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Introduction

In the sense to correct the demonstrations proposed by some mathematicians to prove the equality 1 = 0.9. I propose in this article to give the truth demonstration by using the properties of the infinitesimal numbers presented by the Robinson's theory (see [START_REF] Robinson | Non-standard Analysis[END_REF]). In the last false proof we correct it by using the Transfer principle(see [START_REF] Nelson | Internal Set Theory: a new approach to Nonstandard Analysis[END_REF]). Finally, we propose an example to explain our opinion.

2. Why 0.9 is different to 1 Let x be a positive real number. The decimal representation of x is giving by:

x 0 , x 1 x 2 x 3 • • • x n • • •
, where x 0 ∈ N , and 0 ≤ x i ≤ 9 for all integer i ≥ 1. The sequence (x i ) is given by:

x 0 = ⌊x⌋ ; x i = ⌊10 i x⌋ -10⌊10 i-1 x⌋ for all integer i ≥ 1.
Then, for the number u = 0.9, we have:

(S) ⌊u⌋ = 0 ; ⌊10 i u⌋ -10⌊10 i-1 u⌋ = 9 for all integer i ≥ 1.
As 1 is not a solution of any equation of the above system, then u = 1.

3.

The equality 10u = u + 9 is false Consider the following demonstration:

Proof. we note u = 0.999 • • • . We have:

u = 0.999 • • • (3.1) ⇒10u = 9.999 • • • (3.2) ⇒10u = 9 + u (3.3)
by solving the equation, we find u = 1. This proof is false. In fact, let x = x i be the hyperreal defined by the sequence (x i ). For all function f : R → R, the hyperreal f (x) is given by f (x) = f (x i ) . Let u be the hyperreal number defined by u = 0.9, 0.99, 0.999, . . . . For every integer n ≥ 1, we note:

g n (x) = ⌊10 n x⌋ -10⌊10 n-1 x⌋.
We verify easily that ⌊0.9⌋ = ⌊0.99⌋ = ⌊0.999⌋ = • • • = 0. In addition, we have g n (0.9) = g n (0.99) = g n (0.999) = • • • = 9 for all n ≥ 1 .

So, we obtain: ⌊u⌋ = ⌊0.9⌋, ⌊0.99⌋, ⌊0.999⌋, • • • = 0 and ; g n (u) = g n (0.9), g n (0.99), g n (0.999),

• • • = 9 ∀n ≥ 1.
Then, the hyperreal u is a solution of the system (S). We note:

u = 0, 999 • • •
Next, we can prove that the equality 10u = u + 9 is not true. In fact, we have: u = 0.9, 0.99, 0.999, . . . . Then 10u = 9, 9.9, 9.99, . . . In addition, we have: u + 9 = 9.9, 9.99, 9.999, . . . .

Then, we deduce that:

u + 9 -10u = 0.9, 0.09, 0.009, . . . , (3.4) = 9δ, (3.5) where δ = 0.1, 0.01, 0.001, . . . is the infinitesimal number defined by the sequence (10 -n ) n≥1 . As δ is a nonzero hyperreal number. Then, we deduce that 10u = u + 9.

Another proof is given as follow. For every integer n ≥ 1, we define: u n = 1 -10 -n = 0.9 • • • 9.

We verify easily that:

u n + 9 -10u n = 0, 0 • • • 09, (3.6) = 9δ n , (3.7)
where δ n = 10 -n .

So, we find:

u + 9 -10u = u i + 9 -10u i , (3.8) = 9δ 1 , 9δ 2 , • • • , 9δ i , • • • , (3.9) = 9δ. (3.10) Remark 3.11.
• The problem we may encounter if we use the notation 0.999 • • • , is the fact that the solution of the system (S) is not unique. For example, Let u = u i = 0.9, 0.99, 0.999, • • • and v = v i = 0.99, 0.999, 0.9999, • • • two hyperreal numbers. We can verify easily that u and v are solutions of (S). As u i = v i for all i, then, u = v and uv is an nonzero infinitesimal number.

• Since the hypereal δ = 1 -0.999 • • • is infinitesimal. Then, 0.999 • • •
is not a real number. • We can find more difficulties to prove that the number 0.999 • • • is an Omicran (see [START_REF] Saghe | A New Approach to Nonstandard Analysis[END_REF]).

The second false proof

Consider the following demonstration:

Proof. We have:

0.999 • • • = lim m→+∞ m n=1 9.10 -n , (4.1) = 9. +∞ n=1 10 -n , (4.2) = 9 10 . 1 1 -10 -1 , (4.3) = 1. (4.4)
The goal of this section, is to prove that this proof is not true. For that, Let (s m ) be the series defined as:

s m = m n=1 9.10 -n .
The sentence [lim ∞ s m = 0.999 • • • ] is not true. The truth limit of this series is 1, we can established it by using the following definition of limit:

∀ε real > 0, ∃ n 0 ∀m ≥ n 0 | s m -1 |≤ ε.
By using the Transfer principle, we find:

∀ε > 0, ∃ n 0 ∀m ≥ n 0 | s m -1 |≤ ε.
Then lim s m = 1. In addition, we can verify easily that we have:

∀ε real > 0, ∃ n 0 ∀m ≥ n 0 | s m -0.999 • • • |≤ ε. But the following proposition ∀ε > 0, ∃ n 0 ∀m ≥ n 0 | s m -0.999 • • • |≤ ε,
is not true. Here we cannot apply the Transfer principle for the sentence [∀ε real > 0, ∃ n 0 ∀m ≥ n 0 | s m -0.999 • • • |≤ ε], because 0.999 • • • is not a real number and the above proposition is not an internal formula.

Examples 4.5. Let (x n ) the sequence defined as x n = 1 + 1 n . Let δ be an infinitesimal number.

We can verify easily that: 

∀ε real > 0, ∃ n 0 ∀m ≥ n 0 | x m -1 |≤ ε,

  and∀ε real > 0, ∃ n 0 ∀m ≥ n 0 | x m -(1 + δ) |≤ ε.Despite that, we have lim x n = 1 and lim x n = 1 + δ.