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Abstract. We present an application of the eigenvalue method with symmetry for solving
polynomial systems arising in the vibration analysis of mechanical structure with symme-
try. The search for solutions is conducted by the so called multiplication matrix method
in which the symmetry of the system is taken into account by introducing a symmetry
group G and by working with the set of invariant polynomials under the action of group
G. By using this method, we compute the periodic solutions of a simple dynamic system
coming from the model of a cyclic mechanical structure subjected to nonlinearities.

1 Introduction

Many engineering problems can be modeled or approximated such that the determination of a
solution goes through the resolution of a polynomial system. In this paper, we are interested in
computing periodic solutions of nonlinear dynamic equations. It can be shown that the Fourier
coefficients of the (approximated) periodic solutions can be obtained by solving multivariate
polynomial equations resulting from the application of the Harmonic Balance Method [1,2].
Moreover, in our applications, the dynamical system is often invariant under some transforma-
tions (cyclic permutation, change of sign, ...) due to the presence of symmetry in the mechanical
structure. This implies that the polynomial system to be solved is also invariant under some
transformations, and so does its solutions.

Most of the time, in mechanical engineering, polynomial systems are solved by numeric meth-
ods such as a Newton-like algorithm, which outputs only one solution of the system depending
on the starting point provided. Although the Newton method is an efficient algorithm (quadratic
convergence), the search for all solutions of a polynomial system cannot be conducted in a rea-
sonable time using only this method. In the continuation methods framework [3], the study of
bifurcations allows to follow new branches of solution, but does not warranty that all solutions
are computed (eg disconnected solutions).

Homotopy methods [2,4] are an alternative to the Newton algorithm when searching for
all solutions of a multivariate polynomial system. Basically, homotopy methods relie on the
continuation of the (known) roots of a starting polynomial @ (easy to solve) to the (unknown)
roots of a target polynomial P. The choice of the starting polynomial is a key point on witch
depends the efficiency of the method. Indeed, if the starting polynomial has to many roots
compared to P, most of the continuations will lead to divergent solutions, thus wasting time
and resources. Improvements such as the polyhedral homotopy aims at reducing the number of
divergent path by considering a starting polynomial structurally close to the target polynomial



[5]. However, the presence of high combinatoric and/or probabilistic considerations makes the
application of the method rather difficult. Moreover, it is not clear how to take into account
symmetry properties in the polyhedral homotopy.

In this context, where numerical methods are not entirely satisfactory, computer algebra
appears as an attractive alternative, since there exist an efficient method specially developed for
solving symmetric system of polynomial equations. The method, relatively recent, is proposed
by Gatermann in [6] and is called "eigenvalue method with symmetry". It is based upon the
multiplication matrix method [7,8], where solutions of the polynomial system are obtained by
solving an eigenvalue problem. Moreover, it takes into account the symmetry of the system by
working only on a subspace of the quotient algebra. The method is very efficient since taking
into account symmetry allow for reducing the size of the multiplication matrix such that only
one representative of each orbit of solution can be computed.

In this paper, we propose a new application of the eigenvalue method with symmetry for
computing periodic solutions of nonlinear dynamic systems solved by the harmonic balance
method. It constitutes an attempt to evaluates the capabilities of computer algebra methods in
the field of mechanical engineering, in which numerical methods are often the norm.

The paper is organized as follow: section 2 presents the type of system studied in this work.
The motion’s equations are presented along with a brief recall of the Harmonic Balance Method,
and we also derive the polynomial equations solved in this study. Section 3 concentrates on
polynomial systems solving. We recall some facts about the multiplication matrix method and
we describe how to take into account the symmetry of the system.We also present our resolution
algorithm in this section. Section 4 is dedicated to numerical examples and the paper ends with
some concluding remarks.

2 Dynamic system and periodic solutions

2.1 System of interest

We aim at finding periodic solutions of (polynomial) nonlinear mechanical structures with special
symmetry. For exemple, bladed disks subjected to geometric nonlinearities represent such a
structure [1]. Here, only a simple cyclic system (which can be seen as a reduced order model
of a bladed disk, where all blades have been reduced on their first mode of vibration) will
be considered. The model consists in N duffing oscillators linearly coupled, governed by the
following motion equation:

mii; + ct; + (k + 2ke)u; — ket — kewipr + knui = fi(t), i=1, ..., N (1)

where u;(t) represents the temporal evolution of degree of freedom (dof) number 4, and f;(t)
represents the temporal evolution of the excitation force acting on dof number <. If there is no
force, note that this dynamic system is invariant under the action of the dihedral group Dy
(symmetry of a regular polygon with N vertices).

Equation (1) can be written in the following matrix form:

Mii 4+ Cu + Ku + F, (u) = Fo.(t), (2)

were u(t) is the vector of dof of size N, M = ml is the mass matrix, C = ¢I is the damping
matrix, K = (k + 2k.)I — k. IY — k. IV is the stiffness matrix, and Fy,;(u) = kyu®, F..(t) = f(t)



correspond to the nonlinear and excitation forces respectively. The excitation forces will be
assumed to be periodic, with period T = %’T, and we will search for periodic solutions w(t),

using the harmonic balance method described hereafter.

2.2 Harmonic Balance Method

The harmonic balance method (HBM), is a widely used method in finding approximation to
periodic solutions of nonlinear differential equations such as (2) [1,9]. The solutions u(¢) is
approximated under the form of a truncated Fourier series, and a system of algebraic equations
is derived by applying Galerkin projections. Let us recall the main steps of the method.

At first, each component u;(t) of the periodic solution w(t) is approximated by @;(¢) under
the following form:

H
Ui (t) = 20 + Z xgk) cos(kwt) + ygk) sin(kwt), i =1,...,N. (3)
k=1

We substitute (3) in (2) and we project the resulting equations on the truncated Fourier basis:

2 [V R(@) x 1 dt =0,
% fOT R(u) x cos(kwt) dt =0, k=1,...,H, (4)
2 [T R(@) x sin(kwt) dt =0, k=1,..., H.

with T' = 27 /w and
R(@) = Mu + Ct + K@ + F, (@) — Fou(t).

Equations (4) corresponds to a set of N(2H + 1) algebraic equations with unknowns @ and y.

2.3 Equations to be solved

In our application, Fy,;(u) = kyu? is polynomial and (4) corresponds to a system of polynomial
equations. In order to simplify the presentation and reduce the number of variables, we will only
consider a single harmonic approximation of the periodic solution, i.e., H = 1 in (3). Moreover,
as the nonlinearity is odd, no continuous component will be retained, i.e., (%) = 0 in (3). Under
these hypothesis, (4) corresponds to a system of 2N polynomial equations which can be written
in the following form (dropping the harmonic index (*)):

a(w)z; +0(w)y; — i1 — Brisy +yzi(e] +y7) = ff, i=1,..., N, (5)
a(w)yi — 0(w)z; — Byi—1 — Byir1 + (2} +y7) = f7, i=1,...,N,
where ff (resp. f7) denotes the amplitude of the excitation forces relative to the cos(wt) (resp.
sin(wt)) term, and with the following expression for the different coefficients:

3

CY(W) = k + 2kc - W2m7 ﬁ = kC7 Y= anlu 5((“)) = wec.

In our application, we are interested in forced and free solutions.



Forced solutions. In the forced case (f¢ # 0 or f° # 0), the angular frequency w is set by the
excitation forces and (5) will be solved for « and y. Depending on the symmetry of the excitation
forces, system (5) may present some invariance properties. We will choose ff =1, f# = 0 for all
i=1,..., N so that system (5) will be invariant under the action of the dihedral group Dy.

Free solution. In the free case, we aims at finding solutions of an unforced, undamped version
of system (2), also called Nonlinear Normal Modes (NNM) [10-12]. In order to simplify we will
only search for solutions where all dof vibrate "in-phase" (monophase NNM [13]) by imposing
y; =0foralli=1,..., N, thus resulting in the following polynomial system with N equations:

a(w)r; — Briy — Brigr +yz =0, i=1,...,N. (6)

The angular frequency w will be set to an arbitrary value and system (6) will be solved for x.
Again (6) is invariant under the action of the dihedral group Dy and it is also invariant under
change of sign, characterized by the group with 2 elements Z; = {e, b | b*> = e} with b(z) = —=.

3 Solving multivariate polynomial systems

In this section we present the method used to solve symmetric system of polynomial equations.
First, the eigenvalue method is described. Then we show how to include symmetry of the system
in order to reduce the number of solution as proposed in [6], leading to the so called eigenvalue
method with symmetry. Finally we propose an algorithm to summarize the process.

3.1 Grobner Basis

We will denote by C[x] the ring of multivariate polynomials with complex coefficients in the
variables & = (x1,...,2,). A polynomial in C[z] has the form f(x) = > _sc(a)x®, where
S C N™ is the the support of f, x® = 27" --- 20" is a monomial of total degree |a| = )", o;, and
¢(a) € Cis the coefficient of monomial ®. We fix a monomial order on C[x]. In the application,
we will consider the graded reverse lexicographic order <greylex defined for o, 3 in N™ by:

« Sgrevlex 8= [lal < |ﬁ|] or [Oéj > ﬁj and o; = G; for 1 < j < ’L]

We will denote by Lm(f) and Lc(f) the leading monomial and the leading coefficient of a
polynomial f, we will denote by L1(f) = Lc(f)um(f) its leading term.

Consider a multivariate polynomial system given by P(x) = [p1(x), ..., pn(x)] with p; €
Clx] for j = 1,...,n. We denote by Z = (P) = (p1,...,pn) the ideal of C[x] generated by the
polynomial system P. The reduction operation modulo P reduces a polynomial f € C[x] into
a remainder of the division of f by each element of P, defined by:

f(@) =) p(@)pi(e) +r(@).
i=1

Such a remainder is generally not unique and depends on the division order and on the monomial
order. However, the reduction modulo a Grobner basis makes the remainder unique during the
reduction operation. Recall that a Grobner basis for Z is a finite collection of polynomials



G = [91,...,9m] C Z with the property that for any nonzero polynomial f in Z, LT(f) is
divisible by LT(g;) for some ¢ = 1,..., m. The remainder on division of f by a Grébner basis is
uniquely determined, thus is called normal form for f and denoted N¥(f). In practice, a Grobner
basis can be compute by the Buchberger algorithm [14] and its improvements, e.g. [15]. The
monomial ordering choosen influences both the form of the basis G and computation time, and,
in general, computation with the grevlex ordering tends to be faster than with the lexicographic
ordering. We denote by A = C[x]/Z the algebra defined as the quotient of C[z] by the ideal Z.
The set G being a Grobner basis, the monomials

B ={z* [z ¢ (11(G))}

form a basis of algebra A, as a vector space over C. If the polynomial system P(x) = 0 has
only a finite number of solutions (say D solutions), the ideal Z is zero-dimensional, and it can
be shown [7,16] that, as a space, A is of finite dimension D.

3.2 Multiplication Matrices Method

Given a polynomial f € C[x], we consider the map my : A — A, defined by my(h) = fh, for
any h in A. Since A is a finite-dimensional algebra the map my can be represented by a matrix
M relative to the basis B. The matrix M is called multiplication matriz and is characterized
by the following relation (modulo 7):

FB=M;B mod(Z), (7)

or equivalently:

D
fBi=> M/ B mod(I), i=1,...,D.

j=1
The coefficients of line ¢ of the matrix M¢ can be obtained by computing the normal form of
each product f B; and by expressing the results as a linear combination of elements of B.

For particular choices of f = z,, p = 1,...,n, it can be shown that the eigenvalues of

the multiplication matrices M, are related to the zeros of the polynomial system. Indeed,
substituting f = x, into (7), for any x, we have:

(M, — 2,I) B(z) =0 mod(Z). (8)

It follows that the vector (M% — pr) B(x) can therefore be expressed as a combination
of the polynomials in P. Now, let’s suppose that * is a root of P. Then p;(x*) = 0 for all
i=1,...,n, and (8) shows that z is an eigenvalue of M., associated to the eigenvector B(z*).
Note that the eigenvector should be normalized so that its first component equals 1 (in order to
mach with the associated polynomials B;(x) = 1).

Going further, it can be shown [7,16] that the components of the roots are given by the
eigenvalues of M, , p=1,...,n, associated with common eigenvectors Bj,.

Here, we follow the method given in [4] (Chap.1.6.3.2), which consists in considering only
one multiplication matrix associated with a linear combination of the variables f =Y | ¢ w;,
where c¢; are rational numbers chosen such that the value of f(x(*)) is different for each solution
x® k= 1,...,D. Generally, random choices for coefficients ¢; are sufficient to ensure this
properties almost surely [4]. The search for the roots of system P is then simply conducted by
solving the eigenvalue problem (M — fI)B = 0, and by reading the solutions in the eigenvectors
By =Bx®), k=1,...,D.



3.3 Introducing symmetry

Invariant polynomial systems. Due to the symmetry of the mechanical structure (change of
coordinates, ...), the polynomial systems to be solved in our applications (see section 2.3) also
possess a symmetric structure. Here we will consider that the polynomial system to be solved is
equivariant under the action of a group G, that is P(g(x)) = g(P)(x), Vg € G, where g € G is
a permutation operation defined by g(x) = [z4(1), ..., Zg(n)]. The set of invariant polynomial
under G is denoted Clz]9 and defined by: Clz]¢ = {f € Clz] | f(g(z)) = f(z), Vg € G}. We
denote by Z9 = Z N C[x]Y the ideal invariant under the action of the group G.

Quotient decomposition. It can be shown that C[z] can be decomposed into a direct sum
of isotypic components [6,17], such that Clz] = V1 @ Vo @ ... & Vi, where the V;’s are the
isotypic components (related to the K irreducible representations of group G [6]), and where
the first component is the invariant ring itself: V; = Clz]|Y. By defining Z; = Z NV}, the algebra
A = C[x]/Z can be decomposed into a direct sum as follows [6]:

A=Clz|9/T° 2 Vo/Th® ... ®Vk/Ik (9)
The space C[z]9 can be decomposed into the following direct sum (Hironaka decomposition) [6]:
Clz]? = @; Si Cln] = Clx] @ S>C[n] @ S5Cln] @ - - & S, C[n]

where w = [m1,...,7,] is the set of primary polynomial invariants related to G, and Sa, ..., S,
correspond to the secondary polynomial invariants related to G. The primary polynomial invari-
ants 7 can be found by using the Reynold projection operator defined for f € Clx] by [18]:

Rey(z) = ﬁ 3 fg(@)). (10)

geg

Applying the Reynolds projector to any polynomial f € C[z] leads to an invariant polynomial
Rey € Clx]Y. The primary invariants can be computed by applying the Reynold projector to each
monomials £ with |a| < |G|. In certain cases, some monomials will lead to the same invariant,
or some invariants can be obtained as a combination of the others. In those cases, we need
to eliminate the redundancies by computing Grobner basis [18]. In this work, we compute the
primary invariants using the invariant_ring command of Singular. The secondary invariants
corresponds to a module basis of C[z]Y as a C[r]-module. It can also be computed by the
invariant_ring command.

Using the primary polynomial invariants. In the following, the primary invariants will be
used to find the solution of an invariant system. Let’s suppose that we can find the values of the
primary invariant 7(*) = TI'(ilt(k)) for each solution (*), then by solving the following systems:

7(x) =x®  k=1,... Dg,

for = by a Newton-like method, one can compute an unique occurrence of solution «*) and the
other can be generated by applying the group’s actions on ®), i.e., g(w(k)), Vg € G.

We will compute the values of the primary invariants 7w(*) for each solution &*) with the
multiplication matrix method. However, as shown in [6], the multiplication matrices related to



the primary invariants are redundant as they contain the same eigenvalues several times. In a
suited basis of A, it is even shown that the multiplication matrices associated to the primary
invariants are block diagonal [6, Thm. 3], with each block containing the same eigenvalues [6,
Prop. 8]. Thus, only the first diagonal block (related to the subspace C[z]9/Z9) is of interest to
compute the values of the primary invariants.

All that is left to do here, is to find a basis B’ of A that makes the multiplication matrices
block diagonal. More precisely, it is sufficient to find a basis BY = [BY, ..., Bp,] of Clz])9/1¢
in agreement with the direct sum decomposition in (9).

Construction of an adapted basis. The goal is to find a basis BY of C[x]9/Z9 (with #BY =
Dg) in agreement with the direct sum decomposition in (9), in order to construct the first block
of a multiplication matrix. As in the previous section, the multiplication matrix will be related
to a polynomial f = Z?:l ¢; ™, where ¢; are rational coefficients chosen randomly.

The basis BY should only contains invariant polynomials, and their normal forms should be
sufficient to express all remainders r in the division of f BY by Z (i.e., 7 = Zf:gl Mlgj NF(Bf))

We suppose that a Grobner basis G of Z is known. Let NF the normal form operator for G.
At start, we set BY = 1.

The construction of the basis then goes as follows. For BY in BY we compute the normal
form r = NF(f Bf) Then, until the remainder r equals zero, we search if there exists ng in BY

such that LM(NF(BY)) = LM(r), that is LT(r) = ¢ LT(NF(BY)), with ¢ € C

— if such a ng exists, then we divide r by NF(BJQ): r = ij NF(BJQ) + h and we save the
(numeric) matrix coefficient Mzgj Finally, we affect » = h, and search for a new divisor of
Lr(r).

— if not, we will create a new basis term Bg whose leading monomial equals LM(r) by con-
sidering the Reynold projection of Lm(r), ie: Bg = Reyy(r)- However, it may happen that
LM(NF(Repy(ry)) # LM(7). In that case, we modify the Reynold projection by subtracting
the high order term until LM(NF(Re,y(-y)) = LM(r). This is done by searching into the basis
an element ngo such that LM(NF(B%)) = LT(NF(Re,\(r))) and by modifying the Reynold
projection : Re ) = Re ) — cjijgO. Once the invariant is computed, we divide r by the
new element : r = Mzg]C B + h, and we can save the (numeric) matrix coefficient. Finally,
we affect » = h, and search for a new divisor of LT(r).

This process is repeated until all products f B;, i = 1,..., Dg, have been computed. The
basis construction is summarized in Algorithm 1.

Algorithm 1. Computation of a basis BY of the invariant space C[z]9/Z, and construction of
the multiplication matrix of the invariant variable f =" ¢;m;

#PRELIMINARIES
compute a Grobuner basis G of P with the grevlex order
initialize f =Y, ¢;m;, Bf =1,n =1
#Basis COMPUTATION
ji=0
while j <n do
j=j+1



compute the normal form r = NF(fng)
while r # 0 do
for k=1, ..., ndo
if LM(NF(bg)) = LM(r) then
reduce r : r = gBf +h
save M = q and update : r = h
end if
end for
if LM(7) ¢ BY then
compute the Reynold projection Re(x) = Re,y ()
if LM(NF(Re))=LM(r) then
affect BY Re
else
while LM(NF(Re)) # LM(r), reduce the Reynold projection: Re = Re — ¢, BY
affect Bgﬂ = Re
end if
reduce the normal form r : r = qRe + h
save Mj 41 =qand update : n=n+1,r=nh
end if
end while
end while
return the multiplication matrix M and the basis BY

+1 =

4 Numerical applications

In this section, we apply the eigenvalue method with symmetry to the system given in Sec-
tion 2.3. The numerical application will be conducted for system with N = 2,4 degrees of
freedom. In the two cases, free and forced analysis are conducted. Solutions for a particular
frequency are computed with the multiplication matrice method, and we give an overview of the
system dynamics by applying continuation methods [3]. Finally, an NNM analysis is carried for
2 < N < 6 in order to show the decrease in the number of solutions.

4.1 Simple example with 2 degrees of freedom

As a first application, we study a system with N = 2 degree of freedom. In this case, (2) reduces
to the following dynamic system:

miiy + ctn + (k + ke)ur — keus + knud = f1(t),

. . 11
mils + cla + (k + ke)us — keur + knud = fo(t). (an

The application of the HBM with only one harmonic (u; = x; cos(wt) + y; sin(wt)) leads to the
following system of polynomial equations:

oz — Bre + 6yr + v (2 + i) = fo,
ayr — Byz — 6x1 +yyi (el +43) = fs, (12)
amy — By + Sy2 + yra (23 + y3) = fe,
ays — Byr — 6o + yy2(a3 + y3) = fs,



with o = k+ ke —w?m, B =ke, v = %knl and 6 = wec. The frequency parameter will be set to
w= % (however the search for multiple solution can be conducted for any value of w), leading
to the following numerical values:

—-17

3 1
- —1 — — 0_17 s . ]'
e 4,ﬂ Y , 0 _1o’f fs=0 (13)

4
Monophase NINM analysis. We search for monophase NNM solutions of (12) (undamped,
unforced). In this case, the system (6) reduces to the following:

ary — Pry + ’ya:zl)’ =0,

axre — Bxy + ’yx% =0. (14)

We consider the order grevlex with z; > x5. Since the leading term of each equation are co-
prime, the polynomial system P is already in a Grobner basis form. We computed a normal set
and we show the algebra A = Clz]/ (P) is of dimension 9 (i.e., the system has 9 solutions).
The system (14) is invariant under permutation of variable and under change of sign. This
invariance property corresponds to the group G = Co X Zo, where C2 = {e, a | a®> = e }, where
a[(x1,12)] = (w2,71) and Z5 = {e, b | b*> = e }, where b[(z1,72)] = (—21, —22). All element
g € G can be represented by a matrix M, = A’B’ where A and B are given by the following:

01 -10
a=[io] == 4]
Using Singular, we know that the primary invariant of G are m; = x129 and my = %(:1:% —l—:zzg)

We set f=m + %772, and we construct the multiplication matrix of f in an symmetry adapted

basis of A9 using Algorithm 1. The basis BY of A9 and the multiplication matrix M ¢ are given
by

0§ 1 0
1 0 46 59 2
Bg:[lv 5(1’%4'51?3), r1%1, I%E%]v My = Oﬁ & f
o 4 by o8
27 27 9

g

The computation of eigenvalues A = f(x*) and eigenvectors B
normalization of the first component):

(x*) of My gives (after

0 1.00 1.00 1.00 1.00
 116.3333 G, « | 0 700 283 433
A=l om0 B@)=| g 700 133433
1.4444 0 49.00 1.77 18.77

Here 7 and 7 belong to the invariant basis BY (m; = BY and m = BY), so that their val-
ues 7(z*) can directly be read into the eigenvectors BY(x*) (at line 3 and line 2), leading to
the 4 following systems of equations:

(mi(x), ma(x)) € { (0,0), (7,7), (—1.33,2.83), (—4.33,4.33) } (15)

The nonlinear system in (15) are solved by a Newton Raphson method. Four different solu-
tions are obtained, see (16), and they are depicted on Fig.1. We verified that those solutions are



actually solutions of P(x) = 0 by computing the values of || P(z*)|| in Table 4.1. To assess the
quality of the real solutions, we compare them with refined solutions obtained with a Newton
algorithm applied on P with starting points g = x*, see Table 4.1. It is seen that solutions
from the eigenvalue method are indeed very close to the actual roots of P, as their relative
differences lie below 0.5%. In any cases, a few Newton iterations should be applied to overcome
the numerical error due to numerical rounding of rational numbers in the multiplication matrix.

(z1,22) € { (0,0), (—2.65,—2.65), (2.31,—0.58), (2.08,—2.08) } (16)
*  solution 1
4 4 O solution 2
3 3 o O solution 3
A ) O solution 4
O sym.sol.3
g 1 g 1 0 sym.sol.4
E] 0 2 0 3r & sym.sol. 2
g g O sym.sol.3
© -1 ®© -1 O sym.sol3
- - 2 continuation
sym. continuation -

amplitude H 1

amplitude
b
amplitude
s b
\ .
& b

L L L L L L I
1 2 1 2 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5 0.55 0.6
dof dof frequency [Hz]

Fig. 1. Left:Form of the real solutions of system (14) found by the invariant multiplication matrix

method. Right: Frequency continuation of the solution obtained at f = %% and their symmetric
relative to the group operation
solution 1 2 3 4
value [|P(x*)]] 0.04 0.11 0.00 0.04

relative diff. from NR sol. (%) x 0.230.00 0.32
Table 1. assessment of the solution quality of (14) at w =

25
10

The application of the group actions generates 5 other solutions. At the end the total set
of solutions contains 9 elements as indicated by the dimension of the quotient space. However,
the use of symmetry decreased the size of the eigenvalue problem from 9 to 4, leading to only 4
solutions (one for each orbit of solutions).

In order to give an overview of the system dynamics, we use the four solutions in (16) as
starting points for a continuation procedure on the parameter w. The results are depicted on
Fig. 1 and correspond to the monophase nonlinear normal modes of the systems. Three types
of solution can be identified, an in-phase solution (sol. 1), an out-of-phase solution (sol. 4) and
a localized solution (sol. 3) which corresponds to a bifurcation of the out-of-phase solution.

Forced analysis. We now turn to the forced analysis of system (12). We compute a Grobner
basis G with 12 elements relatively to the grevlex order with yo < y1 < x2 < z1. We compute
dim(A) = 11, thus the system has 11 solutions. The system is invariant under the action of



G=0Cy={e, a|a®=e} with a(x1,y1,72,92) = (22,92, 21,y1). The representation of G is
01
Lo}

The primary invariant of G are given by m; = %(3:1 + x9), T2 = %(yl + y2), T3 = X122 and
T4 = Y1y2; and the multiplication matrix is computed for f = m + 7o + 73 + 74.

By using Algorithm 1 we compute a basis BY of A9 with 7 elements.

All primary invariants are in BY except for 73. Thus, the normal form of 73 is computed
and the result is expressed in terms of elements of BY: w3 = ¢”BY. After solving the eigenvalue
problem, the values of 73 at the solutions point are given by m(x*) = ¢7BY (x*).

The solution of P(x) = 0 are then evaluated by solving the 7 nonlinear systems 7 = BY (z*)
corresponding to each eigenvector: 7 solutions (5 real and 2 complex) are found by a Newton
algorithm. and the form of the real solutions are depicted in Fig.2.
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Fig. 2. left: Form of the real solutions of system (12) found by the invariant multiplication matrix
method. Right: Frequency continuation of the solution obtained at f = ﬁﬁ and their symmetric
relative to the group operation

Assessment of the solution’s quality is given in Table 2. Note that solutions from the eigen-
value method are close to the actual roots of P, as their relative differences lie below 3%.

solution 1 2 3 4 5
value | P(z*)]] 0.00 0.00 0.00 0.00 0.02
relative diff. from NR sol. (%) 0.03 0.02 0.00 0.00 2.80
Table 2. Assessment of the solutions quality for (12) at w =

25
10

To obtain the full set of solution, we apply the group actions and generate 4 more solutions,
leading to a total of 11 solutions (7 real and 4 complex) as indicated by the dimension of the
quotient space.

The application of the continuation procedure for the 5 real solutions from the invariant
system (Fig.2) shows that 3 solutions belong to the principale resonance curve, and that 2
solutions belong to closed curves corresponding to a localized motion. The application of the
group action generates another closed curve solution corresponding to the change of coordinates
(u1,u2) — (uz,u1) in the dynamic system (11). All forced solutions are positioned around the
backbone curves coming from the monophase NNM analysis.



4.2 Simple example with 4 degrees of freedom
For N = 4, the application of the HBM with one harmonic on (2) leads to the following system:

ar; — Briz1 — Pric1 + 0y +yxi(af +yl) = fF, i=1,....4,
S

} 17
i — BYir1 — Byi—1 — oxs +yys(af +y7) = ff, i=1,....4, (17)

with o = k + 2k, — w?m, 8 = ke, v = %knl and § = we. In the NNM analysis, the frequency

parameter will be set to w = 3%, leading to the following numerical values:
—661 3 1
= — :1 = — 6:— czl, s:O'
a 100 b) ﬁ b /y 4 b 10 ) f f

In the forced analysis, the angular frequency will be set by w = %, leading to the numerical

values in (13) several values of the frequency parameter will be considered.

Monophase NNM analysis. For the monophase analysis the system is the following:
ax; — Briys — Brioiyxl =0, i=1,...,4. (18)

As in the previous example, the system is already in a grébner basis form for the grevlex order,
and the dimension of the quotient pace is given by dim(A) = 81 (the system has 81 solutions).

The invariance group is taken as G = C4 X Z5, where C4 correspond to the cyclic group with 4
elements (cyclic symmetry), and Z5 is the group relative to the change of sign as in the previous
section. The primary invariant of G are given by:

2 2 2 2
T = X1T3 + T2Xy, T2 = T1T2 + T2X3 + X3X4 + T4, T3 = X] + X5 + T3 + Ty, T4 = T1T2T324.

The application of Algorithm 1 leads to the construction of a basis BY with 14 elements.
Following method exposed in the previous section, 14 real solutions are obtained by solving the
invariant systems, and their forms are depicted in Fig.3. The assessment of the solutions quality
is given in Table 3, showing that all solutions of the invariant systems are indeed solutions of
the polynomial system P.

solution 1 2 3 4 5 6 7 8 9 10 11 12 13 14
residual || P(x*)]| 0.58 0.68 0.00 0.23 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
rel. diff. from NR sol. (%) x 0.740.000.90 0.01 2.11 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00
31

Table 3. Assessment of the solutions quality for (18) at w = {5

solution (1234567891011 12 13 14|total
occurence|l1 28288488 8 4 4 8 8| 81

Table 4. Application of the group action to the solution of (18): number of generated solutions

The total set of solution is generated by applying the group action (see Table 4) leading to
81 solutions.
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group operation (only positive amplitudes of the first dof are depicted). From top left to botom right:
Mode 1 (solution 2); Mode 2 (solutions 7, 11, 12, 13, 14); Mode 3 (solutions 4, 5 ,6 ,9, 10); Disconnected
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Forced analysis. We now turn to the forced analysis of system (17). First, the angular fre-
quency parameter is set to w = %. In this case the computation of a Grébner basis and a normal
set for the grevlex order tells us that the quotient space A is of dimension 147. The invariant

group G is the dihedral group Dy of order 4 represented in R® by the following matrices:

M’I‘: MS:

STo oo
o o o5
co o
oSt o o
o o o5
STo oo
oSt o o
co o

The primary invariant of G are given by:

T =Y1+¥Y2+yYs+ys, T2=2x1+T2+2T3+2Tg, 7T3=1Y1Y3+ Y2Ys,
T4 = Y123 + Y3T1 + Y2y + Y42, 75 = T1X3 + T2Zy, Te = Y1Y2 + Y2Ys + Y3y4 + Ya¥y1,
7 = T1X2X3L4, T = x%x% + x%x% + x%xi + xix% + Y1Y2Y3Y4.



With Algorithm 1 we compute a basis BY with 33 elements, and the multiplication matrix
associated to the polynomial f = >, ¢;m; is also of size 33. In this case all primary invariant
are in the basis except for 77, for which we compute its normal form and express it in term of
elements of BY as w7 = ¢ZBY. The solution of the eigenvalue problem then leads to 33 possible
values (5 real and 28 complex) for the primary invariants. Finally the solution of the 5 real
invariant systems lead to 5 real solutions of the polynomial system P(x) = 0 depicted on Fig. 5.
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Fig.5. Left: Form of the real solutions of system (17) found by the invariant multiplication matrix
method at w = %. Right: Frequency continuation of the solution obtained at f = ﬁ—r and their
symmetric relative to the group operation. The backbone curve of NNM 1, NNM 2, NNM3 and a
bifurcation of NNM 2 are also depicted

The application of the group’s actions on the real solutions generates only two other solu-
tions (i.e., the symmetric of solution 3 and 4). The frequency continuation of the solutions is
depicted on Fig. 5. Again, three solutions belong to the principal resonance curve (correspond-
ing to a motion shape on the first NNM), and two solutions belong to a closed curve solution
corresponding to a motion shape on a bifurcation of the second NNM (i.e., a localized motion
on only two dof corresponding to the monophase NNM solution 11 in Fig. 3).

4.3 NNM analysis for 3 < N <6

In this last application, we consider the monophase NNM analysis of system (2). The application
of the harmonic balance method, leads to the polynomial system (6). In order to illustrate the
reduction in the number of solution, Algorithm 1 is applied for N from 3 to 6. The invariance
groupe is taken as G = Cy X 29, where Z; is related to the transformation * — —x. Results
are summarized in Table 5.

N dim(C[z]/Z) dim(C[z]Y/ZY) reduction ratio

3 27 6 22.22%
4 81 14 17.2%
i} 243 26 10.70%
6 729 68 9.33%

Table 5. Application of Algorithm 1 on (6) for 3< N <6



It can be seen that taking into account symmetry decrease the number of solution down to
10% of the total number of solution. This number should be even smaller if taking into account
invariance by reflection (i.e., G = Cny X Z2 X Z5). In all cases, the resolution of the invariant
problems leads to a maximum number of real solutions for the polynomial system (6) (i.e., the
system has dim(C[z]9/Z9) real solutions).

This application also shows the limitation of the proposed method. Indeed, the computation
of primary invariants for the dihedral group Dy is very time consuming when N > 6. However,
further investigations should be carried to see if there exist a way to directly compute the
primary invariant of the dihedral group for large N.

5 Discussion, Conclusion

This paper present the application of the so called eigenvalue method with symmetry for solving
polynomial systems arising in the vibrations study of nonlinear mechanical structures by the
harmonic balance method. The system under consideration correspond to N duffing oscillators,
linearly coupled. The application of the harmonic balance method with one harmonic on this
system generates polynomial equations, which are invariant under some transformations (cyclic
permutation, change of sign, ...).

The application of the eigenvalue method with symmetry for solving the invariant polynomial
system shows that this method is well adapted for this kind of problem. Indeed, taking into
account symmetry can greatly decrease the size of the multiplication matrix. Each obtained
solution is different and corresponds to a unique orbit of solutions that can be generated by
applying the group’s actions. Moreover, the obtained solutions are very close to the actual
solutions of the polynomial system, even in the presence of rounding-off errors.

The best results are obtained when searching for free solutions (NNM) of the dynamic system.
In the forced case, the method is only interesting when the spacial distribution of the excitation
also presents symmetry properties. In the worst case scenario (symmetry breaking excitation)
the system is not longer invariant, and the method no longer applicable.

Further applications to larger systems seems limited by several factors. The first drawback is
related to Grobuner basis computation. For large number of variables, it can take a great amount
of time even with the grevlex ordering. Second, it is not clear how to efficiently find primary
invariants of large groups such a Dy or Dy x Z5 for large N. However, the computation of the
invariants is needed only once per invariance group as they can be reused for any subsequent
computation on system having the same invariance properties.

Although this method has limitations, we have to recall that numerical methods, such has
homotopie, are also subjected to limitations that restrict the size of the polynomial system to
be solved. In this context, the fact that the eigenvalue method with symmetry automatically
sorts the solutions (i.e., computes only one representative of each orbits) is an improvement as
it simplifies the analysis of the system.
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