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ADDITIVE COMPLEMENTS FOR A GIVEN ASYMPTOTIC
DENSITY

ALAIN FAISANT, GEORGES GREKOS, RAM KRISHNA PANDEY,

AND SAI TEJA SOMU

Abstract. We investigate the existence of subsets A and B of N :=

{0, 1, 2, . . .} such that the sumset A + B := {a + b ; a ∈ A, b ∈ B} has

given asymptotic density. We solve the particular case in which B is a

given finite subset of N and also the case when B = A ; in the last

situation, we generalize our result to kA := {x1 + · · · + xk : xi ∈ A, i =

1, . . . , k}.

1. Introduction

The purpose of this paper is to introduce a new, up to our knowledge,

subject of research, resolving a few particular cases.

Two subsets, not necessarily distinct, A and B of N := {0, 1, 2, . . .}

are called additive complements if A + B contains all, except finitely many,

positive integers; that is, if the set N \ (A + B) is finite. From the huge

literature on this topic, we just mention the papers [Lo], [Nar] and [D]

among the initial ones, and the papers [FC] and [R] among the last ones.

The reader may find there information and more references. A set A being

additive complement of itself, that is a set A such that N \ (2A) be finite

(where we put 2A := A + A), is called an asymptotic basis of order 2.

In this paper we are interested in what happens when one asks that the

density of the sumset A + B is equal to a given value α, 0 ≤ α ≤ 1. As

density concept we use the asymptotic density, defined below.

Definition 1.1. Let X be a subset of N and x a real number. For x ≥ 1,

we put X(x) := |X ∩ [1, x]|. For x < 1, we put X(x) = 0. We define the

asymptotic (also called natural) density of X as

dX := lim
x→+∞

X(x)

x

provided that the above limit exists. The lower and the upper asymptotic

densities, denoted by dX and dX, respectively, are defined by taking in the
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above formula the lower and the upper limits, respectively, which always

exist.

In the classical situation the existence of additive complements is obvious

and the main problem is to find “thin” subsets of N being additive comple-

ments or asymptotic bases. In our study, a first question is the existence of

such sets A and B. Precisely, in this paper, we establish the existence of A

given a finite set B and we consider also the case B = A (see below in the

introduction). Once the existence has been established, two questions arise

naturally:

- to find “thin” sets verifying the required conditions;

- to find “thick” sets verifying the required conditions.

Notations. |S| denotes, according to the context, either the cardinality of

the finite set S or the length of the interval S. All small letters, except

f, g, c, d, x, α and θ, represent nonnegative integers. Let x be a real number.

We denote by ⌊x⌋ the “integer part” of x and by {x} the “fractional part”

of x. Thus

x = ⌊x⌋ + {x}

where ⌊x⌋ is an integer and 0 ≤ {x} < 1, this writing being unique.

In Section 2, we indicate or prove some properties of asymptotic density

and in Section 3, we prove the next theorem.

Theorem 1.2. Let α be a real number, 0 ≤ α ≤ 1, and B a finite subset of

N. Then there exists a set A ⊂ N such that d(A + B) = α.

Let us now suppose that α is given and A = B. Our goal was to prove

the existence of a set A such that d(2A) = α. The proof(s) can be gener-

alized to sumsets of more summands A ; precisely, we prove the following

more general result, showing that, for the constructed set A, the density of

the sumsets jA, 1 ≤ j ≤ k, increases regularly with j. Proofs are of differ-

ent form, according to the nature of α : rational or irrational. Here is the

formulation of the theorem proved in Section 4.

Theorem 1.3. Let α be a real number, 0 ≤ α ≤ 1, and k an integer, k ≥ 2.

Then there exists a subset A of N such that for every j, 1 ≤ j ≤ k, one has

d(jA) =
jα

k
.

In particular, d(kA) = α.
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We give a list of open questions and prospects for further research in Section

5.

2. Auxiliary results

The next lemma is very useful. We omit the proof.

Lemma 2.1. Let the set X in Definition 1.1 be infinite, X =: {a1 < a2 <

. . . }. Then

dX := lim inf
x→+∞

X(x)

x
= lim inf

k→+∞

k

ak
,

and

dX := lim sup
x→+∞

X(x)

x
= lim sup

k→+∞

k

ak

.

As a consequence, we get the next property.

Property (i) Let X be a subset of N and θ a real number, θ ≥ 1. Put

θ.X := {⌊θa⌋ ; a ∈ X}. Then d(θ.X) = θ−1 dX and d(θ.X) = θ−1 dX.

Put N+ := N\{0} = {1, 2, . . .}. The uniform distribution of the sequence

({nθ})n∈N+
when θ is irrational ([KN], p. 8; [SP], p. 2 - 72) amounts to:

Property (ii) Let I be a subinterval of [0, 1[ and θ an irrational real

number. Then

d{n ∈ N+; {nθ} ∈ I} = |I|.

As a corollary of the previous properties, we get:

Corollary 2.2. Let I be a subinterval of [0, 1[ and θ an irrational real

number, θ > 1. Then

d{⌊nθ⌋; n ∈ N+, {nθ} ∈ I} = |I|/θ.

3. Proof of Theorem 1.2

If α is 0 or 1, the answer is easy: take, respectively, A to be the set of

powers of 2 or A = N.

We shall suppose in the sequel that 0 < α < 1.

Lemma 3.1. Without loss of generality, we can suppose that min B = 0.

Proof. Suppose that the theorem is proved when b1 := min B = 0. Now let

b1 > 0. Put B′ := B − b1. By the case min B = 0, there is A′ ⊂ N such

that d(A′ + B′) = α. Put A1 := A′ − b1 ⊂ {−b1,−b1 + 1, . . . ,−1} ∪ N and

A := {a ∈ A1; a ≥ 0}. Notice that

A + B ⊂ A1 + B = A′ + B′ ⊂ N
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so A1 + B has asymptotic density α. Then notice that

(A1 + B) \ (A + B) ⊂ ∪−b1
k=−1{k + B}.

The set in the right hand member is finite. It yields that d(A + B) =

d(A1 + B) = α which proves the Lemma. �

Continuation of the proof of Theorem 1.2. We suppose from now

on that min B = 0. Let also b := max B, k := |B|. Of course the theorem is

trivial if k = 1. We suppose in the sequel that k ≥ 2; consequently b ≥ 1.

The set A = {a1, a2, . . . }, a1 < a2 < · · · , will be defined by induction. We

define a1 := min A in the following manner:

(1) a1 := min{a ≥ 0; max
n≥1

(a + B)(n)

n
≤ α}.

Remark on (1). Notice that a1 = 0 if and only if, for all n ≥ 1, B(n) ≤ αn.

For given a and all n ≥ 1, let f(n) := (a+B)(n)
n

. The function f takes

nonnegative values and is decreasing when n ≥ a + b; so, for fixed a, the

maximum exists. This maximum is attained for (at least) an n = n1, a ≤

n1 ≤ a + b, and verifies, when a 6= 0,

max
n≥1

f(n) = f(n1) ≤
k

n1
≤

k

a
.

So this maximum is less than or equal to α provided that a ≥ k
α
. It follows

that the minimum in formula (1) exists and hence a1 is well defined and

a1 ≤ ⌈ k
α
⌉.

Recursion. Suppose that a1, a2, . . . , am have been defined, and let Am :=

{a1, a2, . . . , am}. We suppose that, for all n ≥ 1,

(Am + B)(n)

n
≤ α.

Then we define am+1 in the following manner:

(2) am+1 := min{a > am; max
n≥a

((Am ∪ {a}) + B)(n)

n
≤ α}.

Remark on (2). Notice that am+1 = am +1 if and only if, for all n ≥ am + 1,

((Am ∪ {am + 1}) + B)(n) ≤ αn. Otherwise, am+1 > am + 1. For fixed

a > am, let g(n) := ((Am∪{a})+B)(n)
n

, for all n ≥ a. The function g takes

nonnegative values and is decreasing when n ≥ a + b; so, for fixed a, the

maximum exists. This maximum is attained for (at least) an n = nm+1,

a ≤ nm+1 ≤ a + b, and verifies

max
n≥a

g(n) = g(nm+1) ≤
k(m + 1)

nm+1
≤

k(m + 1)

a
.

So this maximum is less than or equal to α provided that a ≥ k(m+1)
α

. It fol-

lows that the minimum in formula (2) exists and hence am+1 is well defined
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and am+1 ≤ ⌈k(m+1)
α

⌉.

Let us now observe that, for all n ∈ N, we have

(A + B)(n) ≤ αn.

This is clear when n = 0 or n < a1. Otherwise, there is m ≥ 1 such that

am ≤ n < am+1. Then we have (A + B)(n) = (Am + B)(n) ≤ αn.

This implies that d(A + B) ≤ α.

It remains to prove that d(A + B) ≥ α. To do that, it is sufficient to

prove that, for any ε > 0, we have d(A + B) ≥ α − ε.

In what follows, we shall need the next property of the counting function

n 7→ (A + B)(n) of the set A + B. In its (short) proof, we shall need the

fact that 0 ∈ B.

Property (iii) If a ∈ A, a > 1, then

(A + B)(a)

a
≥

(A + B)(a − 1)

a − 1
.

Proof. Let y := (A + B)(a − 1). Since a ∈ A and 0 ∈ B, we get that

a = a + 0 ∈ A + B and so (A + B)(a) = y + 1. We have to show that

(y + 1)/a ≥ y/(a − 1). The verification is straightforward and this proves

Property (iii). �

Continuation of the proof of Theorem 1.2. Let 0 < ε < α. We shall

prove that d(A+B) ≥ α−ε by contradiction: suppose that d(A+B) < α−ε.

Then the set

S := {n ∈ N; (A + B)(n) < (α − ε)n}

is infinite.

We observe that, for 0 < α < 1, the constructed set A is neither finite

nor cofinite. A is a collection of finite “blocks”, each block consisting of one

or of a finite number of consecutive integers, and two consecutive blocks are

separated by a “hole” of length at least 2.

The preceding Property (iii) implies that if an element a of A , a > 1,

belongs to S, then a−1 belongs also to S. And since a belongs to a block of

A, the last (the biggest) element of the hole just before the block to which

a belongs, is also an element of S. We conclude that the set S ′ := S \ A is

infinite.

From S ′ we can extract an infinite, strictly increasing, sequence of pos-

itive integers (Nt)t≥1 such that to each t ≥ 1 corresponds an index mt,

verifying :
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(i) amt
< Nt < amt+1, and

(ii) 1 ≤ m1 < m2 < · · · .

Let us fix now an index t ≥ 1. Recall that

(3) (A + B)(Nt) = (Amt
+ B)(Nt) < (α − ε)Nt .

Let A′ := Amt
∪ {Nt}. By the formula (2), we get that

max
n≥Nt

1

n
(A′ + B)(n) > α.

So there is an integer n′, Nt ≤ n′ ≤ Nt + b, such that

(4) (A′ + B)(n′) > αn′ .

By the construction,

(5) (Amt
+ B)(n′) ≤ αn′ .

We observe that

(Amt
+ B)(n′) − (Amt

+ B)(Nt) ≤ n′ − Nt ≤ b ,

which implies, using also (3), that

(6) (Amt
+ B)(n′) ≤ (Amt

+ B)(Nt) + b < (α − ε)Nt + b .

We also observe that

(A′ + B)(n′) − (Amt
+ B)(n′) ≤ k ,

which implies, using now (4), that

(7) (Amt
+ B)(n′) ≥ (A′ + B)(n′) − k > αn′ − k ≥ αNt − k .

The left member of (6) and (7) is the same. Comparing their right members,

we get that εNt < k + b.

This is not true for any t, since Nt tends to infinity. This implies that the

hypothesis d(A + B) < α − ε is false and completes the proof of Theorem

1.2.

4. Proof of Theorem 1.3

If α is 0 or 1, the answer is easy: take, respectively, A to be the set of

powers of 2 or A = N.

We shall suppose in the sequel that 0 < α < 1.

We distinguish two cases

♣ Case A: α rational; say, α = m
n
, where m, n are integers, 1 ≤ m ≤ n−1.

It is not necessary that gcd(m, n) = 1. Our construction of such a set A

is simpler (see also the remark at the end of the proof of Case A) when
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m ≥ 3. So multiplying, if necessary, the terms of the fraction for α by 2 or

by 3, we will suppose in the sequel that 3 ≤ m ≤ n − 1.

Let H := {0, 1, . . . , m − 2, m}. We shall prove that the set

A := ∪h∈H(nk · N + h)

verifies d(jA) = jα/k, for all j, 1 ≤ j ≤ k. To prove that, let us first observe

that

jA = nk · N + jH ;

hereon it is easy to verify that each element of the left member belongs to

the right member and vice versa.

Notice that k max H = km < nk. The set jA being a finite union of

mutually disjoint arithmetic progressions of difference nk, we have

d(jA) =
∑

t∈jH

d(nk · N + t) = |jH|
1

nk
.

But jH = {0, 1, . . . , jm−2, jm} because jm = j max H ∈ jH, jm−1 6∈ jH,

and every nonnegative integer less than jm−1 belongs to jH. For example,

jm− 2 = (j − 1)m + (m− 2) ∈ jH ; or jm− 3 = (j − 1)m + (m− 3) ∈ jH

. So

d(jA) = |jH|
1

nk
=

jm

nk
=

jα

k
, 1 ≤ j ≤ k .

Remark 4.1. It is possible to invent specific constructions for m = 1 and

for m = 2.

♣ Case B: α irrational, 0 < α < 1.

We put θ := 1/α. We recall our notation N+ := N \ {0} = {1, 2, . . .}. We

shall prove that the set

A := {⌊nθ⌋; n ∈ N+, {nθ} <
1

k
}

verifies d(jA) = jα/k, for all j, 1 ≤ j ≤ k.

For j = 1, this follows from Corollary 2.2.

We suppose in the sequel that 2 ≤ j ≤ k.

♠ We firstly prove that d(jA) ≤ jα/k.

To do that, we begin by proving that jA ⊂ Tj where

(8) Tj := {⌊mθ⌋; m ∈ N+, {mθ} < j/k}.

An element of jA is of the form a1+· · ·+aj where ai = ⌊niθ⌋ ∈ A, 1 ≤ i ≤ j.

This yields

a1 + · · · + aj = ⌊n1θ⌋ + · · · + ⌊njθ⌋ = n1θ − {n1θ} + · · · + njθ − {njθ}

and consequently
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(n1 + · · · + nj)θ = a1 + · · · + aj + {n1θ} + · · · + {njθ}.

We have

0 < {n1θ} + · · · + {njθ} < j 1
k
≤ 1,

and so {n1θ} + · · · + {njθ} is the fractional part and a1 + · · · + aj is the

integer part of (n1 + · · · + nj)θ. In other terms and according to definition

(8), a1 + · · · + aj belongs to Tj . Since, by Corollary 2.2, Tj has asymptotic

density jα/k, the desired inequality follows.

♠ We shall now prove that d(jA) ≥ jα/k.

This will be done in the following way. We fix a real number ε, 0 < ε < 1
4k

,

and we shall prove that

(9) d(jA) ≥ α(
j

k
− ε).

Taking the limit for ε tending to zero in (9) gives the desired inequality for

d(jA).

To prove (9), we introduce the set

(10) B := {⌊Nθ⌋; N ∈ N+,
ε

2
≤ {Nθ} <

j

k
−

ε

2
}

which, by Corollary 2.2, has asymptotic density ( j
k
− ε

2
− ε

2
)/θ = α( j

k
− ε)

and we will verify that almost all (that is, all except a finite number)

elements of B belong to jA; this implies (9).

Let ℓ := j
k
−ε, which is a positive real number (ℓ > 2

k
− 1

4k
> 0) less than

1 (ℓ ≤ k
k
− ε < 1). We split the interval [ ε

2
, j

k
− ε

2
) into j intervals of equal

length ℓ/j :

[
ε

2
,
j

k
−

ε

2
) = ∪j−1

i=0Ii

where

Ii := [
ε

2
+

iℓ

j
,
ε

2
+

(i + 1)ℓ

j
) , 0 ≤ i ≤ j − 1 .

The set B splits into j sets B = ∪j−1
i=0Bi, where Bi := {⌊Nθ⌋; N ∈ N+, {Nθ} ∈

Ii}, and it will be sufficient (and necessary!) to prove that, for each i, all

except finitely many elements of Bi lie in jA. Here is the procedure.

First, one can easily verify that

0 ≤
ε

2
+

(i + 1)ℓ

j
−

1

k
<

ε

2
+

iℓ

j
.

By the uniform distribution modulo 1 of the sequence ({nθ})n (Property

(ii)), there is a positive integer mi such that

(11)
ε

2
+

(i + 1)ℓ

j
−

1

k
< (j − 1){miθ} <

ε

2
+

iℓ

j
.
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We have that ⌊miθ⌋ belongs to A since

{miθ} <
1

j − 1
(
ε

2
+

iℓ

j
) ≤

1

j − 1
(
ε

2
+

(j − 1)ℓ

j
) =

ε

2(j − 1)
+

1

j
ℓ =

=
ε

2(j − 1)
+

1

j
(
j

k
− ε) =

1

k
− ε(

1

j
−

1

2(j − 1)
) =

1

k
− ε

j − 2

2j(j − 1)
≤

1

k
.

We shall prove that, for every N > (j−1)mi such that ⌊Nθ⌋ belongs to Bi,

⌊Nθ⌋ belongs also to jA.

Since ⌊Nθ⌋ belongs to Bi, we have that

(12)
ε

2
+

iℓ

j
≤ {Nθ} <

ε

2
+

(i + 1)ℓ

j
.

Putting (11) and (12) together, gives

(13) 0 < {Nθ} − (j − 1){miθ} <
1

k
.

From the equality Nθ = (N − (j − 1)mi)θ + (j − 1)miθ, taking the integer

part and the fractional part of each multiple of θ, we get

(14)

⌊Nθ⌋+{Nθ}−(j−1){miθ} = ⌊(N − (j − 1)mi)θ⌋+{(N−(j−1)mi)θ}+(j−1)⌊miθ⌋.

By the uniqueness of decomposition of a real number into its integer part

and its fractional part, the inequality (13) implies that the fractional parts

appearing in (14) verify

(15) {Nθ} − (j − 1){miθ} = {(N − (j − 1)mi)θ}

and this, combined with (14), gives that

(16) ⌊Nθ⌋ = ⌊(N − (j − 1)mi)θ⌋ + (j − 1)⌊miθ⌋.

As observed before, ⌊miθ⌋ ∈ A. Because of (15) and (13), ⌊(N − (j − 1)mi)θ⌋

belongs to A and (16) gives us that ⌊Nθ⌋ ∈ jA. This completes the proof

of (9) and of the whole Theorem 1.3.

Added in proof.- In [V] the author resolves in a more general context

(Zt instead of N) a problem which, in some sense, contains as special case

the problem solved in the above theorem. When k = 2, the meaning of our

sentence “in some sense” is as follows: Given two positive real numbers α1

and α2 such that α1 + α2 ≤ 1 and a third real number γ, α1 + α2 ≤ γ ≤ 1,

Bodo Volkmann [V] constructs sets A1, A2 of natural numbers satisfying

d(A1) = α1, d(A2) = α2 and d(A1 + A2) = γ. The construction uses ideas

similar to the ours. The principle is the same: to use uniform distribution of

fractional parts in order to obtain sets of integers with prescribed density.
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In the case when α1 = α2, the sets A1, A2 are not equal. The set A1 is

constructed in a way similar to the one used in our proof, but the set A2

is constructed in a specific way in order to obtain d(A1 + A2) = γ. Even

in the case when γ = 2α1 = 2α2, the set A2 is different from A1. But we

observed that in this particular case Volkmann’s construction can be slightly

modified to give A2 = A1 thus providing another proof of our theorem. A

similar remark is valid when k ≥ 3.

5. Future prospects

We separate this section into questions: Q1 to Q7.

Q1 - Thin sets. Concerning the case B = A, it would be interesting to

study the existence of thin sets A verifying d(kA) = α. For additive bases

A (that is, for sets A verifying kA = N for some k, called “order” of the

basis A) this was done by Cassels [Ca] (see also [HR], p. 35-43) where, for

every k ≥ 2, a “thin” basis of order k was found. As in the case of additive

bases, in our situation, with α > 0, the condition A(x) ≥ cx1/k is necessary.

In Cassels’ construction, the basis corresponding to the order k verifies

A(x) ≤ c′x1/k. The question here is to find sets A verifying d(kA) = α > 0

and A(x) ≤ c′′x1/k. Here is a related question: is it possible to extract from

Cassels’ thin basis A (such that kA = N) a set A′ ⊂ A such that d(kA′) = α?

If this is possible, the condition A(x) ≤ c′′x1/k is automatically verified.

Remark.- The above mentioned Cassels’ thin bases allow to answer the

above question when α = 1/n. Take the Cassels asymptotic basis C =

{c1 < c2 < . . . } [Ca] (see also [HR] , p. 37) of order n. It verifies cm =

βmn + O(mn−1). Now a solution to the above asked question is to take

A := {nx; x ∈ C}. For other values of α the question remains open.

Concerning the case of a given finite set B considered in this paper, we

see two questions:

(1) To determine the more thin set A that verifies d(A + B) = α: A

necessary condition is that dA ≥ α/|B|.

(2) To evaluate the density (or the upper and the lower densities) of the

greedily constructed set A. The constructed set seems to be “the

thickest”.

Q2 - Thick sets. In the case of bases, the thickest set A verifying kA = N

is A = N. What are thick sets A satisfying d(kA) = α when α < 1? In

the case α = 1
r
, where r is an integer, r ≥ 2, the answer is trivial: take

A = {0, r, 2r, 3r, . . .}. But in general the answer is not obvious. It may

depend on the nature of α: rational or irrational.
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Q3 - B infinite. What happens for given infinite B? Find necessary or suf-

ficient (or both!) conditions on B (on the upper and lower densities of B)

such that A exists. Our greedy method of Section 2, with some supplemen-

tary considerations on formulas (1) and (2), allows to construct a set A

such that d(A + B) ≤ α when dB = 0. But we are not able to prove that

d(A + B) = α; nor to disprove it for a specific set B.

Q4 - Other densities. Replace asymptotic density by other densities. See

[G] for a list of definitions. For instance, the exponential density, defined as

[compare with Definition 1.1 of asymptotic density in Section 1]

εX := lim
x→+∞

log X(x)

log x
,

could be of interest. That is, given B and α, is there A such that the expo-

nential density of A + B is equal to α? Instead of using specific (concrete)

definitions of density, one could use axiomatically defined densities which

generalize some of the usual concepts of density; see [FS], [LT1] and [LT2].

The cases of positive Schniremann density and of positive lower asymptotic

density were already considered in [Le], [Ch] and [Nat], where best possible

results to Mann’s and Kneser’s theorems are given.

Q5 - Couple of densities. It is possible to consider the initial problem and

to ask all the above questions replacing α by two real numbers α′ and

α′′, 0 ≤ α′ ≤ α′′ ≤ 1, that will be, respectively, the lower and the upper

densities. For instance, given α′ and α′′ as above and k ≥ 2, find a set A

such that d(kA) = α′ and d(kA) = α′′.

Q6 - Generalization. Given a subset B of N, finite or of zero asymptotic

density, a real number α, 0 ≤ α ≤ 1, and an integer k ≥ 2, is there a set

A ⊂ N such that d(B + kA) = α? Search for “thin” and for “thick” such

sets A.

Q7 - Last but not least: A and B. The more studied question on classical

additive complements is to compare the functions (A+B)(x) and A(x)B(x).

Obviously (A + B)(x) ≤ A(x)B(x). So to have “thin” sets A and B means

that A(x)B(x) is not much bigger than (A + B)(x). In the classical case,

(A+B)(x) is equal, up to a constant, to x. In our case, with α > 0, (A+B)(x)

is “equivalent” to αx : limx→+∞(A+ B)(x)/αx = 1. So questions studied in

[Nar], [D] or [FC] and finally in [R] can be formulated with αx in place of

x.
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Cedex 2, France

E-mail address : faisant@univ-st-etienne.fr
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