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Eigenvalue method with symmetry and vibration analysisof 
y
li
 stru
tureAurelien Grolet1, Philippe Malbos2, and Fabri
e Thouverez1
1 LTDS, É
ole 
entrale de Lyon,36 avenue Guy de Collongue, 69134 ECULLY 
edex, Fran
e.

2 Université de de Lyon, ICJ CNRS UMR 5208, Université Claude Bernard Lyon 1,43 boulevard du 11 novembre 1918, 69622 VILLEURBANNE 
edex, Fran
e.Abstra
t. We present an appli
ation of the eigenvalue method with symmetry for solvingpolynomial systems arising in the vibration analysis of me
hani
al stru
ture with symme-try. The sear
h for solutions is 
ondu
ted by the so 
alled multipli
ation matrix methodin whi
h the symmetry of the system is taken into a

ount by introdu
ing a symmetrygroup G and by working with the set of invariant polynomials under the a
tion of group
G. By using this method, we 
ompute the periodi
 solutions of a simple dynami
 system
oming from the model of a 
y
li
 me
hani
al stru
ture subje
ted to nonlinearities.1 Introdu
tionMany engineering problems 
an be modeled or approximated su
h that the determination of asolution goes through the resolution of a polynomial system. In this paper, we are interested in
omputing periodi
 solutions of nonlinear dynami
 equations. It 
an be shown that the Fourier
oe�
ients of the (approximated) periodi
 solutions 
an be obtained by solving multivariatepolynomial equations resulting from the appli
ation of the Harmoni
 Balan
e Method [1, 2℄.Moreover, in our appli
ations, the dynami
al system is often invariant under some transforma-tions (
y
li
 permutation, 
hange of sign, ...) due to the presen
e of symmetry in the me
hani
alstru
ture. This implies that the polynomial system to be solved is also invariant under sometransformations, and so does its solutions.Most of the time, in me
hani
al engineering, polynomial systems are solved by numeri
 meth-ods su
h as a Newton-like algorithm, whi
h outputs only one solution of the system dependingon the starting point provided. Although the Newton method is an e�
ient algorithm (quadrati

onvergen
e), the sear
h for all solutions of a polynomial system 
annot be 
ondu
ted in a rea-sonable time using only this method. In the 
ontinuation methods framework [3℄, the study ofbifur
ations allows to follow new bran
hes of solution, but does not warranty that all solutionsare 
omputed (eg dis
onne
ted solutions).Homotopy methods [2, 4℄ are an alternative to the Newton algorithm when sear
hing forall solutions of a multivariate polynomial system. Basi
ally, homotopy methods relie on the
ontinuation of the (known) roots of a starting polynomial Q (easy to solve) to the (unknown)roots of a target polynomial P . The 
hoi
e of the starting polynomial is a key point on wit
hdepends the e�
ien
y of the method. Indeed, if the starting polynomial has to many roots
ompared to P , most of the 
ontinuations will lead to divergent solutions, thus wasting timeand resour
es. Improvements su
h as the polyhedral homotopy aims at redu
ing the number ofdivergent path by 
onsidering a starting polynomial stru
turally 
lose to the target polynomial



[5℄. However, the presen
e of high 
ombinatori
 and/or probabilisti
 
onsiderations makes theappli
ation of the method rather di�
ult. Moreover, it is not 
lear how to take into a

ountsymmetry properties in the polyhedral homotopy.In this 
ontext, where numeri
al methods are not entirely satisfa
tory, 
omputer algebraappears as an attra
tive alternative, sin
e there exist an e�
ient method spe
ially developed forsolving symmetri
 system of polynomial equations. The method, relatively re
ent, is proposedby Gatermann in [6℄ and is 
alled "eigenvalue method with symmetry". It is based upon themultipli
ation matrix method [7, 8℄, where solutions of the polynomial system are obtained bysolving an eigenvalue problem. Moreover, it takes into a

ount the symmetry of the system byworking only on a subspa
e of the quotient algebra. The method is very e�
ient sin
e takinginto a

ount symmetry allow for redu
ing the size of the multipli
ation matrix su
h that onlyone representative of ea
h orbit of solution 
an be 
omputed.In this paper, we propose a new appli
ation of the eigenvalue method with symmetry for
omputing periodi
 solutions of nonlinear dynami
 systems solved by the harmoni
 balan
emethod. It 
onstitutes an attempt to evaluates the 
apabilities of 
omputer algebra methods inthe �eld of me
hani
al engineering, in whi
h numeri
al methods are often the norm.The paper is organized as follow: se
tion 2 presents the type of system studied in this work.The motion's equations are presented along with a brief re
all of the Harmoni
 Balan
e Method,and we also derive the polynomial equations solved in this study. Se
tion 3 
on
entrates onpolynomial systems solving. We re
all some fa
ts about the multipli
ation matrix method andwe des
ribe how to take into a

ount the symmetry of the system.We also present our resolutionalgorithm in this se
tion. Se
tion 4 is dedi
ated to numeri
al examples and the paper ends withsome 
on
luding remarks.2 Dynami
 system and periodi
 solutions2.1 System of interestWe aim at �nding periodi
 solutions of (polynomial) nonlinear me
hani
al stru
tures with spe
ialsymmetry. For exemple, bladed disks subje
ted to geometri
 nonlinearities represent su
h astru
ture [1℄. Here, only a simple 
y
li
 system (whi
h 
an be seen as a redu
ed order modelof a bladed disk, where all blades have been redu
ed on their �rst mode of vibration) willbe 
onsidered. The model 
onsists in N du�ng os
illators linearly 
oupled, governed by thefollowing motion equation:
müi + cu̇i + (k + 2kc)ui − kcui−1 − kcui+1 + knlu

3
i = fi(t), i = 1, . . . , N (1)where ui(t) represents the temporal evolution of degree of freedom (dof) number i, and fi(t)represents the temporal evolution of the ex
itation for
e a
ting on dof number i. If there is nofor
e, note that this dynami
 system is invariant under the a
tion of the dihedral group DN(symmetry of a regular polygon with N verti
es).Equation (1) 
an be written in the following matrix form:

Mü+Cu̇+Ku+ Fnl(u) = Fex(t), (2)were u(t) is the ve
tor of dof of size N , M = mI is the mass matrix, C = cI is the dampingmatrix, K = (k+2kc)I− kcI
L− kcI

U is the sti�ness matrix, and Fnl(u) = knlu
3, Fex(t) = f(t)




orrespond to the nonlinear and ex
itation for
es respe
tively. The ex
itation for
es will beassumed to be periodi
, with period T = 2π
ω
, and we will sear
h for periodi
 solutions u(t),using the harmoni
 balan
e method des
ribed hereafter.2.2 Harmoni
 Balan
e MethodThe harmoni
 balan
e method (HBM), is a widely used method in �nding approximation toperiodi
 solutions of nonlinear di�erential equations su
h as (2) [1, 9℄. The solutions u(t) isapproximated under the form of a trun
ated Fourier series, and a system of algebrai
 equationsis derived by applying Galerkin proje
tions. Let us re
all the main steps of the method.At �rst, ea
h 
omponent ui(t) of the periodi
 solution u(t) is approximated by ûi(t) underthe following form:̂

ui(t) = x(0) +

H∑

k=1

x
(k)
i cos(kωt) + y

(k)
i sin(kωt), i = 1, . . . , N. (3)We substitute (3) in (2) and we proje
t the resulting equations on the trun
ated Fourier basis:

2
T

∫ T

0
R(û)× 1 dt = 0,

2
T

∫ T

0
R(û)× cos(kωt) dt = 0, k = 1, . . . , H,

2
T

∫ T

0
R(û)× sin(kωt) dt = 0, k = 1, . . . , H.

(4)with T = 2π/ω and
R(û) = M ¨̂u+C ˙̂u+Kû+ Fnl(û)− Fex(t).Equations (4) 
orresponds to a set of N(2H + 1) algebrai
 equations with unknowns x and y.2.3 Equations to be solvedIn our appli
ation, Fnl(u) = knlu

3 is polynomial and (4) 
orresponds to a system of polynomialequations. In order to simplify the presentation and redu
e the number of variables, we will only
onsider a single harmoni
 approximation of the periodi
 solution, i.e., H = 1 in (3). Moreover,as the nonlinearity is odd, no 
ontinuous 
omponent will be retained, i.e., x(0) = 0 in (3). Underthese hypothesis, (4) 
orresponds to a system of 2N polynomial equations whi
h 
an be writtenin the following form (dropping the harmoni
 index (k)):
α(ω)xi + δ(ω)yi − βxi−1 − βxi+1 + γxi(x

2
i + y2i ) = f c

i , i = 1, . . . , N,
α(ω)yi − δ(ω)xi − βyi−1 − βyi+1 + γyi(x

2
i + y2i ) = f s

i , i = 1, . . . , N,
(5)where f c

i (resp. f s
i ) denotes the amplitude of the ex
itation for
es relative to the cos(ωt) (resp.

sin(ωt)) term, and with the following expression for the di�erent 
oe�
ients:
α(ω) = k + 2kc − ω2m, β = kc, γ =

3

4
knl, δ(ω) = ωc.In our appli
ation, we are interested in for
ed and free solutions.



For
ed solutions. In the for
ed 
ase (fc 6= 0 or fs 6= 0), the angular frequen
y ω is set by theex
itation for
es and (5) will be solved for x and y. Depending on the symmetry of the ex
itationfor
es, system (5) may present some invarian
e properties. We will 
hoose f c
i = 1, f s

i = 0 for all
i = 1, . . . , N so that system (5) will be invariant under the a
tion of the dihedral group DN .Free solution. In the free 
ase, we aims at �nding solutions of an unfor
ed, undamped versionof system (2), also 
alled Nonlinear Normal Modes (NNM) [10�12℄. In order to simplify we willonly sear
h for solutions where all dof vibrate "in-phase" (monophase NNM [13℄) by imposing
yi = 0 for all i = 1, . . . , N , thus resulting in the following polynomial system with N equations:

α(ω)xi − βxi−1 − βxi+1 + γx3
i = 0, i = 1, . . . , N. (6)The angular frequen
y ω will be set to an arbitrary value and system (6) will be solved for x.Again (6) is invariant under the a
tion of the dihedral group DN and it is also invariant under
hange of sign, 
hara
terized by the group with 2 elements Z2 = {e, b | b2 = e} with b(x) = −x.3 Solving multivariate polynomial systemsIn this se
tion we present the method used to solve symmetri
 system of polynomial equations.First, the eigenvalue method is des
ribed. Then we show how to in
lude symmetry of the systemin order to redu
e the number of solution as proposed in [6℄, leading to the so 
alled eigenvaluemethod with symmetry. Finally we propose an algorithm to summarize the pro
ess.3.1 Gröbner BasisWe will denote by C[x] the ring of multivariate polynomials with 
omplex 
oe�
ients in thevariables x = (x1, . . . , xn). A polynomial in C[x] has the form f(x) =

∑
α∈S

c(α)xα, where
S ⊂ Nn is the the support of f , xα = xα1

1 · · ·xαn

n is a monomial of total degree |α| =
∑

i αi, and
c(α) ∈ C is the 
oe�
ient of monomial xα. We �x a monomial order on C[x]. In the appli
ation,we will 
onsider the graded reverse lexi
ographi
 order ≤grevlex de�ned for α,β in N

n by:
α ≤grevlex β ≡ [|α| ≤ |β|] or [αj ≥ βj and αi = βi for 1 ≤ j ≤ i]We will denote by lm(f) and l
(f) the leading monomial and the leading 
oe�
ient of apolynomial f , we will denote by lt(f) = l
(f)lm(f) its leading term.Consider a multivariate polynomial system given by P (x) = [p1(x), . . . , pn(x)] with pj ∈

C[x] for j = 1, . . . , n. We denote by I = 〈P 〉 = 〈p1, . . . , pn〉 the ideal of C[x] generated by thepolynomial system P . The redu
tion operation modulo P redu
es a polynomial f ∈ C[x] intoa remainder of the division of f by ea
h element of P , de�ned by:
f(x) =

n∑

i=1

µi(x)pi(x) + r(x).Su
h a remainder is generally not unique and depends on the division order and on the monomialorder. However, the redu
tion modulo a Gröbner basis makes the remainder unique during theredu
tion operation. Re
all that a Gröbner basis for I is a �nite 
olle
tion of polynomials



G = [g1, . . . , gm] ⊂ I with the property that for any nonzero polynomial f in I, lt(f) isdivisible by lt(gi) for some i = 1, . . . ,m. The remainder on division of f by a Gröbner basis isuniquely determined, thus is 
alled normal form for f and denoted nf(f). In pra
ti
e, a Gröbnerbasis 
an be 
ompute by the Bu
hberger algorithm [14℄ and its improvements, e.g. [15℄. Themonomial ordering 
hoosen in�uen
es both the form of the basis G and 
omputation time, and,in general, 
omputation with the grevlex ordering tends to be faster than with the lexi
ographi
ordering. We denote by A = C[x]/I the algebra de�ned as the quotient of C[x] by the ideal I.The set G being a Gröbner basis, the monomials
B = {xα | xα /∈ 〈lt(G)〉}form a basis of algebra A, as a ve
tor spa
e over C. If the polynomial system P (x) = 0 hasonly a �nite number of solutions (say D solutions), the ideal I is zero-dimensional, and it 
anbe shown [7, 16℄ that, as a spa
e, A is of �nite dimension D.3.2 Multipli
ation Matri
es MethodGiven a polynomial f ∈ C[x], we 
onsider the map mf : A → A, de�ned by mf (h) = fh, forany h in A. Sin
e A is a �nite-dimensional algebra the map mf 
an be represented by a matrix

Mf relative to the basis B. The matrix Mf is 
alled multipli
ation matrix and is 
hara
terizedby the following relation (modulo I):
f B = Mf B mod(I), (7)or equivalently:

f Bi =

D∑

j=1

Mf
i,j Bj mod(I), i = 1, . . . , D.The 
oe�
ients of line i of the matrix Mf 
an be obtained by 
omputing the normal form ofea
h produ
t f Bi and by expressing the results as a linear 
ombination of elements of B.For parti
ular 
hoi
es of f = xp, p = 1, . . . , n, it 
an be shown that the eigenvalues ofthe multipli
ation matri
es Mxp

are related to the zeros of the polynomial system. Indeed,substituting f = xp into (7), for any x, we have:
(
Mxp

− xpI
)
B(x) = 0 mod(I). (8)It follows that the ve
tor (

Mxp
− xpI

)
B(x) 
an therefore be expressed as a 
ombinationof the polynomials in P . Now, let's suppose that x∗ is a root of P . Then pi(x

∗) = 0 for all
i = 1, . . . , n, and (8) shows that x∗

p is an eigenvalue of Mxp
asso
iated to the eigenve
tor B(x∗).Note that the eigenve
tor should be normalized so that its �rst 
omponent equals 1 (in order toma
h with the asso
iated polynomials B1(x) = 1).Going further, it 
an be shown [7, 16℄ that the 
omponents of the roots are given by theeigenvalues of Mxp

, p = 1, . . . , n, asso
iated with 
ommon eigenve
tors Bk.Here, we follow the method given in [4℄ (Chap.1.6.3.2), whi
h 
onsists in 
onsidering onlyone multipli
ation matrix asso
iated with a linear 
ombination of the variables f =
∑n

i=1 ci xi,where ci are rational numbers 
hosen su
h that the value of f(x(k)) is di�erent for ea
h solution
x(k), k = 1, . . . , D. Generally, random 
hoi
es for 
oe�
ients ci are su�
ient to ensure thisproperties almost surely [4℄. The sear
h for the roots of system P is then simply 
ondu
ted bysolving the eigenvalue problem (Mf−fI)B = 0, and by reading the solutions in the eigenve
tors
Bk = B(x(k)), k = 1, . . . , D.



3.3 Introdu
ing symmetryInvariant polynomial systems. Due to the symmetry of the me
hani
al stru
ture (
hange of
oordinates, . . . ), the polynomial systems to be solved in our appli
ations (see se
tion 2.3) alsopossess a symmetri
 stru
ture. Here we will 
onsider that the polynomial system to be solved isequivariant under the a
tion of a group G, that is P (g(x)) = g(P )(x), ∀g ∈ G, where g ∈ G isa permutation operation de�ned by g(x) = [xg(1), . . . , xg(n)]. The set of invariant polynomialunder G is denoted C[x]G and de�ned by: C[x]G = {f ∈ C[x] | f(g(x)) = f(x), ∀g ∈ G}. Wedenote by IG = I ∩ C[x]G the ideal invariant under the a
tion of the group G.Quotient de
omposition. It 
an be shown that C[x] 
an be de
omposed into a dire
t sumof isotypi
 
omponents [6, 17℄, su
h that C[x] = V1 ⊕ V2 ⊕ . . . ⊕ VK , where the Vi's are theisotypi
 
omponents (related to the K irredu
ible representations of group G [6℄), and wherethe �rst 
omponent is the invariant ring itself: V1 = C[x]G . By de�ning Ii = I ∩ Vi, the algebra
A = C[x]/I 
an be de
omposed into a dire
t sum as follows [6℄:

A = C[x]G/IG ⊕ V2/I2 ⊕ . . . ⊕ VK/IK (9)The spa
e C[x]G 
an be de
omposed into the following dire
t sum (Hironaka de
omposition) [6℄:
C[x]G = ⊕i Si C[π] = C[π]⊕ S2C[π]⊕ S3C[π]⊕ · · · ⊕ SpC[π]where π = [π1, . . . , πn] is the set of primary polynomial invariants related to G, and S2, . . . , Sn
orrespond to the se
ondary polynomial invariants related to G. The primary polynomial invari-ants π 
an be found by using the Reynold proje
tion operator de�ned for f ∈ C[x] by [18℄:Ref (x) = 1

|G|

∑

g∈G

f(g(x)). (10)Applying the Reynolds proje
tor to any polynomial f ∈ C[x] leads to an invariant polynomialRef ∈ C[x]G . The primary invariants 
an be 
omputed by applying the Reynold proje
tor to ea
hmonomials xα with |α| ≤ |G|. In 
ertain 
ases, some monomials will lead to the same invariant,or some invariants 
an be obtained as a 
ombination of the others. In those 
ases, we needto eliminate the redundan
ies by 
omputing Gröbner basis [18℄. In this work, we 
ompute theprimary invariants using the invariant_ring 
ommand of Singular. The se
ondary invariants
orresponds to a module basis of C[x]G as a C[π]-module. It 
an also be 
omputed by theinvariant_ring 
ommand.Using the primary polynomial invariants. In the following, the primary invariants will beused to �nd the solution of an invariant system. Let's suppose that we 
an �nd the values of theprimary invariant π(k) = π(x(k)) for ea
h solution x(k), then by solving the following systems:
π(x) = π(k), k = 1, . . . , DG ,for x by a Newton-like method, one 
an 
ompute an unique o

urren
e of solution x(k) and theother 
an be generated by applying the group's a
tions on x(k), i.e., g(x(k)), ∀g ∈ G.We will 
ompute the values of the primary invariants π(k) for ea
h solution x(k) with themultipli
ation matrix method. However, as shown in [6℄, the multipli
ation matri
es related to



the primary invariants are redundant as they 
ontain the same eigenvalues several times. In asuited basis of A, it is even shown that the multipli
ation matri
es asso
iated to the primaryinvariants are blo
k diagonal [6, Thm. 3℄, with ea
h blo
k 
ontaining the same eigenvalues [6,Prop. 8℄. Thus, only the �rst diagonal blo
k (related to the subspa
e C[x]G/IG) is of interest to
ompute the values of the primary invariants.All that is left to do here, is to �nd a basis B′ of A that makes the multipli
ation matri
esblo
k diagonal. More pre
isely, it is su�
ient to �nd a basis BG = [B′
1, . . . ,B′

DG
] of C[x]G/IGin agreement with the dire
t sum de
omposition in (9).Constru
tion of an adapted basis. The goal is to �nd a basis BG of C[x]G/IG (with #BG =

DG) in agreement with the dire
t sum de
omposition in (9), in order to 
onstru
t the �rst blo
kof a multipli
ation matrix. As in the previous se
tion, the multipli
ation matrix will be relatedto a polynomial f =
∑n

i=1 ci πi, where ci are rational 
oe�
ients 
hosen randomly.The basis BG should only 
ontains invariant polynomials, and their normal forms should besu�
ient to express all remainders r in the division of f BG
i by I (i.e., r =

∑DG

j=1 MG
i,j nf(BG

j )).We suppose that a Gröbner basis G of I is known. Let nf the normal form operator for G.At start, we set BG
1 = 1.The 
onstru
tion of the basis then goes as follows. For BG

i in BG we 
ompute the normalform r = nf(f BG
i ). Then, until the remainder r equals zero, we sear
h if there exists BG

j in BGsu
h that lm(nf(BG
j )) = lm(r), that is lt(r) = q lt(nf(BG

j )), with q ∈ C� if su
h a BG
j exists, then we divide r by nf(BG

j ): r = MG
i,j nf(BG

j ) + h and we save the(numeri
) matrix 
oe�
ient MG
i,j . Finally, we a�e
t r = h, and sear
h for a new divisor oflt(r).� if not, we will 
reate a new basis term BG

k whose leading monomial equals lm(r) by 
on-sidering the Reynold proje
tion of lm(r), ie: BG
k = Relm(r). However, it may happen thatlm(nf(Relm(r))) 6= lm(r). In that 
ase, we modify the Reynold proje
tion by subtra
tingthe high order term until lm(nf(Relm(r))) = lm(r). This is done by sear
hing into the basisan element BG

j0
su
h that lm(nf(BG

j0
)) = lt(nf(Relm(r))) and by modifying the Reynoldproje
tion : Relm(r) = Relm(r) − cj0B
G
j0
. On
e the invariant is 
omputed, we divide r by thenew element : r = MG

i,k BG
k + h, and we 
an save the (numeri
) matrix 
oe�
ient. Finally,we a�e
t r = h, and sear
h for a new divisor of lt(r).This pro
ess is repeated until all produ
ts f Bi, i = 1, . . . , DG , have been 
omputed. Thebasis 
onstru
tion is summarized in Algorithm 1.Algorithm 1. Computation of a basis BG of the invariant spa
e C[x]G/I, and 
onstru
tion ofthe multipli
ation matrix of the invariant variable f =

∑
cjπj#Preliminaries
ompute a Gröbner basis G of P with the grevlex orderinitialize f =

∑
j cjπj , BG

1 = 1, n = 1#Basis Computation
j = 0while j < n do
j = j + 1




ompute the normal form r = nf(fBG
j )while r 6= 0 dofor k = 1, . . . , n doif lm(nf(bk)) = lm(r) thenredu
e r : r = qBG

k + hsave Mj,k = q and update : r = hend ifend forif lm(r) /∈ BG then
ompute the Reynold proje
tion Re(x) = Relm(r)(x)if lm(nf(Re))=lm(r) thena�e
t BG
n+1 = Reelsewhile lm(nf(Re)) 6= lm(r), redu
e the Reynold proje
tion: Re = Re− ckB

G
ka�e
t BG

n+1 = Reend ifredu
e the normal form r : r = qRe+ hsave Mj,n+1 = q and update : n = n+ 1, r = hend ifend whileend whilereturn the multipli
ation matrix Mf and the basis BG4 Numeri
al appli
ationsIn this se
tion, we apply the eigenvalue method with symmetry to the system given in Se
-tion 2.3. The numeri
al appli
ation will be 
ondu
ted for system with N = 2, 4 degrees offreedom. In the two 
ases, free and for
ed analysis are 
ondu
ted. Solutions for a parti
ularfrequen
y are 
omputed with the multipli
ation matri
e method, and we give an overview of thesystem dynami
s by applying 
ontinuation methods [3℄. Finally, an NNM analysis is 
arried for
2 ≤ N ≤ 6 in order to show the de
rease in the number of solutions.4.1 Simple example with 2 degrees of freedomAs a �rst appli
ation, we study a system with N = 2 degree of freedom. In this 
ase, (2) redu
esto the following dynami
 system:

mü1 + cu̇1 + (k + kc)u1 − kcu2 + knlu
3
1 = f1(t),

mü2 + cu̇2 + (k + kc)u2 − kcu1 + knlu
3
2 = f2(t).

(11)The appli
ation of the HBM with only one harmoni
 (ui = xi cos(ωt) + yi sin(ωt)) leads to thefollowing system of polynomial equations:
αx1 − βx2 + δy1 + γx1(x

2
1 + y21) = fc,

αy1 − βy2 − δx1 + γy1(x
2
1 + y21) = fs,

αx2 − βx1 + δy2 + γx2(x
2
2 + y22) = fc,

αy2 − βy1 − δx2 + γy2(x
2
2 + y22) = fs,

(12)



with α = k + kc − ω2m, β = kc, γ = 3
4knl and δ = ωc. The frequen
y parameter will be set to

ω = 25
10 (however the sear
h for multiple solution 
an be 
ondu
ted for any value of ω), leadingto the following numeri
al values:

α =
−17

4
, β = 1, γ =

3

4
, δ =

1

10
, fc = 1, fs = 0. (13)Monophase NNM analysis. We sear
h for monophase NNM solutions of (12) (undamped,unfor
ed). In this 
ase, the system (6) redu
es to the following:

αx1 − βx2 + γx3
1 = 0,

αx2 − βx1 + γx3
2 = 0.

(14)We 
onsider the order grevlex with x1 > x2. Sin
e the leading term of ea
h equation are 
o-prime, the polynomial system P is already in a Gröbner basis form. We 
omputed a normal setand we show the algebra A = C[x]/ 〈P 〉 is of dimension 9 (i.e., the system has 9 solutions).The system (14) is invariant under permutation of variable and under 
hange of sign. Thisinvarian
e property 
orresponds to the group G = C2 × Z2, where C2 = {e, a | a2 = e }, where
a[(x1, x2)] = (x2, x1) and Z2 = {e, b | b2 = e }, where b[(x1, x2)] = (−x1,−x2). All element
g ∈ G 
an be represented by a matrix Mg = A

igB
ig where A and B are given by the following:

A =

[
0 1
1 0

]
, B =

[
−1 0
0 −1

]
.Using Singular, we know that the primary invariant of G are π1 = x1x2 and π2 = 1

2 (x
2
1+x2

2).We set f = π1 +
2
3π2, and we 
onstru
t the multipli
ation matrix of f in an symmetry adaptedbasis of AG using Algorithm 1. The basis BG of AG and the multipli
ation matrix Mf are givenby
BG = [1,

1

2
(x2

1 + x2
2), x1x1, x2

1x
2
2], Mf =




0 4
3 1 0

0 46
39

59
9

2
3

0 19
9

68
9 1

0 471
27

1187
27

68
9


 .The 
omputation of eigenvalues λ = f(x∗) and eigenve
tors BG(x∗) of Mf gives (afternormalization of the �rst 
omponent):

λ =




0
16.3333
2.4444
1.4444


 , BG(x∗) =




1.00 1.00 1.00 1.00
0 7.00 2.83 4.33
0 7.00 −1.33 −4.33
0 49.00 1.77 18.77


 .Here π1 and π2 belong to the invariant basis BG (π1 = BG

3 and π2 = BG
2 ), so that their val-ues π(x∗) 
an dire
tly be read into the eigenve
tors BG(x∗) (at line 3 and line 2), leading tothe 4 following systems of equations:

(π1(x), π2(x)) ∈ { (0, 0), (7, 7), (−1.33, 2.83), (−4.33, 4.33) } (15)The nonlinear system in (15) are solved by a Newton Raphson method. Four di�erent solu-tions are obtained, see (16), and they are depi
ted on Fig.1. We veri�ed that those solutions are



a
tually solutions of P (x) = 0 by 
omputing the values of ‖P (x∗)‖ in Table 4.1. To assess thequality of the real solutions, we 
ompare them with re�ned solutions obtained with a Newtonalgorithm applied on P with starting points x0 = x∗, see Table 4.1. It is seen that solutionsfrom the eigenvalue method are indeed very 
lose to the a
tual roots of P , as their relativedi�eren
es lie below 0.5%. In any 
ases, a few Newton iterations should be applied to over
omethe numeri
al error due to numeri
al rounding of rational numbers in the multipli
ation matrix.
(x1, x2) ∈ { (0, 0), (−2.65,−2.65), (2.31,−0.58), (2.08,−2.08) } (16)
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x
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Fig. 1. Left:Form of the real solutions of system (14) found by the invariant multipli
ation matrixmethod. Right: Frequen
y 
ontinuation of the solution obtained at f =
1

2π

25

10
and their symmetri
relative to the group operation solution 1 2 3 4value ‖P (x∗)‖ 0.04 0.11 0.00 0.04relative di�. from NR sol. (%) x 0.23 0.00 0.32Table 1. assessment of the solution quality of (14) at ω =

25

10The appli
ation of the group a
tions generates 5 other solutions. At the end the total setof solutions 
ontains 9 elements as indi
ated by the dimension of the quotient spa
e. However,the use of symmetry de
reased the size of the eigenvalue problem from 9 to 4, leading to only 4solutions (one for ea
h orbit of solutions).In order to give an overview of the system dynami
s, we use the four solutions in (16) asstarting points for a 
ontinuation pro
edure on the parameter ω. The results are depi
ted onFig. 1 and 
orrespond to the monophase nonlinear normal modes of the systems. Three typesof solution 
an be identi�ed, an in-phase solution (sol. 1), an out-of-phase solution (sol. 4) anda lo
alized solution (sol. 3) whi
h 
orresponds to a bifur
ation of the out-of-phase solution.For
ed analysis. We now turn to the for
ed analysis of system (12). We 
ompute a Gröbnerbasis G with 12 elements relatively to the grevlex order with y2 < y1 < x2 < x1. We 
omputedim(A) = 11, thus the system has 11 solutions. The system is invariant under the a
tion of



G = C2 = {e, a | a2 = e } with a(x1, y1, x2, y2) = (x2, y2, x1, y1). The representation of G is
hosen su
h that a is represented by Ma =

[
0 I2

I2 0

].The primary invariant of G are given by π1 = 1
2 (x1 + x2), π2 = 1

2 (y1 + y2), π3 = x1x2 and
π4 = y1y2; and the multipli
ation matrix is 
omputed for f = π1 + π2 + π3 + π4.By using Algorithm 1 we 
ompute a basis BG of AG with 7 elements.All primary invariants are in BG ex
ept for π3. Thus, the normal form of π3 is 
omputedand the result is expressed in terms of elements of BG : π3 = cTBG . After solving the eigenvalueproblem, the values of π3 at the solutions point are given by π3(x

∗) = cTBG(x∗).The solution of P (x) = 0 are then evaluated by solving the 7 nonlinear systems π = BG(x∗)
orresponding to ea
h eigenve
tor: 7 solutions (5 real and 2 
omplex) are found by a Newtonalgorithm, and the form of the real solutions are depi
ted in Fig.2.
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Solution 2
Solution 3
Solution 4
Solutiion 5
Sym. Sol 3
Sym. Sol 5
Continuation 
Sym. continuation

x
i
, i=1,..,2

y
i
, i=1,..,2Fig. 2. left: Form of the real solutions of system (12) found by the invariant multipli
ation matrixmethod. Right: Frequen
y 
ontinuation of the solution obtained at f =

1

2π

25

10
and their symmetri
relative to the group operationAssessment of the solution's quality is given in Table 2. Note that solutions from the eigen-value method are 
lose to the a
tual roots of P , as their relative di�eren
es lie below 3%.solution 1 2 3 4 5value ‖P (x∗)‖ 0.00 0.00 0.00 0.00 0.02relative di�. from NR sol. (%) 0.03 0.02 0.00 0.00 2.80Table 2. Assessment of the solutions quality for (12) at ω =
25

10To obtain the full set of solution, we apply the group a
tions and generate 4 more solutions,leading to a total of 11 solutions (7 real and 4 
omplex) as indi
ated by the dimension of thequotient spa
e.The appli
ation of the 
ontinuation pro
edure for the 5 real solutions from the invariantsystem (Fig.2) shows that 3 solutions belong to the prin
ipale resonan
e 
urve, and that 2solutions belong to 
losed 
urves 
orresponding to a lo
alized motion. The appli
ation of thegroup a
tion generates another 
losed 
urve solution 
orresponding to the 
hange of 
oordinates
(u1, u2) → (u2, u1) in the dynami
 system (11). All for
ed solutions are positioned around theba
kbone 
urves 
oming from the monophase NNM analysis.



4.2 Simple example with 4 degrees of freedomFor N = 4, the appli
ation of the HBM with one harmoni
 on (2) leads to the following system:
αxi − βxi+1 − βxi−1 + δyi + γxi(x

2
i + y2i ) = f c

i , i = 1, . . . , 4,
αyi − βyi+1 − βyi−1 − δxi + γyi(x

2
i + y2i ) = f s

i , i = 1, . . . , 4,
(17)with α = k + 2kc − ω2m, β = kc, γ = 3

4knl and δ = ωc. In the NNM analysis, the frequen
yparameter will be set to ω = 31
10 , leading to the following numeri
al values:

α =
−661

100
, β = 1, γ =

3

4
, δ =

1

10
, fc = 1, fs = 0.In the for
ed analysis, the angular frequen
y will be set by ω = 25

10 , leading to the numeri
alvalues in (13) several values of the frequen
y parameter will be 
onsidered.Monophase NNM analysis. For the monophase analysis the system is the following:
αxi − βxi+1 − βxi−1γx

3
i = 0, i = 1, . . . , 4. (18)As in the previous example, the system is already in a gröbner basis form for the grevlex order,and the dimension of the quotient pa
e is given by dim(A) = 81 (the system has 81 solutions).The invarian
e group is taken as G = C4×Z2, where C4 
orrespond to the 
y
li
 group with 4elements (
y
li
 symmetry), and Z2 is the group relative to the 
hange of sign as in the previousse
tion. The primary invariant of G are given by:

π1 = x1x3 + x2x4, π2 = x1x2 + x2x3 + x3x4 + x4x1, π3 = x2
1 + x2

2 + x2
3 + x2

4, π4 = x1x2x3x4.The appli
ation of Algorithm 1 leads to the 
onstru
tion of a basis BG with 14 elements.Following method exposed in the previous se
tion, 14 real solutions are obtained by solving theinvariant systems, and their forms are depi
ted in Fig.3. The assessment of the solutions qualityis given in Table 3, showing that all solutions of the invariant systems are indeed solutions ofthe polynomial system P .solution 1 2 3 4 5 6 7 8 9 10 11 12 13 14residual ‖P (x∗)‖ 0.58 0.68 0.00 0.23 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00rel. di�. from NR sol. (%) x 0.74 0.00 0.90 0.01 2.11 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00Table 3. Assessment of the solutions quality for (18) at ω =
31

10solution 1 2 3 4 5 6 7 8 9 10 11 12 13 14 totalo

uren
e 1 2 8 2 8 8 4 8 8 8 4 4 8 8 81Table 4. Appli
ation of the group a
tion to the solution of (18): number of generated solutionsThe total set of solution is generated by applying the group a
tion (see Table 4) leading to81 solutions.
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Fig. 3. Form of the real solutions of system (18) found by the invariant multipli
ation matrix method
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Fig. 4. Frequen
y 
ontinuation of the solution obtained at f =
1

2π

31

10
and their symmetri
 relative to thegroup operation (only positive amplitudes of the �rst dof are depi
ted). From top left to botom right:Mode 1 (solution 2); Mode 2 (solutions 7, 11, 12, 13, 14); Mode 3 (solutions 4, 5 ,6 ,9, 10); Dis
onne
tedsolutions (solutions 3, 8)For
ed analysis. We now turn to the for
ed analysis of system (17). First, the angular fre-quen
y parameter is set to ω = 25

10 . In this 
ase the 
omputation of a Gröbner basis and a normalset for the grevlex order tells us that the quotient spa
e A is of dimension 147. The invariantgroup G is the dihedral group D4 of order 4 represented in R
8 by the following matri
es:

Mr =




0 I2 0 0
0 0 I2 0
0 0 0 I2
I2 0 0 0


 , Ms =




I2 0 0 0
0 0 0 I2
0 0 I2 0
0 I2 0 0


 .The primary invariant of G are given by:

π1 = y1 + y2 + y3 + y4, π2 = x1 + x2 + x3 + x4, π3 = y1y3 + y2y4,
π4 = y1x3 + y3x1 + y2x4 + y4x2, π5 = x1x3 + x2x4, π6 = y1y2 + y2y3 + y3y4 + y4y1,
π7 = x1x2x3x4, π8 = x2

1x
2
2 + x2

2x
2
3 + x2

3x
2
4 + x2

4x
2
1 + y1y2y3y4.



With Algorithm 1 we 
ompute a basis BG with 33 elements, and the multipli
ation matrixasso
iated to the polynomial f =
∑

i ciπi is also of size 33. In this 
ase all primary invariantare in the basis ex
ept for π7, for whi
h we 
ompute its normal form and express it in term ofelements of BG as π7 = cTBG . The solution of the eigenvalue problem then leads to 33 possiblevalues (5 real and 28 
omplex) for the primary invariants. Finally the solution of the 5 realinvariant systems lead to 5 real solutions of the polynomial system P (x) = 0 depi
ted on Fig. 5.
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sol. 2
sol. 3
sym. sol. 3
sol. 4
sym. sol. 4
sol. 5
sym. continuation
continuation

x
i
, i=1,..,4

y
i
, i=1,..,4Fig. 5. Left: Form of the real solutions of system (17) found by the invariant multipli
ation matrixmethod at ω =

25

10
. Right: Frequen
y 
ontinuation of the solution obtained at f =

1

2π

25

10
and theirsymmetri
 relative to the group operation. The ba
kbone 
urve of NNM 1, NNM 2, NNM3 and abifur
ation of NNM 2 are also depi
tedThe appli
ation of the group's a
tions on the real solutions generates only two other solu-tions (i.e., the symmetri
 of solution 3 and 4). The frequen
y 
ontinuation of the solutions isdepi
ted on Fig. 5. Again, three solutions belong to the prin
ipal resonan
e 
urve (
orrespond-ing to a motion shape on the �rst NNM), and two solutions belong to a 
losed 
urve solution
orresponding to a motion shape on a bifur
ation of the se
ond NNM (i.e., a lo
alized motionon only two dof 
orresponding to the monophase NNM solution 11 in Fig. 3).4.3 NNM analysis for 3 ≤ N ≤ 6In this last appli
ation, we 
onsider the monophase NNM analysis of system (2). The appli
ationof the harmoni
 balan
e method, leads to the polynomial system (6). In order to illustrate theredu
tion in the number of solution, Algorithm 1 is applied for N from 3 to 6. The invarian
egroupe is taken as G = CN × Z2, where Z2 is related to the transformation x → −x. Resultsare summarized in Table 5.N dim(C[x]/I) dim(C[x]G/IG) redu
tion ratio3 27 6 22.22%4 81 14 17.2%5 243 26 10.70%6 729 68 9.33%Table 5. Appli
ation of Algorithm 1 on (6) for 3 ≤ N ≤ 6



It 
an be seen that taking into a

ount symmetry de
rease the number of solution down to
10% of the total number of solution. This number should be even smaller if taking into a

ountinvarian
e by re�e
tion (i.e., G = CN × Z2 × Z2). In all 
ases, the resolution of the invariantproblems leads to a maximum number of real solutions for the polynomial system (6) (i.e., thesystem has dim(C[x]G/IG) real solutions).This appli
ation also shows the limitation of the proposed method. Indeed, the 
omputationof primary invariants for the dihedral group DN is very time 
onsuming when N > 6. However,further investigations should be 
arried to see if there exist a way to dire
tly 
ompute theprimary invariant of the dihedral group for large N .5 Dis
ussion, Con
lusionThis paper present the appli
ation of the so 
alled eigenvalue method with symmetry for solvingpolynomial systems arising in the vibrations study of nonlinear me
hani
al stru
tures by theharmoni
 balan
e method. The system under 
onsideration 
orrespond to N du�ng os
illators,linearly 
oupled. The appli
ation of the harmoni
 balan
e method with one harmoni
 on thissystem generates polynomial equations, whi
h are invariant under some transformations (
y
li
permutation, 
hange of sign, ...).The appli
ation of the eigenvalue method with symmetry for solving the invariant polynomialsystem shows that this method is well adapted for this kind of problem. Indeed, taking intoa

ount symmetry 
an greatly de
rease the size of the multipli
ation matrix. Ea
h obtainedsolution is di�erent and 
orresponds to a unique orbit of solutions that 
an be generated byapplying the group's a
tions. Moreover, the obtained solutions are very 
lose to the a
tualsolutions of the polynomial system, even in the presen
e of rounding-o� errors.The best results are obtained when sear
hing for free solutions (NNM) of the dynami
 system.In the for
ed 
ase, the method is only interesting when the spa
ial distribution of the ex
itationalso presents symmetry properties. In the worst 
ase s
enario (symmetry breaking ex
itation)the system is not longer invariant, and the method no longer appli
able.Further appli
ations to larger systems seems limited by several fa
tors. The �rst drawba
k isrelated to Gröbner basis 
omputation. For large number of variables, it 
an take a great amountof time even with the grevlex ordering. Se
ond, it is not 
lear how to e�
iently �nd primaryinvariants of large groups su
h a DN or DN ×Z2 for large N . However, the 
omputation of theinvariants is needed only on
e per invarian
e group as they 
an be reused for any subsequent
omputation on system having the same invarian
e properties.Although this method has limitations, we have to re
all that numeri
al methods, su
h hashomotopie, are also subje
ted to limitations that restri
t the size of the polynomial system tobe solved. In this 
ontext, the fa
t that the eigenvalue method with symmetry automati
allysorts the solutions (i.e., 
omputes only one representative of ea
h orbits) is an improvement asit simpli�es the analysis of the system.Referen
es1. A. Grolet and F. Thouverez. Free and for
ed vibration analysis of nonlinear system with 
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