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Abstract

We consider the shape derivative formula for a volume cost functional studied in
preceding papers and using the Minkowski deformation and support functions in the
convex setting. In this work, we extend it to some non convex domains, namely the
star-shaped ones. The formula happens to be also an extension of a well known one in
the geometric Brunn-Minkowski theory of convex bodies. At the end, we illustrate the
formula by applying it to some model shape optimization problem.

Keywords shape derivative, volume functional, convex domain, starshaped domain, support
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1 Introduction

This paper deals with a generalization of a shape derivative formula for a volume cost functional
with respect to a class of convex domains, a formula that we already studied in [2,3], and our aim
is to extend it to non convex domains. To be precise, consider the shape functional J defined by

J (Ω) =

∫
Ω
f(x) dx,

where Ω is a bounded open subset of Rn and f is a fixed function defined in Rn.
Using the deformation (1− ε)Ω0 + εΩ, ε ∈]0, 1[, of Ω0 and a C1 function f , A. A. Niftiyev and

Y. Gasimov [27] first gave the expression of the shape derivative of J with respect to the class of
convex domains of class C2 by means of support functions:
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Theorem (A. Niftiyev, Y. Gasimov) If Ω0,Ω are bounded convex domains of class C2 and the
function f is of class C1, then, the limit

lim
ε→0+

J((1− ε)Ω0 + εΩ)− J(Ω0)

ε

exists and is equal to ∫
∂Ω0

f(x) (PΩ(ν0(x))− PΩ0(ν0(x))) dσ(x), (1)

where ν0(x) denotes the outward unit normal vector to ∂Ω0 at x, and PΩ0 , PΩ are the support
functions of the domains Ω0, Ω, respectively.

Recently, A. Boulkhemair and A. Chakib [3] extended this formula to the case where f is

in the Sobolev space W 1,1
loc (Rn). Inspired by the Brunn-Minkowski theory (see, for example, R.

Schneider, [29]), they also proposed a similar shape derivative formula by considering the Minkowski
deformation Ω0 + εΩ of Ω0 :

Theorem (A. Boulkhemair, A. Chakib) If Ω0,Ω are bounded convex domains of class C2 and the

function f is in the Sobolev space W 1,1
loc (Rn), then, the limit

lim
ε→0+

J(Ω0 + εΩ)− J(Ω0)

ε

exists and is equal to ∫
∂Ω0

f(x)PΩ(ν0(x)) dσ(x), (2)

where ν0(x) denotes the outward unit normal vector to ∂Ω0 at x, and PΩ is the support function
of the domain Ω.

In fact, this formula holds true even for bounded convex domains, see [2].

If one compares (1) and (2), one can easily remark that, unlike the first formula, the second one
does not depend on the support function of Ω0. This suggests that (2) should hold true for non
convex Ω0, which would be very interesting for applications in shape optimization. Unfortunately,
up to now we have not been able to treat the case of general non convex domains. In this paper,
we shall extend formula (2) to the case where Ω0 is a star-shaped domain of class C2. In fact, we
were naturally led to star-shapedness because one can take again parts of the idea of proof of [2,3],
mainly the use of gauge functions. Note that, by using such a method, this is the best result one
can obtain since the star-shaped domains are exactly the sublevel sets of non negative continuous
homogeneous functions. Thus, the case of non star-shaped domains is an open question and clearly
needs other methods to study it. Anyhow, we shall return to this problem in a future work.

Another important motivation for this work came from the fact that, when f = 1, (2) is a
well known formula in the Brunn-Minkowski theory of convex bodies, see [29] for example. Indeed,
when Ω0 and Ω are bounded convex domains, we know from that theory that one can write

V (Ω0 + tΩ) =
n∑
j=0

(
n

j

)
tjVj(Ω0,Ω) , t ≥ 0,

where V denotes the volume functional, that is, the n-dimensional Lebesgue measure, and the
coefficients Vj(Ω0,Ω) are what one calls mixed volumes of Ω0 and Ω and are significant in convex

2



geometry, see [29], [23] or [31] for example. Let us first remark that the first mixed volume V0(Ω0,Ω)
is simply the volume V (Ω0). Next, it is known since a long time that

V (Ω0 + tΩ)− V (Ω0)

t
=

n∑
j=1

(
n

j

)
tj−1Vj(Ω0,Ω) −→ nV1(Ω0,Ω) =

∫
∂Ω0

PΩ(ν0(x)) dσ(x) (3)

as t→ 0+. Thus, (2) is an extension of the above formula to the case where f is not necessarily 1
and the aim of this work is to extend (2) and (3) to the case where Ω0 is not necessarily convex.
Another remark is that formula (3) is known to be a basic ingredient for solving the classical
Minkowski problem in convex geometry, see [29] for example. Moreover, this idea has been taken
up by some authors to solve Minkowski type problems associated to geometric functionals other
than the volume one. We quote, for example, [24], [25], [14] and [15]. Using our result, one should
likely be able to do a similar work using the functional studied in the present paper.

Originally, even if it is a theoretical one, this work was also motivated by numerical approxima-
tions in shape optimization problems, since it is indeed the most difficult aspect of this subject. We
refer to [1], for example, for explanations about the issues that arise when implementing numeri-
cally the minimization of a shape integral functional, via some gradient method, by using the usual
expression of the shape derivative by means of vector fields. Briefly, the reason is that, when using
vector fields, at each iteration we have to extend the vector field (obtained only on the boundary)
to all the domain or to re-mesh, and both approaches are expensive. On the other hand, when we
use support functions, at each iteration, we get not only a set of boundary points but also a support
function which, by taking its sub-differential at the origin, gives the next domain. This is why we
are interested in the above formulas that is, expressions that use support functions instead of vector
fields. In the last section, we give an idea on how to apply these formulas to the computation of
the shape derivative of a simple shape optimization problem by means of an algorithm based on
the gradient method. Anyway, these formulas are actually applied and implemented in the recent
papers [6], [7] and [8].

Concerning the method of proof, we first assume that the deformation domain Ω is strongly
convex, which allows us to construct some parameterization of the perturbed domain Ω0 + εΩ by
means of some C1−diffeomorphism defined on Ω0. The construction is based on some analytical
and geometric properties of gauge and support functions of star-shaped domains, and reduces the
problem to the usual computation of the shape derivative using vector fields. The case of a general
convex Ω is then treated by using an approximation of Ω by a sequence of strongly convex domains
and is based on some crucial analytical and geometric lemmas.

In fact, we have followed the idea of proof of [3]. However, even if the general plan is the same,
our proofs are far from being a straightforward consequence of the work in [3], essentially because of
the fact that the theory of starshaped sets is not as well established as that of convex analysis. For
example, the construction of the C1−diffeomorphism that parameterizes the perturbed domains
relies on a tricky argument using the convolution of two hypersurfaces. Let us also quote the
result on the continuity of the gauge function with respect to star-shaped domains by means of the
Hausdorff distance (Proposition 4), a result which is new to our knowledge.

The outline of the paper is as follows. In section 2, we recall some facts about star-shaped
domains and give their proofs. The main results are stated in Section 3 where we also prove
consequences of Formula (2) to the situation where the function f depends also on domains, which
is customary in shape optimization problems. The fourth section is devoted to the proof of the
main results using several lemmas. Finally, in Section 5, in order to illustrate these results, we give
an application to a model shape optimization problem and an algorithm for solving this type of
problem based on the gradient method.
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2 Preliminaries on star-shaped domains

There are several definitions of what is called a star-shaped set in the literature. Here, we shall use
the following one:

Definition 1. An open subset (or a domain) Ω of Rn is said to be star-shaped with respect to
some x0 ∈ Ω, if for all x ∈ Ω, Ω contains the segment [x0, x[= {(1− t)x0 + tx ; 0 ≤ t < 1}.

It follows from this definition that the domain Ω is convex if and only if it is star-shaped with
respect to each x0 ∈ Ω.

In what follows, we shall often work with bounded domains which are star-shaped with respect
to 0. The reason for this is that such domains are naturally associated to gauge functions like the
convex domains. So, let Ω be a bounded domain which is star-shaped with respect to 0. For each
x ∈ Rn, consider the following set of positive real numbers

{λ;λ > 0 , x ∈ λΩ},

which is always non empty since Ω is a neighborhood of 0. By definition, the gauge function
associated to Ω is the real function JΩ : Rn → R+ given by

JΩ(x) = inf{λ;λ > 0 , x ∈ λΩ}.

Like for the convex bodies, the gauge functions characterize the star-shaped domains they are
associated to. In the following proposition, we summarize their main properties.

Proposition 1. Let Ω ⊂ Rn be a bounded domain which is star-shaped with respect to 0. Then,
the gauge function JΩ is a non negative continuous positively homogeneous function of degree 1.
More precisely, we have the following properties:

(i) JΩ(0) = 0, JΩ(x) > 0, ∀x 6= 0.

(ii) JΩ(tx) = tJΩ(x), ∀x ∈ Rn, ∀t ∈ R+.

(iii) Ω = {x ∈ Rn ; JΩ(x) < 1}.

(iv) ∂Ω = {x ∈ Rn ; JΩ(x) = 1}.

(v) JΩ : Rn → R is continuous.

(vi) If Ω′ is another domain which is star-shaped with respect to 0 and Ω′ ⊂ Ω, then, JΩ ≤ JΩ′ .

Proof. (i), (ii) and (vi) are easy consequences of the definition of JΩ and the fact that Ω is a
bounded neighborhood of 0.
(iii) : As it follows from the definition, if JΩ(x) < 1, we have x ∈ λΩ for all λ > JΩ(x), and in
particular for λ = 1. Conversely, if x ∈ Ω, we have, by definition, only JΩ(x) ≤ 1. But the fact that
Ω is open and star-shaped with respect to 0 implies that x ∈ λΩ for some λ < 1; hence, JΩ(x) < 1.
(iv) : It follows from (iii) that if x ∈ ∂Ω, then JΩ(x) ≥ 1. Now, by star-shapedness, we have
tx ∈ Ω, ∀t ∈ [0, 1[ which implies JΩ(tx) = tJΩ(x) < 1, ∀t ∈ [0, 1[; hence, JΩ(x) < λ, ∀λ > 1 which
implies JΩ(x) ≤ 1, and so JΩ(x) = 1. Conversely, if JΩ(x) = 1, we have x /∈ Ω and x ∈ λΩ for all
λ > 1 which implies that tx ∈ Ω, ∀t ∈]0, 1[. Since tx→ x when t→ 1−, we obtain that x ∈ ∂Ω.
(v) : Since JΩ is a positively homogeneous function, to prove its continuity it suffices to show that
{JΩ < 1} is an open set and that {JΩ ≤ 1} is a closed set. But this follows from (iii) and (iv) since
{JΩ < 1} = Ω is open and {JΩ ≤ 1} = Ω is closed. �

It is well known in convex analysis that the gauge function of any convex domain is Lipschitz
continuous. This is no longer true for star-shaped domains. Since such a Lipschitz regularity will
be needed in the sequel, in fact, we shall work exactly with the star-shaped domains whose gauge
functions are Lipschitz continuous. In order to be able to describe geometrically this subfamily of
domains, let us give the following definition.
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Definition 2. An open set Ω ⊂ Rn is said to be star-shaped with respect to a subset G ⊂ Ω, if it
is star-shaped with respect to any point of G.

This definition allows us to characterize in a simple manner the star-shaped domains whose
gauge functions are Lipschitz continuous. This is done in the following result for which we provide
a new and simple proof (see also [9, 17]).

Proposition 2. Let Ω ⊂ Rn be a bounded domain which is star-shaped with respect to 0. Then,
its gauge function JΩ is Lipschitz continuous if and only if Ω is star-shaped with respect to some
ball B(0, r) ⊂ Ω centered at 0 and with radius r > 0. Moreover, when this condition is satisfied,
one can take 1/r as a Lipschitz constant for JΩ.

Proof. Assume first that JΩ satisfies the inequality |JΩ(y) − JΩ(x)| ≤ 1
r |y − x| for all x, y ∈ Rn,

and let us show that Ω is star-shaped with respect to the ball B(0, r). For all y ∈ B(0, r), x ∈ Ω
and t ∈ [0, 1[, it follows from the assumption that

JΩ((1− t)y + tx) ≤ JΩ(tx) +
1

r
|(1− t)y| < t.1 +

1

r
(1− t)r = 1,

which says exactly that (1 − t)y + tx ∈ Ω for all y ∈ B(0, r), x ∈ Ω and t ∈ [0, 1[, that is, Ω is
star-shaped with respect to the ball B(0, r).

Conversely, assume that Ω is star-shaped with respect to the ball B(0, r), r > 0. For each
x ∈ ∂Ω, consider the convex hull of the set B(0, r)∪ {x} and denote by Ωx its interior. Clearly, Ωx

is a convex domain and a subset of Ω. Thus, it follows from Proposition 1 (vi) that

JΩ ≤ JΩx ≤ JB(0,r).

Hence, we can write, for all y ∈ Rn,

JΩ(y) ≤ JΩx(y) ≤ JΩx(x) + JΩx(y − x) ≤ JΩ(x) + JB(0,r)(y − x) ≤ JΩ(x) +
1

r
|y − x|,

since JΩx is a convex function, JΩ(x) = 1 = JΩx(x) and JB(0,r)(z) = |z|/r. So, JΩ(y) − JΩ(x) ≤
1
r |y − x| under the assumption x ∈ ∂Ω. This is also true if x = 0 and when x 6= 0, it follows from
this inequality, since x/JΩ(x) is on ∂Ω, that

JΩ

(
y

JΩ(x)

)
− JΩ

(
x

JΩ(x)

)
≤ 1

r

∣∣∣∣ y

JΩ(x)
− x

JΩ(x)

∣∣∣∣ ,
which implies by homogeneity that JΩ(y)− JΩ(x) ≤ 1

r |y − x| for all x, y ∈ Rn, and, by symmetry,
the Lipschitz continuity of JΩ. �

We shall also need the following technical results. Note here that the scalar product in Rn of x
by y is denoted in what follows by 〈x, y〉 or by x.y .

Lemma 1. If Ω ⊂ Rn is a bounded domain which is star-shaped with respect to a ball B(0, r),
then, the outward unit normal vector ν(x) to Ω exists for almost every x ∈ ∂Ω and is given by

ν(x) =
∇JΩ(x)

|∇JΩ(x)|
.

Proof. First, it follows from Proposition 2 that JΩ is Lipschitz continuous, and from Rademacher’s
theorem (see [20], for example) that ∇JΩ(x) exists almost everywhere in Rn.

Next, we have to show in fact that ∇JΩ(x) exists for almost every x ∈ ∂Ω. To do that, let
us remark that, since it is locally bounded, ∇JΩ is locally integrable in Rn. In general, if f is a
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locally integrable function in Rn which is also homogeneous of degree 0, we can write, by using
polar coordinates, Fubini’s theorem and the homogeneity of f ,

+∞ >

∫
B(0,1)

|f(x)| dx =

∫ 1

0

∫
Sn−1

|f(%ω)| %n−1d% dω =
1

n

∫
Sn−1

|f(ω)| dω.

Hence, ω 7→ f(ω) exists a.e. on Sn−1 and is even integrable. Consider now the map Ψ defined by
Ψ(0) = 0 and

Ψ(x) =
|x|

JΩ(x)
x, x ∈ Rn, x 6= 0.

One can easily show that this is a bi-Lipschitz homeomorphism from Rn onto itself and that
Ψ(Sn−1) = ∂Ω. By applying the above argument to the function f = (∇JΩ) ◦ Ψ which is locally
integrable in Rn and also homogeneous of degree 0, we obtain that it is defined a.e. on Sn−1.
Moreover, it follows from the fact that Ψ is bi-Lipschitz continuous that sets of measure 0 in Sn−1

correspond to sets of measure 0 in ∂Ω. Hence, ∇JΩ is defined a.e. on ∂Ω.
The last point is the formula giving the outward unit normal vector ν(x) at x ∈ ∂Ω. In fact,

the arguments are more or less classical and we indicate them briefly:
— If x ∈ ∂Ω and ∇JΩ(x) exists, any Lipschitz continuous curve γ : I =]− ε, ε[→ ∂Ω such that

γ(0) = x and γ′(0) exists, satisfies JΩ(γ(t)) = 1, ∀t ∈ I, which implies that ∇JΩ(x).γ′(0) = 0, that
is, ∇JΩ(x) is normal to tangent vectors to ∂Ω at x.

— At any x ∈ ∂Ω such that ∇JΩ(x) exists, we can write, as t→ 0,

JΩ(x+ t∇JΩ(x)) = 1 + t|∇JΩ(x)|2 + o(t),

which shows that, for small t > 0, x+ t∇JΩ(x) is outside Ω, that is, ∇JΩ(x) is an outward normal
vector to Ω at x. �

Lemma 2. If Ω ⊂ Rn is a bounded domain which is star-shaped with respect to a ball B(0, r),
then, we have

〈ν(x), x〉 ≥ r ,
for almost every x ∈ ∂Ω, where ν(x) is the outward unit normal vector at x.

Proof. It follows from Proposition 1 that

Ω = {x ∈ Rn ; JΩ(x) = 1}, (4)

and from Proposition 2 that JΩ is Lipschitz continuous with a Lipschitz constant equal to 1
r , that

is, for all x, y ∈ Rn,

|JΩ(x)− JΩ(y)| ≤ 1

r
|x− y|.

From this inequality and Lemma 1, we deduce that |∇JΩ| ≤ 1
r a.e. on ∂Ω and that the outward

unit normal vector is given by

ν(x) =
∇JΩ(x)

|∇JΩ(x)|
for almost every x ∈ ∂Ω. Therefore, using the homogeneity of JΩ via Euler relation, we obtain
that, for almost every x ∈ ∂Ω,

〈ν(x), x〉 =
1

|∇JΩ(x)|
〈∇JΩ(x), x〉 =

JΩ(x)

|∇JΩ(x)|
=

1

|∇JΩ(x)|
≥ r .

�

As for convex domains, the regularity of a domain which is star-shaped with respect to a ball
is that of its gauge function:
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Lemma 3. Let Ω ⊂ Rn be a bounded domain which is star-shaped with respect to a ball B(0, r),
r > 0. Then, Ω is of class Ck, k ≥ 1, if and only if its gauge function JΩ is of class Ck in Rn\{0}.

The proof of this last result is the same as that given in [3] in the case of convex domains and
makes use of the fact that 〈ν(x), x〉 does not vanish which is insured by Lemma 2 in our case. So,
we refer to it.

Finally, the following result will also be needed:

Proposition 3. Let (Φε)0≤ε≤ε0 be a family of C1 diffeomorphisms from Rn onto Rn such that
Φ0(x) = x and (ε, x) 7→ Φε(x) and (ε, y) 7→ Φ−1

ε (y) are of class C1 in [0, ε0] × Rn. Then,

for all f ∈ W 1,1
loc (Rn), the limit limε→0+(f(Φε(x)) − f(x))/ε exists in L1

loc(Rn) and is equal to

∇f(x). ddεΦε(x)|ε=0.

For a proof of this lemma, see [22], Chapter 5.

3 Main results

Let us first define the set of admissible domains U to be the set of bounded open subset of Rn
which are of class C2 and star-shaped with respect to some ball.

Recall that the support function PΩ of a bounded convex domain Ω is given by

PΩ(x) = sup
y∈Ω

x.y = sup
y∈Ω

x.y ,

where x.y denotes the standard scalar product of x and y in Rn, a product that we shall also denote
sometimes by 〈x, y〉.

We can now state the first result of this paper which concerns the shape derivative of the volume
functional

Ω 7→ J (Ω) =

∫
Ω
f(x)dx .

Theorem 1. Let Ω0 ∈ U , Ω be a bounded convex domain and f ∈ W 1,1(D) where D is a large
smooth bounded domain which contains all the sets Ω0 + εΩ, ε ∈ [0, 1]. Then, we have

lim
ε→0+

J (Ω0 + εΩ)− J (Ω0)

ε
=

∫
∂Ω0

f(x)PΩ(ν0(x))dσ(x). (5)

where ν0 denotes the outward unit normal vector on ∂Ω0.

The proof of this theorem will be given in the following section. Here, we state and prove a
corollary of this result which treats a case that occurs frequently in the applications, that is, the
case where the function f itself depends on the parameter ε.

Corollary 1. Let Ω0, Ω and D be as in Theorem 1, let (fε), 0 ≤ ε ≤ 1, be a family of functions
in L1(D) such that f0 ∈ W 1,1(D) and let h be a function such that (fε − f0)/ε → h in L1(D) as
ε→ 0+. Let us set Ωε = Ω0 + εΩ and

I(ε) =

∫
Ωε

fε(x)dx .

Then, we have

lim
ε→0+

I(ε)− I(0)

ε
=

∫
Ω0

h(x)dx+

∫
∂Ω0

f0(x)PΩ(ν0(x))dσ(x) . (6)
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Proof. We write

I(ε)− I(0)

ε
=

∫
Ωε

(
1

ε
(fε − f0)(x)− h(x)

)
dx+

∫
Ωε

h(x)dx+
1

ε

(∫
Ωε

f0(x)dx−
∫

Ω0

f0(x)dx

)
,

and then we study each of the three terms of the right hand side of this equality. It follows from
the assumption that∣∣∣∣∫

Ωε

(
1

ε
(fε − f0)(x)− h(x)

)
dx

∣∣∣∣ ≤ ∫
D

∣∣∣∣1ε (fε − f0)(x)− h(x)

∣∣∣∣ dx −−−−→
ε→0+

0 .

On the other hand, since the characteristic functions of Ωε converge almost everywhere to the
characteristic function of Ω0 when ε→ 0+, it follows from the Lebesgue convergence theorem and
from (5) that

lim
ε→0+

I(ε)− I(0)

ε
=

∫
Ω0

h(x)dx+

∫
∂Ω0

f0(x)PΩ(ν0(x))dσ(x) .

�

4 Proof of Theorem 1

Note first that one can assume that f ∈ W 1,1
loc (Rn) or even f ∈ W 1,1(Rn). Indeed, one can reduce

to this case just by extending the function f to Rn by means of the usual results on Sobolev spaces.
We follow the same idea as [3], that is, we treat first the case where the deformation domain Ω

is strongly convex, the general case being obtained by means of an appropriate approximation.
To be able to use gauge functions, we have to assume that Ω0 and Ω are neighborhoods of 0.

However, this is not a restriction of generality. Indeed, assume that Theorem 1 (and hence also
Corollary 1) is proved in this case, then, if Ω0 and Ω are neighborhoods of 0 and c0, c ∈ Rn, we
have, by obvious changes of variables,

(J (c0 + Ω0 + ε(c+ Ω))− J (c0 + Ω0))/ε = (J (c0 + εc+ Ωε)− J (c0 + Ω0))/ε

=
1

ε

(∫
Ωε

f(c0 + εc+ x) dx−
∫

Ω0

f(c0 + x) dx

)
.

It follows then from Proposition 3 that

f(x+ c0 + εc)− f(x+ c0)

ε
−→ ∇f(x+ c0).c = div(f(x+ c0)c) in L1

loc(Rn)

as ε→ 0+, and from Corollary 1 that

lim
ε→0+

J (c0 + Ω0 + ε(c+ Ω)− J (c0 + Ω0)

ε
=

∫
∂Ω0

f(x+ c0)PΩ(ν0(x)) dσ(x) +

∫
Ω0

div(f(x+ c0)c)dx.

Now, it remains to apply the divergence formula to get

lim
ε→0+

J (c0 + Ω0 + ε(c+ Ω)− J (c0 + Ω0)

ε
=

∫
∂Ω0

f(x+ c0)PΩ(ν0(x)) dσ +

∫
∂Ω0

f(x+ c0) c.ν0(x) dσ

=

∫
∂Ω0

f(x+ c0)Pc+Ω(ν0(x)) dσ

=

∫
∂(c0+Ω0)

f(x)Pc+Ω(νc0+Ω0(x)) dσ,

where νc0+Ω0 is the exterior unit normal vector to ∂(c0 + Ω0) at x, which establishes the formula
in the case where the domains are not necessarily neighbourhoods of 0.

In what follows Ω0 is thus assumed to be star-shaped with respect to the ball B(0, r) and Ω is
a neighborhood of 0.
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4.1 Case where the deformation domain is strongly convex

Assume that Ω is strongly convex, that is, near each point of its boundary, the open set Ω is defined
by {ϕ < 0} and its boundary ∂Ω by {ϕ = 0}, with some C2 function ϕ whose Hessian matrix is
strictly positive. Such an assumption allows us to do some geometrical construction to show that
the domain Ω0 + εΩ is the deformation of Ω0 via some diffeomorphism. This reduces the problem
to a well known situation of deformations with vector fields, see [22] for example. The construction
relies on several lemmas and starts with the following:

Lemma 4. Let Ω0 and Ω be bounded open subsets of Rn of class C2 and assume that Ω is strongly
convex. Then, there exists a map a0 : ∂Ω0 → ∂Ω, such that

(i) For all x ∈ ∂Ω0, PΩ(ν0(x)) = ν0(x).a0(x) .
(ii) For all x ∈ ∂Ω0, ν(a0(x)) = ν0(x) where ν(y) denotes the exterior unit normal vector to

∂Ω at y.
(iii) The map a0 : ∂Ω0 → ∂Ω is of class C1.

The proof of this lemma indeed do not assume a particular geometry for Ω0 and is the same as
that of Lemma 1 of [3], so we refer to it.

Now, we would like to extend a0 to a map from Ω0 to Ω and even from Rn to Rn. This is done
by using homogeneity.

Lemma 5. Ω0 and Ω being as in the preceding lemma, assume moreover that Ω0 is star-shaped
with respect to a ball centered at 0. Then, there exists a map a defined from Rn to Rn, satisfying
the following properties:

(i) a = a0 on ∂Ω0.
(ii) a(Ω0) ⊂ Ω and a(Rn \ Ω0) ⊂ Rn \ Ω.
(iii) a is positively homogeneous of degree 1, Lipschitz continuous on Rn and of class C1 in

Rn \ {0}.

Proof. We define a on Rn by

a(x) =

{
0 if x = 0

JΩ0(x) a0(x/JΩ0(x)) if x 6= 0.

Using Proposition 1, Proposition 2, Lemma 3 and Lemma 4, it is easy to check that a satisfies (i),
(ii) and (iii). �

Using the vector field a, let us now consider the map

Φε(x) = x+ εa(x), x ∈ Rn, ε > 0.

Since a is lipschitz continuous on Rn, it is a classical fact (and easy to check) that, if ε is suffi-
ciently small, Φε is a Lipschitz homeomorphism from Rn onto Rn. Moreover, it follows from the
inverse function theorem that Φε is a C1-diffeomorphism from Rn \ 0 onto Rn \ 0. We shall use
Φε to parameterize the set Ω0 + εΩ. In order to be able to do that, we need the following result
which estimates the boundary of the Minkowski sum of two subsets of Rn using the convolution of
hypersurfaces.

Lemma 6. Let A,B ⊂ Rn be open, bounded and of class C1. Consider the following set

∂A ? ∂B := {x+ y : x ∈ ∂A, y ∈ ∂B and νA(x) = νB(y)} (7)

where νA and νB are the outward unit normal vectors to ∂A and ∂B respectively. Then, we have

∂(A+B) ⊂ ∂A ? ∂B.
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Proof. Recall that the Minkowski sum of two subsets A, B of Rn can also be written as

A+B = {x ∈ Rn ; (−A+ x) ∩B 6= ∅}. (8)

Let x ∈ ∂(A+ B). It follows from (8) that (−A+ x) ∩ B = ∅ and that (−A+ x) ∩ B 6= ∅; hence,
∂(−A+x)∩∂B 6= ∅. Let y ∈ ∂(−A+x)∩∂B. Since −A+x ⊆ Rn \B, the hypersurfaces ∂(−A+x)
and ∂B are tangent at y and we have Ty ∂(−A + x) = Ty ∂B and ν(−A+x)(y) = −νB(y). Now,
y ∈ ∂(−A + x) = −∂A + x, so that x ∈ ∂A + y and there exists a ∈ ∂A such that x = y + a.
Moreover, since −A+ x is the image of A by the diffeomorphism z 7→ −z + x, we also have

−νA(a) = ν(−A+x)(y) = −νB(y) ,

which achieves the proof of the lemma. �

We will also need the following result:

Lemma 7. Let Ω be a bounded and strongly convex domain of class C2 and let ν denote the
outward unit vector field normal to ∂Ω. Then, ν : ∂Ω 7→ Sn−1 is injective.

Proof. There exists a strongly convex C2 function ϕ : Rn → R such that Ω = {x ∈ Rn / ϕ(x) < 0},
∂Ω = {x ∈ Rn / ϕ(x) = 0}, ∇ϕ 6= 0 on ∂Ω and ν = ∇ϕ/|∇ϕ|. Let x, y ∈ ∂Ω be such that
ν(x) = ν(y) and let us show that x = y. Assume that x 6= y. Since ϕ is strongly convex, it follows
from Taylor’s formula that

〈∇ϕ(x), y − x〉 < ϕ(y)− ϕ(x) and 〈∇ϕ(y), x− y〉 < ϕ(x)− ϕ(y).

Since ϕ(x) = ϕ(y) = 0, multiplying respectively by 1
|∇ϕ(x)| and 1

|∇ϕ(y)| yields

〈ν(x), y − x〉 < 0 and 〈ν(y), x− y〉 < 0,

which gives a contradiction since ν(x) = ν(y). So, x = y and the lemma is proved. �

The above lemmas allow us to prove the following crucial one which concerns the parameteri-
zation of the perturbed domain Ωε by means of Ω0 and Φε.

Lemma 8. Let Ω0 ∈ U and Ω be a bounded and strongly convex domain of class C2 in Rn.
Consider the set Ωε = Ω0 + εΩ and the map Φε : x 7→ x+ εa(x), ε > 0, where a is as in Lemma 5.
Then, if ε is sufficiently small, we have the following:

(i) Φε(∂Ω0) = ∂Ω0 ? ε∂Ω and ∂Ωε ⊆ ∂(Φε(Ω0)).

(ii) Φε(Ω0) = Ωε.

Here, ν0 and ν denote the outward unit normal vector to Ω0 and Ω respectively.

Proof. Let x ∈ ∂Ω0. According to Lemma 5 and Lemma 4, a(x) = a0(x) ∈ ∂Ω and ν0(x) =
ν(a(x)); hence, Φε(x) = x+ εa(x) ∈ ∂Ω0 ? ε∂Ω. Conversely, if z ∈ ∂Ω0 ? ε∂Ω, there exists (x, y) ∈
∂Ω0 × ∂Ω such that z = x + εy and ν0(x) = νεΩ(εy) = ν(y). Applying once again Lemma 5, we
have a(x) ∈ ∂Ω and ν0(x) = ν(a(x)) = ν(y). Next, applying Lemma 7 yields a(x) = y. Therefore,
z = x + εa(x) = Φε(x) ∈ Φε(∂Ω0). Thus, we have proved that Φε(∂Ω0) = ∂Ω0 ? ε∂Ω. Now,
according to Lemma 6, we have

∂Ωε = ∂(Ω0 + εΩ) ⊆ ∂Ω0 ? ∂(εΩ) = ∂Ω0 ? ε∂Ω = Φε(∂Ω0) = ∂Φε(Ω0),

which achieves the proof of (i).
To show (ii), note first that Φε(Ω0) ⊂ Ωε is an obvious consequence of Lemma 5. To prove the
other inclusion, let us first remark that it follows from the homogeneity of Φε that Φε(Ω0) is also
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a star-shaped domain with respect to 0 as it can be checked easily. Next, assume that there exists
x ∈ Ωε such that x ∈ Rn\Φε(Ω0). Then, it follows from Proposition 1 that 0 < JΩε(x) < 1 and
JΦε(Ω0)(x) ≥ 1. Now, consider x∗ = x/JΩε(x) ∈ ∂Ωε. Clearly, JΦε(Ω0)(x∗) = JΦε(Ω0)(x)/JΩε(x) > 1,
that is, x∗ /∈ ∂(Φε(Ω0)), which contradicts (i). Thus, Φε(Ω0) = Ωε. �

Lemma 8 provides the main tool in the proof of Theorem 1 in the case where Ω is strongly convex
and of class C2. Indeed, according to this lemma, Ωε = Φε(Ω0) and the problem is reduced to the
case of a deformation of Ω0 by a diffeomorphism or, more precisely, a Lipschitz homeomorphism.
According to [30] for example, we have the following shape derivative formula

d

dε
J (Ω0 + εΩ)

∣∣∣∣
ε=0+

=

∫
∂Ω0

f(x) a(x).ν0(x) dσ ,

and according to Lemma 4 and Lemma 5, we have

a(x).ν0(x) = a0(x).ν0(x) = PΩ(ν0(x)).

Hence the formula

lim
ε→0+

J (Ω0 + εΩ)− J (Ω0)

ε
=

∫
∂Ω0

f(x)PΩ(ν0(x))dσ(x) ,

and this achieves the proof of Theorem 1 in the case where Ω is strongly convex.

�

4.2 The general case

The domain Ω is now assumed to be bounded and (only) convex. We shall approximate it by a
sequence of strongly convex ones. To do that, let us recall the following approximation result used
in [3].

Lemma 9. Let Ω be a bounded convex domain in Rn. Then, there exists a sequence (Ωk)k∈N of
strongly convex smooth open subsets of Ω such that

dH(Ω
k
,Ω) −−−→

k→∞
0,

where dH denotes the Hausdorff distance.

Such an approximation is used to prove the following lemma which is an important step in the
proof of our theorem.

Lemma 10. Let Ω0 ∈ U , Ω be a bounded convex domain in Rn and (Ωk)k∈N the sequence given
by Lemma 9 which approximates Ω. Then, for all ε ∈ [0, 1] and for all k ∈ N, we have

dH(Ω
k
ε ,Ωε) ≤ ε dH(Ω

k
,Ω).

where Ωk
ε = Ω0 + εΩk et Ωε = Ω0 + εΩ.

Proof. We have Ω
k
ε = Ω0 + εΩ

k
and Ωε = Ω0 + εΩ, thus according to [29], page 64, we have

dH(Ω
k
ε ,Ωε) = dH(Ω0 + εΩ

k
,Ω0 + εΩ) ≤ dH(Ω0,Ω0) + dH(εΩ

k
, εΩ).

Since Ωk ⊆ Ω, then dH(εΩ
k
, εΩ) = supx∈εΩ d(x, εΩ

k
) = εdH(Ω

k
,Ω). Thus, dH(Ω

k
ε ,Ωε) ≤ ε dH(Ω

k
,Ω).

�

We need also the following result.
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Proposition 4. Let A,B ⊂ Rn be two bounded domains which are star-shaped with respect to
the ball B(0, r), r > 0, and such that A ⊆ B. Then, we have

sup
Sn−1

|JA − JB| ≤
1

r2
dH(A,B) (9)

Proof. Let x ∈ ∂B. Since A ⊂ B, there exists yx ∈ ∂A such that d(x,A) = |x − yx|. According
to Proposition 2, the gauge functions JA, JB are Lipschitz functions with Lipschitz constant 1

r .

Therefore, since JA(yx) = 1 = JB(x) and A ⊂ B, we can write

|JA(x)− JB(x)| ≤ |JA(x)− JA(yx)|+ |JA(yx)− JB(x)| = |JA(x)− JA(yx)|
≤ r−1|x− yx| = r−1d(x,A)

≤ r−1 sup
z∈B

d(z,A) = r−1dH(A,B),

an inequality that holds for x ∈ ∂B. Now, if x ∈ Sn−1, we have x
JB(x) ∈ ∂B, and by using the

homogeneity of the gauge functions we obtain

|JA(x)− JB(x)| = JB(x)|JA(
x

JB(x)
)− JB(

x

JB(x)
)| ≤ JB(x)r−1dH(A,B).

Since B(0, r) ⊂ B, we have JB(x) ≤ JB(0,r)(x) = |x|/r = 1/r, which implies the desired inequality.
�

The last lemma is crucial for our proof.

Lemma 11. Let Ω0 ∈ U , Ω be a bounded convex domain and f ∈ W 1,1
loc (Rn), and let (Ωk)k∈N be

as in Lemma 9. Then, there exists a constant C > 0 such that, for all k ∈ N and all ε ∈ [0, 1], we
have ∣∣∣∣∣

∫
Ωk

ε

f(x)dx−
∫

Ωε

f(x)dx

∣∣∣∣∣ ≤ C ε dH(Ω
k
,Ω),

where Ωk
ε = Ω0 + εΩk et Ωε = Ω0 + εΩ.

Proof. We follow the idea of [4]. Let r > 0 be such that Ω0 is star-shaped with respect to B(0, r)
and let B(0, R) be a large ball which contains all the sets Ω0+εΩ, ε ∈ [0, 1]. As one can easily check,
Ωε and Ωk

ε are star-shaped with respect to B(0, r), and we shall denote by Jε and Jkε respectively
their gauge functions. Let us denote by Ikε (f) the difference∫

Ωε

f(x)dx−
∫

Ωk
ε

f(x)dx .

Since Ωε = {Jε < 1} and Ωk
ε = {Jkε < 1}, by using polar coordinates, we can write

Ikε (f) =

∫
Sn−1

∫ 1
Jε(ω)

0
f(ρω)ρn−1dρdω−

∫
Sn−1

∫ 1

Jk
ε (ω)

0
f(ρω)ρn−1dρdω =

∫
Sn−1

∫ 1
Jε(ω)

1

Jk
ε (ω)

f(ρω)ρn−1dρdω.

This allows us to estimate Ikε (f) as follows :

|Ikε (f)| ≤
∫
Sn−1

∣∣∣∣Jε(ω)− Jkε (ω)

Jε(ω)Jkε (ω)

∣∣∣∣ sup
ρ∈[ 1

Jk
ε (ω)

, 1
Jε(ω)

]

|f(ρω)ρn−1|dω.
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Note that, since B(0, r) ⊂ Ωk
ε ⊂ Ωε ⊂ B(0, R), we have JB(0,R) ≤ Jε ≤ Jkε ≤ JB(0,r). Recall that

JB(0,r)(x) = |x|/r, JB(0,R)(x) = |x|/R. Hence,

|Ikε (f)| ≤ R2

∫
Sn−1

|Jε(ω)− Jkε (ω)| sup
ρ∈[r,R]

|f(ρω)ρn−1|dω.

Since Ωε and Ωk
ε are star-shaped with respect to B(0, r) and Ωk

ε ⊆ Ωε, it follows from Lemma 4
and Lemma 10 that

sup
Sn−1

|Jε − Jkε | ≤
1

r2
dH(Ω

k
ε ,Ωε) ≤

ε

r2
dH(Ω

k
,Ω).

Therefore,

|Ikε (f)| ≤ R2ε

r2
dH(Ω

k
,Ω)

∫
Sn−1

sup
ρ∈[r,R]

|f(ρω)ρn−1| dω.

It remains to apply the following classical inequality for functions of one real variable :

‖ϕ‖L∞(I) ≤
1

|I|

∫
I
|ϕ(t)| dt+

∫
I
|ϕ′(t)| dt, ϕ ∈W 1,1(I), (10)

where I is a bounded interval and |I| is its length. In fact, this is just a precise version of Sobolev’s
inequality. Its proof is easy when ϕ is of class C1 on Ī and the general case is obtained by a density
argument and is left to the reader. Applying (10) to the function ρ 7→ f(ρω) ρn−1 yields

|Iε,k(f)| ≤ R2ε

r2
dH(Ω

k
,Ω)

∫
Sn−1

∫ R

r

(
|f(ρω)|

( ρn−1

R− r
+ (n− 1)ρn−2

)
+ |∇f(ρω)|ρn−1

)
dρ dω

≤ R2ε

r2
dH(Ω

k
,Ω)

∫
r≤|x|≤R

(
|f(x)|
R− r

+
n− 1

|x|
|f(x)|+ |∇f(x)|

)
dx

≤ R2ε

r2
dH(Ω

k
,Ω)

(
1

R− r
+
n− 1

r
+ 1

)∫
r≤|x|≤R

(|f(x)|+ |∇f(x)|) dx

≤ R2ε

r2
dH(Ω

k
,Ω)

(
1

R− r
+
n− 1

r
+ 1

)
||f ||W 1,1(D) ,

which achieves the proof of the lemma. �

Using the above lemmas, we can now finish the proof of Theorem 1. Let δ > 0 be arbitrary.
We can write:

J (Ω0 + εΩ)− J (Ω0)

ε
−
∫
∂Ω0

f(x)PΩ(ν0(x))dσ(x) =
1

ε

(∫
Ωε

f(x)dx−
∫

Ωk
ε

f(x)dx

)

+
1

ε

(∫
Ωk

ε

f(x)dx−
∫

Ω0

f(x)dx

)
−
∫
∂Ω0

f(x)PΩk(ν0)(x)dσ(x)

+

∫
∂Ω0

f(x)
(
PΩk(ν0(x))− PΩ(ν0(x))

)
dσ(x). (11)

For the first term in the righthand side of (11), according to Lemma 9 and Lemma 11, there exists
k0 ∈ N, such for all k ≥ k0 and for all ε ∈]0, 1], we have

1

ε

∣∣∣∣∣
(∫

Ωε

f(x)dx−
∫

Ωk
ε

f(x)dx

)∣∣∣∣∣ ≤ δ. (12)
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Using the formula ||PA−PB||L∞(Sn−1) = dH(A,B) for compact convex sets, (see for example [29],
page 66), we can estimate the last term in the righthand side of (11) as follows :∣∣∣∣∫

∂Ω0

f
(
PΩk(ν0)− PΩ(ν0)

)
dσ

∣∣∣∣ ≤ ||PΩk − PΩ||L∞(Sn−1)

∫
∂Ω0

|f | dσ = dH(Ω
k
,Ω)

∫
∂Ω0

|f | dσ,

which implies that it tends to 0 when k → ∞ by virtue of Lemma 9. Hence, there exists k1 ∈ N,
such that, for all k ≥ k1, we have∣∣∣∣∫

∂Ω0

f
(
PΩk(ν0)− PΩ(ν0)

)
dσ

∣∣∣∣ ≤ δ. (13)

Now, if k2 = max{k0, k1}, since Ωk2 is strongly convex, it follows from the first part of the proof
that there exists εδ such that for all ε ≤ εδ, we have∣∣∣∣1ε

(∫
Ω

k2
ε

f(x)dx−
∫

Ω0

f(x)dx

)
−
∫
∂Ω0

f(x)PΩk2 (ν0(x))dσ(x)

∣∣∣∣ ≤ δ. (14)

By taking k = k2 in (11) and using (12), (13) and (14), we obtain that, for all ε ≤ εδ,∣∣∣∣1ε
(∫

Ωε

f(x)dx−
∫

Ω0

f(x)dx

)
−
∫
∂Ω0

f(x)PΩ(ν0(x))dσ(x)

∣∣∣∣ ≤ 3δ ,

which achieves the proof of Theorem 1. �

5 Application

To illustrate our work, we give an algorithm based on the gradient method to indicate how our
formula could be applied to a shape optimization problem and we compute the shape derivative
of some functional related to the solution of a partial differential equation. This is done without
implementing to keep our paper in a reasonable length. Anyhow, we have successfully implemented
such an algorithm in the study of several problems: a Bernoulli type shape optimization problem
in [6], constrained shape optimization ones in [7], [8], and a free boundary problem for the p-Laplace
operator in [12].

Let us define the set U of admissible domains by

Ω ∈ U ⇐⇒ Ω is a C3 open subset of Rn which is star-shaped with respect to some ball of radius r.

If D is an open bounded (convex) and non empty subset of Rn, let us consider the problem

(PO)



Find Ω∗ ∈ U(D) such that J (Ω∗) = inf
Ω∈U(D)

J (Ω)

where U(D) = {Ω ∈ U ; Ω ⊂ D},

J (Ω) =

∫
Ω

(uΩ − ud)2dx and uΩ is the solution of

(PE)

{
−∆v + v = f in Ω
∂v
∂ν = g on ∂Ω

where ud ∈ H1(D), f ∈ L2(D) and g ∈ H2(D). Let u0 be the solution of (PE) on Ω0 ∈ U(D)
and uε be the solution of (PE) on Ωε = Ω0 + εΩ, ε ∈ [0, 1]. Assuming that Ω is a strongly convex
domain, we know from Lemma 8 that Ωε can be considered as a deformation of the domain Ω0

by the vector field a, that is Ωε = (IdRn + εa)(Ω0) for small enough ε. Therefore, at least when
f ∈ H1(D), according to [1], we can write

ũε = ũ0 + εu′0 + εvε
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where ũε and ũ0 are respectively extensions of uε and u0 to D, u′0 ∈ H2(Ω0) ∩H1(D) is the shape
derivative of ũ0 with respect to the vector field a and vε −→ 0 in L2(D) as ε→ 0+. It follows from
that result that

1

ε
[(ũε − ud)2 − (ũ0 − ud)2]− 2u′0(ũ0 − ud) −−−−→

ε→0+
0 in L1(D),

which allows one to apply Corollary 1 to obtain

lim
ε→0+

J (Ω0 + εΩ)− J (Ω0)

ε
=

∫
Ω0

2u′0(ũ0 − ud)dx+

∫
∂Ω0

(ũ0 − ud)2PΩ(ν0)dσ(x).

Now, in this expression of the shape derivative of J , even the domain integral can be written
as a boundary integral. Indeed, by following, for example, the same method as [22], one can show
that u′0 satisfies the boundary value problem{

−∆u′0 + u′0 = 0 in Ω0
∂
∂ν0

u′0 = ( ∂g∂ν0
− ∂2u0

∂ν2
0

)〈a, ν0〉+∇u0∇∂Ω0〈a, ν0〉 on ∂Ω0
(15)

where
∂2u0

∂ν2
0

=

n∑
i,j=1

∂2u0

∂xi∂xj
ni,0 nj,0

and ∇∂Ω0 is the tangential gradient (see [22]). Note here that, since Ω0 is of class C3, u0 is in fact

in H3(Ω0), u′0 ∈ H2(Ω0) (see [22]), so that the second derivative ∂2u0

∂ν2
0

is well defined on ∂Ω0. Now,

using the solution of the following adjoint state boundary value problem{
−∆ψ + ψ = −2(u0 − ud) in Ω0
∂ψ
∂ν0

= 0 on ∂Ω0 ,
(16)

we obtain the following expression of the shape derivative of the functional J (see [1])

lim
ε→0+

J (Ω0 + εΩ)− J (Ω0)

ε
=

∫
∂Ω0

dΩ0〈a, ν0〉 dσ ,

where

dΩ0 = (u0 − ud)2 + 〈∇u0,∇ψ〉+ ψ(u0 − f)− ∂(gψ)

∂ν0
−Hgψ.

Now, since Ω is strongly convex, it follows from Lemma 4 and Lemma 5 that

〈a(x), ν0(x)〉 = PΩ(ν0(x)) on ∂Ω0, (17)

so that

lim
ε→0+

J (Ω0 + εΩ)− J (Ω0)

ε
=

∫
∂Ω0

dΩ0 PΩ ◦ ν0 dσ.

The last thing we propose is an algorithm to solve the shape optimization problem (PO).

Algorithm.

1. Choose Ω0 ∈ U(D), ρ ∈]0, 1[ and a precision ε.
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2. Solve the state equation :

(PE)

−∆u0 + u0 = f in Ω0 ,
∂u0

∂ν0
= 0 on ∂Ω0 ;

(18)

3. Solve the adjoint state problem

(PEA)

−∆ψ0 + ψ0 = −2(u0 − ud) in Ω0 ,
∂ψ0

∂ν0
= 0 on ∂Ω0 ;

(19)

4. Calculate p̂0 solution of
arg min

p∈E
F0(p) (20)

where

E = {ϕ ∈ C(D) ; ϕ is convex and homogeneous of degree 1 and ϕ ≤ PD},

and

F0(p) =

∫
∂Ω0

(
(u0 − ud)2 + 〈∇u0,∇ψ〉+ ψ(u0 − f)− ∂(gψ)

∂ν0
−Hgψ

)
p ◦ ν0 dσ.

5. At step k,
if ||uk − ud||L2(Ωk) < ε, Go to 7.

where uk is the solution of the state equation in Ωk (the domain at step k).

6. Compute
Ωk+1 =

{
rθ; θ ∈ Sn−1, r ∈

[
0, 1/JΩk+1

(θ)
[}

(21)

where JΩk+1
is the gauge function of Ωk+1 given by Ωk+1 := Ωk + ρ Ω̂k with

Ω̂k = ∂p̂k(0) = {` ∈ Rn; p̂k(x) ≥ 〈`, x〉, ∀x ∈ Rn}

and Go to 2.

7. End.

5.0.1 Remarks

In this section, we clarify some points about the above algorithm by making three remarks: the
first one explains the determination of a descent direction for the convergence of this algorithm, the
second one is concerned with how to solve problem (20), and in the last one we give some details
on the computation of Ωk+1 at each iteration.

Remark 1. In the above algorithm, the sequence of domains (Ωk)k∈N is constructed in such a way
that (J (Ωk))k∈N is decreasing. Indeed, let k ∈ N∗, then, for a small ρ ∈]0, 1[, we have

J (Ωk+1)− J (Ωk) = J (Ωk + ρΩ̂k)− J (Ωk)

= ρ

(∫
∂Ωk

dΩk
P

Ω̂k
◦ νkdσ

)
+O(ρ2).
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Now, since p̂k = P
Ω̂k

is a solution of arg min
p∈E

Fk(p), then

Fk(p̂k) =

∫
∂Ωk

dΩk
P

Ω̂k
◦ νkdσ ≤ Fk(0) = 0 ,

which guarantees the decrease of the objective function J . Consequently, Ω̂k defines a descent
direction for J .

Remark 2. The problem (20) admits a solution p̂ ∈ E because the functional

p ∈ E 7−→ Fk(p) =

∫
∂Ωk

dΩk
p ◦ νk dσ

is continuous and E is a compact subset of C(D). Indeed, the functional Fk being clearly continuous
on C(D), let us show that E is a compact subset of C(D). Any p ∈ E is the support function of
a unique convex bounded open set which is its sub-differential at 0, that is, p = P∂p(0) (see for

example [29, 31]). So, for all x, y ∈ D, using the fact that a support function is sub-linear and
homogenous of degree 1 and p ≤ PD, we get

∀p ∈ E , |p(x)− p(y)| = |P∂p(0)(x)− P∂p(0)(y)| ≤ sup
w∈Sn−1

P∂p(0)(w) ‖x− y‖ ≤ sup
w∈Sn−1

PD(w) ‖x− y‖,

which implies that the family E is equicontinuous. On the other hand, the fact that E is a bounded
subset of C(D) is obvious, while the fact that it is closed is easy: because of the homogeneity, the
uniform convergence on D implies the pointwise convergence in all Rn, which allows to pass to the
limit in inequalities. The compactness of E follows of course by applying Ascoli-Arzela’s theorem.

Remark 3. Let Ω0 ∈ U(D) and JΩ0 its gauge function. In order to determine the domain of

the next iteration Ω1 = Ω0 + ρ ∂P̂0 (0) one can consider applying the techniques based on the
use of support functions as in [?, 6]. However, support functions do not characterize star-shaped
sets unlike gauge functions (see e.g. [17, 18]). Because of that, in this work we have proposed an
algorithm based on the use of gauge functions, more precisely this concerns the step 6 and the
proposed process to achieve this step is as follow: to determine Ω1, it is numerically sufficient to
determine its boundary ∂Ω1. For this purpose, we recall that ∂Ω1 can be defined by (see e.g. [17]):

∂Ω1 =
{
θ/JΩ1(θ); θ ∈ Sn−1

}
. (22)

and by homogeneity of the gauge function, JΩ1 , we can check that ∂Ω1 = {w/JΩ1(w); w ∈ ∂Ω0} .
It is therefore necessary to compute the gauge function JΩ1 on ∂Ω0. To do this, let δ > 0 be small

enough. According to Lemma 9, the convex domain ∂P̂0 (0) can be approximated by a strongly
convex sub-domain Λ such that

||P̂0 − PΛ||Sn−1 = dH(∂P̂0 (0) ,Λ) ≤ δ. (23)

Moreover, from Equation (23), by using the properties of Hausdorff distance on convex domains
(see e.g., reference [29]), we get

dH(Ω1,Ω0 + ρΛ) = dH(Ω0,Ω0) + ρ dH(∂P̂0 (0) ,Λ) ≤ ρδ.

Then, using Proposition 4, we get

sup
Sn−1

|JΩ1 − JΩ0+ρΛ| ≤
1

r2
ρδ.
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Hence, we can approximate the functions JΩ1 and P̂0 by JΩ0+ρΛ and PΛ respectively, where P̂0 is
a solution of (20). Thus, it remains to compute JΩ0+ρΛ on ∂Ω0. According to Lemma 1 of [2], the
function (t, x) 7→ Jt := JΩ0+tΛ(x) is smooth at least in [0, 1]× (Rn \ {0}) and we have

d

dt
Jt|t = −JtPΛ(∇Jt). (24)

Using the Taylor expansions of Jt, we have

Jt = J0 + t
d

dt
Jt|t=0 + o(t)

= J0 − tJ0PΛ(∇J0) + o(t)

= J0 − tJ0PΛ(∇JΩ0/|∇JΩ0 |)|∇JΩ0 |+ o(t).

Thus, for all y ∈ ∂Ω0, using Lemma 2 we obtain Jt(y) = 1− t PΛ(νΩ0
(y))

〈νΩ0
(y),y〉 + o(t). Finally, ∂Ω1 can be

determined by

∂Ω1 =


1

1− t
PΛ(νΩ0(y))

〈νΩ0(y), y〉

y; y ∈ ∂Ω0

 ,

where PΛ(νΩ0) and νΩ0 are known on ∂Ω0.
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