm builds G⃗[∆G⃗ (u)] for all u in V (G⃗ )

(line 10) which requires Θ(
∑
u ∈V (G⃗ )

∑
v ∈∆G⃗ (u ) |∆G⃗ (v ) |) time and

then it recurses on each such a subgraph. □

Let G be an undirected graph. Let η be a total ordering on the

nodes of G, while let G⃗ be the directed version of G induced by η.
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From Lemma 5.2, it follows that the running time of Algorithm 2

with input G is O (T (k,G⃗ ) +m).
It turns out that the total ordering η, used in our algorithm (line

1), might have a significant impact on its running time. Therefore, a

natural goal is to determine an optimal such ordering. To this end,

we give a simple upper bound on the running of our algorithm for

the case of listing triangles. We show that the problem of finding

an ordering which minimizes such an upper bound is NP-hard even

for the case when k = 3.

Lemma 5.3. (Running time for triangles) LetG be an undirected

graph, let η be a total ordering on the nodes of G, while let G⃗ be the

directed graph induced by such ordering. Algorithm 2 lists all triangles

in Θ(m +
∑
u ∈V (G⃗ )

δ+
G⃗
(u) · δ−

G⃗
(u)).

Proof. From Lemma 5.2, k = 3, it follows that the running time

of Algorithm 2 is Θ(T (3,G3) +m) where T (3,G3) is in
Θ(
∑
u ∈V (G⃗ )

∑
v ∈∆G⃗ (u ) |∆G⃗ (v ) |). The claim follows from the fact

that each term |∆G⃗ (v ) | occurs exactly δ−
G⃗
(u) times in the latter

sum. □

We can then state our NP-hardness theorem.

Theorem 5.4. (Minimizing the running time is NP-hard) Given a

graph G, the problem of finding a total ordering η of the nodes inG
which minimizes

∑
u ∈V (G⃗ )

δ+
G⃗
(u) · δ−

G⃗
(u) is NP-hard.

Proof. (Sketch) AssumeG is a 3-regular graph. Given an optimal

ordering, a solution to Max Cut can be obtained in polynomial time

from the ordering and as Max Cut in 3-regular graphs is NP-hard

[9] the claim follows. We refer to [29] for a full proof. □

Given that it is unlikely that there is an efficient algorithm for

finding such an optimal ordering, we consider the core ordering

which is widely used in graph mining [14, 41]. Such an ordering

is appealing in that it can be computed in linear time, while it

produces an induced DAG with the smallest maximum out-degree

(equals to the core value of the input graph). Therefore, in view of

Lemma 5.2 it seems a natural choice. Using such an ordering for our

algorithm we can obtain a smaller asymptotic upper bound on its

running time than the one provided in [16] (when k is sufficiently

large). An interesting direction for future work is to provide a tight

analysis of the running time of the two algorithms.

The following two lemmas shall be useful in our main theorem.

Lemma 5.5. Let G⃗ be the directed graph induced on G by a core

ordering. The following holds:∑
u ∈V (G⃗ )

∑
v ∈∆G⃗ (u )

|∆G⃗ (v ) | ≤ c (G ) · |E (G⃗ ) |.

Proof.∑
u ∈V (G⃗ )

∑
v ∈∆G⃗ (u )

|∆G⃗ (v ) | ≤
∑

u ∈V (G⃗ )

∑
v ∈∆G⃗ (u )

c (G ) ≤ c (G ) · |E (G⃗ ) |.

□

Lemma 5.6. Let G⃗ be the directed graph induced on G by a core

ordering. The following holds:

∑
u ∈V (G⃗ )

|E (G⃗[∆G⃗ (u)]) | ≤ |E (G⃗ ) | ·
c (G )

2

.

Proof. Let H⃗u be the DAG induced by the out-neighbors of u

in G⃗, that is, H⃗u = G⃗[∆G⃗ (u)]. We have that:

∑
v ∈∆G⃗ (u )

|∆H⃗u
(v ) | ≤

1

2

· |∆G⃗ (u) | · ( |∆G⃗ (u) | − 1) < |∆G⃗ (u) | ·
c (G )

2

.

Hence, we can derive the following inequalities:

∑
u ∈V (G⃗ )

∑
v ∈∆G⃗ (u )

|∆H⃗u
(v ) | ≤

∑
u ∈V (G⃗ )

|∆G⃗ (u) | ·
c (G )

2

≤ |E (G⃗ ) | ·
c (G )

2

.

□

We now have all the ingredients to prove our main theorem. We

measure the running time of our algorithm as a function of the

parameters k , c (G ) which significantly affect its running time.

Theorem 5.7. Let G be a connected graph withm edges and core

value c (G ). Algorithm 2 with core ordering lists all k-cliques in G in

O (k ·m · (
c (G )
2

)k−2 +m) time, while it requires linear space in the

size of G.

Proof. As we need to store only the input graph,O (m) memory

is sufficient. In the case when c (G ) = 1 our algorithm terminates

in linear time, in that, nodes in G⃗ have outdegree 1 or less. When

c (G ) ≥ 2, our proof proceeds as follows. We prove by induction on

l, 2 ≤ l ≤ k , that T (l ,G⃗ ) ≤ λ · (k + l
2
) · (

c (G )
2

)l−2 · |E (G⃗ ) |, λ > 0.

For l = 2, it follows from Lemma 5.2 that the running time is at

most λ · k · |E (G⃗ ) |. For l > 2 we have:

T (l ,G⃗ ) ≤ λ · c (G ) · |E (G⃗ ) | +
∑

u ∈V (G⃗ )

T (l − 1,G⃗[∆G⃗ (u)]) (1)

≤ λ · c (G ) · |E (G⃗ ) |

+ λ ·
∑

u ∈V (G⃗ )

(k +
l − 1

2

) · (
c (G )

2

)l−3 · |E (G⃗[∆G⃗ (u)]) |(2)

≤ λ · c (G ) · |E (G⃗ ) |

+ λ · (k +
l − 1

2

) · (
c (G )

2

)l−2 · |E (G⃗ ) | (3)

≤ λ · (k +
l

2

) · (
c (G )

2

)l−2 · |E (G⃗ ) |, (4)

where Equation (2) follows from the inductive hypothesis, Equa-

tion (3) follows from Lemma 5.6, while Equation (4) follows from

the fact that c (G ) ≤ 2 · (
c (G )
2

)l−2 for k,c (G ) ≥ 2, l > 2.

□

As a(G ) ≤ c (G ) ≤ 2 · a(G ) − 1 our algorithm is in O (k · m ·

(a(G )− 1

2
)k−2) (for a connected graph) which is slightly better than

the O (k ·m · a(G )k−2) bound provided by Chiba and Nishizeki. In

graphs where a(G ) = c (G ) the advantage is more significant.
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We also derive an output sensitive bound on the running time

that we express as a function of c (G ) and the number of l-cliques
in the graph as shown in the following Theorem 5.8.

Lemma 5.8. (Output sensitive bound) Algorithm 2 with core order-

ing lists all k-cliques in O
(
c (G ) ·

k−1∑
l=2

N l + k · N k
)
time where N l

is

the number of l-cliques.

Proof. With Lemma 5.2 and Lemma 5.5, using core ordering,

we have that for a given l < k −2 the time spent in the current level

of recursion isO ( |E (G⃗ ) | · c (G )) (the time to build all the G⃗[∆G⃗ (u)]),

while for l = k − 2 the time is in O (k · |E (G⃗ ) |) (the time to output

the |E (G⃗ ) | k-cliques). In addition, we notice that, for a given l , the

sum of all |E (G⃗ ) | is exactly the number of (k − l + 2)-cliques in the

input graph G (the k − l + 2 nodes in the set C), that is N k−l+2
.

Summing it all we obtain the stated running time. □

Observe that to output all k-cliques, Ω(k · N k ) operations are
needed. The running time of our algorithm is thus optimal in the

case when the term k · N k
dominates the term c (G ) ·

∑k−1
l=2 N l

.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup

We consider several real-world graphs that we obtained from [38].

We divide them into twomain groups: large graphs containing up to

tens of millions of edges, for which we are able to list all k-cliques,
as well as very large graphs containing up to billions of edges and

being less sparse for which we could only list k-cliques of limited

size. Tables 1 and 2 summarize the statistics of the two groups of

datasets, respectively.

For each large graph, we report its core number (which accord-

ing to our theoretical analysis affects the running time of our algo-

rithm), the size of a maximum clique and the number of maximum

cliques. For each very large graph, we report its core number and

the largest k for which we could list all k-cliques within one day of

computation, as well as, the number of such k-cliques.
In our experiments we consider the core ordering, as it turns out

to be more efficient in practice as well as from a theoretical point

of view.

We carried our experiments on a Linux machine equipped with

4 processors Intel Xeon CPU E5- 2660 @ 2.60 GHz with 10 cores

(a total of 40 threads) and with 64 G of RAM DDR4 2133 MHz.

We evaluate both the sequential version of our algorithm, denoted

as kClist1, and the parallel version of our algorithm denoted as

kClistn, where n denotes the number of threads. We evaluate

our method using 1, 10, and 40 threads (kClist1, kClist10 and

kClist40, respectively) against the state-of-the-art for the exact

listing of k-cliques
1
. In particular, we consider the following ap-

proaches:

• CF: the compact-forward algorithm for listing triangles of

[36], for which we used the C implementation available at

the webpage of the authors.

1
Our code is available at https://github.com/maxdan94/kClist.

• MACE: the algorithm presented in [40, 49], for which we

used the C implementation available at the webpage of the

authors.

• Arbo: the algorithm of Chiba andNishizeki presented in [16].

As we are not aware of any efficient implementation for such

an algorithm, we provide our own implementation in C and

made it publicly available.

6.2 Evaluation of our Sequential Algorithm

We start by comparing our sequential algorithm for listing trian-

gles against the state-of-the-art algorithms for the same problem.

Table 3 shows the running time of the algorithms for listing trian-

gles (kClist1). We can see that even the sequential version of our

algorithm outperforms the state-of-the-art algorithms for listing

triangles. It also shows that the algorithm presented in [36] (CF) is

very efficient for the task of listing triangles.

We then consider the k-clique listing problem on our collection

of large datasets. Table 4 shows that our algorithm can list all k-
cliques for any value of k in all those graphs, within a few minutes

in most of the cases. It is faster than the other algorithms, up to a

factor of 5. The full potential of our algorithm (including the parallel

version) becomes apparent when listing k-cliques for larger k on

very large graphs.

6.3 Degree of Parallelism

Our next step is to evaluate the degree of parallelism of our parallel

algorithms. Ideally, we wish that when using t threads the running
time decreases by a factor of t . This is measured by the speedup,

which is defined as the running time of the sequential algorithm

(with one thread) divided by the running time of the parallel algo-

rithm when using t threads. We evaluate both the Node-Parallel

and the Edge-Parallel variants of our algorithms, which are dis-

cussed in Section 4.3.

Figure 1 (left) shows the overall running time in linlog scale

for Node-Parallel and Edge-Parallel for the problem of listing

8-cliques in DBLP, while Figure 1 (middle) shows the correspond-

ing speedup. The running time required to perform I/O operations

is also taken into account in that figure. We can see that Edge-

Parallel boasts almost a linear speedup up to 40 threads, demon-

strating that the computational load is always well balanced across

the threads. In contrast, the speedup for Node-Parallel starts to

worsen when the number of threads is larger than 10, with little

benefit when using more than 20 threads.

This is consistent with what we observe in Figure 1 (right). Such

a figure shows the percentage of CPU usage when using 40 threads,

as a function of time. A percentage of 4000% means that all 40

threads are fully working. We can see that both Node-Parallel

and Edge-Parallel manage to keep busy all 40 threads for the

first 50 seconds. However, later on the percentage of CPU usage for

Node-Parallel drops significantly, with very few threads being

busy after two minutes. This is a clear sign that in this case the

computational load is not well balanced across the threads.

We observe a similar behavior on the other datasets and for dif-

ferent values of k . We conclude that when few threads are available

(say 10 or less), then a parallelization on the nodes is enough and

leads to a nearly optimal speedup. When many threads are available

6
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networks n m c kmax Nkmax

road-CA 1,965,206 2,766,607 3 4 42

Amazon 334,863 925,872 7 7 32

soc-pocket 1,632,803 22,301,964 47 29 6

loc-gowalla 196,591 950,327 51 29 2

Youtube 1,134,890 2,987,624 51 17 2

cit-patents 3,774,768 16,518,947 64 11 2

zhishi-baidu 2,140,198 17,014,946 78 31 4

WikiTalk 2,394,385 4,659,565 131 26 141

Table 1: Our set of large graphs (for whichwe are able to list

all k-cliques). c is the core value, kmax is the size of a maxi-

mum clique and Nkmax is the number of maximum cliques.

networks n m c k Nk

as-skitter 1,696,415 11,095,298 111 12 2.68 × 1014

DBLP 425,957 1,049,866 113 11 8.23 × 1014

Wikipedia 2,080,370 42,336,692 208 15 5.02 × 1014

Orkut 3,072,627 117,185,083 253 12 4.15 × 1014

Friendster 124,836,180 1,806,067,135 304 10 4.87 × 1014

LiveJournal 4,036,538 34,681,189 360 7 4.49 × 1014

Table 2: Our set of very large graphs (for which we are able to

list k-cliques of limited size). k is the value till we could list all

k-cliques within one day of computations using kClist40, Nk
is the number of such k-cliques.

Algorithms

networks # triangles CF MACE Arbo kClist1

as-skitter 28,769,868 5s 54s 5s 5s

DBLP 2,224,385 1s 4s 1s 1s

Wikipedia 145,707,846 37s 12m6s 3m10s 29s

Orkut 627,584,181 2m52s 17m15s 2m50s 2m11s

Friendster 4,173,724,142 1h50m41s 2h30m12s 2h48m16s 1h0m7s

LiveJournal 177,820,130 37s 3m23s 37s 33s

Table 3: Time to list triangles on our very large graphs.

Algorithms

networks MACE Arbo kClist1

road-CA 1s 1s 1s

Amazon 1s 1s 1s

soc-pocket 18m15s 3m29s 1m5s

loc-gowalla 4m49s 1m38s 31s

Youtube 1m12s 6m7s 3.4s

cit-patents 16s 15s 13s

zhishi-baidu 33m17s 7m54s 2m28s

WikiTalk >24h 7h42m27s 1h45m33s

Table 4: Time to list all cliques on our large graphs.
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Figure 1: (left) Running time and (middle) speedup of our algorithms as a function of the number of used threads for listing

8-cliques in DBLP. (right) CPU percentage usage as a function of time using 40 threads for listing 8-cliques in DBLP.

then a parallelization on the edges is preferable. In what follows we

use a parallelization on the edges for both kClist10 and kClist40.

6.4 k-clique Listing: Comparison

Figure 2 shows the running time of the algorithms as a function

of k , when executed on the very large graphs. It shows that our

sequential algorithm is significantly more efficient than the other

approaches, with its running growing more gracefully as a function

of k . For the largest values of k considered, it is at least one order

of magnitude faster than [16], which is the most efficient algorithm

after ours according to our experimental evaluation.

We can also see that the parallelization of our algorithm allows

to deal with larger values of k (up to an additional term of 3),

while requiring less than one day of computation. In particular,

our parallel algorithm using 10 (resp. 40 threads) is the only one

that can list all 9-cliques (resp. 10-cliques) in Friendster within a

reasonable amount of time.

We also carried experiments in a Twitter graph [35], this graph

has more than 1.6 billion edges and a high core value of 2647.

Our parallel algorithm with 40 threads can list all 4-cliques within

two hours of computations, while other approaches can only list

triangles within a reasonable amount of time. It can also list all

3.39 × 1015 5-cliques within a week of computation.
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Figure 2: Running time of the algorithms as a function of k. We truncated the curves at 24 hours.

6.5 k-clique Densest Subgraph &

k-clique Core Decomposition

We show that our algorithm can be used as an efficient subroutine

to compute the k-clique core decomposition and an approximation to

the k-clique densest subgraph, as defined in [51]. It turns out that

using our algorithm one could solve those problems much faster,

for larger values of k and on larger datasets than before. This, in

turn, allows to efficiently find quasi-cliques, as pointed out in [51].

The k-clique density of a graph is defined as the number of k-
cliques divided by the number of nodes in such a graph. Thek-clique
densest subgraph problem consists of finding a subgraph of the

input graph with maximum k-clique density. As observed in [51],

one could find an approximation to a k-clique densest subgraph by

means of either one of the following two algorithms.

(1) The algorithm which removes in each round a vertex be-

longing to the minimum number of k-cliques and returns

the subgraph that achieves the largest k-clique density, is a
k-approximation for the k-clique densest subgraph problem.

It also produces the so-called k-clique core decomposition.

(2) The algorithm which removes in each round the set of ver-

tices belonging to less than k (1 + ϵ )ρk k-cliques and re-

turns the subgraph that achieves the largest k-clique density,
where ρk is the k-clique density of the subgraph at that

round. Such an algorithm gives a k (1 + ϵ )-approximation,

while it terminates in O (
logn
ϵ ) round, for every ϵ > 0.

Our algorithm can be used to give a full pass on all k-cliques of
the input graph, without storing any such a clique. Therefore, it

can be effectively employed to solve each of the aforementioned

problems. In particular, a k (1 + ϵ )-approximation for the k-clique

densest subgraph problem can be computed inO (log
1+ϵ (n) · k ·m ·

(
c (G )
2

)k−2 +m) time, while the k-clique core decomposition can be

computed in O (n · k ·m · (
c (G )
2

)k−3 +m) time (in this version we

update the k-clique degrees of the neighbors of a removed node by

listing the (k−1)-cliques on the subgraph induced by its neighbors).

Both algorithms require linear space in the size of the input.

In our experimental evaluation, using 40 threads, ϵ = 0.01 we

were able to compute a 13.13-approximation of the 13-clique densest

subgraph in Wikipedia and a 9.09-approximation of the 9-clique

densest subgraph in Friendster within one day of computation. In

this case, we consider the k (1 + ϵ )-approximation algorithm for

the k-clique densest subgraph which requires O (
logn
ϵ ) passes over

the set of k-cliques. We were also able to compute within one day

of computation while using one single thread, the 11-clique core

decomposition of Wikipedia and the 7-clique core decomposition

of Friendster.

The core decomposition (k = 2) is an effective tool in graph

mining, for instance, to find best spreaders [33], find outliers [48],

as well as speeding up algorithms (e.g. it is used as a subroutine

in our own algorithm). An efficient algorithm for the k-clique core
decomposition for k > 2 might unleash its full potential as a graph

mining tool. In Figure 3, we show that such a decomposition can be

used to efficiently find quasi-cliques. In such a figure, we measure

the edge density of the k-approximation of the k-clique densest
subgraph that we obtained using the k-clique core decomposition

as a function of k , where the edge density of a subgraph is defined

as its number of edges divided by the number of edges in a clique

with the same number of nodes. We also report the number of nodes

in the computed subgraph. We can see that the edge density of the
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Figure 3: Number of nodes and edge density of the k-densest subgraph approximation versus k.

subgraphs found by our algorithm quickly converges towards 1,

which is the density of a clique. This makes it an effective heuristic

to find cliques and quasi-cliques in large graphs.

6.6 Counting k-cliques
Because of the computational bottlenecks in computing the exact

number of k-cliques in a graph, there have been several methods

for approximating such a number. Most notably, in [31] the authors

developed a technique based on Turan’s theorem, which is able

to efficiently compute a good approximation of such a number. In

particular, the authors show that their technique boasts an error

of at most 2% in almost all the graphs considered in their work.

However, for a few of those graphs, the exact count was not known

at the time when their work was published.

Armed with our algorithm for listing all k-cliques in a graph, we

are able to compute the exact number of k-cliques in all but two of

the graphs considered in [31] and fill Table 2 of [31] with five addi-

tional values that were missing. The results are shown in Table 5.

Our experiments confirm a very good accuracy of their technique,

with all results boasting an error smaller than 1%
2
in terms of rela-

tive error (|true - estimate|/true). Moreover, the running time of

their algorithm for approximately counting the number of k-cliques
is faster than our algorithm for listing all k-cliques. In particular, all

our experiments required at most 8 hours of computation with 40

threads, while the running time of their approach is in the order of

minutes using a single thread, except for com-orkut which required

three hours of computation. Our conclusion is that the technique

proposed in [31] is valuable in case a quick approximate count is

needed, however, our algorithm could be used in case one wishes

to list all k-cliques or an exact count is needed.

All datasets and our implementation
3
are publicly available.

graph m k Nk Estimated Nk error

web-Stanf. 1,992,636 10 5.8333 × 1012 5.8358 × 1012 0.04%

com-orkut 117,185,083 10 3.0288 × 1013 3.0360 × 1013 0.24%

com-lj 34,681,189

5 2.4663 × 1011 2.4764 × 1011 0.40%

7 4.4902 × 1014 4.5134 × 1014 0.52%

as-skitter 11,095,298 10 1.4217 × 1013 1.4312 × 1013 0.67%

Table 5: Completion of Table 2 of [31]

2
We remark that these results are significantly more accurate than initially reported

due to a bug in their code, which has been later fixed by the authors.

3
Available at https://github.com/maxdan94/kClist.

7 CONCLUSION AND FUTUREWORK

We developed a parallel algorithm for listing all k-cliques in very

large real-world graphs which leverages the sparsity of the input

graph. Our algorithm has the best known asymptotic running time,

while it requires a linear amount of memory in the size of the input.

In practice, for medium values of k , the sequential version of our

algorithm is faster than state-of-the-art algorithms for the same

problem, while the parallel version allows the gain of an order of

magnitude with respect to state-of-the-art approaches. Our exper-

imental analysis shows that our parallel algorithm is able to list

all cliques in graphs containing up to tens of millions of edges,

as well as all 10-cliques in graphs containing billions of edges,

within a few minutes or a few hours, respectively, while boasting

a near-optimal degree of parallelism. Observe that there are up to

several quadrillions of k-cliques in the input graphs considered in

our experiments. We showed that our algorithm can be used as an

effective subroutine when computing the k-clique core decomposi-

tion or a k-clique densest subgraph. In particular, we showed how

to use our algorithm so as to produce a stream of k-cliques without
storing any such a clique in main memory. For future work, we

would like to investigate further whether such an approach could

be successfully employed in graph compression, community and

event detection.

According to our theoretical analysis and experiments, the node

ordering used in our algorithm significantly affects its running

time, with core ordering performing well. One interesting direction

for future work is to investigate whether one could speed up our

algorithm even further by considering other node orderings. We

showed that the edge-parallel version of our algorithm achieves a

near-optimal degree of parallelism on up to 40 threads or more. A

natural question is whether one could maintain or improve such

a degree of parallelism on a larger number of threads. To this end,

we speculate that one could benefit from parallelizing on higher

order cliques (such as triangles or 4-cliques). We defer this study to

future work.
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