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Namig J. GULIYEV

A UNIQUENESS THEOREM FOR
STURM-LIOUVILLE EQUATIONS WITH A
SPECTRAL PARAMETER LINEARLY CONTAINED
IN THE BOUNDARY CONDITIONS

Abstract

A uniqueness theorem for the Sturm—Liouville equation with a spectral pa-
rameter linearly contained in both boundary conditions is proved.

Consider the Sturm—Liouville equation

ty = —y"(x) + q(x)y(z) = My(z), = €[0,7] (1)

with the boundary conditions

A(Y'(0) — hy(0)) = h1y'(0) — hay(0), (2)
My () + Hy(n)) = Hiy'(7) + Hay(r), (3)

where q(x) € %(0,7) is a real-valued function, h, hy, he, H, H1, Ho € R and
6 :=hhy — ho >0, p:=HH, — Hy, > 0.

We denote this problem by P(q, h, h1, ho, H, Hy, H).
Let ¢(z, A) and ¥(z, A) be the solutions of satisfying the initial conditions

(P(O7 )‘> =-A+ h17 90/<07 )‘) =—Ah+ h?a

P(m, ) = —A+Hy, /(r,\) =\H — Hy. (4)

We define
X()‘) = go(ac, )‘)w/(x’ )‘) - Qpl(x’ )\)1/}($, )‘)a

which is independent of x € [0, 7]. The function x(\) is entire and has zeros at the
eigenvalues of the problem f. The set of eigenvalues is countable, consists of
real numbers ([1, 4]) and for each eigenvalue \,, there exists such a number k&, that

In the Hilbert space H = .%(0,7) & C? let an inner product be defined by

i —_— 1 — 1 _—
(F, G) = / Fl(.%')Gl(l‘)d.%' -+ gFQGQ + ;F[),Gg
0

(2) o (2)
F = Fy , G= Go € H.
F3 Gs

for
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We define operator

—F'(z) + q(z) F1 (=)
AF) = [ mF(0) — haFy(0)
HyFi(m) + HaFy ()

with

D(A) = {F € H|F\(z), F|(z) € Z€[0,7],(F, € £(0,7),
Fy = ( ) hFl(O),Fg :F{(W)—FHFI(W)}

Then
@(1’.7 )\n) @(1.7 )\n)
D, = | (0, ) —hp(0,\,) | = -0
/
¥ (7r, )‘n) + H‘P(Wa /\n) P/kn

are orthogonal eigenelements of A:

(s ®0) = [l Aol Ao +5+ 2 =0, m 2.
0 mhvn

We also define norming constants by

kﬁ .

n

— Nl = [ P A+ 5+
0
The numbers {\,,7,, }n>0 are called the spectral data of the problem f.

Lemma 1. The following equality holds:

X()‘n) = kn7n7 n >0,

) d
where x(A) = ﬁX()\)'

Analogously to [3, Theorem 1(i)] the following theorem can be proved.

Theorem 1. For F ¢ 'H

[e.9]

1
1FI? = —I(F, )%
n=0 Tn
0 0
By taking FF= [ 1] and F = | 0 | in this theorem we obtain
0 1
- 1 I 1
— - = 2 (6)
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Theorem 2. Following asymptotics hold:

\/E_n—2+—+g—", {¢,} €l (7)

== (3+4) @ en ®
where L g
w:h+H+2/0 q(z)dx.

Proof. We denote s := v/A. Then from
2 I .
o(r,\) = —s“cossx — | h+ 3 q(t)dt | ssin sz—
0

/ q(t)ssins(x — 2t)dt + O <e|1m8x|> :
0

| =

1 X
¢ (z,\) = s3sin sz — (h + 2/ q(t)dt> s% cos sz—
0

1

_ / q(t)52 cos s(x — 2t)dt + O <‘S‘e|1msx|>
2 0

using we obtain

X(A) = s%sin s — <h+H+;/OF (z )dm)s cos s+ I(s)s?, 9)

where

T e\Imsﬂ
I(s) = —;/0 o(t) cos s(m — 26)dt + O ( ) .

|s|
Now using Bessel’s inequality it’s easy to obtain and .
Lemma 2. Let v(t,\) be any function entire on \ with
v(t,\) =0 (ellmﬁ‘t> , telo,m.

Then

Zgoa:/\ v(t, A\n) o, (10)

uniformly on 0 <t <z <.

Proof. Using , Lemma and the residue theorem we get

(2, \n) (T, \n) T, A\p)v(t, Ap
ZQO Z_:¢ wn = ZM z\n() -

N

n=0"
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where Cy = {X : |A| = (N — 3/2)?}. Equality (9) implies that

x(A) = A2V Asin Var + O (\)\\Qeumﬁ‘“> :

We denote G5 = {\ : [V/A—n| > d,n =0,+1,42,...} for some small fixed § > 0
and recall that (see e.g. [6, p. 15])

| sin V7| > 2CselmVAIT ) e Gy,
where Cy does not depend on A. Therefore we obtain
XV =GNV ™A, X e Gs, A 2 As
for sufficiently large As. Since
[, )| = O (JAle™VA=) -z e [o,7],
we obtain
(2, No(t, A)| = O (welfmﬁl(ﬂ*m)) 0 (|A|e\fmﬁ\ﬂ) , 0<t<az<m.

Thus the equality holds. Uniformity of this convergence can be obtained
from @ and by applying Weierstra’ theorem.
Putting v(t,\) =1 and z =0 in we obtain

o0

hi — A
S hhy
=0 In
Similarly, we have
S ng;)‘" —0.

Using @ in these equalities we get the representation of h; and Hp by the spectral
data:

hlzéz/\l’ lepz An . (11)

2
Using the transformation operators (see [5]), we can write

T

oz, \) = oz, \) + G(z,7)p(T, \)dT, (12)

—x

where

sin \f)\:r:
VA

is the solution of the equation —y”(z) = Ay(x) satisfying the initial conditions

@(z,A) := (h1 — A) cos VAz 4 (hg — Ah)

P(0,A) = =A+h1, ¢(0,A) = =Ah + ho,

G(x,7) is a real-valued continuous function and

Gla,z) = ;/qu(t)dt.
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Theorem 3. For each fized x € (0,7] the kernel G(x,T) satisfies the following

equation:
X

A(z,t) + G(z,7)A(T,t)dr =0, 0<t<z<m, (13)

—T

where

B i o(x, Ap) cos V Ant

Tn

Proof. Using equality we obtain

f: o(x, An) cos VAt f: o(x, Ap) cos \/)\nt+

Tn ovard Tn

N i cos v/ Apt

G(m T)P(T, A )dT.
~ v, )L

Applying Lemma [2.| to v(t, \) = cos VAt we get the statement of the theorem.
We denote

(h1 = Ao)e(, Ao) cos VAot | (b1 = A)o(z, M) cos vAut

F(x,t) =
Yo 71
n Z — Ant2)@(x, Apt2) €os \/ Apyot (cos nr + h%) cos nt
Tn+2 Oé% ’
where .
— n>1
m, n=0>0.

By differentiating the equation twice with respect to ¢t we find

F(z,t) + h+ G(z,t) + Gz, —t)+
+ h/m (G(z,7) — G(x,—7))dT + ’ G(x,7)F(r,t)dr = 0.

—x

Putting x =t = 0 we obtain

hi—X0)? (M1 —M)? = [ (h1 — \n)? 1
po  (i=X)"  (hi—Ai) _Z<(l ) : > (14)
’YO fY]_ n=2 771 an—Q
Analogously, we have
Hi—X\)?  (Hi—M\)? & [ (Hp —\,)? 1
H:_( 12 0) _( 12 1) _Z(( 12 ) - — > (15)
k570 ki o— kavn Q2

Theorem 4. Suppose that {\n, v, }tn>0 and {)\n, 'yn}n>g are the spectral data of the
problems P(q, h, hi, he, H, Hy, Hy) and P(q,h hl,hg,H Hl,Hg) respectively. If

)\TL:S\/TH ’Yn:;\y/n7 n207
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then
q(x) = q(z) a.e. on (0,7),

h=h, hi=hi, hy=hs, H=H, H =H, H,=H,.

Proof. Using @, , and we obtain
h=h, hi=h, hy=hy, H=H, H =H, Hy=H,.

The result now follows from [2, Theorem 5.2].
The author is grateful to Professor H. M. Huseynov for the problem statement
and for useful discussions.
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