N

N

Wall-modeled large-eddy simulation of the flow past a
rod-airfoil tandem by the Lattice Boltzmann method

Hatem Touil, Satish Malik, Emmanuel Lévéque, Denis Ricot, Alois Sengissen

» To cite this version:

Hatem Touil, Satish Malik, Emmanuel Lévéque, Denis Ricot, Alois Sengissen. Wall-modeled large-
eddy simulation of the flow past a rod-airfoil tandem by the Lattice Boltzmann method. International
Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28 (5), pp.1096-1116. 10.1108/HFF-
06-2017-0258 . hal-02084828

HAL Id: hal-02084828
https://hal.science/hal-02084828
Submitted on 20 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02084828
https://hal.archives-ouvertes.fr

Wall-modeled large-eddy simulation of the
flow past a rod-airfoil tandem by the Lattice
Boltzmann method

H. TouilV, S. Malik®, E. Lévéque(z), D. Ricot® and A. Sengissen(4)
(1) C-S Systemes d’Information, Lyon, France
(2) LMFA, CNRS, Ecole Centrale de Lyon, Ecully, France
(3) Technocentre Renault, Guyancourt, France
(4) Airbus Operations SAS, Toulouse, France

Abstract

Purpose — The lattice Boltzmann (LB) method offers an alternative to conventional com-
putational fluid dynamics (CFD) methods. However, its practical use for complex tur-
bulent flows of engineering interest is still at an early stage. In this article, a LB wall-
modeled large-eddy simulation (WMLES) solver is outlined. The flow past a rod-airfoil
tandem in the sub-critical turbulent regime is examined as a challenging benchmark.
Design/methodology/approach — Fluid dynamics are discretized upon the LB princi-
ples. The large-eddy simulation is accounted straightforwardly by including a modeled
subgrid-scale viscosity in the LB scheme, whereas a wall-law model enforces the bound-
ary condition at the first off-wall node. This physical modeling is briefly introduced and
relevant references are given for details. The flow past a rod-airfoil tandem at Reynolds
number Re = 4.8 x 10* and Mach number Ma ~ 0.2 is simulated on a composite multi-
resolution grid; the numerical set-up is detailed. Unsteady aerodynamic and aeroacoustic
features including spectral analysis and far-field pressure fluctuations are discussed.
Findings — Extensive quantitative comparisons with both experimental and numerical
reference data indicate that aerodynamic and aeroacoustic features are well captured by
the LB simulation.

Originality/value — Our study shows that WMLES within the LB framework provides
a workable and efficient alternative to Navier-Stokes CFD solvers in the context of com-
plex turbulent flows. The LB method permits to access an attractive turnaround time while



preserving engineering accuracy.
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Nomenclature

At = time step

Ax = lattice spacing

Co = speed vector of the mesoscopic particles in o direction
u = velocity vector of the fluid

c = airfoil chord (m)

D = diameter of the rod (m)

Ma, Ma,.; = Mach non-dimensional number Ma = Ma,s = Uyer/cs

q" = superscript used when the quantity q is non-dimensionalized in wall units
1% = kinematic viscosity of the fluid (m? /s)

Vsgs = subgrid-scale turbulent viscosity (m? /s)

Qg = collision operator in the o'" direction

P = density of the fluid (kg/m?)

Ts = relaxation time towards equilibrium in collision operator

CI’7 = r.m.s. pressure coefficient

Cp = pressure coefficient

Cs = speed of sound (m/s)

fa = density of particles that move with velocity ¢y

fs = cylinder vortex shedding frequency

le = length / non-dimensionalized by chord length c

p = pressure p = pcf (Pa)

St = Strouhal number St = f;- D /Uyt

U = streamwise velocity (i) parallel to the incident direction

U,y = incident velocity (m/s)

Vv = vertical velocity (u,) orthogonal to the rod and to the incident direction
w = spanwise velocity (u,) parallel to the rod

AVBP = Navier-Stokes finite-volume solver, namely A Very Big Project

LaBS = present Lattice Boltzmann solver

TurbFlow = Navier-Stokes finite-volume solver (dedicated to turbomachinery flows)
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Figure 1: Wall-modeled LES of the flow past a rod-airfoil tandem at Rep = 4.8 x
10* in the subcritical turbulent regime (shear-layer transition regime) by the lattice
Boltzmann method. Instantaneous iso-surfaces of Q-criterion colored by the non-
dimensional streamwise velocity U /Uyeg.

1. Context and motivations

Standard approaches of computational fluid dynamics (CFD) rely on the dis-
cretization of the Navier-Stokes (N-S) equations, which govern dynamics at a
macroscopic level. The N-S equations are physically sound, however, their nu-
merical integration is difficult owing mainly to their highly non-linear nature. For
most cases of interest, solutions develop many scales of motion and levels of am-
plitude that are difficult to handle numerically, and require to resort to high-order
discretization methods and specific meshing strategies [42]. These constraints are
strengthened when addressing complex turbulent flows.

In the last three decades, the lattice Boltzmann (LB) method has emerged as a
conceptually different approach of CFD. The first computationally viable realiza-
tion dates back to the late eighties [38]. The LB scheme governs fluid motions at
a mesoscopic level that is intermediate between the microscopic and the macro-
scopic [10, 37]. Capturing the kinetic behavior of collections of fluid particles is
here preferred to solving non-linear PDEs. This seems to be a crazy bet, how-
ever, most details at the mesoscopic level actually play no role at the macroscopic
level. Therefore, much simplier mesoscopic dynamics may be designed retaining
only the basic features that pertain at the macroscopic level. This is, in short, the
rationale behind the LB approach [24, 17]. Considerable success in simulating
fluid flows and heat transfer problems have already been reported [2, 39] but its



practical use for turbulent flows of engineering interest remains at an early stage
as compared to classical NS approaches [9, 32]. Our study helps to fill this gap
by assessing quantitatively the potential of the LB approach in terms of accuracy,
numerical workability and turnaround time on a complex flow configuration. The
flow past a rod-airfoil tandem in the sub-critical turbulent regime is considered as
a challenging test case. Our study complements some preliminary LB results al-
ready reported on this test case [34]. In such flow configuration, the LB approach
must incorporate turbulence modeling and deploy on a composite multi-resolution
grid to focus on large-eddy dynamics and alleviate computational efforts [40]. For
this purpose, a modeled subgrid-scale viscosity is included in the bulk dynamics,
whereas a wall model is used to enforce a boundary condition at the first off-wall
node without resolving the whole boundary layer. This eventually yields a intri-
cate set of advanced numerical methods and physical models bundled in a CFD
solver that is here tested.

The rod-airfoil flow configuration is recognized as a representative benchmark
for the numerical modeling of turbulent fluid motions interacting with airframe
elements [18]. It is recommended by the Advisory Group for Aerospace Re-
search and Development (AGARD). The rod creates a turbulent wake which in-
teracts with the airfoil downstream. At diameter-based Reynolds number Rep =
4.8 x 10*, the boundary layer separation on the rod occurs upstream the transi-
tion. This results in a three-dimensional turbulent vortex shedding that eventually
impinges onto the airfoil and partly splits at its leading edge (see Fig. 1). The rod-
airfoil flow in the shear-layer transition regime (or sub-critical turbulent regime)
is well-documented. It involves not only complex dynamics related to turbulent
von Karman street and wake impingement, but also non-trivial sound generation
processes [19]. This test-case has been considered to evaluate the capability of our
lattice Boltzmann wall-modeled large-eddy simulation (WMLES) solver. Impor-
tantly, detailed quantitative comparisons have also been made with conventional
high-order finite-volume N-S solvers on the same flow configuration and compa-
rable numerical set-up for a better evaluation.

The numerical method and the physical modeling into play are presented in
section 2 with a particular emphasis on the LB scheme and the turbulence mod-
eling, which are original. The numerical set-up of the simulation is detailed in
section 3 while the results are discussed in section 4. Concluding remarks are
given at the end.



2. Numerical method and physical modeling

2.1 Lattice Boltzmann method

Our solver is built upon the LB principles, which offers a particle-based descrip-
tion of fluid dynamics [10, 37]. Therefore, the fluid is viewed as populations of
fictitious particles (carrying mass) that collide and move along the links of a dis-
crete Cartesian lattice. This obviously refers to a kinetic description and rigorous
connections can be established with the Boltzmann equation [36].

Usual macroscopic fluid motions are reconstructed locally by summing up the
contributions of particles moving in the different directions. The mass density p
and fluid momentum pu are given at each lattice node by

p=) fo and pu=Y fucq, (1)

where f, denotes the density of particles that move with a discrete velocity c.
The D3Q19 lattice with nineteen possible velocities is here adopted. It is sketched
in Fig. 2.

The LB scheme governs the evolution in space and time of the fy’s on the
lattice and usually proceeds in a two-step collide-and-stream procedure [10, 37].
The collision accounts for the instantaneous redistribution of particles among the
different directions of propagation and expresses formally as

3m(X,Z):fa(X,l>+Qa(X,I), (2)

where €, can be identified as a collision operator. The streaming transports
the particles (according to their post-collision velocity) to the neighboring lattice
nodes, i.e.

fa(X+ At t +At) = fo"(x,1). (3)
These two steps eventually yield the fundamental equation of the LB scheme
fa(X+cqAt 1 +At) = fo(X,1) + Qg (X,1). 4

This equation is reminiscent of the discrete-velocity Boltzmann equation inte-
grated along characteristics.

The fluid mechanics is introduced essentially through the modeling of the col-
lision operator. In this respect, the so-called BGK approximation, initially pro-
posed by Bhatnagar Gross and Krook [3] is often used:

Qq(x,1) = (fa(x,1) — fol(x,1)). (5)

1
Ts



Figure 2: The set of particle velocities {cy} at each node of the D3Q19 lattice.
These 19 velocities can be grouped into three categories of vectors pointing re-
spectively to the “center” (null velocity), the “faces” and the “edges” of a cube.
For clarity, only the velocities in the horizontal plane are displayed. During a time
step, the particles move exactly from a node to a neighbouring node of the lattice.

This approximation refers to the relaxation of all densities to their values at
(isothermal) statistical equilibrium

e wicq; | willj Qaij
fat=wap (14— 2
C 2cs

N

) with Qaij:COlicocj_Csz'(Sif (6)

Repeated indices i, j are implicitly summed over in Eq. (6). The weighting co-
efficients are given by wg = 1/3 for the “center”, wy_¢ = 1/18 for the “faces”
and wy_ 13 = 1/36 for the “edges”. To ensure physical consistency, ¢, refers to
the speed of sound in the fluid and the relaxation coefficient 7g is linked to the
kinematic shear viscosity of the fluid by 7g = 1/2 4+ v/c2At. In practice, dynam-
ics is expressed in lattice units for which the time step and the lattice spacing are
both equal to unity. Furthermore, Ax/At = v/3¢, by construction. This scheme is
explicit, second-order accurate in time and in lattice spacing and approaches (at
low frequency) the solution of the weakly compressible isothermal Navier-Stokes
equations with a third-order error in Mach number. Finally, the implicit equation
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of state for the fluid is p = pc2.
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Figure 3: Doubly periodic shear layers vorticity z-component distribution at times
t = 0.6s (left) and r = 1.0s (right). From top to bottom: BGK reference solution
on a 10242 grid, BGK on a 128 grid and DRT scheme with 7, = 0.7 on a 1282

grid



2.2 Lattice Boltzmann solver
2.2.1 Collision operator

Our algorithm is a variant of the standard BGK scheme introduced above. It is
based on a two-relaxation-time collision operator supplemented with high-order
selective filters applied to flow variables for a better robustness and accuracy [30].
Its abbreviated name is DRT for dual relaxation time in the following. The idea
behind this variant is to over-relax the distributions towards equilibrium while
preserving the conservation of mass and momentum, and to reconstruct the non-
equilibrium part of the distributions through a second-order regularization proce-
dure according to [21]. This modified collision expresses as

~ 1
o' = fo——(fa—fa') (7)
Tn
~ Ts — Typ Wo
out __ rout no ) 2. neq
a —Ja T ZC? (COUCOCJ Cs 51/) Hij (8)
where I}/ = Y (fo — fo')caica is the non-equilibrium part of the second-order

moment, Tg is the physical shear relaxation time and 7, is a purely numerical re-
laxation time aimed at damping non-hydrodynamical ghost modes and improving
the stability. Repeated indices i, j are implicitly summed over in Eq. (8).

To illustrate the efficiency of our specific DRT scheme, the doubly periodic
shear layers is used as a standard test case. The initial field reads

p

p(x7t0) = Do
p(x.f0) = pPo

_1 <1
u (tg) = {tanh(@(y 4)), fory <3 ©)
wr (x,00) = 8 sin(2m(x+1)
us <x7t0> =0

\

where 6 = 120 and 6 = 0.05. These values are chosen in order to compare qual-
itatively to the reference papers [6, 25, 12]. The z-component of the vorticity at
times t = 0.6s (left) and r = 1.0s (right) is displayed in Fig. 3 for a reference
BGK simulation on a high-resolution 10242 grid (top), a BGK simulation on a
much coarser 1282 grid (middle) and a DRT simulation with 7,, = 0.7 on the same
coarse grid (bottom). While the BGK simulation suffers from numerical instabili-
ties, the DRT scheme (bottom) obviously shows an improved stability and suitably
approximates the high-resolution solution (top).
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2.2.2 Turbulence modeling

Unsteady simulations of flows at Reynolds numbers of interest for engineering
applications require to resort to large-eddy simulation (LES). In order to make the
computation tractable, the grid resolution is deliberately reduced. In that case,
the original flow equations must be supplemented by a new term accounting for
the interaction between unresolved (subgrid) and resolved dynamics. A common
thread is to assume that this stress is essentially diffusive, which calls for the mod-
eling of an additional subgrid-scale viscosity. In the context of engineering flows,
which may experience strong unsteady events such as boundary-layer separation,
vortex shedding or disturbances induced by a moving body, the modeling of the
subgrid-scale viscosity is known as a difficult problem [31]. Strong unsteadiness
generally occurs at low frequencies compared to the turbulence activity. Further-
more, it is often associated with large amplitudes of the rate of strain. In this
respect, a variant of the Smagorinsky model has been used to account explicitly
for the low-frequency variations of the rate of strain [22]. Namely, the viscosity
of the shear-improved Smagorinsky model (SISM) formulates as

Vsgs (X, 1) = (C,A)? (18] (x,1) — 7 (x,1)) (10)

where C; = 0.18 is the standard Smagorinsky constant, A is the local grid
spacing and |S| denotes the norm of the rate-of-strain tensor, S;; = 1/2(dju; +
diuj). The correcting term .7 is the norm of the low-pass filtering (in time) of
the rate of strain, as detailed in [7, 5]. This modeling in conjunction with the LB
approach has already proved to be valuable for the simulation of turbulent flows
[40, 33]. Let us emphasize that LES can be handled straightforwardly within the
LB framework [9]. The subgrid-scale viscosity appears as an additional spatio-
temporal contribution to the relaxation time, i.e.

‘CS(X,t)zé—l—Hzg—it(x’t). (11)
Beside this (minor) correction, the scheme remains unchanged.

In order to reduce the computational cost, the solver handles multi-domain
grid displaying various levels of spatial resolution. The matching of distributions
at the interface between domains accounts for the discontinuity of the rate of strain
and encompasses effects related to the subgrid-scale dynamics, as already detailed
in [40]. Finally, a wall-law model is used to match the flow variables (at the first



off-wall cell) with the unresolved boundary-layer dynamics [23]. Our wall law
includes adverse-pressure-gradient effects and curvature corrections. Formally,

1
Uty = <E logy™ + B) + correcting terms. (12)

All details about the wall-law modeling may be found in [1, 29]. The reconstruc-
tion (at the boundary) of particle densities from flow variables accounts accurately
for the shape of the geometry [41].

3. Numerical set-up of the test case

Our flow configuration reproduces the experiment carried out by Jacob et al. in
the anechoic wind tunnel at Ecole Centrale de Lyon [18]. Namely, a symmetric
NACAOQO012 airfoil of chord ¢ = 0.1 m is placed one chord-length downstream a
rod of diameter D = 0.01 m. The incoming flow is uniform with velocity Uyt =
72 m/s, temperature T = 293 K and mass density p = 1.204 kg/m>. The sound
speed is ¢y = 343 m/s yielding a reference Mach number Mayes =~ 0.2.

At | 1.68x107s | 3.36x10"'s | 6.73x10's | 1.35x10%s | 2.69x10%s | 5.38x10Fs
Ax 1x10%m 2104 4x10*m 8x10“%m | 1.6x103m | 3.2x10°m

Figure 4: The computational mesh is structured in six embedded refinement levels.
The external zone (surrounding white zone) is a very large parallelepipedic box,
not shown here for clarity. A view of the whole simulation domain is shown in
Fig. 10 for instance.
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The computational domain is structured in six embedded zones refined by
octree [40] with increasing resolution when approaching the rod and the airfoil
(see Fig. 4). The overall number of cubic cells is approximatively 20 x 10%. The
grid resolution fulfills usual standards for LES [31]. The domain is periodic in the
spanwise direction and extends over 0.35 chord length. Friction-less conditions
are used for the top and bottom boundaries. Let us mention that the external mesh
(white zone) is here not sufficiently broad to allow sound waves to propagate to
the far field.

hu_sgs/nu

0.0 25 5 7.5 10.0

|||H\|||\‘|||H_\_I

Figure 5: Snapshot of the subgrid-scale activity identified by the ratio vyg(X,1)/V
with Vg (X, ) given by Eq. (10).

The grid resolution in the vicinity of the rod and the airfoil is Ax/c = 0.001
corresponding approximatively to Ax"T ~ 20 in wall units. This justifies the in-
troduction of a wall law to treat the boundary condition at the first off-wall cell.
In the bulk of the flow, the unresolved dynamics due to the lack of grid resolu-
tion is accounted by the subgrid-scale viscosity given by Eq. (10). As mentioned
previously, this viscosity is included as an additional contribution to the relax-
ation time Tg in the collision process according to Eq. (11). As expected, Fig. 5
shows that the subgrid-scale viscosity prevails over the fluid viscosity in regions
where turbulent motions develop. The turbulence model truly takes the control of
the dissipation in these regions. Note also that the intensity of the subgrid-scale
viscosity increases as the grid becomes coarser. Finally, dynamic sponge zones
[11] are used to avoid spurious reflections of acoustic waves on each side of the
computational domain except for the periodic direction. The efficiency of these

11



sponge zones, where pressure fluctuations are strongly damped, is highlighted in
Fig. 10.

For the validation of our simulation, the results are compared with the ex-
perimental measurements reported in [18] and alternative wall-resolved Navier-
Stokes LES performed on the same flow configuration with the AVBP (A Very Big
Project) and TurbFlow solvers. Let us mention that the mesh resolution is glob-
ally higher in the two wall-resolved N-S simulations than in our wall-modeled
LB simulation. The AVBP solves the compressible N-S equations on unstruc-
tured grids. It relies on a third-order in space and time two-step Taylor-Galerkin
scheme. A wall-adapting subgrid-scale viscosity based on the square of the ve-
locity gradient tensor is used according to [26]. More details about the AVBP
solver are available in [35, 16]. The TurbFlow solver is primarily dedicated to
turbomachinery flows and relies on a spatial discretization of the compressible
NS equations based on finite volumes for multiblock structured grids. Convective
fluxes are interpolated with a four-point centered scheme (fourth-order on regular
grid) and diffusive fluxes with a two-point centered scheme (second order). Time
marching relies on a five-step Runge—Kautta algorithm. The LES is handled by the
SISM subgrid turbulence model as in our LB simulation. More details about the
TurbFlow solver are available in [4].

The position of probes and measurement lines are identical in the experiment
and simulations, as indicated in Fig. 6. Numerical samples are recorded during
180 vortex-shedding periods (after the transient regime) to ensure a satisfactory
statistical convergence. The simulation is performed over 1.2 x 106 iterations on
256 processors and lasts about 39 hours including pre and post-processing tasks
of the solver. The order of magnitude of this turnaround time is excellent as com-
pared to turnaround times usually encountered with conventional CFD solvers.
This results mainly from the computational simplicity of the LB scheme.

4. Results of LB simulation
In this section, our results are presented. First, a qualitative analysis of the flow

is carried out. Then, more quantitative comparisons are made with experimental
data and results obtained with N-S computations on the same flow configuration.

12
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Figure 6: Velocity and pressure signals are recorded at position P for spectral
analysis (in frequency). Velocity profiles are recorded along the lines A, B and C
corresponding to the PIV measurements of the reference experiment.

4.1 General view of the flow

The complexity of the flow appears essentially in the interaction region between
the rod and the airfoil. The contour of the time-averaged streamwise velocity in-
dicates the presence of a recirculation bubble behind the rod, which contains a
pair of counter-rotating vortices (see Figs. 7 and 8). These vortices do not inter-
act directly with the airfoil. In the instantaneous flow, they alternatively detach
from the rod, travel and eventually impinge on the leading edge of the airfoil (see
Fig. 1). The length of the recirculation bubble given by U, (¢,0) = 0 is well cap-
tured by our simulation (see Fig. 8). The rod is far enough from the airfoil and the
near-wake is not perturbed by any blocking effect.

The overall structure of the turbulent flow is illustrated in Fig. 9 by an instan-
taneous snapshot of the spanwise velocity (u;). A turbulent von Karman street
originates from the transition of the shear layer that detaches from the rod. A
broad range of turbulent scales is present in the wake. The vortex street eventu-
ally splits at the leading edge of the airfoil.

A nice property of the LB approach is to provide combined dynamic and
acoustic fluctuations without resorting to any reconstruction or specific highly-
accurate numerical techniques, despite the large ratio between the length scales
and levels of amplitude of turbulent fluid motion and acoustic-wave propagation.
This property is made possible by the very low numerical dissipation of the LB
scheme, in which integration is performed along characteristics. In Fig. 10, the
radiated acoustic field, related to the aerodynamic field shown in Fig. 9, is dis-
played. Even if the computational domain does not allow for a propagation far

13
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Figure 7: Contours of the time-averaged streamwise velocity (uy).

Figure 8: Mean-flow recirculation bubble in the near-wake of the rod (zooming
view of Fig. 7). Velocity streamlines are displayed. The length of the bubble is
in very good agreement with the reference value /. ~ 0.0125 m at Rep = 48000
[13].

from the rod-airfoil tandem, a tonal noise component associated with the periodic
impingement of the von Karman street on the airfoil is clearly observed.

14
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Figure 9: Instantaneous snapshot of the spanwise velocity (u;) in the central plane
of the computational domain.

Figure 10: Instantaneous snapshot of the pressure fluctuation field p'(x,z) =
p(x,1) — p(x) at the same instant as in Fig. 9. Colorscale from —50 Pa (blue)
to 450 Pa (red). The whole computational domain is displayed. Dynamic absorb-
ing layers (sponge zones) are used on the periphery of the domain [11].

4.2 Vortex shedding and Strouhal number

Since the flow is subject to both a quasi-periodic vortex shedding and broad-
band turbulence, a deeper insight is provided by a spectral analysis. The power

15



spectral density of pressure fluctuations (as a function of the Strouhal number
St = f - D/Uye) in the interaction region between the rod and the airfoil is shown
in Fig. 11. The spectrum includes both tonal and broadband components. The
main tonal component appears at St = 0.1915 (f; = 1379 Hz) in agreement with
the reference value reported in [14]. The expected wavelength of the radiated
sound Ay = ¢/ fs = 2.5 ¢ corresponds to our observation in Fig. 10.

pressure fluctuations at [P]

130 T T

10%log, (psd) (dB/Hz)

90:::i__ . . T

St=f.D/U
ref

Figure 11: The power spectral density of the pressure fluctuations at position [P]
in the turbulent von Karman street between the rod and the airfoil (see Fig. 6).

The streamwise velocity spectrum at the same position is shown in Fig. 12.
The fundamental vortex-shedding frequency is again clearly evidenced at St =
0.1915. At higher frequencies, the spectral distribution of kinetic energy is close
to the Kolmogorov’s law f —3/3 related to isotropic turbulence at high Reynolds
number. The agreement with the hot-wire measurements carried out by Jacob ef
al. [18] is very satisfactory for the most energetic frequencies (see Fig. 12).
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Figure 12: The power spectral density of the streamwise velocity at position [P].
LB simulation is compared with experimental data.

4.3 Pressure on rod and airfoil

The angular distributions of the mean pressure coefficient C, = (p — pe)/ % PUref?
on the rod and on the airfoil are plotted in Figs. 13 and 14 respectively. Compari-
son is made with reference finite-volume Navier-Stokes LES (AVBP or TurbFlow).
Note that our LB simulation (LaBS) relies on a wall-law model whereas Navier-
Stokes LES is wall-resolved. The agreement is good for the rod and excellent for
the airfoil.

The angular distributions of the root-mean-square pressure coefficient C;, =

Prms/ % pU,* are plotted in Figs. 15 and 16. This quantity is more difficult to pre-
dict numerically. For the rod, the overall behavior is well-captured with a maxi-
mum close to the expected separation angle 0 ~ 83, as reported in the literature

17
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Figure 13: Mean pressure coefficient distribution on the rod. LB computation
(LaBS) is compared with finite-volume simulation (AVBP).

for flows around circular cylinders in the range 4 x 10 < Rep <4.5 x 10* [43].
To better appreciate the observed discrepancy with the AVBP prediction, ad-
ditional experimental and numerical results (flows around a circular cylinder at
comparable Reynolds numbers) are shown in Fig. 15. Our result matches more
closely with the TurbFlow prediction, which relies on the same subgrid-scale vis-
cosity [5]. In general, we have a reasonable agreement with all the experimental
and numerical predictions. The prediction of C;, on the airfoil is much more satis-

18
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Figure 14: Mean pressure coefficient distribution on the airfoil. LB computation
(LaBS) is compared with finite-volume simulation (AVBP).

factory (see Fig. 16). The amplitude of pressure fluctuations is slightly higher in
the LB simulation, which may result from our wall-law modeling.
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Figure 15: Root-mean-square pressure coefficient distribution on the rod.
TurbFlow refers to a simulation at Rep = 47000 [5]; Norberg et al. [28] and
Nishimura et al. [27] refer to experiments at Rep = 61000.

4.4 Velocity and turbulence intensity

The mean streamwise-velocity and turbulence intensity profiles, as a function of
the normalized transverse coordinate y/D, are shown in Figs. 17 and 18 respec-
tively. A satisfactory agreement is obtained with both the experimental and nu-
merical reference data. Our results are closer to numerical data than experimental
data. As already pointed out by Jacob ef al. [18], a small error in the alignment of
the rod-airfoil tandem (resulting in a 2 angle of attack on the airfoil) may explain
discrepancies with numerical predictions at positions [B] and [C].

Between the rod and the airfoil, the development of the wake is well cap-
tured with a correct turbulence intensity, slightly over-estimated compared to the
experimental and other numerical data. Above the airfoil, the profiles are well-
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Figure 16: Root-mean-square pressure coefficient distribution along the airfoil.
LB computation (LaBS) is compared with finite-volume simulation (AVBP).

reproduced despite the use of a wall-model in our LB simulation. Behind the
airfoil, the results are also consistent with hot-wire measurements and AVBP pre-
dictions [16].

4.5 Far-field acoustics

Since small errors in the simulation of unsteady flows can result in large discrep-
ancies in the far-field acoustic spectra, these are good indicators to assess the
quality of the computation. The far-field pressure has been computed by using the
Ffowcs-Williams and Hawkings (FWH) acoustic analogy [15, 8]. The integration
here is performed on the rod and airfoil surfaces, thus neglecting the quadrupole
sources (a priori justified at Ma,.¢ ~ 0.2). The location of the observation probes
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Figure 17: Mean velocity profiles along the lines [A], [B] and [C]. LB computa-
tion (LaBS) is compared with both finite-volume simulation (AVBP) and experi-

mental data (ExpECL).

are the same as the ones used during the measurement campaign described in
[18]. The FWH spectra are compared to the experimental data [18]. A correction
is used to account for the span length of the rod-airfoil tandem, as explained in
[20]. Fig. 19 presents the power spectral density of the far-field pressure fluctu-
ations as a function of the Strouhal number St = f - D /U for one of the probes
located at position x = ¢/2 and y = 18.5 ¢. The general shape of the spectrum is
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Figure 18: Turbulence intensity profiles along the lines [A], [B] and [C]. LB com-
putation (LaBS) is compared with both finite-volume simulation (AVBP) and ex-
perimental data (ExpECL).

well reproduced by our simulation. It is dominated by a broad peak around the
vortex-shedding frequency. The slope of the spectrum at high frequencies is cap-
tured. Overall, the agreement in the far-field is satisfactory for both fundamental
peak and broadband components. The noise directivity has also been checked.
The OverAll Sound Pressure Level (OASPL) is shown in Fig. 20 as a function of
the angle at a radial distance r = 18.5 ¢ from the airfoil center x = ¢/2 and y = 0.
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The difference between our computations and the experimental data is less than
3 dB for a broad range of angles, except for the range 90° < 8 < 110° where the
difference reaches 4 ~ 5 dB. The computation and the experimental curves cross
at 8 = 60° and 6 = 120°. Below and beyond these angles, the experimental data
decrease rapidly from 110 dB to 100 dB unlike the computational results. More
work has to be done to understand this discrepancy, in particular the uncertainties
that can have an effect on the directivity, e.g. a rod location bias.
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Figure 19: Power spectral density of pressure variations at the far-field position
x=c/2andy = 18.5 c. Pressure psd in dB/Hz with reference pressure 2.10~> Pa.

5. Conclusion

This paper introduces an original CFD solver that incorporates a rich body of
numerical methods and physical models, and has been used to simulate the flow
past a rod-airfoil tandem in the sub-critical turbulent regime. The main difference
with classical solvers is that it does not aim at solving the Navier-Stokes equations
but a simplified discrete form of the Boltzmann equation. The collision operator
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Figure 20: OASPL directivity around the airfoil center (x = ¢/2,y = 0) at a radial
distance r = 18.5 ¢. Noise is expressed in dB versus the angle. The (red) circles
refer to experimental data, whereas (green) triangles represent our numerical LB
results.

here introduced is original and relies on two relaxation timescales for an improved
stability at high Reynolds numbers; a second timescale is introduced to damp
non-hydrodynamical modes. In order to tackle real-world industrial flows, two
important physical ingredients have been included in the solver. First, an advanced
subgrid turbulence model that suitably accounts for the unsteadiness and non-
homogeneity of the flow and allows us to obtain a reliable representation of large-
sized eddies and their dynamics. Second, an advanced wall-law model sensitive
to the boundary curvature and pressure gradient that makes possible to dispense
ourselves from the expensive integration of turbulent boundary layers.

The simulated flow compares fairly well on the basis of broad criteria with the
original rod-airfoil experimental data of Jacob et al. and with alternative numer-
ical results obtained with standard finite-volume N-S solvers. Unsteady pressure
recordings on the rod and the airfoil has allowed us to propagate the acoustic noise
generated by these bodies in the far field. The agreement is satisfactory between
the reconstructed far-field acoustics and the experimental data, even if some small
discrepancies still need to be elucidated.

This study underlines the attractiveness of the LB approach, which may ac-
tually be considered as a complementary tool to conventional CFD solvers. One
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may highlight the capability of the LB method to encompass dynamic and acous-
tic fluctuations in a simple numerical framework without resorting to any spe-
cific high-order numerical techniques. Therefore, when turnaround time is a con-
cern, a LB solver becomes a serious contender because of its impressive compu-
tational efficiency. Finally, let us mention that the integration of more complex
fluid physics is possible in the LB framework, which paves the path to efficient
multi-physics CFD solvers [38].
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