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Abstract

In this work, we consider again the shape derivative formula for a volume cost functional which
we studied in preceding papers where we used the Minkowski deformation and the support functions
in the convex setting. Here, we extend it to some non convex domains, namely the star-shaped ones.
The formula also happens to be an extension of a well known formula in the Brunn-Minkowski theory.
Finally, we illustrate the formula by applying it to the computation of the shape derivative for a shape
optimization problem and by giving an algorithm based on the gradient method.

Keywords shape optimization, shape derivative, volume functional, convex domain, starshaped domain, sup-
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1 Introduction

This paper deals with a generalization of a shape derivative formula for a volume cost functional with respect to
a class of convex domains, a formula that we already studied in [2, 3], and our aim is to extend it to non convex
domains. To be precise, consider the shape functional J defined by

J (Ω) =

∫
Ω

fdx,

where Ω is a bounded open subset of Rn and f is a fixed function defined in Rn.
Using the deformation (1− ε)Ω0 + εΩ, ε ∈]0, 1[, of Ω0 and a C1 function f , A. A. Niftiyev and Y. Gasimov [19]

first gave the expression of the shape derivative of J with respect to the class of convex domains of class C2 by
means of support functions:

Theorem (A. Niftiyev,Y. Gasimov) If Ω0,Ω are bounded convex domains of class C2 and the function f is of class
C1, then, the limit

lim
ε→0+

J((1− ε)Ω0 + εΩ)− J(Ω0)

ε

exists and is equal to ∫
∂Ω0

f(x) (PΩ(ν0(x))− PΩ0
(ν0(x))) dσ(x), (1)
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where ν0(x) denotes the outward unit normal vector to ∂Ω0 at x, and PΩ0
, PΩ are the support functions of the

domains Ω0, Ω, respectively.

Recently, A. Boulkhemair and A. Chakib [3] extended this formula to the case where f is in the Sobolev space

W 1,1
loc (Rn). Inspired by the Brunn-Minkowski theory (see, for example, R. Schneider, [22]), they also proposed a

similar shape derivative formula by considering the Minkowski deformation Ω0 + εΩ of Ω0 :

Theorem (A. Boulkhemair, A. Chakib) If Ω0,Ω are bounded convex domains of class C2 and the function f is in

the Sobolev space W 1,1
loc (Rn), then, the limit

lim
ε→0+

J(Ω0 + εΩ)− J(Ω0)

ε

exists and is equal to ∫
∂Ω0

f(x)PΩ(ν0(x)) dσ(x), (2)

where ν0(x) denotes the outward unit normal vector to ∂Ω0 at x, and PΩ is the support function of the domain Ω.

In fact, this formula holds true even for bounded convex domains, see [2].

If one compares (1) and (2), one can easily remark that, unlike the first formula, the second one does not
depend on the support function of Ω0. This suggests that (2) should hold true for non convex Ω0, which would
be very interesting for applications in shape optimization. Unfortunately, up to now we have not been able to
treat the case of general non convex domains. In this paper, we shall extend formula (2) to the case where Ω0 is
a star-shaped domain of class C2. In fact, we were naturally led to star-shapedness because one can take again
parts of the idea of proof of [2,3], mainly the use of gauge functions. Note that, by using such a method, this is the
best result one can obtain since the star-shaped domains are exactly the sublevel sets of non negative continuous
homogeneous functions. Thus, to be able to treat the case of more general non convex domains, one has to find
new ideas. Anyhow, we shall return to this problem in a future work. Recall also that, when f = 1, (2) is a well
known formula in the Brunn-Minkowski theory of convex bodies, see [22] for example. So, our result happens to
be also an extension of such a formula to the case where f 6= 1 and Ω0 is not necessarily a convex domain.

Originally, this work was motivated by numerical approximation in shape optimization problems, since it is
indeed the most difficult aspect of this subject. We refer to [1], for example, for explanations about the issues that
arise when implementing numerically the minimization of a shape integral functional, via some gradient method, by
using the usual expression of the shape derivative by means of vector fields. Briefly, the reason is that, when using
vector fields, at each iteration we have to extend the vector field (obtained only on the boundary) to all the domain
or to re-mesh, and both approaches are expensive. On the other hand, when we use support functions, at each
iteration, we get not only a set of boundary points but also a support function which, by taking its sub-differential
at the origin, gives the next domain. This is why we are interested in the above formulas that is, expressions that
use support functions instead of vector fields.This is illustrated in the last section, where we apply the formulas to
the computation of the shape derivative of a simple shape optimization problem and give an algorithm based on
the gradient method. Anyway, these formulas are actually applied in the forthcoming paper [6].

Concerning the method of proof, we follow in fact the same plan as that of [3, 4]. More precisely, we first
assume that the deformation domain Ω is strongly convex, which allows us to construct some parameterization of
the deformed domain Ω0 + εΩ by means of some C1−diffeomorphism defined on Ω0. The construction is based
on some analytical and geometric properties of gauge and support functions of star-shaped domains, and reduces
the problem to the usual computation of the shape derivative using vector fields. Note also that the construction
of the C1−diffeomorphism relies on a crucial result about the inclusion of the convolution of two hypersurfaces.
Finally, the case of a general convex Ω is treated by using the approximation of Ω by a sequence of strongly convex
domains and is based on some crucial analytical and geometric lemmas. We quote in particular the result on the
continuity of the gauge function with respect to star-shaped domains by means of the Hausdorff distance.

The plan of the paper is as follows. In section 2, we recall some facts about star-shaped domains and give their
proofs. The main results are stated in Section 3 where we also prove consequences of Formula (2) to the situation
where the function f depends also on domains, which is usual in shape optimization problems. The fourth section
is devoted to the proof of the main results using many lemmas. Finally, in Section 5, in order to illustrate these
results, we give a simple application to a shape optimization problem and an algorithm for the resolution of this
type of problems based on the gradient method.
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2 Preliminaries on star-shaped domains

There are several definitions of what is called a star-shaped set in the literature. Here, we shall use the following
one:

Definition 1. An open subset (or a domain) Ω of Rn is said to be star-shaped with respect to some x0 ∈ Ω, if for
all x ∈ Ω, Ω contains the segment [x0, x[= {(1− t)x0 + tx ; 0 ≤ t < 1}.

It follows from this definition that the domain Ω is convex if and only if it is star-shaped with respect to each
x0 ∈ Ω.

In what follows, we shall often work with bounded domains which are star-shaped with respect to 0. The
reason for this is that such domains are naturally associated to gauge functions like the convex domains. So, let
Ω be a bounded domain which is star-shaped with respect to 0. For each x ∈ Rn, consider the following set of
positive real numbers

{λ;λ > 0 , x ∈ λΩ},

which is always non empty since Ω is a neighborhood of 0. By definition, the gauge function associated to Ω is the
real function JΩ : Rn → R+ given by

JΩ(x) = inf{λ;λ > 0 , x ∈ λΩ}.

Like for the convex bodies, the gauge functions characterize the star-shaped domains they are associated to. In
the following proposition, we summarize their main properties.

Proposition 1. Let Ω ⊂ Rn be a bounded domain which is star-shaped with respect to 0. Then, the gauge
function JΩ is a non negative continuous positively homogeneous function of degree 1. More precisely, we have the
following properties:

(i) JΩ(0) = 0, JΩ(x) > 0, ∀x 6= 0.

(ii) JΩ(tx) = tJΩ(x), ∀x ∈ Rn, ∀t ∈ R+.

(iii) Ω = {x ∈ Rn ; JΩ(x) < 1}.

(iv) ∂Ω = {x ∈ Rn ; JΩ(x) = 1}.

(v) JΩ : Rn → R is continuous.

(vi) If Ω′ is another domain which is star-shaped with respect to 0 and Ω′ ⊂ Ω, then, JΩ ≤ JΩ′ .

Proof. (i), (ii) and (vi) are easy consequences of the definition of JΩ and the fact that Ω is a bounded neighbor-
hood of 0.
(iii) : As it follows from the definition, if JΩ(x) < 1, we have x ∈ λΩ for all λ > JΩ(x), and in particular for λ = 1.
Conversely, if x ∈ Ω, we have, by definition, only JΩ(x) ≤ 1. But the fact that Ω is open and star-shaped with
respect to 0 implies that x ∈ λΩ for some λ < 1; hence, JΩ(x) < 1.
(iv) : It follows from (iii) that if x ∈ ∂Ω, then JΩ(x) ≥ 1. Now, by star-shapedness, we have tx ∈ Ω, ∀t ∈ [0, 1[
which implies JΩ(tx) = tJΩ(x) < 1, ∀t ∈ [0, 1[; hence, JΩ(x) < λ, ∀λ > 1 which implies JΩ(x) ≤ 1, and so
JΩ(x) = 1. Conversely, if JΩ(x) = 1, we have x /∈ Ω and x ∈ λΩ for all λ > 1 which implies that tx ∈ Ω, ∀t ∈]0, 1[.
Since tx→ x when t→ 1−, we obtain that x ∈ ∂Ω.
(v) : Since JΩ is a positively homogeneous function, to prove its continuity it suffices to show that {JΩ < 1} is an
open set and that {JΩ ≤ 1} is a closed set. But this follows from (iii) and (iv) since {JΩ < 1} = Ω is open and
{JΩ ≤ 1} = Ω is closed. �

It is well known in convex analysis that the gauge function of any convex domain is Lipschitz continuous. This
is no longer true for star-shaped domains. Since such a Lipschitz regularity will be needed in the sequel, in fact,
we shall work exactly with the star-shaped domains whose gauge functions are Lipschitz continuous. In order to
be able to describe geometrically this subfamily of domains, let us give the following definition.

Definition 2. An open set Ω ⊂ Rn is said to be star-shaped with respect to a subset G ⊂ Ω, if it is star-shaped
with respect to any point of G.

This definition allows us to characterize in a simple manner the star-shaped domains whose gauge functions
are Lipschitz continuous. This is done in the following result for which we provide a new and simple proof (see
also [7, 11]).
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Proposition 2. Let Ω ⊂ Rn be a bounded domain which is star-shaped with respect to 0. Then, its gauge function
JΩ is Lipschitz continuous if and only if Ω is star-shaped with respect to some ball B(0, r) ⊂ Ω centered at 0 and
with radius r > 0. Moreover, when this condition is satisfied, one can take 1/r as a Lipschitz constant for JΩ.

Proof. Assume first that JΩ satisfies the inequality |JΩ(y)− JΩ(x)| ≤ 1
r |y − x| for all x, y ∈ Rn, and let us show

that Ω is star-shaped with respect to the ball B(0, r). For all y ∈ B(0, r), x ∈ Ω and t ∈ [0, 1[, it follows from the
assumption that

JΩ((1− t)y + tx) ≤ JΩ(tx) +
1

r
|(1− t)y| < t.1 +

1

r
(1− t)r = 1,

which says exactly that (1 − t)y + tx ∈ Ω for all y ∈ B(0, r), x ∈ Ω and t ∈ [0, 1[, that is, Ω is star-shaped with
respect to the ball B(0, r).

Conversely, assume that Ω is star-shaped with respect to the ball B(0, r), r > 0. For each x ∈ ∂Ω, consider
the convex hull of the set B(0, r)∪ {x} and denote by Ωx its interior. Clearly, Ωx is a convex domain and a subset
of Ω. Thus, it follows from Proposition 1 (vi) that

JΩ ≤ JΩx ≤ JB(0,r).

Hence, we can write, for all y ∈ Rn,

JΩ(y) ≤ JΩx(y) ≤ JΩx(x) + JΩx(y − x) ≤ JΩ(x) + JB(0,r)(y − x) ≤ JΩ(x) +
1

r
|y − x|,

since JΩx
is a convex function, JΩ(x) = 1 = JΩx

(x) and JB(0,r)(z) = |z|/r. So, JΩ(y)− JΩ(x) ≤ 1
r |y− x| under the

assumption x ∈ ∂Ω. This is also true if x = 0 and when x 6= 0, it follows from this inequality, since x/JΩ(x) is on
∂Ω, that

JΩ

(
y

JΩ(x)

)
− JΩ

(
x

JΩ(x)

)
≤ 1

r

∣∣∣∣ y

JΩ(x)
− x

JΩ(x)

∣∣∣∣ ,
which implies by homogeneity that JΩ(y) − JΩ(x) ≤ 1

r |y − x| for all x, y ∈ Rn, and, by symmetry, the Lipschitz
continuity of JΩ. �

We shall also need the following technical result. Note here that the scalar product in Rn of x by y is denoted
in what follows by 〈x, y〉 or sometimes by x.y .

Lemma 1. If Ω ⊂ Rn is a bounded domain which is star-shaped with respect to a ball B(0, r), then, we have

〈ν(x), x〉 ≥ r ,

for almost every x ∈ ∂Ω, where ν(x) is the outward unit normal vector at x.

Proof. It follows from Proposition 1 that

Ω = {x ∈ Rn ; JΩ(x) < 1}, ∂Ω = {x ∈ Rn ; JΩ0
(x) = 1}, (3)

and from Proposition 2 that JΩ is Lipschitz continuous with a Lipschitz constant equal to 1
r , that is, for all

x, y ∈ Rn,

|JΩ(x)− JΩ(y)| ≤ 1

r
|x− y|,

which implies that |∇JΩ| ≤ 1
r a.e. according to Rademacher’s theorem (see [14], for example), and that the

outward unit normal vector is given by

ν(x) =
∇JΩ(x)

|∇JΩ(x)|
for almost every x ∈ ∂Ω. Moreover, since JΩ is positively homogeneous, we have, for every x ∈ ∂Ω,

〈∇JΩ(x), x〉 = lim
t→0

JΩ(x+ tx)− JΩ(x)

t
= lim
t→0

(1 + t)JΩ(x)− JΩ(x)

t
= JΩ(x) = 1,

which implies that

〈ν(x), x〉 =

〈
∇JΩ(x)

|∇JΩ(x)|
, x

〉
=

1

|∇JΩ(x)|
≥ r ,

for almost every x ∈ ∂Ω. �

Like for the convex domains, the regularity of a star-shaped domain with respect to a ball is that of its gauge
function:
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Lemma 2. Let Ω ⊂ Rn be a bounded domain which is star-shaped with respect to a ball B(0, r), r > 0. Then, Ω
is of class Ck, k ≥ 1, if and only if its gauge function JΩ is of class Ck in Rn\{0}.

The proof of this last result is the same as that given in [3] in the case of convex domains and makes use of the
fact that 〈ν(x), x〉 does not vanish which is insured by Lemma 1 in our case. So, we refer to it.

Finally, the following result will also be used:

Proposition 3. Let (Φε)0≤ε≤ε0 be a family of C1 diffeomorphisms from Rn onto Rn such that Φ0(x) = x and

(ε, x) 7→ Φε(x) and (ε, y) 7→ Φ−1
ε (y) are of class C1 in [0, ε0] × Rn. Then, for all f ∈ W 1,1

loc (Rn), the limit

limε→0+(f(Φε(x))− f(x))/ε exists in L1
loc(Rn) and is equal to ∇f(x). ddεΦε(x)|ε=0.

For a proof of this lemma, see [16], Chapter 5.

3 Main results

Let us first define the set of admissible domains U to be the set of bounded open subset of Rn which are of class
C2 and star-shaped with respect to some ball.

Recall that the support function PΩ of a bounded convex domain Ω is given by

PΩ(x) = sup
y∈Ω

x.y = sup
y∈Ω

x.y ,

where x.y denotes the standard scalar product of x and y in Rn, a product that we shall also denote sometimes by
〈x, y〉.

We can now state the first result of this paper which concerns the shape derivative of the volume functional

Ω 7→ J (Ω) =

∫
Ω

f(x)dx .

Theorem 1. Let Ω0 ∈ U , Ω be a bounded convex domain and f ∈ W 1,1(D) where D is a large smooth bounded
domain which contains all the sets Ω0 + εΩ, ε ∈ [0, 1]. Then, we have

lim
ε→0+

J (Ω0 + εΩ)− J (Ω0)

ε
=

∫
∂Ω0

f(x)PΩ(ν0(x))dσ(x). (4)

where ν0 denotes the outward unit normal vector on ∂Ω0.

The proof of this theorem will be given in the following section. Here, we state and prove a corollary of this
result which treats a case that occurs frequently in the applications, that is, the case where the function f itself
depends on the parameter ε.

Corollary 1. Let Ω0, Ω and D be as in Theorem 1, let (fε), 0 ≤ ε ≤ 1, be a family of functions in L1(D) such
that f0 ∈W 1,1(D) and let h be a function such that (fε− f0)/ε→ h in L1(D) as ε→ 0+. Let us set Ωε = Ω0 + εΩ
and

I(ε) =

∫
Ωε

fε(x)dx .

Then, we have

lim
ε→0+

I(ε)− I(0)

ε
=

∫
Ω0

h(x)dx+

∫
∂Ω0

f0(x)PΩ(ν0(x))dσ(x) . (5)

Proof. We write

I(ε)− I(0)

ε
=

∫
Ωε

(
1

ε
(fε − f0)(x)− h(x)

)
dx+

∫
Ωε

h(x)dx+
1

ε

(∫
Ωε

f0(x)dx−
∫

Ω0

f0(x)dx

)
,

and then we study each of the three terms of the right hand side of this equality. It follows from the assumption
that ∣∣∣∣∫

Ωε

(
1

ε
(fε − f0)(x)− h(x)

)
dx

∣∣∣∣ ≤ ∫
D

∣∣∣∣1ε (fε − f0)(x)− h(x)

∣∣∣∣ dx −−−−→
ε→0+

0 .
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On the other hand, since the characteristic functions of Ωε converge almost everywhere to the characteristic
function of Ω0 when ε→ 0+, it follows from the Lebesgue convergence theorem and from (4) that

lim
ε→0+

I(ε)− I(0)

ε
=

∫
Ω0

h(x)dx+

∫
∂Ω0

f0(x)PΩ(ν0(x))dσ(x) .

�

Remark 1. When Ω0 and Ω are bounded convex domains, we know from the Brunn-Minkowski theory in convex
geometry that one can write

V (Ω0 + tΩ) =

n∑
j=0

(
n

j

)
tjVj(Ω0,Ω) , t ≥ 0,

where V denotes the volume, that is, the n-dimensional Lebesgue measure, and the coefficients Vj(Ω0,Ω) are what

people call the mixed volumes of Ω0 and Ω and are significant in convex geometry, see [22], [17] or [23] for example.
Here, we want just to remark simply that V0(Ω0,Ω) = V (Ω0), this is clear, and that it is known since a long time
that

(V (Ω0 + tΩ)− V (Ω0))/t =

n∑
j=1

(
n

j

)
tj−1Vj(Ω0,Ω) −→ nV1(Ω0,Ω) =

∫
∂Ω0

PΩ(ν0(x)) dσ(x)

as t→ 0+. Thus, our formula (4) is an extension of the above one to the case where f 6= 1 and Ω0 is not necessarily
convex.

4 Proof of Theorem 1

Note first that one can assume that f ∈W 1,1
loc (Rn) or even f ∈W 1,1(Rn). Indeed, one can reduce to this case just

by extending the function f to Rn by means of the usual results on Sobolev spaces.
We follow the same idea as [3], that is, we treat first the case where the deformation domain Ω is strongly

convex, the general case being obtained by means of an appropriate approximation.
To be able to use gauge functions, we have to assume that Ω0 and Ω are neighborhoods of 0. However, this is

not a restriction of generality. Indeed, assume that Theorem 1 (and hence also Corollary 1) is proved in this case,
then, if Ω0 and Ω are neighborhoods of 0 and c0, c ∈ Rn, we have, by obvious changes of variables,

(J (c0 + Ω0 + ε(c+ Ω))− J (c0 + Ω0))/ε = (J (c0 + εc+ Ωε)− J (c0 + Ω0))/ε

=
1

ε

(∫
Ωε

f(c0 + εc+ x) dx−
∫

Ω0

f(c0 + x) dx

)
.

It follows then from Proposition 3 that

f(x+ c0 + εc)− f(x+ c0)

ε
−→ ∇f(x+ c0).c = div(f(x+ c0)c) in L1

loc(Rn)

as ε→ 0+, and from Corollary 1 that

lim
ε→0+

J (c0 + Ω0 + ε(c+ Ω)− J (c0 + Ω0)

ε
=

∫
∂Ω0

f(x+ c0)PΩ(ν0(x)) dσ(x) +

∫
Ω0

div(f(x+ c0)c)dx.

Now, it remains to apply the divergence formula to get

lim
ε→0+

J (c0 + Ω0 + ε(c+ Ω)− J (c0 + Ω0)

ε
=

∫
∂Ω0

f(x+ c0)PΩ(ν0(x)) dσ +

∫
∂Ω0

f(x+ c0) c.ν0(x) dσ

=

∫
∂Ω0

f(x+ c0)Pc+Ω(ν0(x)) dσ

=

∫
∂(c0+Ω0)

f(x)Pc+Ω(νc0+Ω0
(x)) dσ,

where νc0+Ω0
is the exterior unit normal vector to ∂(c0 + Ω0) at x, which establishes the formula in the case where

the domains are not necessarily neighbourhoods of 0.
In what follows Ω0 is thus assumed to be star-shaped with respect to the ball B(0, r) and Ω is a neighborhood

of 0.
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4.1 Case where the deformation domain is strongly convex

Assume that Ω is strongly convex, that is, near each point of its boundary, the open set Ω is defined by {ϕ < 0}
and its boundary ∂Ω by {ϕ = 0}, with some C2 function ϕ whose Hessian matrix is strictly positive. Such an
assumption allows us to do some geometrical construction to show that the domain Ω0 + εΩ is the deformation
of Ω0 via some diffeomorphism. This reduces the problem to a well known situation of deformations with vector
fields, see [16] for example. The construction relies on several lemmas and starts with the following:

Lemma 3. Let Ω0 and Ω be bounded open subsets of Rn of class C2 and assume that Ω is strongly convex. Then,
there exists a map a0 : ∂Ω0 → ∂Ω, such that

(i) For all x ∈ ∂Ω0, PΩ(ν0(x)) = ν0(x).a0(x) .
(ii) For all x ∈ ∂Ω0, ν(a0(x)) = ν0(x) where ν(y) denotes the exterior unit normal vector to ∂Ω at y.
(iii) The map a0 : ∂Ω0 → ∂Ω is of class C1.

The proof of this lemma indeed do not assume a particular geometry for Ω0 and is the same as that of Lemma
1 of [3], so we refer to it.

Now, we would like to extend a0 to a map from Ω0 to Ω and even from Rn to Rn. This is done by using
homogeneity.

Lemma 4. Ω0 and Ω being as in the preceding lemma, assume moreover that Ω0 is star-shaped with respect to a
ball centered at 0. Then, there exists a map a defined from Rn to Rn, satisfying the following properties:

(i) a = a0 on ∂Ω0.
(ii) a(Ω0) ⊂ Ω and a(Rn \ Ω0) ⊂ Rn \ Ω.
(iii) a is positively homogeneous of degree 1, Lipschitz continuous on Rn and of class C1 in Rn \ {0}.

Proof. We define a on Rn by

a(x) =

{
0 if x = 0

JΩ0(x) a0(x/JΩ0(x)) if x 6= 0.

Using Proposition 1, Proposition 2, Lemma 2 and Lemma 3, it is easy to check that a satisfies (i), (ii) and (iii). �

Using the vector field a, let us now consider the map

Φε(x) = x+ εa(x), x ∈ Rn, ε > 0.

Since a is lipschitz continuous on Rn, it is a classical fact (and easy to check) that, if ε is sufficiently small, Φε is a
Lipschitz homeomorphism from Rn onto Rn. Moreover, it follows from the inverse function theorem that Φε is a
C1-diffeomorphism from Rn \ 0 onto Rn \ 0. We shall use Φε to parameterize the set Ω0 + εΩ. In order to be able
to do that, we need the following result which estimates the boundary of the Minkowski sum of two subsets of Rn
using the convolution of hypersurfaces.

Lemma 5. Let A,B ⊂ Rn be open, bounded and of class C1. Consider the following set

∂A ? ∂B := {x+ y : x ∈ ∂A, y ∈ ∂B and νA(x) = νB(y)} (6)

where νA and νB are the outward unit normal vectors to ∂A and ∂B respectively. Then, we have

∂(A+B) ⊂ ∂A ? ∂B.

Proof. Recall that the Minkowski sum of two subsets A, B of Rn can also be written as

A+B = {x ∈ Rn ; (−A+ x) ∩B 6= ∅}. (7)

Let x ∈ ∂(A+B). It follows from (7) that (−A+x)∩B = ∅ and that (−A+ x)∩B 6= ∅; hence, ∂(−A+x)∩∂B 6= ∅.
Let y ∈ ∂(−A + x) ∩ ∂B. Since −A + x ⊆ Rn \ B, the hypersurfaces ∂(−A + x) and ∂B are tangent at y and
we have Ty ∂(−A + x) = Ty ∂B and ν(−A+x)(y) = −νB(y). Now, y ∈ ∂(−A + x) = −∂A + x, so that x ∈ ∂A + y
and there exists a ∈ ∂A such that x = y + a. Moreover, since −A + x is the image of A by the diffeomorphism
z 7→ −z + x, we also have

−νA(a) = ν(−A+x)(y) = −νB(y) ,

which achieves the proof of the lemma. �

We will also need the following result:
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Lemma 6. Let Ω be a bounded and strongly convex domain of class C2 and let ν denote the outward unit vector
field normal to ∂Ω. Then, ν : ∂Ω 7→ Sn−1 is injective.

Proof. There exists a strongly convex C2 function ϕ : Rn → R such that Ω = {x ∈ Rn / ϕ(x) < 0}, ∂Ω = {x ∈
Rn / ϕ(x) = 0}, ∇ϕ 6= 0 on ∂Ω and ν = ∇ϕ/|∇ϕ|. Let x, y ∈ ∂Ω be such that ν(x) = ν(y) and let us show that
x = y. Assume that x 6= y. Since ϕ is strongly convex, it follows from Taylor’s formula that

〈∇ϕ(x), y − x〉 < ϕ(y)− ϕ(x) and 〈∇ϕ(y), x− y〉 < ϕ(x)− ϕ(y).

Since ϕ(x) = ϕ(y) = 0, multiplying respectively by 1
|∇ϕ(x)| and 1

|∇ϕ(y)| yields

〈ν(x), y − x〉 < 0 and 〈ν(y), x− y〉 < 0,

which gives a contradiction since ν(x) = ν(y). So, x = y and the lemma is proved. �

The above lemmas allow us to prove the following crucial one which concerns the parameterization of the
perturbed domain Ωε by means of Ω0 and Φε.

Lemma 7. Let Ω0 ∈ U and Ω be a bounded and strongly convex domain of class C2 in Rn. Consider the set
Ωε = Ω0 + εΩ and the map Φε : x 7→ x + εa(x), ε > 0, where a is as in Lemma 4. Then, if ε is sufficiently small,
we have the following:

(i) Φε(∂Ω0) = ∂Ω0 ? ε∂Ω and ∂Ωε ⊆ ∂(Φε(Ω0)).

(ii) Φε(Ω0) = Ωε.

Here, ν0 and ν denote the outward unit normal vector to Ω0 and Ω respectively.

Proof. Let x ∈ ∂Ω0. According to Lemma 4 and Lemma 3, a(x) = a0(x) ∈ ∂Ω and ν0(x) = ν(a(x)); hence,
Φε(x) = x+ εa(x) ∈ ∂Ω0 ? ε∂Ω. Conversely, if z ∈ ∂Ω0 ? ε∂Ω, there exists (x, y) ∈ ∂Ω0 × ∂Ω such that z = x+ εy
and ν0(x) = νεΩ(εy) = ν(y). Applying once again Lemma 4, we have a(x) ∈ ∂Ω and ν0(x) = ν(a(x)) = ν(y).
Next, applying Lemma 6 yields a(x) = y. Therefore, z = x + εa(x) = Φε(x) ∈ Φε(∂Ω0). Thus, we have proved
that Φε(∂Ω0) = ∂Ω0 ? ε∂Ω. Now, according to Lemma 5, we have

∂Ωε = ∂(Ω0 + εΩ) ⊆ ∂Ω0 ? ∂(εΩ) = ∂Ω0 ? ε∂Ω = Φε(∂Ω0) = ∂Φε(Ω0),

which achieves the proof of (i).
To show (ii), note first that Φε(Ω0) ⊂ Ωε is an obvious consequence of Lemma 4. To prove the other inclusion, let
us first remark that it follows from the homogeneity of Φε that Φε(Ω0) is also a star-shaped domain with respect
to 0 as it can be checked easily. Next, assume that there exists x ∈ Ωε such that x ∈ Rn\Φε(Ω0). Then, it follows
from Proposition 1 that 0 < JΩε

(x) < 1 and JΦε(Ω0)(x) ≥ 1. Now, consider x∗ = x/JΩε
(x) ∈ ∂Ωε. Clearly,

JΦε(Ω0)(x∗) = JΦε(Ω0)(x)/JΩε
(x) > 1, that is, x∗ /∈ ∂(Φε(Ω0)), which contradicts (i). Thus, Φε(Ω0) = Ωε. �

Lemma 7 provides the main tool in the proof of Theorem 1 in the case where Ω is strongly convex and of
class C2. Indeed, according to this lemma, Ωε = Φε(Ω0) and the problem is reduced to the case of a deformation
of Ω0 by a diffeomorphism or, more precisely, a Lipschitz homeomorphism. According to [21] for example, we have
the following shape derivative formula

d

dε
J (Ω0 + εΩ)

∣∣∣∣
ε=0+

=

∫
∂Ω0

f(x) a(x).ν0(x) dσ ,

and according to Lemma 3 and Lemma 4, we have

a(x).ν0(x) = a0(x).ν0(x) = PΩ(ν0(x)).

Hence the formula

lim
ε→0+

J (Ω0 + εΩ)− J (Ω0)

ε
=

∫
∂Ω0

f(x)PΩ(ν0(x))dσ(x) ,

and this achieves the proof of Theorem 1 in the case where Ω is strongly convex.

�
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4.2 The general case

The domain Ω is now assumed to be bounded and (only) convex. We shall approximate it by a sequence of strongly
convex ones. To do that, let us recall the following approximation result used in [3].

Lemma 8. Let Ω be a bounded convex domain in Rn. Then, there exists a sequence (Ωk)k∈N of strongly convex
smooth open subsets of Ω such that

dH(Ω
k
,Ω) −−−−→

k→∞
0,

where dH denotes the Hausdorff distance.

Such an approximation is used to prove the following lemma which is an important step in the proof of our
theorem.

Lemma 9. Let Ω0 ∈ U , Ω be a bounded convex domain in Rn and (Ωk)k∈N the sequence given by Lemma 8 which
approximates Ω. Then, for all ε ∈ [0, 1] and for all k ∈ N, we have

dH(Ω
k

ε ,Ωε) ≤ ε dH(Ω
k
,Ω).

where Ωkε = Ω0 + εΩk et Ωε = Ω0 + εΩ.

Proof. We have Ω
k

ε = Ω0 + εΩ
k

and Ωε = Ω0 + εΩ, thus according to [22], page 64, we have

dH(Ω
k

ε ,Ωε) = dH(Ω0 + εΩ
k
,Ω0 + εΩ) ≤ dH(Ω0,Ω0) + dH(εΩ

k
, εΩ).

Since Ωk ⊆ Ω, then dH(εΩ
k
, εΩ) = supx∈εΩ d(x, εΩ

k
) = εdH(Ω

k
,Ω). Thus, dH(Ω

k

ε ,Ωε) ≤ ε dH(Ω
k
,Ω). �

We need also the following result.

Proposition 4. Let A,B ⊂ Rn be two bounded domains which are star-shaped with respect to the ball B(0, r),
r > 0, and such that A ⊆ B. Then, we have

sup
Sn−1

|JA − JB | ≤
1

r2
dH(A,B) (8)

Proof. Let x ∈ ∂B. Since A ⊂ B, there exists yx ∈ ∂A such that d(x,A) = |x− yx|. According to Proposition 2,
the gauge functions JA, JB are Lipschitz functions with Lipschitz constant 1

r . Therefore, since JA(yx) = 1 = JB(x)

and A ⊂ B, we can write

|JA(x)− JB(x)| ≤ |JA(x)− JA(yx)|+ |JA(yx)− JB(x)| = |JA(x)− JA(yx)|
≤ r−1|x− yx| = r−1d(x,A)

≤ r−1 sup
z∈B

d(z,A) = r−1dH(A,B),

an inequality that holds for x ∈ ∂B. Now, if x ∈ Sn−1, we have x
JB(x) ∈ ∂B, and by using the homogeneity of the

gauge functions we obtain

|JA(x)− JB(x)| = JB(x)|JA(
x

JB(x)
)− JB(

x

JB(x)
)| ≤ JB(x)r−1dH(A,B).

Since B(0, r) ⊂ B, we have JB(x) ≤ JB(0,r)(x) = |x|/r = 1/r, which implies the desired inequality. �

The last lemma is crucial for our proof.

Lemma 10. Let Ω0 ∈ U , Ω be a bounded convex domain and f ∈ W 1,1
loc (Rn), and let (Ωk)k∈N be as in Lemma 8.

Then, there exists a constant C > 0 such that, for all k ∈ N and all ε ∈ [0, 1], we have∣∣∣∣∣
∫

Ωk
ε

f(x)dx−
∫

Ωε

f(x)dx

∣∣∣∣∣ ≤ C ε dH(Ω
k
,Ω),

where Ωkε = Ω0 + εΩk et Ωε = Ω0 + εΩ.
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Proof. We follow the idea of [4]. Let r > 0 be such that Ω0 is star-shaped with respect to B(0, r) and let B(0, R)
be a large ball which contains all the sets Ω0 + εΩ, ε ∈ [0, 1]. As one can easily check, Ωε and Ωkε are star-shaped
with respect to B(0, r), and we shall denote by Jε and Jkε respectively their gauge functions. Let us denote by
Ikε (f) the difference ∫

Ωε

f(x)dx−
∫

Ωk
ε

f(x)dx .

Since Ωε = {Jε < 1} and Ωkε = {Jkε < 1}, by using polar coordinates, we can write

Ikε (f) =

∫
Sn−1

∫ 1
Jε(ω)

0

f(ρω)ρn−1dρdω −
∫
Sn−1

∫ 1

Jk
ε (ω)

0

f(ρω)ρn−1dρdω =

∫
Sn−1

∫ 1
Jε(ω)

1

Jk
ε (ω)

f(ρω)ρn−1dρdω.

This allows us to estimate Ikε (f) as follows :

|Ikε (f)| ≤
∫
Sn−1

∣∣∣∣Jε(ω)− Jkε (ω)

Jε(ω)Jkε (ω)

∣∣∣∣ sup
ρ∈[ 1

Jk
ε (ω)

, 1
Jε(ω)

]

|f(ρω)ρn−1|dω.

Note that, since B(0, r) ⊂ Ωkε ⊂ Ωε ⊂ B(0, R), we have JB(0,R) ≤ Jε ≤ Jkε ≤ JB(0,r). Recall that JB(0,r)(x) = |x|/r,
JB(0,R)(x) = |x|/R. Hence,

|Ikε (f)| ≤ R2

∫
Sn−1

|Jε(ω)− Jkε (ω)| sup
ρ∈[r,R]

|f(ρω)ρn−1|dω.

Since Ωε and Ωkε are star-shaped with respect to B(0, r) and Ωkε ⊆ Ωε, it follows from Lemma 4 and Lemma 9
that

sup
Sn−1

|Jε − Jkε | ≤
1

r2
dH(Ω

k

ε ,Ωε) ≤
ε

r2
dH(Ω

k
,Ω).

Therefore,

|Ikε (f)| ≤ R2ε

r2
dH(Ω

k
,Ω)

∫
Sn−1

sup
ρ∈[r,R]

|f(ρω)ρn−1| dω.

It remains to apply the following classical inequality for functions of one real variable :

‖ϕ‖L∞(I) ≤
1

|I|

∫
I

|ϕ(t)| dt+

∫
I

|ϕ′(t)| dt, ϕ ∈W 1,1(I), (9)

where I is a bounded interval and |I| is its length. In fact, this is just a precise version of Sobolev’s inequality. Its
proof is easy when ϕ is of class C1 on Ī and the general case is obtained by a density argument and is left to the
reader. Applying (9) to the function ρ 7→ f(ρω) ρn−1 yields

|Iε,k(f)| ≤ R2ε

r2
dH(Ω

k
,Ω)

∫
Sn−1

∫ R

r

(
|f(ρω)|

( ρn−1

R− r
+ (n− 1)ρn−2

)
+ |∇f(ρω)|ρn−1

)
dρ dω

≤ R2ε

r2
dH(Ω

k
,Ω)

∫
r≤|x|≤R

(
|f(x)|
R− r

+
n− 1

|x|
|f(x)|+ |∇f(x)|

)
dx

≤ R2ε

r2
dH(Ω

k
,Ω)

(
1

R− r
+
n− 1

r
+ 1

)∫
r≤|x|≤R

(|f(x)|+ |∇f(x)|) dx

≤ R2ε

r2
dH(Ω

k
,Ω)

(
1

R− r
+
n− 1

r
+ 1

)
||f ||W 1,1(D) ,

which achieves the proof of the lemma. �

Using the above lemmas, we can now finish the proof of Theorem 1. Let δ > 0 be arbitrary. We can write:

J (Ω0 + εΩ)− J (Ω0)

ε
−
∫
∂Ω0

f(x)PΩ(ν0(x))dσ(x) =
1

ε

(∫
Ωε

f(x)dx−
∫

Ωk
ε

f(x)dx

)
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+
1

ε

(∫
Ωk

ε

f(x)dx−
∫

Ω0

f(x)dx

)
−
∫
∂Ω0

f(x)PΩk(ν0)(x)dσ(x)

+

∫
∂Ω0

f(x)
(
PΩk(ν0(x))− PΩ(ν0(x))

)
dσ(x). (10)

For the first term in the righthand side of (10), according to Lemma 8 and Lemma 10, there exists k0 ∈ N, such
for all k ≥ k0 and for all ε ∈]0, 1], we have

1

ε

∣∣∣∣∣
(∫

Ωε

f(x)dx−
∫

Ωk
ε

f(x)dx

)∣∣∣∣∣ ≤ δ. (11)

Using the formula ||PA − PB ||L∞(Sn−1) = dH(A,B) for compact convex sets, (see for example [22], page 66), we
can estimate the last term in the righthand side of (10) as follows :∣∣∣∣∫

∂Ω0

f
(
PΩk(ν0)− PΩ(ν0)

)
dσ

∣∣∣∣ ≤ ||PΩk − PΩ||L∞(Sn−1)

∫
∂Ω0

|f | dσ = dH(Ω
k
,Ω)

∫
∂Ω0

|f | dσ,

which implies that it tends to 0 when k →∞ by virtue of Lemma 8. Hence, there exists k1 ∈ N, such that, for all
k ≥ k1, we have ∣∣∣∣∫

∂Ω0

f
(
PΩk(ν0)− PΩ(ν0)

)
dσ

∣∣∣∣ ≤ δ. (12)

Now, if k2 = max{k0, k1}, since Ωk2 is strongly convex, it follows from the first part of the proof that there exists
εδ such that for all ε ≤ εδ, we have∣∣∣∣1ε

(∫
Ω

k2
ε

f(x)dx−
∫

Ω0

f(x)dx

)
−
∫
∂Ω0

f(x)PΩk2 (ν0(x))dσ(x)

∣∣∣∣ ≤ δ. (13)

By taking k = k2 in (10) and using (11), (12) and (13), we obtain that, for all ε ≤ εδ,∣∣∣∣1ε
(∫

Ωε

f(x)dx−
∫

Ω0

f(x)dx

)
−
∫
∂Ω0

f(x)PΩ(ν0(x))dσ(x)

∣∣∣∣ ≤ 3δ ,

which achieves the proof of Theorem 1. �

5 Application

To illustrate our work, we give an example of application to a shape optimization problem and compute the shape
derivative of some functional related to the solution of a partial differential equation.

Let us define the set Uad of admissible domains by

Ω ∈ Uad ⇐⇒ Ω is a C3 open subset of Rn which is star-shaped with respect to some ball of radius r.

If D is an open bounded (convex) and non empty subset of Rn, let us consider the problem

(PO)



Find Ω∗ ∈ Uad(D) such that J (Ω∗) = inf
Ω∈Uad(D)

J (Ω)

where Uad(D) = {Ω ∈ Uad ; Ω ⊂ D},

J (Ω) =

∫
Ω

(uΩ − ud)2dx and uΩ is the solution of

(PE)

{
−∆v + v = f in Ω
∂v
∂ν = g on ∂Ω

where ud ∈ H1(D), f ∈ L2(D) and g ∈ H2(D). Let u0 be the solution of (PE) on Ω0 ∈ Uad(D) and uε be the
solution of (PE) on Ωε = Ω0 +εΩ, ε ∈ [0, 1]. Assuming that Ω is a strongly convex domain, we know from Lemma 7
that Ωε can be considered as a deformation of the domain Ω0 by the vector field a, that is Ωε = (IdRn + εa)(Ω0)
for small enough ε. Therefore, at least when f ∈ H1(D), according to [1], we can write

ũε = ũ0 + εu′0 + εvε

11



where u′0 ∈ H2(Ω0) is the shape derivative of ũ0 with respect to the vector field a and vε −→ 0 in L2(D) as ε→ 0+.
It follows from that result that

1

ε
[(ũε − ud)2 − (ũ0 − ud)2]− 2u′0(ũ0 − ud) −−−−→

ε→0+
0 in L1(D),

which allows one to apply Corollary 1 to obtain

lim
ε→0+

J (Ω0 + εΩ)− J (Ω0)

ε
=

∫
Ω0

2u′0(ũ0 − ud)dx+

∫
∂Ω0

(ũ0 − ud)2PΩ(ν0)dσ(x).

Now, in this expression of the shape derivative of J , even the domain integral can be written as a boundary
integral. Indeed, by following, for example, the same method as [16], one can show that u′0 satisfies the boundary
value problem {

−∆u′0 + u′0 = 0 in Ω0

∂
∂ν0

u′0 = ( ∂g∂ν0 −
∂2u0

∂ν2
0

)〈a, ν0〉+∇u0∇∂Ω0〈a, ν0〉 on ∂Ω0
(14)

where
∂2u0

∂ν2
0

=

n∑
i,j=1

∂2u0

∂xi∂xj
ni,0 nj,0

and ∇∂Ω0
is the tangential gradient (see [16]). Note here that, since Ω is of class C3, u0 is in fact in H3(Ω0),

u′0 ∈ H2(Ω0) (see [16]), so that the second derivative ∂2u0

∂ν2
0

is well defined on ∂Ω0. Now, using the solution of the

following adjoint state boundary value problem{
−∆ψ + ψ = −2(u0 − ud) in Ω0
∂ψ
∂ν0

= 0 on ∂Ω0 ,
(15)

we obtain the following expression of the shape derivative of the functional J (see [1])

lim
ε→0+

J (Ω0 + εΩ)− J (Ω0)

ε
=

∫
∂Ω0

dΩ0
〈a, ν0〉 dσ ,

where

dΩ0
= (u0 − ud)2 + 〈∇u0,∇ψ〉+ ψ(u0 − f)− ∂(gψ)

∂ν0
−Hgψ.

Now, since Ω is strongly convex, it follows from Lemma 3 and Lemma 4 that

〈a(x), ν0(x)〉 = PΩ(ν0(x)) on ∂Ω0, (16)

so that

lim
ε→0+

J (Ω0 + εΩ)− J (Ω0)

ε
=

∫
∂Ω0

dΩ0 PΩ ◦ ν0 dσ.

The last thing we propose is an algorithm to solve the shape optimization problem (PO).

Algorithm.

1. Choose Ω0 ∈ U(D), ρ ∈]0, 1[ and a precision ε.

2. Solve the state equation :

(PE)

{
−∆u0 + u0 = f in Ω0 ,
∂u0

∂ν0
= 0 on ∂Ω0 ;

(17)

3. Solve the adjoint state problem

(PEA)

{
−∆ψ + ψ = −2(u0 − ud) in Ω0 ,
∂ψ
∂ν0

= 0 on ∂Ω0 ;
(18)
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4. Calculate p̂0 solution of
arg min

p∈E
J0(p)

where
E = {ϕ ∈ C(R) ; ϕ is convex and homogeneous of degree 1 and ϕ ≤ PD},

and

J0(p) =

∫
∂Ω0

(
(u0 − ud)2 + 〈∇u0,∇ψ〉+ ψ(u0 − f)− ∂(gψ)

∂ν0
−Hgψ

)
p ◦ ν0 dσ.

5. At step k,
if ||uk − ud||L2(Ωk) < ε, Go to 7.

where uk is the solution of the state equation in Ωk (the domain at step k).

6. Compute

Ωk+1 = Ωk + ρΩ̂k where Ω̂k = ∂p̂k(0)

and Go to 2.

7. End.

Remark 2. In the above algorithm, the sequence of domains (Ωk)k∈N is constructed in such a way that (J (Ωk))k∈N
is decreasing. Indeed, let k ∈ N∗, then, for a small ρ ∈]0, 1[, we have

J (Ωk+1)− J (Ωk) = J (Ωk + ρΩ̂k)− J (Ωk)

= ρ

(∫
∂Ωk

dΩk
PΩ̂k
◦ νkdσ

)
+O(ρ2).

Now, since p̂k = PΩ̂k
is a solution of arg min

p∈E
Jk(p), then

Jk(p̂k) =

∫
∂Ωk

dΩk
PΩ̂k
◦ νkdσ ≤ Jk(0) = 0 ,

which guarantees the decrease of the objective function J . Consequently, Ω̂k defines a descent direction for J .
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