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ABSTRACT 

Plasmonic nanocomposites based on well-dispersed silver nanocubes in poly(vinyl-

pyrrolidon) are presented that are solution-processed into layer of varying volume fraction of 

nanocubes. We show that the high-energy modes of the nanocubes are almost insensitive to 

plasmonic coupling within the nanocubes assemblies, leading to linear increase of light 

absorption in the UV with the nanocube densities. Concerning the main dipolar resonance mode 

at 450 nm, it is strongly affected by the formation of these assemblies, leading to an increased 

absorption in the UV as well as large absorption band in the visible. Simulations of the optical 

response of the nanocube assemblies as a function of nanocube spacing and electric field 

polarization reveal that optical features in the visible are due to inter-cube couplings at short 

inter-cube distances and parallel electric field orientation. In contrast, the additional plasmonic 

band in the UV has its origin in residual dipolar oscillations of the nanocubes in combination 

with weak dipolar coupling for both parallel and transversal field polarization. The combination 

of these effects leads to an enlarged absorption band in the UV with nearly perfect light 

absorption of 98.8% at high silver volume fraction of 8% that is accompanied by a very weak 

specular reflection of only 0.28 %. While such perfect absorption is usually only observed when 

nanocubes are assembled on gold surface, nearly perfect absorption herein is achieved on a large 

palette of substrates including glass, plastic and cheap metals such as aluminum, making it a 

promising approach for solution-processed robust and cheap quasi perfect absorption coatings. 

Introduction 

Plasmonic nanocomposite materials based on metal nanoparticles embedded in a 

polymer-based dielectric are an emerging class of optical materials.1,2 They combine the 
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tunability in plasmonic resonance of metal nanoparticles with simplicity in processing and 

mechanical properties of polymers. Over the last years, such plasmonic polymer nanocomposite 

(p-PNC) approaches have led to novel optical materials with tunable optical properties that can 

be integrated into manifold of applications such as optical sensors and optoelectronic device 

structures.3 In general, there are two approaches to produce p-PNC, which are either based on in 

situ synthesis of metal nanoparticles in the polymer or separate synthesis of nanoparticles by 

colloidal chemistry followed by blending the nanoparticles with the polymer into a p-PNC. The 

latter one allows synthesizing monodispersed nanoparticles with different shapes independently 

of the choice of polymer. This makes this approach a more versatile for the synthesis of p-PNC 

with novel optical properties. Indeed the use of shaped nanoparticles such as nanorods, 

nanocubes or nanoprisms is of particular interest as they can generate high electromagnetic field 

enhancement at corners and edges compared to nanospheres, as well as higher order localized 

surface plasmon resonances (SPRs).4–7 For example, it has been shown that the plasmonic 

absorption of gold nanorods embedded in a polymer can be tuned by increasing the volume 

fraction of the nanoparticle inside the p-PNC.4 The plasmon resonance peak of the gold nanorods 

exhibits a red shift with increasing volume fraction and coupling is observed for interparticle 

distances up to 70 nm.  

Amongst shaped metal nanoparticles, silver nanocubes (NCs) are outstanding plasmonic 

nanoparticles as they show not only intense plasmonic coupling leading to strong enlargement of 

the plasmonic absorption.5–8 Assembly of monolayers on dielectric substrates generates 

broadband absorption of strong light polarization dependence,8,9 while their assembly on metal 

surface leads to highly tunable optical properties and most importantly to efficient and zero 

reflection coating.5,10,11 All these approaches use generally monolayer of NCs and thus 2D 



 

4 

assembly of such objects. Here, we use a simple p-PNC approach to assemble nanocubes at 

varying concentration in a 3D fashion inside a polymer film. The variation of the NCs 

concentration allows us controlling the coupling amongst the nanoparticles inside p-PNC layers 

and thus their optical response on various substrates. Recently, we have developed such p-PNC 

based on randomly dispersed silver nanospheres and NCs blended in a dielectric polymer host 

matrix. The optical properties as a function of nanoparticle shape were studied to determine the 

complex optical indices of the nanocomposites by spectroscopic ellipsometry.12 As the volume 

fraction of the nanoparticles inside the polymer matrix was very low, the optical properties of the 

p-PNCs were governed by individual nanoparticles without observation of plasmonic coupling 

between NCs. In order to introduce coupling between the NCs inside the p-PNC, higher volume 

fraction inside the polymer matrix are needed. However, the increase of nanoparticle density 

inside the blend leads generally to the formation of aggregates due to immiscibility issues and 

depletion attraction.13 Such aggregates would rather increase reflection due to light scattering 

than increase light absorption. Additionally, in the presence of interfaces, nanoparticles can 

migrate to interfaces producing anisotropic films with accumulation of nanoparticles near the 

substrate14 due to entropic-push transition induced by the surfaces.13 In order to produce highly-

loaded aggregate-free p-PNCs, it is necessary to control the interaction between the polymer host 

and the ligands of the metal nanoparticles to improve their miscibility within the polymer. 4,15  

We report here p-PNCs based on homogeneously dispersed silver NCs embedded in 

poly(vinyl-pyrrolidon) (PVP) with volume fraction of NCs up to 8%. The high dispersion of the 

NCs and thus the suppression of aggregate formation during layer processing was obtained by 

using highly monodisperse NCs covered with PVP. The p-PNCs films processed on glass 

substrates shows optical properties that are dominated by the high energy modes of the NCs in 
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the UV. Indeed, these modes are only weakly affected by plasmonic coupling and increase 

almost linearly with the concentration of the NCs. When coupling between NCs starts to get 

dominant inside the films by the formation of NC assemblies, we observe two phenomena. First, 

inter-cube coupling mode appears in the visible range that leads to red-shifted absorption bands 

when reducing inter-cube distance.8,16–19 This limits the possibility to reach strong light 

absorption in the spectral region of the dipolar resonance. Secondly, the light absorption in the 

UV is enhanced by a blue-shift of the dipolar mode. Polarization dependent simulations reveal 

that the parallel electric field orientation, i.e. in the plane of the assemblies, generates plasmonic 

excitation leading to the red-shifted inter-cube coupling mode, as well as the blue-shifted dipolar 

mode. Furthermore, a transverse electric field orientation, i.e. out of the plane of the assemblies, 

leads only to the blue-shifted dipolar plasmonic excitations. Thus, the inherence of the high-

energy modes together with the blue-shift of the dipolar mode towards the UV region at high 

volume fraction of NCs generate an enlarged band in the UV with nearly perfect light absorption 

of 98.8%. We investigate herein the compatibility of theses p-PNC with industrial relevant 

substrates such metals and plastic to produce such nearly perfect absorption.  

 

Experimental part  

Materials: 

Ethylene glycol (EG, 99%), silver trifluoroacetate (99,99%), Poly(vinyl pyrrolidon) (PVP , Mw 

55000), Poly(methyl methacrylate) (PMMA, Mw 120000), Sodium hydrosulfide hydrate, 

Ethanol anhydrous and aqueous hydrochloric solution (HCl, 37%) were purchased from Aldrich. 
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Synthesis of Silver NCs: 

The silver NCs were synthesized according to a previously published polyol process by Zhang et 

al.20 but with slight modifications. In a typical synthesis, 20 mL of EG were added into a 100 mL 

flask and heated 25 min under stirring in an oil bath at 170°C. Then 0,250 mL of NaSH (3mM in 

EG) were injected to the solution. Two minutes later, 2 mL of HCl (3 mM in EG) and 5 mL of 

PVP (20mg/mL in EG) were respectively added to the mixture. As a last step, 1.6 mL of silver 

trifluoroacetate (282 mM in EG) were injected into the solution after two minutes. Importantly, 

the flask was kept capped with a glass stopper for the entire process except during the 

introduction of reagents. The reaction was stopped by placing the flask in an ice-water bath after 

30 min of heating to obtain the desirable size. The formed nanoparticles were washed by ethanol 

and deionized water twice then dispersed in 5 mL deionized water.  

Solution and thin films preparation: 

A determinate volume of the initial nanoparticles solution was centrifuged and washed twice 

with anhydrous ethanol to eliminate any remaining traces of water. Then the precipitate was 

dispersed in PVP (40 mg/mL in anhydrous ethanol) and put in a sonicated bath to obtain 

complete dispersion. The spin-coating speed (1500 rpm) as well as PVP concentration were 

optimized to obtain high-quality thin films prepared in argon-filled glovebox on glass substrates. 

Different concentrations of NCs were used to study the optical effects of NCs density within the 

layer. The film thickness was measured by a contact profilometer Dektak XTS (Bruker, 

Germany) equipped with a stylus of 2µm radius. 
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Electron Microscopy: 

Transmission electron microscopy (TEM) analysis was performed using a JEOL JEM-3010 

operating at 300kV. For the samples preparation, a modification of the polymer floating layer 

technique was applied.21 In details, PVP layers containing the nanoparticles were spin-coated on 

a PMMA layer (pre-deposited on glass substrate: 1500 rpm at 20 mg/mL in toluene). The 

substrate was then immersed in toluene to easily dissolve the PMMA, allowing to peel off a 

piece of the PVP layer and deposit it on the TEM holey grid. The surface coverage was 

determined from the TEM images using the ImageJ particle size analysis function. A color 

threshold filter was employed to produce a binary image used for surface coverage calculations. 

Cross section images were carried out on SEM (secondary electron microscopy) with operation 

voltage of 15kV. AFM images were obtained by using NTEGRA Prima (NT-MDT) in tapping 

mode.  

Optical measurements: 

UV-visible optical measurements were recorded using a Perkin Elmer Lambda 950 

spectrophotometer including an integrating sphere (schemes of the setup shown in Figure S1). 

The sample is placed either in front of the integrating sphere to measure the transmittance (T), or 

in back at an angle of 8° to measure the total reflectance (R). For diffuse reflectance 

measurement, the sample is kept in the same position as for total reflectance, but a port is 

removed to subtract the specular reflected light. Finally, the absorptance (A) is calculated by 

using A= 1 - T - R. The 2D mapping was measured with a Light Tec spectropolarimetric 

goniometer in specular reflection mode. 
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FDTD simulations: 

Finite Difference Time Domain (FDTD) simulations were performed using the commercial 

software Lumerical. The simulated NCs were designed according to the information taken from 

the TEM images: edge length of 36 nm and a corner radius of 6 nm. The optical indices of silver 

were taken from J.Rumble’s data,22 the refractive index of the PVP was considered constant at 

1.55 on the range of interest. The absorption and scattering cross sections of single NCs were 

calculated by integrating the Poynting vector of the total and scattered fields. 

 
 
Results and Discussion 
 

Optimisation of silver NCs synthesis and embedding in PVP thin films 

NCs with size in the range of 30 to 40 nm are selected herein for the synthesis of p-PNCs 

as they show the maximum plasmonic response.12 In general, gold and silver colloidal metal 

nanocrystals of controlled sizes and shapes are ideal building blocks for p-PNCs as they can be 

synthesized using either surfactants or polymers to selectively stabilize low-energy crystal facets 

and to form single-crystalline particles.23,24 The shaped nanocrystals possess SPRs that can be 

easily tuned through chemical synthesis.25 Noble metal NCs have attracted much interest in 

photonic applications, as they exhibit edges and corners where high local fields can arise, 

resulting in exceptional optical properties.26–29 Several methods based on the polyol method have 

been proposed to control the synthesis of NCs with high yields.30,31 As evidenced by theoretical 

and experimental results, the shape parameters such as edge length and curvature of edges and 

corners32,33 as well as aggregate properties34,35 have a great influence on the plasmonic properties 

of silver NCs. Therefore, silver NCs have high potential to introduce novel optical properties in 

p-PNCs when their density inside the nanocomposite allows couplings.  
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The NCs were synthesized following the procedure from Zhang et al. with slight 

modifications.20 Briefly, the synthesis relies on a sulfide-mediated polyol method using 

polyvinyl-pyrrolidone (PVP) as a capping agent and shape controller. Different sizes of NCs can 

be obtained by adjusting the reaction time. In this study, we focus on NCs with narrow size 

dispersion and regular shape. An optimized NC synthesis with edge length of 36 nm and narrow 

size dispersion (relative standard deviation rsd= 4.1%) is shown in Figure 1a. The absorption 

spectrum of the optimized NCs in solution is shown in Figure 1b. We observe the three 

characteristic absorption bands of silver NCs at 430 nm (dipolar resonance), the shoulder at 380 

nm (quadrupolar resonance)36,37 and the peak at 350 nm (due to the sharp corners of the cubes),12 

as expected for 36 nm PVP-coated silver NCs in aqueous solution. It is worth to mention that 

most of the studies found in the literature attribute the main absorption of silver nanocubes to 

dipolar resonance,18,36–38 however the situation is more complex with the two modes at higher 

energy as the origin of these modes is still discussed. Indeed, concerning the peak at 350 nm, the 

origin is claimed either as a silver bulk plasmon,39,40 a quadrupolar (or multipolar) mode,16,41,42 or 

Figure 1. (a) TEM picture of silver NCs as prepared; (b) absorption spectra of silver 
NCs in solution (black line) and dispersed in PVP layer on glass (red line); (c) optical 

photographs of the composite thin films by spin-coating on glass substrates. 
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due to the rounding of the cube (corner sharpness).12,18 Concerning the peak at 380 nm, the origin 

is mostly attributed to a quadrupolar mode18,38 or quadrupolar-dipolar hybrid mode.36 

 In order to produce p-PNCs with highly dispersed NCs, PVP was used as polymer host, 

as it is already present as surfactant in the NCs synthesis, guarantying improved miscibility of 

the NCs with the PVP polymer in solution.12,43 In order to characterize the absorption properties 

of the nanocomposite film by simple transmittance measurements, we selected glass as substrate 

while advanced optical properties were studied on a large choice of substrates including metals 

as shown in last sections. 

We studied at first p-PNCs spin-coated on glass with low concentration of NCs. Figure 

1b shows the UV-vis absorption spectrum of p-PNC layer using the optimized NCs. The same 

resonance mode absorption of the NCs is found compared to NCs in solution, i.e. the dipolar 

mode at 450 nm, the quadrupolar mode at 386 nm and the peak due to sharp corners at 350 nm, 

as expected for 36 nm silver NCs in a PVP environment on glass.12 There is only a weak red shift  

of 20 nm in the dipolar resonance attributed to the change in dielectric constant of the solvent in 

solution to the PVP matrix in the layer. Importantly, we found that only those monodispersed 

NCs with nearly perfect cubic shape lead to thin films with homogeneous morphology, i.e. well-

dispersed NCs within the PVP layer (yellowish film as shown in Figure 1c and Figure 2). The 

use of NCs with large size distribution (rsd > 5%) or shape distortion (nanorods like) gave rise to 

formation of silver aggregates during layer processing. This leads to additional light absorption 

as indicated by the shoulder at higher wavelength on the dipolar resonance peak. Additionally, 

the size of the NCs is also found to be critical for obtaining perfectly dispersed NCs. The NCs 

with edges larger than 50 nm systematically produced thin films with NCs aggregates (Figure 

S2). In the following, we selected monodispersed well-defined silver NCs with a 36 nm edge 
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length to process p-PNCs films with increasing NCs volume fraction in order to investigate the 

effect of NCs density on the optical properties of the p-PNCs. 

 

Effect of the NCs density on the optical responses 

Various concentrations of the optimized NCs were blended with PVP solutions at a 

constant concentration (40 mg/mL). This technique allows producing thin films with nearly same 

thickness over a large range of NCs density (see Table 1). 

The NCs dispersion and density in the PVP matrix as a function of silver NCs density 

were studied by TEM analyses of the nanocomposite layer using a modification of the floating 

layer technique that allow to transfer the p-PNC layers onto a carbon grid without damaging 

the films.21 Figure 2 shows the corresponding TEM images of the p-PNC films with different 

NC concentration (increasing from A to G). A well-dispersed organization of the NCs inside 

the PVP matrix without formation of NC aggregates is observed for all selected NCs 

Figure 2. TEM images of the PVP thin films with different NCs densities (floating-layer 
technique was applied to the spin-coated thin films to deposit them on TEM holey grids). 
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concentration, i.e. no direct contact between the cubes. The NCs are not isotropically dispersed 

inside the PVP but form rather ensemble of a few NCs, and only a few isolated cubes are present 

inside the p-PNC. This is known to occur when steric stabilization by the ligands is insufficient 

to balance the depletion attraction.44 As a consequence, an increase of the volume fraction of the 

NCs induces mainly an increasing number of such ensemble. As it can be seen in Figure 2, the 

increase in NC density from D to G, leads to p-PNCs in which a reduction in the average 

distance inside the ensembles occurs as shown in Figure S3. Once the limit of miscibility of the 

NCs inside the PVP of around 8% in volume fraction is reached, small aggregates of NCs are 

generated during layer processing, as shown in Figure 2 for sample F and G. 

The TEM analysis were further applied to study the distribution of the NCs inside the 

PVP layer. By taking into account that TEM images only show 2D projection of the 310 nm 

thick nanocomposite layer, there is thus a limitation for deeper analyses of the cube distributions 

in the p-PNCs, especially for the estimation of the spacing between NCs. But the combination of 

TEM, SEM cross-section analyses with AFM analyses shown in Figures 2, S3, S4 and S5 

allowed us to extract these parameters in an appropriate way.  

Table 1. Summary of samples and their related morphological properties. 
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The density of NCs within the film was calculated using the TEM images. As it can be 

seen in Table 1, the average density of NCs per µm2 increases from 11 cubes/µm2 (film A) to 

519 cubes/µm2 (film G) with increased NCs concentration inside the blend solution. The density 

of NCs inside the blend was converted to volume fraction of NCs in the Ag-PVP composite from 

0.2 to 7.7 %. Cross-section analyses were realized by SEM to visualize the vertical distribution 

of the NCs inside the PVP matrix. As shown in Figure S4, the distribution of the NCs inside the 

PVP is anisotropic in the case of low-density samples. A large amount of the cubes is indeed 

located within the first 200 nm, in contact with the glass substrate. In contrast, distribution of the 

NCs in sample G with the highest density presents a homogeneous distribution of cubes over the 

whole 315 nm of the layer. The surface region of the p-PNC layers is found mainly free of NCs, 

as only few cubes are observed in this region in the case of the sample G. We applied then AFM 

analyses to study the surface quality of the nanocomposite films as a function of NC density. 

Figures S5 shows the corresponding AFM images obtained in non-contact tapping mode. Very 

smooth surfaces with RMS roughness as low as 0.3 nm for sample A and only 1.1 nm even in the 

case of the highly dense sample G are produced. This clearly indicates a high optical quality of 

these layers even at high NC density, lacking additional scattering effects at the layer surface. 

The high optical quality can be directly related to the improved solubility of the NCs in the blend 

solution.  

In order to study the optical properties of the p-PNC as a function of NCs density, layers 

were deposited by spin coating on glass substrate. A complete set of optical analyses including 

transmission spectra and total reflectance as well as diffuse reflectance using an integrating 

sphere was recorded. Figure 3a shows the resulting absorption spectra of samples A-G, while 

Figure S6 presents transmission spectra. For low NC concentration, the transmission and 



 

14 

absorption spectra are dominated by the plasmonic dipolar mode at 450 nm. With increasing 

NCs concentration, we observe several strong changes in the UV and visible regions. The main 

dipolar resonance mode at 450 nm is strongly affected by the increase in NCs density. Plasmonic 

inter-cube couplings (also referred as gap plasmon) appear within NCs assemblies and trigger an 

enlargement and red-shift of the absorption, with the appearance of a new large peak at 500 

nm.8,16–19 Furthermore, the absorption spectra in Figure 3a reveal a blue-shift of the dipolar 

mode at 420 nm (sample F), which is further shifted towards 405 nm for the highest 

concentration of NCs (sample G, marked with red triangle), enhancing the absorption in the UV.  

In contrast, the quadrupolar mode at 386 nm and cubic shape mode at 350 nm are less 

affected by the increase of NC density. Their absorptions in the UV region increase almost 

linearly with increasing NCs density and become the dominant absorption modes at high NCs 

concentration in the p-PNC, showing for sample G absorptions of 91.5% and 91.4 % for the 

quadrupolar mode and cubic shape mode, respectively. The relation between NCs density and 

absorption of the p-PNC is presented in Figure 3b. It can be clearly seen that the absorptions of 

both high-energy modes follow almost linearly the concentration of the NCs up to the highest 

Figure 3. Absorption spectra for nanocubes-embedded PVP films A to G (a). Plot of the 
absorption and diffuse reflectance values at 350, 386 and 450 nm as a function of the 

nanocube density (b). Corresponding diffuse reflectance spectra (c).  
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concentration. In contrast, the absorption of the dipolar mode at 450 nm increases only in a linear 

way up to sample C and derives strongly into saturation for sample E-G, due to its slight blue-

shift, reaching a maximum of 80% in absorption even for the highest NCs concentration.  

 In order to better understand the optical properties of the p-PNC, the diffuse reflectance 

can give more insights on the plasmonic coupling between NCs. As the films possess low 

roughness values and thus negligible surface scattering effects, we consider the diffuse 

reflectance to be related only to the embedded nano-objects and not to the surface. As shown in  

Figure 3c, the diffuse reflectance of samples A to C are only composed of the resonance 

responses of isolated NCs at 450 nm, evidencing that mainly non-interacting NCs are included in 

the layers.45,46 As the density of NCs is increased in the p-PNC, diffuse reflectance show a 

broadening of the resonance signal at 450 nm towards higher wavelengths as it is seen for sample 

D. This phenomenon is even enhanced in the spectra of films E to G, as the increasing plasmonic 

couplings between the NCs introduce broad responses up to 800 nm. Furthermore, we observe a 

shoulder around 420 nm in the diffusion spectra of sample E-F that appears as a clear peak at 405 

nm for the highest NCs concentration in sample G. The position of this peak corresponds to the 

blue-shifted dipolar resonance in the absorption spectra, suggesting that its origin and slight blue-

shift are related to weak plasmonic coupling between the NCs inside the blend. 
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In order to study these optical changes of the p-PNC more in details, especially the 

reinforcement of the absorption towards the UV region, we performed FDTD optical simulations 

of plasmonic excitation. Two types of NCs configurations were studied that correspond to typical 

NCs assemblies observed in the nanocomposite as shown in Figure S3. The first configuration 

CA presented in Figure 4a is a parallel alignment of four NCs that reflects linear NCs 

assemblies inside the p-PNC. This assembly is the dominant type for medium and high 

concentration of NCs (samples C-G). The second configuration CB represents a symmetric cross 

of five NCs, as shown in Figure S7a, and is used to simulate the optical response of more 

complex 2D and 3D assemblies, as found in samples E-G. As both configurations give very 

similar results, only the configuration CA is discussed here in detail, while the results obtained 

for the configuration CB are presented in the supporting information. We calculated absorption 

Figure 4.  Simulated configuration CA showing the E∥ light polarization (a). Resulting calculated absorption 
cross sections (b) and scattering cross sections (c) as a function of the NCs spacing length a. Mapping of the 
electric field for a single NC at 475 nm (d) and for the four NCs with a = 2nm at 462 nm (e) and 752 nm (f). 
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and diffuse reflection cross sections of configuration CA to study both the effects of the NCs 

spacing distance a and that of the electric field polarization.  The case of single NC is calculated 

by using an infinite distance a and the corresponding absorption and scattering cross sections are 

represented by blue dotted lines in Figures 4b and c, respectively. It is important to note that the 

calculated dipolar absorption at 475 nm corresponds to the experimentally measured dipolar 

absorption at 450 nm. The results obtained for the E∥ polarization, i.e. the electric field oriented 

parallel to the axis of the linear NCs assembly, are shown in Figure 4b. The decrease in a 

spacing from infinity to 2 nm leads to a continuous shift of the inter-cube coupling mode towards 

longer wavelengths. Additionally, this configuration CA shows a dipolar absorption (marked 

with red triangle) that is blue-shifted by approximately 15 nm compared to the dipolar absorption 

band of the single NC. The blue-shift starts to appear for cube spacing of 20 nm and evolves 

further when cube spacing is reduced to 2 nm, as shown in Figure 4b. The mapping of the 

electric field associated to this band at 462 nm is shown in Figure 4e and confirms its dipolar 

nature thanks to its similarity with the dipolar response of the single NC shown at 475 nm in 

Figure 4d. However, we find also additional electric field intensities between the cubes. In 

contrast, the mapping of the absorption peak centered at 752 nm corresponds to pure inter-cube 

coupling, in which the whole plasmonic excitation is only localized between the NCs (Figure 

4f). The effect of the electric field polarization is presented in Figure S8a for NCs spacing of 2 

nm. When the electric field is tilted from the E∥ polarization to the E⊥ polarization, i.e. the 

electric field oriented perpendicularly to the axis of the linear NCs assembly, no inter-cube 

coupling between the NCs occurs. This is in accordance with studies on polarization dependence 

on monolayer of silver NCs deposited on dielectric substrates.7 Furthermore, we observe with 

this E⊥ polarization, likewise for the E∥ polarization, a blue-shift of the dipolar response which 
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is even more pronounced in this case. Interestingly, this blue-shift of the dipolar mode under E⊥ 

polarization is already observed with large cube spacing of 20 nm, as shown in Figure S8c.  

In conclusion, our simulations show that the plasmonic band, which is experimentally 

observed at 405 nm at the highest NCs density, can be addressed to residual dipolar oscillations 

of the NCs in combination with weak dipolar coupling, seen under both E∥ and E⊥ polarizations, 

and strongly enhancing the light absorption in this region. Thus, the almost perfect absorption of 

the studied p-PNC in the UV is not only related to the high absorption of the high-energy modes 

in the UV, but also arises from the blue-shift of the strongly absorbing dipolar band due to the 

formation of NCs assemblies inside the layers.  

 

Reflectance studies 

In this section, we present the reflection of the p-PNC more in detail as a function of NCs 

volume fraction. The total reflectance of the layers deposited on glass was measured by 

collecting signal in an integration sphere, at near-normal incidence angle of qinc = 8°. Figure 5a 

shows that the total reflectance spectra, i.e. both specular and diffuse reflections, are strongly 

modified by NCs density. The minimum in total reflectance is obtained for the highest NCs 

concentration in sample G, leading to 2.8% and 2.9% at quadrupolar resonance and cubic shape 

mode wavelengths, respectively. Such a behavior was expected from the high absorption values 

at these wavelengths. It must be remembered that the p-PNC are deposited on glass and only 

5.4% of light signal was transmitted at these wavelengths for this sample G, revealing the high 

absorption of these nanocomposites. Silver NCs dispersed in PVP at lower density than in the 

present study were already studied in our previous work.12 The minima in these reflectance 
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spectra, which occurred at lower wavelengths than dipolar resonance, were attributed to 

simultaneous effects of sharp decrease of the refractive index n together with sharp increase of 

the extinction coefficient k. The same tendency is seen here in this work for all studied NCs 

densities. As shown in Figure 5a, the reflectance peak of the dipolar resonance at 450 nm 

increases with the NCs density and gets the strongest reflectance contribution in sample G. This 

is a consequence of two mechanisms, which is the simultaneous increase in both refractive index 

and diffuse reflectance despite the high extinction coefficient at this wavelength. 

In order to determine the composition of the reflected light, the diffuse reflectance was 

subtracted from the total reflectance allowing to calculate the specular reflectance. In the case of 

sample G, the total reflectance at 350 nm of 2.8% is well-balanced between a diffuse reflectance 

of 1.7% and a specular reflectance of 1.1% (Figure 5b). Interestingly, the situation is totally 

different at the second minima at 384 nm. Here, the total reflectance of 2.9% is mainly due to 

diffuse reflectance (2.65%) whereas the specular reflectance reaches an extremely low value 

(0.25%). Considering these encouraging results, we further increase the NCs density to the 

Figure 5. Reflectance spectra of samples A to G (a) and total R, diffuse Rd and 
specular Rs reflectance spectra of sample G (b). 
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highest attainable density, limited by the solubility of the silver NCs, in order to explore the 

limits of our p-PNC approach towards perfect light absorption. As it can be seen in Figure S9, a 

very low total reflectance of 1.21% is reached at 350 nm that is composed of 0.28% in specular 

reflectance and 0.93% in residual diffuse reflectance. The results show that the total absorption 

of our p-PNC can reach values close to 99%. Due to the fact that the silver NCs are highly 

absorbing in the considered spectral range, we consider that the light trapped inside the p-PNC 

layer will be re-absorbed by the nanocubes. It has to be pointed out that such high absorption is 

almost identical to the optical properties of metasurfaces or single-layer gratings used as perfect 

absorbers,10,11,47 making our simple solution-processing approach highly interesting for tunable 

anti-reflecting coatings. 

 

Effects of substrate and angular dependence 

This section focuses on the behaviour of specular reflectance on non-transparent 

substrates in order to avoid residual transmission and to compare the coating performances with 

more classical systems such as meta-surfaces using sub-monolayers of silver NCs.  

The main drawback of metamaterials is that their optical properties are highly dependent 

on the nature of the underlying substrate, as seen on most of the studies on dielectric,5 gold or 

silver substrates.2,11,48 So far, we demonstrated that nearly zero-reflectance is achievable on 

glass. Figure 6a shows the specular reflectance of the film G spin-coated on various substrates 

(glass, PET, gold and aluminum). The p-PNC at the NCs density of sample G (8% in volume 

fraction) shows nearly zero-reflectance (about 0.3%) for all substrates in the region from 380 to 

405 nm. The total reflectance, shown in Figure S10, is also similar on all substrates in this 

region as the diffuse reflectance is not influenced by the underlying substrate. Thus, our p-PNC 
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approach of NCs embedded in PVP has high substrate tolerance to generate zero-reflection in the 

UV.  

 

Furthermore, we studied the angular dependence of the same film G that was deposited 

on an industrial relevant substrate such as aluminum. It is expected that such layers are less 

sensitive to the measured angle as compare to other systems, such as meta-surface or ring-

resonators systems.48,49 Angular dependence was measured on the wavelength range from the 

reflectance minimum to its maximum, i.e. between 390 and 500 nm carried out on a goniometer 

setup allowing incident angles variations from 3° to 70° (see setup scheme in Figure S1d). As it 

can be seen in Figure 6b, the specular reflectance spectrum of film G is nearly constant up to 

Figure 6. Top part: optical photographs of films using sample G spin-coated on various substrates. 
Bottom part: Specular reflectance spectra of the resulting films (a) and angular behaviour of the 

specular reflectance for sample G deposited on aluminum (b). 
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60°. Importantly, it can be seen in the angular mapping of the specular reflection that the low 

specular reflection less than 1% between 380 nm to 410 nm exists over a wide-angle region up to 

the 60° incident angle. This large angular domain of extremely low reflectance shows the 

advantage of our 3D p-PNC layer approach compared to 2D metasurfaces.10,50  

 
 
Conclusions 

We present here plasmonic nanocomposites based on silver NCs embedded in PVP that 

are produced by a simple one-step solution process on a large palette of substrates of centimeter-

sized surface areas. We demonstrate that the optical properties of these nanocomposite films are 

governed by the density of silver NCs inside the PVP as well as plasmonic couplings between 

the cubes introduced due to the formation of NCs assemblies with increasing concentration. The 

absorption of the layers in the visible is governed by inter-cube coupling inside nanocube 

assemblies leading to additional red-shifted absorption band and limited absorption at the initial 

wavelength of the dipolar resonance. In contrast, strongly enhanced UV absorption is found at 

high nanocube densities that is addressed to the absorption of the high-energy modes in the UV 

in combination with the blue-shifted dipolar band absorption due to the formation of NCs 

assemblies inside the layers. The enlarged absorption band in the UV shows nearly perfect light 

absorption of 98.8% that is accompanied by a very weak specular reflection of the layers of only 

0.28%. The optical performances in the UV of the presented plasmonic nanocomposite layers, 

which is demonstrated on different substrates, are comparable to well-known approaches based 

on 2D assemblies of silver NCs on gold surfaces, making them a promising approach for 

solution-processed robust and cheap quasi-perfect absorption coatings on a large palette of 

substrates. Future work will focus on the development of nearly perfect absorption in the visible 
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spectrum by using metal nanocrystals with plasmonic modes located deeper in the visible 

spectrum.  
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Silver nanocubes-embedded polymer thin films display UV absorption as high as 98.8% and 
specular reflection of only 0.28% independently on the underlying substrates. 

 

 

 

 

 


