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Turbulence in weakly coupled plasmas under compression can experience a sudden dissipation of kinetic
energy due to the abrupt growth of the viscosity coefficient governed by the temperature increase. We investigate
in detail this phenomenon by considering a turbulent velocity field obeying the incompressible Navier-Stokes
equations with a source term resulting from the mean velocity. The system can be simplified by a nonlinear
change of variable, and then solved using both highly resolved direct numerical simulations and a spectral model
based on the eddy-damped quasinormal Markovian closure. The model allows us to explore a wide range of
initial Reynolds and compression numbers, beyond the reach of simulations, and thus permits us to evidence the
presence of a nonlinear cascade phase. We find self-similarity of intermediate regimes as well as of the final decay
of turbulence, and we demonstrate the importance of initial distribution of energy at large scales. This effect can
explain the global sensitivity of the flow dynamics to initial conditions, which we also illustrate with simulations
of compressed homogeneous isotropic turbulence and of imploding spherical turbulent layers relevant to inertial
confinement fusion.

DOI: 10.1103/PhysRevE.97.023201

I. INTRODUCTION

In inertial confinement fusion (ICF), it is essential to
predict how the light elements composing the fuel, typically
deuterium-tritium, evolve during the target compression. In
order to achieve ignition, the fuel has to be brought to very high
temperature corresponding to the plasma state. The turbulent
mixing generated by hydrodynamics instabilities taking place
at the fuel-ablator interface may however cool the core and
consequently deteriorate the capsule yield. Recently, different
simulations by [1] showed that the growth of the viscosity
coefficient, as the deuterium-tritium plasma heats up to the ki-
netic regime [2], dissipates the turbulent kinetic energy. It also
inhibits the growth of Rayleigh-Taylor or Kelvin-Helmholtz
instabilities [3], impacts the mean radial flow [4], and possibly
influences the turbulent mixing in the central hot spot, where
fusion processes set in [5]. The suddenness of this effect can
substantially participate in a local temperature increase by
rapidly converting the kinetic energy into an internal one [6].
Meanwhile, the initial conditions and particularly the large
scale asymmetries of the capsule, due for instance to the
support tent or to the fill tube [7], play a determining role
by having a strong imprint on the turbulent mixing. Still, how
the balance between the stirring processes and the microscopic
dissipation is influenced by initial conditions remains unclear
in ICF imploding capsules.

In this context, we propose to study the importance of initial
conditions by considering the simplified case of homogeneous
isotropic turbulence (HIT) under compression, previously

introduced by [6]. In this configuration, the plasma turbulence
dynamics is expressed by the Navier-Stokes equations with a
viscosity coefficient dependent on the mean temperature. In
addition, the turbulence production is impulsed solely by the
compression terms coming from the mean velocity field while
other production sources such as shear or density gradient are
neglected. Despite being crude, this framework has already
proven an interesting starting point to explore important mech-
anisms at work during the compression, namely turbulence
production and dissipation but also nonlinear transfer. In order
to extend our analysis to a less academic geometry and to an
inhomogeneous flow, we also consider in this paper a spherical
turbulent layer with parameters relevant to ICF, as a paradigm
of the hot spot contamination by turbulence.

The isotropic compression of turbulence obeying the
Navier-Stokes equations is a classical problem in fluid dy-
namics. Assuming incompressible turbulent fluctuations and
exploiting the similarity properties of the equations, the forcing
compression term can be eliminated by a coordinate transfor-
mation [8]. The turbulence expressed in the new moving frame
decays at a rate which may be influenced by the time-varying
viscosity coefficient appearing due to the coordinate transfor-
mation. These properties have been exploited by [9,10] in order
to propose practical turbulence models and to evaluate the
growth of turbulent kinetic energy back in the laboratory frame.

Meanwhile, it is known since the work of Batchelor [11,12]
followed by [13] that the large-scale structures or big eddies
play an important part in the dynamics of turbulent flows.
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This role has been identified for instance through different
self-similar solutions, corresponding to the turbulent and final
decays of HIT, showing a dependence on the initial distribution
of energy at large scales. These solutions have been investi-
gated in particular by spectral models based on eddy-damped
quasinormal Markovian (EDQNM) closures [14,15] allowing
a systematic exploration of the influence of initial conditions
at very high Reynolds number [16–18]. Note that this method
has been similarly generalized to other problems such as
Rayleigh-Taylor and unstably stratified turbulence [19–21].

In this paper, we identify different regimes of turbulence
in a plasma under compression by exploiting the similarities
properties of the system and the possibility of finding self-
similar solutions in the moving frame corresponding to the
coordinate transformation. Back into the laboratory frame,
this gives information about the importance of initial condi-
tions. In order to achieve this goal, we use direct numerical
simulations (DNSs) and spectral models based on classical
EDQNM closures. The two methods are complementary: DNS
provides the details of the turbulent fields in space, and their
time evolution, while, by construction, the EDQNM model
directly predicts the time-evolving turbulent spectra of two-
point correlations, and allows exhaustive parametric studies as
well as the exploration of high Reynolds number regimes, due
to its low computational cost.

This paper is organized as follows: first we present the
basic equations used to investigate the evolution of turbulent
quantities under compression, as well as the EDQNM model
validated by comparison to DNS. Then, we identify the theo-
retical regimes and scaling laws appearing in the turbulence
evolution during different phases of the compression. All
these solutions are then explored at higher Reynolds number
by EDQNM simulations, and illustrated in the case of an
imploding spherical turbulent layer.

II. THEORETICAL FRAMEWORK, SIMULATIONS,
AND MODEL FOR A TURBULENT PLASMA

UNDER COMPRESSION

In this part, we introduce the theoretical framework describ-
ing a turbulent plasma under compression, and we explain how
DNS and the EDQNM model can be efficiently used to solve
the resulting system of equations.

A. Basic equations

We first recall the basic equations of turbulence subjected to
an isotropic compression and previously detailed in [6,10]. In
these works and also the present one, the problem is restricted
to a hydrodynamic framework. For plasmas originating from
large ICF capsules, such as described in [1], it is usually
considered as a good starting point to study the problem.
Indeed, the typical Knudsen numbers evaluated in this case
are consistent with the continuum hypothesis. Also, the kinetic
energy density much greater than the magnetic one, see the
typical values of self-induced magnetic field in [22], allows us
to neglect magnetohydrodynamics effects.

Therefore, our analysis begins with the Navier-Stokes and
mass conservation equations for a compressible fluid in a
Cartesian stationary reference frame x. We use the classical

Reynolds decomposition based on the ensemble average. All
quantities are decomposed into a superposition of mean and
fluctuating (or zero mean) parts. In order to further simplify the
problem, we will require that fluctuating turbulent quantities
are homogeneous. This imposes a mean velocity U(x,t) on the
form (see [23]):

U(x,t) = −xS(t), (1)

introducing the compression time rate S(t). Considering a
particle moving with the mean velocity U, its distance to the
center decreases by a factor L(t) = exp (− ∫ t

0 S(s)ds), referred
to as the compression parameter. If we inject this definition
into the mean-field equation, we find that for L(t), a linear
function of time, the mean pressure gradient is zero. This is the
same choice of [6]: L(t) = 1 − S0t for t < 1 − S0 with S0 =
S(0), which also amounts toS(t) = S0/(1 − S0t). Considering
this particular compression rate allows us to discard density
fluctuation effects or classical Rayleigh-Taylor instabilities
usually appearing during the compression when mean pressure
gradients are present.

From the given form of U and the hypothesis that the mean
density ρ is uniform, the mass conservation equation shows
that ρ(t) evolves as ρ(t) = ρ0L(t)−3 (from now on, the initial
value of a quantity is denoted by the suffix 0).

We now turn our attention to the fluctuating velocity, u(x,t),
whose equations are given by

∂tu + u · ∇u − S(t)x · ∇u − S(t)u = −∇p + μ(t)

ρ(t)
∇2u,

(2a)

∇ · u = 0, (2b)

where p is the fluctuating reduced pressure. Note that the
fluctuating velocity is assumed divergence free (unlike the
mean velocity part U). It is indeed possible to consider an
incompressible turbulent velocity field if the compression
and turbulent time scales are larger to the characteristic time
corresponding to pressure effects (low Mach approximation).
This is extensively detailed in [24] for instance.

Equation (2a) contains an inhomogeneous term,S(t)x · ∇u,
coming from the advection of turbulence by the mean field. In
order to remove this inhomogeneous dependence, we rescale
the space coordinates as

x̃ = x
L(t)

. (3)

This is a classical transformation from Eulerian to Lagrangian
coordinates [25]; this choice has proven to be an invariant
rescaling of the Navier-Stokes equation [8]. The new accelera-
tion term that comes from this transformation exactly balances
the inhomogeneous term in Eq. (2a). This is one advantage of
the method, which still remains limited to linear dependence
between U and x [8] (i.e., the case of homogeneous isotropic
compression). After transformation, we have

∂tu + 1

L
u · ∇̃u − S(t)u = −L2∇̃p + μ(t)

ρ(t)L2
∇̃2u. (4)
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The forcing term that is still present can be eliminated using a
rescaling of the variables [10],

t̃ =
∫ t

0
L−2(s)ds ũ(x̃,t̃) = L(t)u(x,t),

p̃(x̃,t̃) =L5(t)p(x,t), (5)

such that quantities expressed in the “moving” frame are now
identified by the symbol ∗̃.

The dynamic viscosity coefficient μ depends on the tem-
perature T as ∼T 5/2 for a plasma in the kinetic regime [2]. Fol-
lowing [6], we assume adiabatic compression so that the time
evolution of viscosity is μ(t) = μ0L(t)−5 for a monoatomic
ideal gas. The system (2) becomes

∂t̃ ũ + ũ · ∇̃ũ = −∇̃p̃ + ν0L̃
−2∇̃2ũ, (6a)

∇̃ · ũ = 0, (6b)

where the initial kinematic viscosity is ν0 = μ0/ρ0. Equations
(6a) and (6b) correspond to the Navier-Stokes equations for
ũ(x̃,t̃) with a time-increasing kinematic viscosity coefficient
ν̃(t̃) = ν0L̃

−2(t̃), where L̃(t̃) = L(t). In this moving frame,
an initially homogeneous turbulence remains so during the
compression. This new frame is significantly advantageous,
since it converts the problem of compressed turbulence into
that of HIT decay with time-varying viscosity. And since the
velocities in fixed and moving frame are linked by a factor
that depends only on time, the velocity fluctuation in the fixed
frame is homogeneous. This confirms the initial hypotheses on
the homogeneity of the fluctuating field.

Two nondimensional numbers permit us to fully charac-
terize the flow regime: the Reynolds number Re and the
compression number Cp, defined at initial time as

Re0 = u0�0

ν0
and Cp0 = u0

�0S0
, (7)

where �0 and u0 are characteristic length and velocity scales
of the initial turbulent flow. Re measures the ratio between the
turbulent to the physical viscosity, and Cp the ratio between
the turbulent frequency to the compression rate. It informs
about the initial conditions of the system and helps to determine
which physical phenomenon can become dominant during the
different phases of compression.

B. Direct numerical simulations and the EDQNM
model for compressed turbulence

In order to quantify and analyze the different phenomena
involved in the flow dynamics, and in particular to illustrate
the competition between turbulence production and viscous
dissipation, we present results from well resolved DNSs along
with predictions by the spectral EDQNM model.

Our DNS code solves the system of Eqs. (6) associated
to the coordinates in the moving frame. The system used in
[6] is slightly different and has an additional source term
due to a different choice of coordinate transformation. In
the representation corresponding to Eqs. (6), the numerical
resolution is not an issue since the viscosity coefficient keeps
growing. Our code uses a classical pseudospectral numerical
method in a three-dimensional 2π -periodic domain already
used by [26], from which it differs only by the time-varying
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FIG. 1. Evolution of turbulent kinetic energy K as a function of
the compression parameter L for both DNSs at resolution 5123 and
EDQNM simulations of a HIT compression case with Re0 = 250 and
Cp0 = 0.1. The critical compression parameter LM corresponds to the
kinetic-energy maximum before the beginning of the viscous phase.

viscosity which is treated by an explicit third-order Runge-
Kutta scheme. A validation of this method has been presented
in [27], showing in particular its ability to reproduce the
simulation results of [6].

We also use a spectral model adapted from the isotropic
EDQNM closure [15], and extended to treat turbulence under
compression (see details in [27]). The EDQNM model applied
to Eqs. (6) allows us to compute the evolution of the turbulent
kinetic-energy spectra Ẽ(k̃) as a function of the wave number
k̃ in the moving frame. Both are then transformed back to
k and E(k) in the initial fixed frame. The EDQNM model
proposed here is close to the original homogeneous isotropic
versions presented in [14,15] except for the choice of the eddy
damping term which takes into account the time-varying vis-
cosity, modifying the Markovianization process. The spectral
EDQNM model also reproduces adequately the results of [6]
and of other moderate Reynolds number DNS.

We illustrate this in Figs. 1 an 2, with results obtained
using an initial kinetic-energy spectrum of the Batchelor form
E0(k) ∼ k4 exp[−2(k/kpeak)2], where kpeak corresponds to the
maximum of E0. The initial Reynolds number is Re0 = 250
and the compression number Cp0 = 0.1, based on �0 = 1/kpeak

and u0 = K1/2. Turbulence is therefore relatively weak in this
example, while the compression is rapid compared to the
turbulent time scale.

In Fig. 1, we show the evolution of turbulent kinetic energy
K = ∫ +∞

0 E(k)dk as a function of the compression parameter
L(t). We observe a very good agreement between simulations
of 5123 grid-point DNSs and the EDQNM model during all the
phases of the kinetic-energy evolution. Moreover, the spectral
distribution of energy at four instants, plotted in Fig. 2 (bottom
row), shows a very good agreement between DNSs and the
EDQNM model at all scales. This supports the relevance of
the closure as a model for compressed turbulence.

The case presented in Figs. 1 and 2 is typical of the regime
extensively discussed in [6]. At the beginning [L(t) from 1
to O(10−1)], the dynamics of the flow is dominated by the
compression effects leading to the increase of kinetic energy.
Progressively, viscosity grows and dissipates energy in the
small scales and eventually at larger scales, as indicated by
the spectra. This counterbalances the turbulence production
mechanisms and finally triggers the sudden viscous dissipation
effect. These mechanisms are qualitatively observed in Fig. 2
(top row) which shows the spatial distribution of kinetic energy
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FIG. 2. Top row: distribution of turbulent kinetic energy K in the DNS at four instants of the evolution, indicated in the kinetic energy curve
of Fig. 1. The scaling of the box corresponds to the moving frame of reference. Bottom row: Associated energy spectra E(k̃) for both DNS and
EDQNM simulations, at the same instants.

in the DNS domain at the same four instants as the presented
spectra. One particularly observes the intensification of kinetic
energy, especially at instant (III) corresponding to the peak of
kinetic energy in Fig. 1, and the strong reduction of energy
levels at instant (IV), along with a smoothing of the field due
to the damping of small-scale fluctuations.

The critical value LM of the compression ratio corresponds
to the maximum of kinetic energy in Fig. 1. It indicates how
much the turbulence can be compressed before the appearance
of the sudden viscous dissipation effect. We have therefore
computed the evolution of LM with the two relevant nondi-
mensional parameters, Reynolds and compression numbers,
the initial spectrum remaining of the Batchelor form. The
corresponding map of LM in the (Re, Cp) coordinates is shown
in Fig. 3.

FIG. 3. Isocontour map of the critical compression parameter
LM corresponding to maximum of kinetic energy, as a function of
the initial Reynolds number Re0 and the compression number Cp0.
Results from EDQNM simulations. The black circle corresponds to
the parameters used in Figs. 1 and 2, and the red triangle to that of
Fig. 8. The red line is the contour line at LM = 1.

This parametric study was permitted by the EDQNM model,
which allows us to explore six decades of initial Reynolds
numbers Re0 and three decades of initial compression number
Cp0. It required as many as 10 000 EDQNM simulations,
which would not be possible using DNSs due to its high
computational cost.

As expected, Fig. 3 shows two general trends. First, when
the initial Reynolds number increases, LM decreases since the
viscosity coefficient needs to grow enough in order to impact
the main energetic scales. Second, for decreasing values of the
compression number Cp0, the critical compression parameter
LM also becomes smaller since turbulent production is stronger
and needs more time before being balanced by dissipation.

Upon closer inspection, the isolines of LM in Fig. 3 permit
us to identify two additional kinds of dynamics different from
that presented in Fig. 1, wherein turbulent production domi-
nance is followed by that of viscous dissipation as L decreases.
The first additional regime occurs at small initial Re0 and
large Cp0, and is also observed in [6]: dissipation immediately
prevails from the very beginning of the compression phase,
and yields a decay of turbulent kinetic energy, and a narrow
energy spectrum limited to large scales, as in Fig. 4(a).

The second additional regime appears at large values of
Re0 and Cp0, and corresponds to the presence of important
nonlinear energy transfers. In this new regime, two values
of the compression parameter, corresponding to two kinetic-
energy maxima, may exist. This generates a discontinuity
observed in Fig. 3 [top-right corner, at large Re and Cp, where
label (c) appears] which can be explained by considering the
following concurrent phenomena. First, kinetic energy grows
as L−2, which means it remains constant in the moving frame.
In the mean time, energy is transferred to small scales by
nonlinear effects and is then suddenly dissipated when reaching
the viscous scales, in the classical mechanism of enstrophy
blowup well known in HIT decay. This sudden energy loss can
counterbalance the growth of kinetic energy if the Reynolds
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FIG. 4. Evolution of kinetic energy K normalized by its initial value as a function of the compression parameter L for the three typical cases
indicated on the parametric map of Fig. 3. The spectrum in region (a) illustrates the immediate decay regime, that of region (b) the intermediate
regime, and region (c) shows the cascade regime.

number is not large enough, leading to a first maximum of
K(L). Meanwhile, large scales keep gaining energy due to
the compression until dissipated by the sudden growth of the
viscosity coefficient, resulting in the second maximum shown
in the spectrum in Fig. 4(c).

In summary, we have explored the influence of initial nondi-
mensional parameters on the dynamics of turbulent plasma
under compression by combining results of DNS and EDQNM
simulations. This has permitted us to identify the importance
of the various physical mechanisms involved during the com-
pression. In particular, we have shown that nonlinear energy
transfer can have a decisive role at high Reynolds number.
In the coming section, we propose theoretical arguments in
support of these conclusions.

III. SELF-SIMILAR SOLUTIONS IN PLASMAS
UNDER COMPRESSION

The main goal of this part is to derive the different self-
similar solutions for turbulent plasma under compression.
These solutions are first expressed in the moving frame, and
then transformed back in the laboratory frame using Eq. (5).
As already stated, we stress that this derivation is limited to
a restricted scenario, where a part of the phenomena typically
involved are not considered. Nevertheless we believe that this
simplified analysis can contribute to the understanding of the
different mechanism involved in the evolution of turbulence
in a plasma under compression. Section III A is dedicated
to the theoretical analysis, and in Sec. III B we show the
actual existence of these regimes using DNS and EDQNM
simulations.

A. Self-similar scaling

Three self-similar solutions are found, corresponding to
the rapid compression regime, the cascade regime, and the
viscous regime. They are listed hereafter, and for convenience
the corresponding scaling laws are gathered in Table I.

1. Rapid compression regime

The rapid compression (RC) regime, historically referred
to as rapid distortion theory—called RDT in [9], although
unlike in sheared turbulence, wave numbers are not distorted—
is the simplest self-similar solution which can be obtained.
Assuming that the turbulent time scale is much larger than

the compression time, such that Cp � 1, turbulence can be
considered frozen in the moving frame, leading to the following
energy spectrum:

Ẽ(k̃,t̃) = E0(k̃), or E(k,t) = E0[L(t)k] × L(t)−1, (8)

whence the evolution of kinetic energy and of the integral
length scale �I ,

K(t) =
∫ +∞

0
E(k,t)dk ∼ L−2(t),

�I (t) = 3π

4

∫ +∞
0 k−1E(k,t)dk∫ +∞

0 E(k,t)dk
∼ L(t). (9)

This self-similarity of spectrum Ẽ(k̃,t̃) is of course only
strictly valid for wave numbers unaffected by viscosity. It is
clear that the RC regime can only last for a limited duration,
due to the L−2 growth of the viscosity and to the nonlinear
transfer in the moving frame. Note also that K ∼ L−2 does not
necessary imply a RC phase. For instance, redistribution of
energy by nonlinear transfers can modify the shape of spectra
and the value of integral length scale �̃I , while still conserving
the total kinetic energy.

2. Cascade regime

The decay of HIT is extensively discussed in most turbu-
lence books, as for instance in [12,14,23]. According to these
monographs, the decay rate of energy depends on the cascading
process governed by large scales of turbulence, but not on the
value of the viscosity coefficient. For compressed turbulence,
although the viscosity coefficient varies in the moving frame,
one can expect similarly that the dynamics at large Reynolds
number is driven only by the turbulent energy flux from

TABLE I. Scaling laws corresponding to the different self-similar
regimes for the different turbulent quantities and nondimensional
numbers. The coefficients nc and nv are given by Eqs. (10) and (12)
as a function of the infrared spectral slope s.

RC regime Cascade regime Viscous regime

K ∼L−2 ∼Lnc−2 ∼Lnv−2

�I ∼L ∼Lnc/2 ∼L−1/2

Re ∼L2 ∼Lnc+1 ∼L(nv+1)/2

Cp ∼L−1 ∼L0 ∼L(nv/2+1)/2

023201-5
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large to small scales. Considering a self-similar evolution of
kinetic energy as K̃ ∼ t̃−nc , the integral length scale evolves as
�̃I ∼ t̃1−nc/2. Assuming the permanence of big eddies [11,16],
which can be expressed by limk̃→0 Ẽ(k̃,t̃) = k̃s (s being the
infrared spectral slope), we deduce from self-similarity

nc = 2(s + 1)

s − 3
. (10)

This provides the classical decay exponent generally encoun-
tered in turbulence: nc = 10/7 � 1.43 for the Batchelor spec-
trum (s = 4) and nc = 6/5 = 1.2 for the Saffman spectrum
(s = 2). Note that the permanence of big eddies is relatively
well observed for s � 3 while not completely true for s = 4
due to backscatter effects transferring energy from small to
large scales.

Returning to the laboratory frame using Eq. (5) and the
expression for L(t), this leads to the kinetic-energy evolution
as L → 0 for the cascade regime:

K ∼ Lnc−2 and �I (t) ∼ Lnc/2, (11)

leading in particular to a growth of kinetic energy and decrease
of integral scale as K ∼ L−4/5,�I ∼ L for Saffman turbulence
and as K ∼ L−4/7,�I ∼ L2 for Batchelor turbulence.

3. Viscous regime

The last regime is closely related to the sudden viscous dis-
sipation effect occurring in a turbulent plasma under compres-
sion, discussed in [6]. When the Reynolds number becomes
small enough, the decay of HIT enters a final regime which
is driven by dissipation and in which the nonlinear turbulent
transfer is negligible. This phase exhibits a self-similar solution
known as the final decay regime of HIT when the viscosity
coefficient is constant [12]. We propose here a generalization
for the time-varying viscosity case corresponding to a weakly
coupled plasma.

As for the turbulent decay presented in Sec. III A 2, we
consider a self-similar evolution in the moving frame of the
form K̃ ∼ t̃−nv . The scaling for the integral scale can be
obtained from the self-similar evolution of the turbulent time
∼t̃ and the viscosity coefficient ν̃(t̃), yielding �̃I ∼ [ν̃(t̃)t̃]1/2.
Assuming again limk̃→0 Ẽ(k̃,t̃) = k̃s as large scales remain
unaffected by viscosity, we obtain, for L̃ → 0,

nv = 3
2 (s + 1). (12)

Similarly to the cascade phase, we deduce the scaling laws for
the kinetic energy and integral scale in the laboratory frame
for the viscous phase,

K ∼ Lnv−2 and �I (t) ∼ L−1/2, (13)

leading in particular to a sudden viscous dissipation of the form
K ∼ L5/2 in Saffman turbulence and K ∼ L11/2 for Batchelor
turbulence. Therefore, the viscous regime corresponding to
the sudden dissipation effect clearly induces an important
sensitivity to initial conditions contrary to the cascade regime
for instance where the variations of the growth exponent are
smaller. Notably in the viscous regime, the integral scale of
turbulence grows despite the compression and is not dependent
on initial conditions.

FIG. 5. Evolution of (top) the kinetic energy K and (bottom)
the integral scale �I as a function of the compression parameter L

using EDQNM simulations. Solid line: Batchelor initial condition
(s = 4). Dashed line: Saffman initial condition (s = 2). The scaling
laws corresponding to the self-similar solutions derived in Sec. III A
are also shown.

B. Simulations of self-similar regimes

We now confirm the actual appearance, in simulations, of
the different self-similar solutions analytically found in the
theoretical study of Sec. III A. We consider two types of initial
conditions, as representative of many encountered situations:
Saffman turbulence (s = 2) corresponding to an equipartition
of energy at large scale among the different wave vectors, and
Batchelor turbulence (s = 4) generated by backscatter effects
from small scale perturbations. In Sec. III B 1, we consider the
case of high Reynolds number turbulence, and for this we use
the EDQNM model. In Sec. III B 2, we model the compression
of a spherical turbulent layer using both DNS and EDQNM.

1. High Reynolds number compressed turbulence
with EDQNM simulations

The Reynolds number Re = u�/ν for a weakly coupled
turbulent plasma under compression is expected to decrease,
as assessed by the scaling laws for u = K1/2 and � = �I in
either the rapid compression or the cascade or viscous regime.
Thus, we use the EDQNM model to reach a very high initial
Reynolds number, beyond the possibilities of DNS, in order to
obtain the different self-similar solutions derived in Sec. III A.

We choose initial spectra in the von Karman type E0(k)
∼ ks exp [−s/2(k/kpeak)2], both for the Saffman (s = 2) and
the Batchelor (s = 4) cases. We set the Reynolds number at
Re0 = 107 and the compression number Cp0 = 0.47. Accord-
ingly, this corresponds to a flow with high intensity turbulent
fluctuations and to fast compression.

Figure 5 shows the evolutions of the kinetic energy K and
of the integral length scale �I , and Fig. 6 shows that of the
Reynolds number Re and of the compression number Cp. The
corresponding spectra E(k) at different stages of the evolution
are given in Fig. 7.
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FIG. 6. Evolution of (top) the Reynolds number Re and (bottom)
the compression number Cp as a function of the compression pa-
rameter L using EDQNM simulations. Solid line: Batchelor initial
condition (s = 4). Dashed line: Saffman initial condition (s = 2).
The different scaling laws corresponding to the self-similar solutions
derived in Sec. III A are also shown.

Figures 5 and 6 (bottom) exhibit very clearly the three
different regimes that can be identified by the evolution
changes in K , �I , and Cp when L decreases. The dynamical
changes in the evolution of Re (Fig. 6, top) are less obvious due
to transitions between similar power laws, especially the RC to
cascade one, but are still present. For all curves, the self-similar
scaling laws proposed in Sec. III A fit adequately the results
of simulations. The succession of rapid compression, cascade,
and viscous regimes is clear, and the values of L at which the
RC-cascade transition occurs seem to be similar for Batchelor
and Saffman turbulences.

A greater sensitivity to initial conditions in the viscous
regime for the turbulent kinetic-energy evolution is observed
in Fig. 5, but the integral length scale increase in this regime is
similar for both Saffman and Batchelor cases. We conclude that
differences in the integral scale �I dynamics are only due to
the cascade phase, thus demonstrating the imprint of nonlinear
mechanisms.

The Reynolds number decrease observed in Fig. 6 (top) is
mainly due to the growth of viscosity, while initial conditions
have relatively low influence except during the viscous phase.
The compression number Cp (Fig. 6, bottom) increases from its
initial low value Cp = 0.47 during the RC phase, and reaches a
plateau at about ten times this value during the cascade phase.

The fact that simulations agree well with the scaling laws
proposed in Sec. III A is a consequence of the fact that the
distribution of energy at large scales remains constant during
the compression. This constancy is verified in Fig. 7, for
both Saffman and Batchelor turbulences, in which the infrared
slopes of turbulent kinetic spectra are maintained over three
decades of k. In particular, energy backscatter usually alters the
slope in Batchelor turbulence, but this seems of little influence
here. In addition, the presence of nonlinear transfer over a
few decades of scales during the cascade regime is attested
by the observed Kolmogorov scaling k−5/3 in spectra E(k) at
L = 10−2 in Fig. 7. On the contrary, the absence of inertial
subrange shows that, during the sudden viscous dissipation
phase, energy is systematically dissipated from small to large
scales.

In summary, we have evidenced in this section the existence
of the self-similar regimes by means of EDQNM simulations
at high Reynolds number with long evolution times, thus
reaching very small compression parameter L. This clearly
demonstrates the influence of the initial distribution of energy
at large scales, in particular during the viscous dissipation
phase. In the following, we show that these results still apply
in configurations more relevant to ICF, i.e., when the Reynolds
number is smaller and in the presence of inhomogeneities.

2. Spherical turbulent layer

An essential question in ICF is how the turbulent ablator
or fuel interface eventually contaminates the hot spot at the
center of the spherical capsule. We therefore consider here
a spherical turbulent layer configuration, more relevant to
the ICF problem than homogeneous turbulence. Of course,
this case is still simplified for it discards important physical
phenomena that are present in ICF, for instance density effects
and the stagnation shock in the fuel, which has to be taken
into account before the bang time. Nonetheless, it is a progress
towards more realistic predictions. Therefore, in this section,
we investigate the self-similar solutions and the influence of
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FIG. 7. Kinetic-energy spectra E(k), corresponding to EDQNM simulations of Figs. 5 and 6, taken at different values of the compression
parameter L. Left: Saffman initial condition (s = 2). Right: Batchelor initial condition (s = 4).
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large scale perturbations in the case of a spherical turbulent
layer under compression using both DNS and EDQNM.

Although some estimates of physical parameters of ex-
perimental ICF are very difficult to make, we choose initial
conditions that can be relevant to actual flow situations. We
evaluate the Reynolds and compression numbers based on
the ICF simulations corresponding to the NIF shot N120205
presented in [1]. During the phase considered just before the
bang time, the ablator or fuel interface passes from a radius
of 340 μm to 54 μm in 1 ns giving S0 ∼ 109 s−1. The initial
fuel viscosity is around ν ∼ 10 cm2 s−1 for ρ ∼ 10 g cm−3 and
T ∼ 500 eV corresponding to a plasma coupling parameter
� ∼ 0.1 for the deuterium-tritium fuel. The integral scale and
fluctuating velocity are respectively �0 ∼ 10−2 cm and u0 ∼
106 cm s−1, leading to Re0 ∼ 103 and Cp0 ∼ 10−1. In our
simulations, we therefore choose Re0 = 450 and Cp0 = 0.1,
figures that are relevant to ICF configurations.

The initial spectra are of von Karman type already intro-
duced in Sec. III B, E0(k) ∼ ks exp [−s/2(k/kpeak)2]. These
conditions are sufficient to initialize the EDQNM model
which assumes homogeneity and isotropy of turbulence. Its
predictions will be used to compare to the DNS results. The
initialization of the DNS fluctuating velocity field is however
more complex, since it requires us to generate an initial
spherical layer. In the following the reference frame is still
Cartesian, as in the previous DNS. The radial coordinate r

with respect to the center of the domain is used, as a convenient
way to represent the initial spherical layer and to discuss the
the dependency of the spherically averaged statistics.

We therefore proceed as follows:
(1) We generate in spectral space a random incompressible

velocity field û(k), as classically done in simulations of HIT.
(2) Using inverse Fourier transform, we obtain the vorticity

field ω(x) in physical space, which is then filtered to ωF (x)
in order to create the spherical layer. The filter is the simple
characteristic function of the sphere:

ωF (x) = ω(x) for rm � |x| � rM, and

ωF (x) = 0 elsewhere, (14)

10 -210 -110 0

10 0

10 1

10 2
s=4
s=2

time �

L

����

K/K0

(I) )VI()III()II(

FIG. 8. Evolution of turbulent kinetic energy K as a function
of the compression parameter L for both 10243 DNS and EDQNM
simulations corresponding to the case of the spherical turbulent layer.
Solid line: DNS; dashed line: EDQNM simulation. Saffman and
Bachelor initial conditions with respectively (s = 2) and (s = 4) are
used, as indicated in the legend.

where rm and rM define the inner and outer radii of the spherical
layer.

(3) The filtered vorticity ωF (x) is Fourier transformed back
to spectral space, and used to generate an incompressible
velocity field ûF (k) whose amplitudes are adjusted to fit the
specified initial spectrum E0(k). Although kinetic energy is
mainly concentrated inside the spherical shell, weak irrota-
tional fluctuations of the velocity field appear outside it in order
to satisfy incompressibility.

The DNS are done in a three-dimensional 2π -periodic
domain, so that it is important to ensure minimal interaction
between adjacent spherical turbulent layers. Therefore, we
choose an outer radius rM small enough compared to the size of
the domain H = 2π , so that the velocity decreases sufficiently
between the layers. We have experienced that rM/H = 1/π is
adequate for that, and we also choose an inner radius such
that (rM − rm)/H = 1/(2π ). The thickness of the turbulent
spherical layer �MZ is determined on the spherically integrated
kinetic-energy profiles and corresponds to the region where
K � 0.1 maxr K(r). The integral length scale �I has to be
smaller than �MZ in order to avoid a fast turbulent diffusion

150

K

1

s = 4

s = 2

(I) (II) (III) (IV)

FIG. 9. Distribution in a plane cut of turbulent kinetic energy K in the DNS at different instants indicated in Fig. 8. Top row: the Batchelor
case (s = 4); and bottom row: the Saffman case (s = 2). The scaling corresponds to that of the moving frame.
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FIG. 10. Evolution of (top) the Reynolds number Re and (bottom)
the compression number Cp as a function of the compression parame-
ter L for the spherical turbulent layer case extracted from DNS (solid
line) and EDQNM (dashed line) simulations. Black lines: Batchelor
initial condition (s = 4). Red lines: Saffman initial condition (s = 2).

of the layer during the compression. In consequence, we
choose �I0/�MZ0 ∼ 0.07. This scale separation along with the
constraint of resolving all the scales of turbulence call for 10243

DNS grid points.
Figure 8 shows the evolution of kinetic energy from DNS

and EDQNM, and Fig. 9 shows visualizations of the kinetic-
energy field extracted from DNS at different stages of the
compression. The Reynolds and compression numbers Re and
Cp, the integral scales �I , and the turbulent layer size �MZ are
plotted in Figs. 10 and 11 respectively. Energy spectra at the
same compression stages as the kinetic-energy distribution in
Fig. 8 are plotted in Fig. 12. The kinetic energy radial profiles
averaged over spherical shells in physical space are shown in
Fig. 13.

The kinetic-energy evolution in Fig. 8 exhibits two self-
similar phases corresponding to rapid compression followed by
the viscous dissipation regimes. As expected, the intermediate
cascade phase is not observed due to the low value of the initial
Reynolds number.

As for the simulations presented previously, DNS and
EDQNM agree very well if one considers the nondimensional

FIG. 11. Evolution of the integral scale �I (DNS and EDQNM)
and the turbulent layer size �MZ (DNS) as a function of the compres-
sion parameter L corresponding to the case of the spherical turbulent
layer with (red lines) Saffman and (black lines) Batchelor initial
conditions.

parameters (Fig. 10) and the one point statisticsK, �I (Fig. 11),
but it is also true for the kinetic-energy spectra (Fig. 12).
This may appear surprising in the sense that EDQNM is a
model for homogeneous isotropic turbulence, whereas the
spherical turbulent layer is spatially inhomogeneous. This
can be explained by the fact that turbulence length scales
remain smaller than the size of the turbulent layer throughout
the compression, as shown in Fig. 11. Thus the evolution
of turbulent structures is not influenced by the large-scale
inhomogeneity, and the flow remains quasihomogeneous as
regards its statistics.

The different scaling laws derived in Sec. III A are also re-
covered in the spherical turbulent layer simulations confirming
in particular that viscous dissipation is more important in the
Batchelor case compared to the Saffman case, as shown in
Fig. 9. One however remarks in Fig. 11 that the integral length
scale �I is larger in Saffman turbulence than in the Batchelor
case. This can be explained by non-negligible nonlinear turbu-
lent transfer around LM , since, during the compression phase,
�I always evolves as L2 in the rapid compression regime, while
it scales as L−1 in the viscous regime.

It is interesting to look at the �MZ’s evolution during the
compression in Fig. 11 and at the different kinetic-energy
profiles in Fig. 13 which, in the ICF context, would correspond
to studying the contamination of the hot spot by the turbulence.
At the beginning, for L � LM , the evolution of the turbulent
fronts of the turbulent layer is slow and �MZ ∼ L2. However,
the dynamics of �MZ changes when entering the viscous phase
which corresponds to a diffusive increase of turbulent kinetic

FIG. 12. Energy spectra as a function of wave number E(k) corresponding to the spherical turbulent layer case both in DNS (solid line) and
EDQNM (dashed line) and taken at different values of the compression parameter L. Right: Batchelor initial condition (s = 4). Left: Saffman
initial condition (s = 2).
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FIG. 13. Spherically integrated kinetic-energy profile extracted from DNS as a function of radius r̃ and taken at different values of the
compression parameter L. Left: Saffman initial condition (s = 2). Right: Batchelor initial condition (s = 4).

energy towards the center, as seen in the radial profiles in
Fig. 13. This phase also is sensitive to initial conditions since
kinetic energy in the center in the Saffman case is higher than
in the Batchelor case.

In summary, our simulations show that the sudden viscous
phase not only dissipates the turbulent kinetic energy but also
enhances its transport, possibly leading in the context of ICF
to the contamination of the hot spot. Accordingly, it seems
particularly important to predict the time at which the viscous
phase occurs, especially if it is before the bang time. From data
of the simulations of [1], one can obtain a quantitative estimate
of the order of the corresponding time scales. Although
some physical phenomena are overlooked and there remain
uncertainties concerning their relative magnitude, it seems
that the bang time appears before the viscous phase, hence
possibly explaining why the contamination of the hot spot is
not very important (by bang time the fuel-ablator interface
has converged from 340 μm to 54 μm giving Lbang ∼ 0.16 >

LM ). However, it seems possible to consider different initial
perturbations in which the viscous phase may appear earlier
than the bang time. This would clearly result in important
modifications of the turbulent mixing in the fuel.

IV. CONCLUSION

In this paper, we study compressed turbulence in a weakly
coupled plasma by identifying the different regimes resulting
from the competition between turbulence production, non-
linear energy transfer, and viscous dissipation. Depending
on the relative importance of these terms, three self-similar
regimes can appear, namely rapid compression, cascade, and
viscous phases. All three are clearly observed in our DNS
and EDQNM simulations. While the rapid compression and
viscous phases have been discussed in [6], the cascade phase
is precisely characterized thanks to the EDQNM model that
permits us to explore very high Reynolds number configu-
rations. In addition, this model has proven its efficiency at
lower Reynolds numbers, by matching DNS results regarding
one-point statistics and two-point correlation spectra.

For sufficiently large initial Reynolds number and small
initial compression number, weakly coupled plasmas under
compression experience a growth of kinetic energy due to a

rapid compression or cascade phase. However, the viscous
phase always prevails at the end of the compression leading
to the sudden dissipation phenomenon. By performing a
parametric study with the EDQNM model, we have been able
to explore the phase space of nondimensional numbers, Re
and Cp, and to locate the values of the critical compression
parameter at the maximum of kinetic energy corresponding to
the beginning of the viscous phase. This also reveals the com-
plex interplay between turbulence production, transfer, and
dissipation, leading for some configurations to two successive
growth or decay phases of kinetic energy in place of one during
the compression.

The scaling laws for the different self-similar regimes have
been derived from a theoretical analysis and recovered in DNS
and EDQNM simulations. As in other classical turbulence
problems, it demonstrates the dependence of the flow dynamics
on the initial distribution of energy at large scales. This
appears particularly crucial during the viscous phase since it
can change drastically the decay exponents of kinetic energy.
Consequently, a much higher amount of turbulent fluctuations
remain at the end of compression when initial kinetic energy
is concentrated at large scales.

Thanks to these results about the refined stages of the flow
dynamics and the conditions of their appearance, we were
able to extend our study to the case of an inhomogeneous
spherical turbulent layer under compression, using parameters
representative of ICF capsules. While recovering the different
phases already identified in the homogeneous configurations,
the simulations permit us to observe the diffusion of the layer
towards the center, mimicking the contamination of the hot spot
by turbulence. The results show an enhanced enlargement of
the layer during the viscous phase, along with a great sensitivity
to initial conditions. Therefore, it raises the question of whether
the sudden viscous phenomenon is favorable to achieve igni-
tion in ICF. On the one hand, viscous dissipation participates
to a global temperature increase by converting kinetic energy
into internal energy, increasing the fusion reactions. On the
other hand, turbulent mixing can be transported into the core,
cooling the hot spot. In all cases, the appearance of the viscous
phase indicates an important change in the plasma dynamics
and it seems important to figure out when this happens, before
or after the bang time for some configurations.
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