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Abstract 

 In linear SISO systems the energy flows from the source to the 

load through each actuating power line. Bond graph representation is 

well suited for studying the energy transfer in these systems because, in 

most of the systems, we can consider that energy flows through a power 
line embedded in two-port subsystems. Moreover, with bond graph 

language, we benefit from the ease of analytical exploitation introduced 

by the calculus causality and bicausality concepts. 
 In the bond graph representation of a system the power in some 

port is associated to a power bond to which two power variables are 

attached. The determination of the transmission matrix linking two 
power variables is an efficient tool for studying the energy transfer. 

Furthermore it is often useful to study the bi-directional energy transfer 
i.e. from the source to the load and vice versa. The latter case (namely 

from the load to the source) is quite useful for the energy sizing of a 

system from its dynamic specifications on an output variable. 
 This paper proposes different procedures for determining direct 

and inverse transmission matrices and the transfer matrix between an 

internal bond and an environmental one for Single Source Single Load 
Linear systems represented by bond graphs. The procedures are based on 

the bicausality concept and the loop rule. 

INTRODUCTION 

 In the context of linear model analysis, as well as control design, 

the transfer function concept is a well-dedicated tool for inspecting the 

dynamic behavior of linear systems. For MIMO linear systems the 
transfer matrix is the extrapolation of the transfer function. It relates the 

inputs to the outputs by a number of transmittance series. A specific 

dynamic point of view is the power transmission between two power 
ports of a system [Karnopp and Rosenberg 1968]. In that case the inputs 

and outputs are pairs of conjugate power variables i.e. efforts and flows. 

For actuating power line systems whose the function is to drive the loads 
by converting the energy furnished by the sources, the transmission 

matrix enables the energy transfer to pass from the source to the load 

(direct transmission) or from the load to the source (inverse 
transmission) to be investigated [Xia 2000]. The transmission matrix is 

also a means for calculating the wave matrix and then the scattering 

matrix [Kurokawa 1969, River and Sardos 1982, Scavarda et al. 1991, 

Amara and Scavarda 1992]. 

 In this context the bond graph is an appropriate language for both 

modelling pluridisciplinary mechatronic systems and also conducting 
analyses for dynamic behavior investigation [Karnopp et al., 1990, 

Dauphin-Tanguy 2000]. Bond graph language proposes powerful tools 

for analysing and simulating the dynamic behavior of systems. In 
particular causality combined with the loop rule [Brown 1972] helps 

determine a transfer matrix between inputs and outputs in a linear model. 

More recently bicausality has opened new fields of analysis such as 
system inversion, state estimation, parameter estimation, input 

reconstruction, dynamic sizing, control synthesis [Gawthrop 1995, 

Ngwompo et al., 1996, Ngwompo and Scavarda 1999, Gawthrop 2000, 
Junco 2001, Ngwompo et al., 2001]. 

 This paper proposes three procedures based on bicausality and the 

use of the loop rule for calculating both the direct and inverse 

transmission matrices, also for calculating a transfer matrix from an 
internal bond to an environmental bond for Single Source Single Load 

Linear (SSSLL) systems. The next section presents the concepts and the 

tools used in the procedures. Then the procedures are proposed with 
illustrating examples. Finally the conclusion examines some benefit of 

these procedures and proposes some perspectives. 

CONCEPTS AND TOOLS 

Transfer and Transmission Matrices 

 Consider an Actuating Power Line (APL) represented by a Single 

Source Single Load Linear (SSSLL) model with its generic block diagram 
(Fig. 1) and its generic bond graph representation (Fig. 2). The sources 

and the loads constitute the model environment and define the inputs and 

outputs between which the transfer, and the transmission matrices may 
be calculated. The source is considered here as a non-ideal source and, 

without loss of generality, the inputs and the outputs are restricted here 
in the bond graph representation to physical power variables. 
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Figure 1. Generic block diagram representation of an SSSLL model 
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Figure 2. Generic bond graph representation of an SSSLL model 

 The transfer matrix is the physical input/output representation in 

the Laplace domain that enables the outputs to be expressed in terms of 
the inputs by a series of transfer functions (Equ. 1) [Borne et al., 1992, 

Dauphin-Tanguy 2000]. 

Y(s)=M(s)U(s) [1] 
where Y(s)=[YS(s) YL(s)] is the output Laplace transform vector, 

 U(s) )=[US(s) UL(s)] is the input Laplace transform vector, 

 M(s) is the transfer matrix composed of the individual 
input/output pair of transmittances (Equ. 2), 

 and s is the Laplace operator. 

M(s)=[mij(s)] i=1,2; j=1,2 [2] 
with mij(s) the transfer function or transmittance between the jth input and 

the ith output. 

 Depending on the causality imposed by the source and the load, 
inputs and outputs are either efforts or flows. uS(t) and yS(t) are the 

source bond power variables and uL(t) and yL(t), the load bond ones. 

According to the definitions given in [Karnopp and Rosenberg 1968], 
the transfer matrix of Fig. 2 APL is called: (i) admittance, if both the 

source and the load impose efforts; (ii) adpedance, if the source imposes 

an effort and the load a flow; (iii) immitance, if the source imposes a 
flow and the load an effort; and (iv) impedance, if both the source and 

the load impose flows. 



 This transfer matrix calculation corresponds to the physical cause 
and effect relationship in a model. If input/output role exchange is 

envisaged, the transfer matrix then refers to an inverse model and the 

associated mathematical model does not correspond to the natural way 
the physical system behaves. A particular case is such that either the 

source or the load imposes both the effort and the flow to the APL. This 

introduces the concept of transmission matrix [Karnopp and Rosenberg 
1968]. If the source (resp. load) imposes both the effort and the flow the 

concept of direct (resp. inverse) transmission is defined [Xia 2000]. 

 It is also worthwhile noting that direct and inverse notions for a 
transmission matrix correspond to the energy flow direction between the 

source and the load (Fig. 2). The direct transmission corresponds to the 

natural function of the APL, which is to drive the load by converting the 
energy furnished by the source. However the inverse notion also refers 

to an input/output mathematical reorganization of the equations. The 

concept of bicausality, which is used for calculating the transmission 
matrix, is now recalled. 

Bicausality and Inversion 

 The determination of the transfer matrix from the bond graph 

representation is straightforward by assigning the preferential integral 

causality by SCAP (Sequential Causality Assignement Procedure) 

[Karnopp et al., 1990, Van Dijk 1994] or by assigning the preferential 
derivative causality and then applying the loop rule on each pair of 

input/outputs [Brown 1972]. The different transfer functions thus 

obtained between the inputs and the outputs are the transmittances of the 
transfer matrix (Equ. 2). 

 In the Fig. 2 bond graph representation the transfer matrix is 

derived by the means of a causality assignment. The transfer matrix of 
an inverse model and the transmission matrix are possible to be derived 

straightforwardly by means of the bicausality concept. The essence of 

bicausality can be easily introduced by considering that a causal stroke 
ultimately consists of two half strokes each attached respectively to the 

effort and flow of a power bond (Fig. 3). 

f
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Figure 3. Bicausality concept: causality assignment decoupling 

 Assignment coupling characterizes the causality assignment on a 

bond and bicausality authorizes breaking this assignment coupling. In 
this way bicausality assignment corresponds exactly to deriving an 

inverse model from a bond graph representation. For the Fig. 2 APL 

causal bond graph, this means that at ports, causal strokes split into two 
according to the transmission matrix calculation. A double source which 

imposes both effort and flow, and a double detector which receives both 

effort and flow enable bicausality initialization and termination to be 
carried out. 

Direct transmission
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Figure 4. Bicausality assignment for the transmission matrix calculation 

 In the context of bond graph language, inversion has been largely 

treated in literature [Gawthrop 1995, Ngwompo et al., 1996, Fotsu 

Ngwompo 1997, Ngwompo and Scavarda 1999, Gawthrop 2000, Junco 
2000, Junco 2001, and Ngwompo et al., 2001]. Bond graph language 

enables the structural invertibility properties, directly and at a graphical 

level, to be investigated. It is based on the existence of a set of disjoint 
input/output causal paths. If this set does not exist between the inputs 

and outputs involved in the inverse transfer or transmission matrix to be 

calculated, then the corresponding inverse model cannot be determined. 
In the context of SSSLL models the invertibility condition is reduced to 

the existence of a power line between the source and the load. This 

condition is assumed to be realized according to the APL function 
between the source and the load. 

 Thus, the procedures presented in this paper for calculating an 

inverse transfer matrix or a transmission matrix are based largely on 

SCAPI (Sequential Causality Assignment Procedure for Inversion 

[Ngwompo et al., 2001]) but without the condition of the minimal order. 
The second important calculus tool used in these procedures is the loop 

rule that is recalled in the next section. 

Loop Rule 

 The transfer matrix consists of transmittances between the inputs 

and outputs. One method for calculating these transmittances is based on 

the loop rule applied to bond graph [Brown 1972]. The loop rule has 
been adapted from Mason's rule presented in the context of signal flow 

graphs [Mason 1956]. Since bicausal bond graph corresponds to a 

certain organization of the equations, it is postulated that it can be 
associated to a signal flow graph and that the loop rule still works. Thus 

the loop rule is also used for determining the transfer matrix of an 

inverse model and the transmission matrix. 
 The loop rule enables, for a linear system represented by a causal 

or a bicausal bond graph, the transfer function between an input and an 

output to be calculated by: 

 

   

 s

ssp

sG



 i
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 [3] 

with (s) as the bond graph determinant determined by the expression: 
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where 
  sj
i

  is the ith product of the loop gains for j causal loops of 

the causal or bicausal bond graph which do not touch one 

another. The summations are over all possible combinations, 

 pi(s) is the ith input/output path gain, 

 pi(s) is the ith reduced determinant of the causal loops which do 

not touch the ith causal path. This reduced determinant is 

calculated in the same manner as for the determinant expressed 
by Equation 4. 

 By the principle of superposition the transfer or the transmission 

matrix is simply obtained by appending the different input/output 
transfer functions in rows and columns into a matrix [Borne et al., 1992]. 

PROCEDURES 

 Three bicausality based procedures are presented. The first 
procedure enables the transmission matrices (direct and inverse) to be 

derived for a given SSSLL model represented by its bond graph. The two 

other procedures enables a transfer matrix to be calculated, this gives the 
power variables of an environmental bond in terms of those of an 

internal bond power variables. This transfer matrix is that of an inverse 

model. Here it is an inverse model in the sense that one power variable 
of the involved environmental bond changes its input/output role. For the 

conciseness of the proposed procedures the concept of a power line is 

defined. A power line between two components is a series of bonds and 
junction structure elements connecting two components [Wu and 

Youcef-Toumi 1995, Ngwompo et al., 2001]. An input/output power line 

is associated to an input/output causal path if the causal path goes 
through one variable of each bond of that power line. Contrary to the 

causal path, the power line is an acausal concept. 

Transmission Matrix 

 Given a SSSL linear model and its bond graph representation the 

procedure is applied as follows: 
Procedure 1:  

a. If the direct (resp. inverse) transmission matrix is required, replace 

the source by a double source (resp. detector) and the load by a 
double detector (source). 

b. Assign bicausality from the double source to the double detector 

along an input/output power line. 
c. Complete the causality assignment to the remaining acausal bond 

graph according to the classical causality constraints of the 

junction structure. 
d. Apply the loop rule to calculate the transmittances of the 

transmission matrix researched. 

 Procedure 1 is now illustrated by an example. Consider the Fig. 5 
bond graph representation of an APL system (it could correspond to an 

electrical circuit for instance). 
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Figure 5: Example of an APL bond graph representation 
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Figure 6. Example: the bicausal representations a) for the direct 

transmission matrix; b) for the inverse transmission matrix calculation 

Fig. 6a (resp. b) illustrates procedure 1 steps a, b, and c for calculating 
the direct (resp. inverse) transmission matrix. The source and the load 

have been respectively been replaced by double source and double 

detector elements. Then bicausality has been propagated from the double 
source to the double detector and finally causality has been completed. 

 Example: Direct Transmission (Fig. 6a) 

 The bicausal bond graph representation shows three causal loops 
with the following respective gains: 

     
s

sss
12

3
12

2
2

12

1
1

CR

1
;

CR

kC
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CkR

L
 ΔΔΔ  [5] 

 These loops touch one another so the bicausal bond graph 

determinant is: 
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s
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kC
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L
1 Δ  [6] 

Table 1 shows, for each combination of input/output pairs, the 

input/output causal path gains and the corresponding transmittance 

numerator that composes the direct transmission matrix. This results 

from the application of the last step of the procedure. 

 Example: Inverse Transmission (Fig. 6b) 

 The bicausal bond graph representation shows three causal loops 

with the following respective gains: 
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1
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 These loops touch one another so the bicausal bond graph 
determinant is: 

 
s

s
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2
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L
1 Δ  [8] 

 Table 2 shows, for each combination of input/output pairs, the 

input/output causal path gains and the corresponding transmittance 
numerator that composes the inverse transmission matrix. This results 

from the application of the last step of the procedure. 

 It can be easily verified that both transmission matrices obtained 

are the inverse, one of the other. 

 

Table 1. Results of the loop rule application for the direct transmission matrix calculation 

I/O pair I/O causal path gains and corresponding reduced determinant Transmittance numerator 
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Table 2: Results of the loop rule application for the inverse transmission matrix calculation 

I/O pair I/O causal path gains and corresponding reduced determinant Transmittance numerator 
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From an Internal Bond to an Environmental Bond 

 This procedure now considers a bond within the bond graph 

representation of the APL (Fig. 7). Only the transfer from this bond to an 

external bond is envisaged. One motivation for calculating such a transfer 
is to look at the energy repartition in the Laplace domain. Also this transfer 

can be considered as an intermediate transfer between environmental ports. 

Two methods are proposed here: an indirect method and a direct one. 

fS(t)

eS(t)
Source

fL(t)

eL(t)
Load

ei(t)

fi(t)
 

Figure 7: Bond graph generic representation of the SSSLL model with an 
internal bond i 

 Indirect Method 

 The indirect method necessitates calculating two matrices. In fact the 
transfer matrix that relates the environmental bond power variables to the 

internal bond variables cannot be obtained by the classical use of the loop 

rule. Here, in the envisaged transfer, the internal bond power variables are 
not inputs for the model. Thus, due to its nature, the loop rule cannot be 

directly applied. Instead other transfer matrices are determined and it is 

shown that the transfer matrix researched can be expressed in terms of 
these other matrices. Given an SSSLL model and its bond graph 

representation, the procedure is applied as follows: 

Procedure 2: 
a. Choose the internal bond and the environmental bond (source or load 

bond) between which the transfer matrix is required. 

b. Replace the chosen (resp. not chosen) environmental element (source 
or load) by a double detector (resp. double source). 

c. Assign bicausality from the double source to the double detector 

along a power line between the source and the load. 
d. Complete the causality assignment to the remaining acausal bond 

graph according to the classical causality constraints of the junction 
structure. 

e. Apply the loop rule to calculate the transmittances of the transfer 

matrix between the power variables of the double detector bond 
(noted dd) and those of the double source bond (noted ss). Denote the 

obtained matrix  sddss
M . This matrix is a transmission matrix 

(either direct or inverse). 

f. Apply the loop rule to calculate the transmittances of the transfer 

matrix between the power variables of the internal bond (noted i) and 
those of the double source element bond (noted ss). Denote the 

obtained matrix  siss
M . In this step the internal bond power 

variables can be seen as outputs without changing the global model 

formulation. 
g. The researched transfer matrix between the double detector element 

bond and the internal bond power variables is calculated from the 

matrix product:     1issddss ][   ss MM . It is conjectured here 

that the matrix  siss
M  is invertible due to the assumption of the 

existence of a power line between the source and the load. 

 Proof 

 Consider the Fig. 7 bond graph representation of an SSSLL model. The 
internal bond is denoted bond i and its power variables may be detected 

respectively by a flow detector element for fi(t) and by an effort detector 

element for ei(t). 
 Whatever the source or the load chosen for the environmental bond 

involved in the transfer matrix, denote respectively [ess(t) fss(t)] and [edd(t) 

fdd(t)] the power variables of the double source and of the double detector 
for the inverse model. After bicausality assignment and by the use of the 

loop rule, the transfer between the environmental bonds on one hand 

(which here is a transmission) and the transfer between the internal bond 
and the double source bond on the other hand are expressed by: 
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 [9] 

 By manipulating equations 9 and with the conjecture that the first 

transfer matrix of these equations is invertible the results are obtained 
straightforwardly: 
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 End of proof 
 It must be emphasized here that at no instant the power variables of 

the internal bond became an input of the inverse model. An illustrative 

example is given at the end of the following section. 

 Direct method 

 A drawback of the indirect method for calculating a transfer matrix 

between an environmental bond and an internal one is the double 
application of the loop rule for determining two transfer matrices. 

Moreover one of these two matrices must be inverted and a matrix product 



has to be calculated. The direct method proposes calculating only one 
matrix without a product. Furthermore the different terms of this matrix can 

be directly deduced from the application of the loop rule. 

 Given an SSSLL model and its bond graph representation the 
procedure is applied as follows: 

Procedure 3: 

a. Choose the internal bond and the environmental bond (source or load 
bond) between which the transfer matrix is required. 

b. Replace the chosen (resp. not chosen) environmental element (source 

or load) by a double source (resp. double detector). 
c. Assign bicausality from the double source to the double detector 

along a power line between the source and the load. 

d. Complete the causality assignment to the remaining acausal bond 
graph according to the classical causality constraints of the junction 

structure. 

e. Apply the loop rule to calculate the transmittances of the transfer 
matrix between the power variables of the internal bond (noted i) and 

those of the double source element bond (noted ss). Denote the matrix 

obtained     ][/1 iss
jk

iss   ms sΔM  with (s) as the bond graph 

determinant. In this step the internal bond power variables can be 

seen as outputs without changing the global model formulation. 
f. The researched transfer matrix between the chosen environmental 

bond (here the double source element bond) and the internal bond 

power variables is expressed by:     )]cofactor([/ iss
jk
 mssΔ   with 

  iss
12

iss
21

iss
22

iss
11

  mmmms . It is conjectured here that the 

matrix  siss
M  is invertible due to the assumed existence of a 

power line between the source and the load. 

 Proof 

 Consider again the Fig. 7 bond graph representation of an SSSLL 

model. From the step b of the procedure the environmental element 
attached to the chosen environmental bond is replaced by a double source 

even if, in this purpose of transfer calculation, the power variables of the 

chosen environmental bond are outputs. Then the transfer matrix between 

the internal bond power variables and the double source bond power 

variables is expressed by: 
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 Then the researched transfer matrix is deduced from the inversion of 

equation 11: 
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 End of proof 
 Compared to the indirect method the direct one is far advantageous 

since the matrix terms researched are obtained directly by the application of 

the loop rule and more simply, in particular by manipulating the bond 
graph determinant and the transmittance numerators. An illustrative 

example is now presented to compare both the indirect and direct methods. 

 The two previous procedures are illustrated with the Fig. 5 example. 
The transfer matrix between the internal power variables ei(t) and fi(t) and 

the source bond power variables eS(t) and fS(t) is researched. 

 Example: Indirect method (Fig. 6b) 

 Fig. 6b illustrates the application of the procedure 2 steps a, b, c, and 

d. The source and the load have been respectively replaced by double 

detector and double source elements. Then bicausality has been propagated 
from the double source to the double detector and finally causality has been 

completed. Step e of the procedure leads to determining a transmission 

matrix. Here this is the inverse transmission matrix that has been already 
calculated in section ‘Transmission Matrix’ (cf. Table 2). Table 3 shows, 

for each pair combination of double source bond variables/internal bond 

variables, the input/output causal path gains and the corresponding 

transmittance numerators that compose the matrix calculated at step f of the 

procedure. The bond graph determinant is given by equation 8. 

 Finally the application of the last step of the procedure requires 
inverting the previous matrix (Equ. 13) and deriving the product of this 

inverse matrix by the transmission matrix, obtained one step before the 

previous one. This gives the transfer matrix researched between the internal 
bond power variables and the source bond ones (Equ. 14). 
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 Example: Direct method (Fig. 6a) 

 Fig. 6a illustrates the application of procedure 3 steps a, b, c, and d. 
The source and the load have been respectively replaced by double source 

and double detector elements. Then bicausality has been propagated from 

the double source to the double detector and finally causality has been 
completed. Table 4 shows, for each pair combination of double source 

bond variables/internal bond variables, the input/output causal path gains 

and the corresponding transmittance numerators that compose the matrix 
calculated at step e of the procedure. The bond graph determinant is given 

by equation 6. 

 Finally the application of the last step of the procedure leads easily to 
the Equ. 14. 

Table 3: Results of the loop rule application for the indirect method 

I/O pair I/O causal path gains and corresponding reduced determinant Transmittance numerator 
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Table 4: Results of the loop rule application for the direct method 

I/O pair I/O causal path gains and corresponding reduced determinant Transmittance numerator 
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CONCLUSION 

 This paper proposes a series of three procedures, on one hand for 

calculating transmission matrices and on the other hand for calculating a 
transfer matrix between internal bond power variables and environmental 

bond power variables, from the bond graph representation of Single Source 

Single Load Linear (SSSLL) systems. The procedures are based on a 
bicausality assignment coupled to the use of the loop rule. 

 The concepts of transmission matrix, internal bond transfer matrix 

and bicausality are associated to inverse models. In that context the SCAPI 
procedure (Sequential Causality Assignment Procedure for Inversion) had 

been presented for sizing mechatronic systems on dynamic and energy 
criteria [Ngwompo et al., 2001]. SCAPI enables a minimal order inverse 

model to be calculated from its bond graph representation. This 

corresponds to expressing the input in terms of the output with a minimal 
number of differentiations of this output. Thus, in the bicausal bond graph 

representation, a minimal number of energy storage elements are in 

derivative causality. On the contrary, for the purpose of transmission 
matrix or internal bond transfer matrix calculation, the minimal order 

condition is not so crucial. All the more it might even be interesting to have 

the maximal number of energy storage elements in derivative causality. In 
certain cases this is researched when applying the loop rule on a bond 

graph representation with the preferential derivative causality [Brown 

1972]. It must be also emphasized here that due to the fact that the 
calculation is made in the Laplace domain, it is not necessary to find a 

minimal inverse model. 

 Calculation of the transmission matrix has been already proposed 
using classical causality [Scavarda et al. 1991]. However this calculation 

required assigning successively four different causality schemas in order to 

pick up, for each one, a coefficient in the respective admittance, adpedance, 
immitance and impedance matrices obtained. The use of bicausality gives a 

great improvement since it only needs one assignment to obtain the 

transmission matrix straightforwardly. Furthermore it has been shown how 
it was possible to derive a transfer matrix involving an internal bond. Using 

this transfer may be interesting for investigating the energy repartition in 

the junction structure. 
 A perspective is now to generalize these procedures to Multi Sources 

Multi Loads Linear (MSMLL) systems. In this case careful inspection of 

model invertibility properties will be required. Also it has been shown that 
the condition on the model order was not crucial. This leaves several 

possibilities for propagating bicausality depending on the number of 

existing input/output power lines. Another perspective could be to 

investigate the consequence of the power line choice for bicausality 

propagation from the point of view of the calculation. 
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