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Text mining, as a special case of data mining, refers to the estimation of knowledge or parameters necessary for certain purposes, such as unsupervised clustering by observing various documents. In this context, the topic of a document can be seen as a hidden variable, and words are multi-view variables related to each other by a topic. The main goal in this paper is to estimate the probability of topics, and conditional probability of words given topics. To this end, we use non negative Canonical Polyadic (CP) decomposition of a third order moment tensor of observed words. Our computer simulations show that the proposed algorithm has better performance compared to a previously proposed algorithm, which utilizes the Robust tensor power method after whitening by second order moment. Moreover, as our cost function includes the non negativity constraint on estimated probabilities, we never obtain negative values in our estimated probabilities, whereas it is often the case with the power method combined with deflation. In addition, our algorithm is capable of handling over-complete cases, where the number of hidden variables is larger than that of multi-view variables, contrary to deflation-based techniques. Further, the method proposed therein supports a larger over-completeness compared to modified versions of the tensor power method, which has been customized to handle over-complete case.

Introduction

Modeling. Data mining covers a wide range of methods and tools utilized for discovering knowledge from data [START_REF] Han | Data mining: concepts and techniques[END_REF]. In the context of multi-modal data (e.g. text, audio and video for the same event), mining can be considered as the estimation of latent variables that are present in several modalities [START_REF] Atrey | Multimodal fusion for multimedia analysis: a survey[END_REF][START_REF] Ramage | Partially labeled topic models for interpretable text mining[END_REF]. Multi-view models are useful tools to represent the relationships in this framework [START_REF] Whittaker | Graphical models in applied multivariate statistics[END_REF]. The graphical model we assume is depicted in Fig. 1; a set of multi-view variables, {x 1 , x 2 , . . . , x L }, and their corresponding latent variable, h, have been represented. This general model does not impose any particular distribution (Gaussian, Dirichlet, etc), and is very common in several tasks of data (e.g. text) mining. Text mining as a special case of data mining is the center of attention of this paper. With this in mind, words in a document are considered as the multi-view variables {x 1 , x 2 , . . . , x L } and their topic as the hidden variable h, as in [START_REF] Anandkumar | A method of moments for mixture models and hidden Markov models[END_REF]. Related works. Daily increasing amount of text data available online have raised many challenging tasks such as unsupervised learning or clustering, which can be investigated by text mining [START_REF] Han | Data mining: concepts and techniques[END_REF]. Among plenty of algorithms customized for these purposes, we focus on some specific recent methods [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF][START_REF] Anandkumar | Analyzing tensor power method dynamics in overcomplete regime[END_REF][START_REF] Anandkumar | When are overcomplete topic models identifiable? uniqueness of tensor Tucker decompositions with structured sparsity[END_REF], which employ tensor factorization for learning latent variables and of course text mining as a special case. The key is that the latter tensor decomposition is unique, and hence is able to provide an estimation of latent parameters. There exist some other works, such as [START_REF] Chang | Multi-relational latent semantic analysis[END_REF], employing tensors in a similar context. However, those aim at measuring word similarity rather than learning parameters of an underlying graphical model. Therefore, they may resort to the Tucker decomposition, which is not unique, but permits low multilinear rank approximation. Unlike [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF][START_REF] Anandkumar | Analyzing tensor power method dynamics in overcomplete regime[END_REF][START_REF] Anandkumar | When are overcomplete topic models identifiable? uniqueness of tensor Tucker decompositions with structured sparsity[END_REF] and the present contribution, which can be applied to other problems than text mining, [START_REF] Chang | Multi-relational latent semantic analysis[END_REF] is hence dedicated to text mining, and does not aim at learning parameters of a model such as that of Fig. 1.

Resorting to moments for estimating parameters has a long history since 1894 till now in various fields such as mixture model [START_REF] Anandkumar | A spectral algorithm for latent Dirichlet allocation[END_REF][START_REF] Anandkumar | A method of moments for mixture models and hidden Markov models[END_REF][START_REF] Pearson | Contributions to the mathematical theory of evolution[END_REF], Blind Source Separation [START_REF]Handbook of Blind Source Separation[END_REF][START_REF] Comon | Independent component analysis, a new concept? Signal Proc[END_REF], and machine learning [START_REF] Anandkumar | A spectral algorithm for latent Dirichlet allocation[END_REF][START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF][START_REF] Anandkumar | Analyzing tensor power method dynamics in overcomplete regime[END_REF][START_REF] Anandkumar | When are overcomplete topic models identifiable? uniqueness of tensor Tucker decompositions with structured sparsity[END_REF][START_REF] Anandkumar | A method of moments for mixture models and hidden Markov models[END_REF], just to name a few. For instance, in [START_REF] Anandkumar | A method of moments for mixture models and hidden Markov models[END_REF], the graphical model shown in Fig. 1 has been considered, and authors tried to estimate its parameters (probability of h and conditional probability of x `given h) by the means of diagonalization of two moment matrices.

In the same vein, several recent works have extended the idea of [START_REF] Anandkumar | A method of moments for mixture models and hidden Markov models[END_REF] to the tensor framework. To be more precise, [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF] is the first contribution in which the Robust tensor power method is used to estimate the above mentioned parameters. One of the limitation of [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF] is that it can handle only under-complete cases (i.e. when the number of hidden variables is smaller than that of multi-view). In order to overcome this limitation, authors of [START_REF] Anandkumar | Analyzing tensor power method dynamics in overcomplete regime[END_REF][START_REF] Anandkumar | When are overcomplete topic models identifiable? uniqueness of tensor Tucker decompositions with structured sparsity[END_REF] proposed to use other decompositions such as Tucker [START_REF] Comon | Tensors: a brief introduction[END_REF], or enhanced the tensor power method [START_REF] De Lathauwer | Higher-order power method, application in Independent Component Analysis[END_REF][START_REF] De Lathauwer | On the best rank-1 and rank-(r 1, r 2,..., rn) approximation of higher-order tensors[END_REF].

Contribution.

In this paper, we use the same formulation as in [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF], relating moments and desired parameters. But one important difference lies in assuming a more appropriate cost function incorporating non negative constraints, which we minimize by Alternating-Optimization Alternating Direction Method of Multipliers (AO-ADMM) [START_REF] Huang | A flexible and efficient algorithmic framework for constrained matrix and tensor factorization[END_REF]. This results in better performance than that of [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF]. We shall show some figures in Section 5.2 demonstrating that our method, unlike the Robust tensor power method [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF], does not return negative values for estimated probabilities. Moreover, our method can handle over-complete cases up to higher levels than [START_REF] Anandkumar | Analyzing tensor power method dynamics in overcomplete regime[END_REF].

Notation. Vectors, matrices, and tensors will be denoted with bold lowercases (e.g. a), bold uppercases (e.g. A) and bold calligraphic letters (e.g. T ), respectively. The contraction symbol 3 • k indicates a summation on the kth tensor index, and ⌦ the tensor (outer) product.

Problem formulation

Although the graphical model in Fig. 1 can be used for a wide range of learning problems [START_REF] Murphy | Machine Learning, A Probabilistic Perspective[END_REF], we customize the formulation of this section for the particular problem of text mining. Let L be the number of words in a given document, x `the observed words, `2 L = {1, 2, . . . , L}, and h a topic encoded into a discrete variable taking K possible integer values, say in H = {1, 2, . . . , K} with probability '(k) = P rob(h = k). All the words belong to a known encoded dictionary ⌦ = {u 1 , . . . , u D } of cardinality D. Put in other words, we can consider a mapping (generally not injective) from L to ⌦ such that x `= u (`) . In the context of text mining, D would be the number of words and K the number of topics. The number of documents, N , is generally larger than D.

Besides the probability of topics, the conditional probability of each word given the topic is also an important parameter in the text mining task. We denote the conditional probability of each word u d of dictionary ⌦, given a particular topic, h = k, by f k (d) = P rob(x = u d |h = k). Therefore, the joint distribution of X = [x 1 , . . . , x L ] can be written as:

p X (u (1) , . . . , u (L) ) = K X k=1 '(k) f k ( (1)) . . . f k ( (L)), (1) 
which is referred to as the naive Bayes model. The main task is to estimate the quantities appearing in the right-hand side of (1) from realizations of X. We assume the same assumptions as in [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF][START_REF] Anandkumar | A method of moments for mixture models and hidden Markov models[END_REF]:

conditional probabilities do not depend on the order of words (exchangablility), words are conditionally independent given the topic, words have the same conditional distribution given the topic.

In the sequel, we will need the second and third order moments:

P def = E{xp ⌦ x q } (2) 
T def = E{xp ⌦ x q ⌦ x r }, (3) 
where P is a D ⇥ D symmetric matrix and T a D ⇥ D ⇥ D symmetric tensor. These moments do not depend on {p, q, r} provided these 3 integers are all different, which ensures the conditional independence assumed in [START_REF] Anandkumar | A spectral algorithm for latent Dirichlet allocation[END_REF]. But note that { (p), (q), (r)} may not be different because is not injective.

As in [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF], we encode u d into the columns of the D ⇥ D identity matrix. Because of this choice made for u d , these moments exhibit the following relations:

P = K X k=1 ' k a k ⌦ a k (4) T = K X k=1 ' k a k ⌦ a k ⌦ a k , (5) 
where a k denotes the kth column of matrix A. Note that a k contains the values of f k (d) for all d and each k. Rewriting (1) reveals the nice property is that arrays P and T are actually joint probabilities of observations, i.e., P ij = P rob{x p = u i , x q = u j } and

T ijk = P rob{x p = u i , x q = u j , x r = u k }.

The Robust tensor power method

We describe in this section the approach of [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF]. We shall compare this method with ours in Subsection 5.2. In [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF], the authors propose to use the two moments defined in ( 2) and ( 3) with exactly the same encoding explained in Section 2. Therefore, these moments enjoy relations (4) and ( 5). Matrix P is theoretically positive semi-definite, since ' k are positive numbers in [START_REF] Anandkumar | When are overcomplete topic models identifiable? uniqueness of tensor Tucker decompositions with structured sparsity[END_REF]. Hence in a similar way as had been done for Blind Source Separation [START_REF]Handbook of Blind Source Separation[END_REF][START_REF] Comon | Independent component analysis, a new concept? Signal Proc[END_REF], there exists a "whitening" matrix W such that W T P W = I, where I is the identity matrix; W can theoretically be easily obtained from the EigenValue Decomposition (EVD)

P = U DU T , U T U = I, by setting W = U D 1/2 . Therefore, K X k=1 ãk ãT k = I if ãk def = p ' k W T a k .
In other words, the matrix à 2 R K⇥K containing ãk as its columns is orthogonal, i.e. à ÃT = I. As proposed in [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF], in practice, matrix P can be estimated via the mere averaging of samples [START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF], and consequently, P may have negative eigenvalues because of estimation errors. This issue was not investigated in [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF], but they used left singular vectors of P instead of eigenvectors to construct W (cf. Algorithm 1). Next, this whitening matrix is applied to tensor T to yield:

T def = T • 1 W • 2 W • 3 W
which have the following element-wise definition [START_REF] Comon | Tensors: a brief introduction[END_REF]:

T (r, t, s) = X r 0 ,t 0 ,s 0 T (r 0 , t 0 , s 0 )W (r, r 0 )W (t, t 0 )W (s, s 0 ).
Algorithm 1 The Robust tensor power method [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF] Input: T , P Output: A, ' This new tensor enjoys the relationship

1: Whitening: P = U ⌃V T ; W = U ⌃ 1/2 ; T def = T •1 W •2 W •3 W 2: for k = 1, . . . ,
T = K X k=1 ' 1/2 k ãk ⌦ ãk ⌦ ãk .
The conclusion is that T ideally admits an orthogonal Canonical Polyadic (CP) decomposition; see e.g. [START_REF] Comon | Independent component analysis, a new concept? Signal Proc[END_REF][START_REF] Comon | Tensors: a brief introduction[END_REF] for an introduction. Many algorithms have been devised for this kind of decomposition, including the pair-sweeping CoM algorithm, or Joint Approximate Diagonalization (JAD) algorithms [START_REF]Handbook of Blind Source Separation[END_REF]. But authors in [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF] utilized the tensor power iteration [START_REF] De Lathauwer | Higher-order power method, application in Independent Component Analysis[END_REF] to extract the dominant "eigenvector4 ", â, and dominant "eigenvalue", ', of T and then proceeded by deflation, i.e. T T ' â ⌦ â ⌦ â, to get the remaining ones.

Unfortunately, except the tensor power iteration [START_REF] De Lathauwer | Higher-order power method, application in Independent Component Analysis[END_REF], there is no pseudo code in [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF] describing the entire algorithm. Our description in Algorithm 1 hopefully fills this lack; we used this algorithm in our subsequent computer experiments in Section 5.2.

Proposed method

In this section, we detail our contributions, namely a non negative Canonical Polyadic (CP) decomposition executed on tensor [START_REF] Anandkumar | Analyzing tensor power method dynamics in overcomplete regime[END_REF]. Therefore, it should not be considered as a modified version of the Robust Tensor Power Method, since it is a completely different Algorithm 2 AO-ADMM for Problem [START_REF] Atrey | Multimodal fusion for multimedia analysis: a survey[END_REF] Input: T , K, ⇢, Q Output: A, ' 1: for q = 1 : Q (loop on starting points) do 2:

Initialize H1, H2, H3 3:

Initialize U 1, U 2, U 3 4: repeat

5:

for n = 1, 2, 3 do

6: T = T (n) (Unfold mode n) 7: Z = j6 =nH j 8:
Compute the Cholesky factor L of (Z T Z + ⇢I) 9:

Update Hn as in Alg.1 of [START_REF] Huang | A flexible and efficient algorithmic framework for constrained matrix and tensor factorization[END_REF]: way of computing the unknown parameters. It is clear that T in (5) corresponds to a CP decomposition structure. As we seek A and ', which represent probability values, it would be inevitable to consider non negativity constraint during the decomposition process. However, at least theoretically, we do not need to impose symmetry during the course of the CP decomposition, even if (5) reveals that T is a symmetric tensor, since it will be expected to be obtained automatically.

(a) Gn L T L 1 [Z T T + ⇢(U n + Hn) T ] # Auxiliary variables (b) Hn max[0, G T n U n] # Primal variables (c) U n U n + Hn G T n #
Generally, computing a tensor low-rank approximation is ill-posed, except if some constraints, such as non negativity or orthogonality, are imposed [START_REF] Comon | Tensors: a brief introduction[END_REF][START_REF] Lim | Nonnegative approximations of nonnegative tensors[END_REF]. Taking this into account, in order to obtain reliable estimated quantities, A and ', we consider the following minimization in R + :

min A,' kT K X k=1 '(k) a k ⌦ a k ⌦ a k k 2 (6) s.t. A 2 R D⇥K + , ' 2 R K + .
Since ( 6) is a non convex problem, Alternating Optimization (AO) is usually executed for such a problem [START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Huang | A flexible and efficient algorithmic framework for constrained matrix and tensor factorization[END_REF][START_REF] Sobhani | A robust ellipse fitting algorithm based on sparsity of outliers[END_REF]. AO is also known as Block Coordinate Descent (BCD) whose convergence has been discussed in [START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF]. When the cost function is simply least squares with no regularization, AO converted into the well-known method Alternating Least Squares (ALS) [START_REF] Huang | A flexible and efficient algorithmic framework for constrained matrix and tensor factorization[END_REF]. A recent modification named AO-ADMM [START_REF] Huang | A flexible and efficient algorithmic framework for constrained matrix and tensor factorization[END_REF] has been done to improve AO by the means of Alternating Direction Method of Multipliers (ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF], so that AO can handle constraints as well. Algorithm 2 shows the details of applying AO-ADMM to our problem [START_REF] Atrey | Multimodal fusion for multimedia analysis: a survey[END_REF].

It should be noted that in order to ensure the uniqueness of the CP decomposition in Algorithm 2, the rank of T , K, should be less than the expected rank R o , or than R o s in the symmetric case [START_REF] Comon | Tensors: a brief introduction[END_REF], with:

R o = ⇠ D 3 3D 2 ⇡ , R o s = ⇠ (D + 1)(D + 2) 6 ⇡ ,
Therefore, because the proposed algorithm only uses the third order moment tensor T , it is capable of handling over-complete cases (K > D) for estimating probabilities of hidden multi-view variables, up to K = O(D 2 ).

Simulations

In this section we describe computer simulations aiming at comparing the proposed method with that of [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF] in terms of performance in estimating the probability of topics and the conditional probabilities of words given the topics. In Subsection 5.1, we explain how one can generate synthetic data according to the graphical model in Fig. 1.

The relative error e ' (resp. e A ) in estimating ' (resp. A) made by both methods are reported in Subsection 5.2. If ' is an estimate of ', it is defined as:

e ' = k' 'k 2 k'k 2

Data generation

In this subsection we explain how one can generate a set of synthetic encoded words that are related to the same topic (cf. Fig. 1), with these two properties simultaneously:

conditionally independent given the topic having the same conditional distribution

The first step to generate a synthetic data set is to define the arbitrary distributions '(k) and f k (d) for all (k, u d ) 2 H ⇥ ⌦. As mentioned before, the values of '(k) and f k (d) are stored in a K-dimensional vector ' and in a D ⇥ K matrix A respectively.

In order to generate synthetic data according to graphical model in Fig. 1, it is actually useful to use their cumulative distributions, (k) = P rob(h  k) and F k (d) = P rob(  d | h = k). is a K ⇥ 1 vector constructed by summing5 the entries of '. Similarly, matrix F is a D ⇥ K matrix obtained by summing the entries of matrix A. Our generative algorithm is as follows:

draw z 2 [0, 1], and pick k = 1 (z), by selecting the first entry in that is larger than z.

for each `2 {1, 2, . . . , L},

• draw z `2 [0, 1], and pick (`) = F 1 k (z `), by selecting the first entry in the kth column of F that is larger than z `.

• set x `= u (`) . In the second step, we utilize the averages of large number of realizations, say N = 2 14 , to obtain an acceptable approximation of P and T . In each realization, we draw a random encoded topic, k, in the way described above. Then, according to the chosen topic, we draw three random encoded words, {x p = u (p) , x q = u (q) , x r = u (r) }, such that they satisfy the two properties mentioned above. At the end, by using the following averages, we have an empirical approximation of second and third order moments with sample moments below:

P e = 1 N N X n=1 u (p) ⌦ u (q) (7) 
T e = 1 N N X n=1 u (p) ⌦ u (q) ⌦ u (r) (8) 
Moment consistency As mentioned in Section 2, it can be easily shown that ( 2) and ( 3) are respectively equal to (4) and [START_REF] Anandkumar | A method of moments for mixture models and hidden Markov models[END_REF]. Therefore, the above sample estimates of ( 2) and (3), i.e. [START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF] and [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF], should converge to the true moments P and T defined in ( 4) and ( 5). Hence, it seems essential to check the consistency of generated data in order to make sure that sample moments indeed converge to the true joint probabilities. To this end, we generated N realizations of our synthetic data set, x `= u (`) , (in a way explained above) with the following parameter values: K = 4, D = 6, N = 2 17 . We chose a uniform distribution for ', and K arbitrary distributions (cf. Section 5.2) to build a synthetic matrix A. Lastly, we calculated sample moments in ( 7) and ( 8), and compared them to the true ones (4) and [START_REF] Anandkumar | A method of moments for mixture models and hidden Markov models[END_REF]. Fig. 2 reports the discrepancy between both in terms of Euclidean norm. As can be seen in Fig. 2, the generated data in the way described above are consistent for N > 10000.

Performance

Results as a function of N . As mentioned before, the main goal is the estimation of A and '. We report in this section the comparison results obtained with only one dictionary size, D = 8, with a fixed number of topics, K = 4, and for various data lengths up to N = 2 17 . The power method is run with with M 1 = 10 and M 2 = 5, and the proposed algorithm with Q = 100. Moreover, the results are obtained for one particular realization6 of matrix A and vector ': In order to compare the performance of both methods, we run the above simulation for increasing data lengths (note that the larger the data length, the fewer the number of realizations, to keep a computational load constant). To be more precise, by keeping the values of parameters D = 8, K = 4, we increase exponentially the value of N from 2 14 to 2 17 . For each value of N , we generated several synthetic data sets of size N in the way that has been explained in Subsection 5.1, and then the methods have been applied to the obtained data to compare relative errors as a function of of data length. The results are reported in Fig. 34; each black circle (resp. red cross) corresponds to the error of power method (resp. proposed method) in estimating ' or A for a specific realization of a particular data length, N . To ease comparison, the median (resp. standard deviation) among realizations is also plotted in solid (resp. dotted) line for every data length. As Figures 3 and4 show, the error of the proposed method converges faster to zero as the data length increases, and unlike the Robust tensor power method [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF], it appears to be much more robust, i.e. smaller standard deviation of the relative error. Results for random A and '. When running extensive computer simulations, one can assume a uniform distribution for the topics, and K uniform distributions for the conditional probability of words given the topic, which are actually the columns of A. Once A and ' are obtained, one can proceed exactly the same way as explained in Subsection 5.1 to generate synthetic datasets and sample moments. For space reasons, we only report in Table 1 the results obtained for a few values of (D, K), averaged over 20 independent trials. These extensive computer experiments confirm the robustness and superiority of the proposed algorithm compared to the power method. 

A = 2 6

Conclusion

In this paper, we focus on text mining as a special case of data mining: given the observation of words of several documents, we aim at estimating the probabilities of topics, ', (as hidden variable cf. Fig. 1) as well as the conditional probabilities of words given topics, A. For this purpose, we use [START_REF] Anandkumar | A method of moments for mixture models and hidden Markov models[END_REF], which is the same equation as in [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF] relating the third order moment, T , of observed words to desired probabilities. However, our cost function is more appropriate since non negativity is imposed. In fact, the Robust tensor power method [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF] sometimes delivers negative values for estimated probabilities [START_REF] Sobhani | Data mining with tensor decompositions[END_REF]. This difference appears in our computer results, which show that the performance of the proposed method is better compared to [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF]. In addition, our algorithm only requires T as input, unlike the algorithm in [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF], which permits to address the over-complete regime where number of hidden variables is larger than that of multi-view variables.

Further improvements of the power method. As mentioned in Section 3, the Robust tensor power method [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF], combined with deflation, attempts to estimate eigenvectors and eigenvalues of the whitened tensor. One known problem with deflation, which has been observed even for matrices [START_REF] Cullum | Lanczos Algorithms[END_REF], is that the extracted eigenvectors may loose orthogonality because of rounding errors. The consequence is that the same (dominant) eigenvector may show up several times, especially if the array dimensions become large. This problem can be fixed by a re-orthogonalization of initial vectors with previously found vectors. Suppose that V (i) def = [ã 1 , . . . ãi ] is the matrix of the eigenvectors already obtained at iteration i. At the next iteration, instead of choosing simply a random vector ✓ as in [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF], we propose to pick it in the subspace orthogonal to V (i): ✓ = ✓ V V T ✓ is the next initial vector. In even larger dimensions, it may be necessary to also re-orthogonalize the intermediate iterates generated by the tensor power method, because of rounding errors. Another improvement consists in symmetrizing the sample estimates T e and P e . Over-complete regime. We previously mentioned the ability of our algorithm to address the so-called over-complete regimes, where K > D, up to K = O(D 2 ). In this context, deflation is not possible, and if K eigenvectors are desired, the tensor power method must be run from K initial values, located close enough to the true eigenvectors. But the latter are unknown, which imposes to draw a very large number (growing as a Dth power) of initial vectors. We believe this solution is not workable. The sufficient condition requested in [START_REF] Anandkumar | Analyzing tensor power method dynamics in overcomplete regime[END_REF] is not only inaccurately defined, but is also very unlikely to be satisfied in practice.

Perspectives. This work must be continued to allow the application of the algorithm we have proposed to real databases. The implementation of certain operations must be revised in large dimensions to allow firstly to save memory space, secondly to limit rounding errors, and thirdly to reduce biases specific to large dimensions.
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 1 Fig.1: multi-view variables and their corresponding hidden variable.

  for k = 1 : K do ak = H1(:, k)/kH1(:, k)k 1 ; ' k = Q n kHn(:, k)k 1 end for 13: end for 14: Pick the best among the Q estimates.

Fig. 2 :

 2 Fig.2: Consistency of moment estimates. In this figure, the larger the data length, the fewer the number of realizations, to keep the total block length (and hence the computational load) constant.

Fig. 3 :

 3 Fig. 3: Performance (relative error) in estimating A

Fig. 4 :

 4 Fig. 4: Performance (relative error) in estimating '

Table 1 :

 1 Median (left) and standard deviation (right) of error in estimating A and ', with data length N = 2 17 ⇡ 1.2 10 6 , and K = 4. In each cell, top: proposed method, bottom: power method.

			Relative error in estimating A				
	D	6	7	8	9	10	6	7	8	9	10
	Proposed	0.087 0.077 0.070 0.104 0.073 0.100 0.123 0.083 0.104 0.120
	Robust power method 0.382 0.178 0.243 0.181 0.118 0.313 0.314 0.386 0.327 0.235
			Relative error in estimating '				
	D	6	7	8	9	10	6	7	8	9	10
	Proposed	0.145 0.105 0.115 0.096 0.128 0.223 0.118 0.213 0.285 0.315
	Robust power method 0.657 0.283 0.310 0.287 0.228 0.545 0.524 0.591 0.407 0.399

mode-k product between tensors.

Recall that there exist several definitions of tensor eigenvectors[START_REF] Lim | Singular values and eigenvalues of tensors: a variational approach[END_REF][START_REF] Qi | Tensor Analysis, Spectral Theory and Special tensors[END_REF]. The definition used in[START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF] -and hence here -is T • v • v = v, which has the undesirable property that depends on the norm of v. In fact, if ( , v) is an eigenpair, then so is (↵ , ↵v) for any nonzero ↵. This is analyzed in e.g.[START_REF] Qi | Tensor Analysis, Spectral Theory and Special tensors[END_REF].

With this goal, the matlab function cumsum() can be used.

Results on other particular realizations may be found in[START_REF] Sobhani | Data mining with tensor decompositions[END_REF].