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INTRODUCTION

Information provided by sensors plays a major role in decision making, especially in automated systems. Therefore assessing the quality of their outputs, in particular the trust that can be put in them, is a crucial task. Indeed, there are many situations where sensors can fail and not produce correct information, e.g. due to communication problems, interference, difficult operating conditions or calibration issues. Timely recognising untrustworthy information can increase the usefulness of decision-aid systems, improve safety and avoid expensive operations such as either unnecessary or delayed maintenance. To avoid these issues information can be scored so as to evaluate its quality level, which is a major topic tackled by many authors.

Information Scoring. Information Quality Scoring has a non-trivial definition for which no consensus exists, see e.g. [START_REF] Batini | Data and Information Quality[END_REF]. It is most often decomposed into several dimensions, each of them focusing on different characteristics of the considered piece of information, its source or its content.

An information scoring model can thus be defined by the individual dimensions it considers and the aggregation procedure used to combine them. More than 40 different dimensions have been described in the literature, see e.g. [START_REF] Sidi | Data quality: A survey of data quality dimensions[END_REF]. Some examples for instance include: relevance and truthfulness [START_REF] Pichon | Relevance and truthfulness in information correction and fusion[END_REF]; reliability, certainty, corroboration, information obsolescence and source relations [START_REF] Lesot | Proposition of a semi-automatic possibilistic information scoring process[END_REF] or trustworthiness, proficiency, likelihood and credibility [START_REF] Besombes | An extension of STANAG2022 for information scoring[END_REF]. Note that a given dimension name can also have several interpretations and numerical measures to assess them, further enriching the variety of information quality models.

Among the various definitions of information quality, trust plays a specific role: it interprets the notion of quality as the level of confidence that is put in a piece of information. As with information quality scoring in general, existing trust models vary in the understanding of the concept it measures and therefore in the dimensions used for its representation and in their aggregation procedure. Some models for instance include confidence, reliability and credibility [START_REF] Young | Pedigree and confidence: Issues in data credibility and reliability[END_REF]; dynamic credibility [START_REF] Florea | Dynamic estimation of evidence discounting rates based on information credibility[END_REF] or reliability, competence, plausibility and credibility (Revault d'Allonnes and [START_REF] Revault D'allonnes | Formalising information scoring in a multivalued logic framework[END_REF].

Information Quality Dimensions for Sensors. Sensors constitute a specific case of information providers that are as well subject to imperfections: they also require to measure the quality of their outputs, for instance to allow nuanced processing and exploitation of their results. Dedicated models have been developed to take into account their specificities [START_REF] Pon | Data quality inference[END_REF][START_REF] Guo | Evaluating sensor reliability in classification problems based on evi-dence theory[END_REF][START_REF] Florea | Dempster-Shafer Theory: combination of information using contextual knowledge[END_REF][START_REF] Destercke | Evaluating data reliability: An evidential answer with application to a web-enabled data warehouse[END_REF][START_REF] Lenart | Dynamic trust scoring of railway sensor information[END_REF]. As in the general information quality case, they are usually defined by a list of individual dimensions and an aggregation procedure. The most common dimensions, briefly presented below, are reliability, contextual reliability and credibility.

Reliability focuses on the ability of a sensor to perform its required functions under some stated conditions for a specified time. It is an a priori assessment of the source quality, which can be difficult to measure. Existing approaches for instance exploit meta-information about the sensors [START_REF] Florea | Dempster-Shafer Theory: combination of information using contextual knowledge[END_REF][START_REF] Destercke | Evaluating data reliability: An evidential answer with application to a web-enabled data warehouse[END_REF] or evaluate its past accuracy, relying on expert evaluation of its previous outputs [START_REF] Florea | Dynamic estimation of evidence discounting rates based on information credibility[END_REF][START_REF] Blasch | Derivation of a reliability metric for fused data decision making[END_REF]. The latter in particular requires the availability of ground truth to assess the correctness of these previous sensor outputs.

Contextual reliability adapts reliability depending on the task the sensor is used for and thus the context of each piece of information. An example is proposed in [START_REF] Mercier | Refined modeling of sensor reliability in the belief function framework using contextual discounting[END_REF] where reliability scoring is modified to enrich it with its context, thus different situations can result in different output qualities for a given sensor. The idea is to create a vector of reliability values that are used in different scenarios.

Credibility is usually understood as the level of confirmation of the considered piece of information by other, independent, pieces of information. Most models of credibility can be seen as variations of a common approach which consists in considering how many different pieces of information agree with the evaluated one [START_REF] Pon | Data quality inference[END_REF][START_REF] Guo | Evaluating sensor reliability in classification problems based on evi-dence theory[END_REF][START_REF] Florea | Dynamic estimation of evidence discounting rates based on information credibility[END_REF] This paper considers a specific trust scoring model, [START_REF] Lenart | Dynamic trust scoring of railway sensor information[END_REF], referred to as ReLiC from hereon and described in Section 2, which relies on reliability, likelihood and credibility.

Trust Dynamics. There have been several studies on the issue of trust evolution, examining the successive values trust can take: trust depends on the information flow and on the way previous pieces of information have been scored [START_REF] Jonker | Formal analysis of models for the dynamics of trust based on experiences[END_REF][START_REF] Falcone | Trust dynamics: How trust is influenced by direct experiences and by trust itself[END_REF][START_REF] Cvrcek | Dynamics of reputation[END_REF]. [START_REF] Jonker | Formal analysis of models for the dynamics of trust based on experiences[END_REF] argue that a new piece of information which influences the degree of trust is either trust-positive, i.e. it increases trust to some degree, or trust-negative where trust is decreased to some degree. The degree to which trust is changed differs depending on the used model. They distinguish between two types of trust dynamical models: a trust evolution function considering all previous information and a trust update function storing only the current trust level and having the ability to include the next information. However, [START_REF] Falcone | Trust dynamics: How trust is influenced by direct experiences and by trust itself[END_REF]) challenge these definitions, claiming that this only stands for trust computed as a single dimension. [START_REF] Mui | Computational models of trust and reputation: Agents, evolutionary games, and social networks[END_REF] proposes an asymmetrical approach for the increase/decrease trust rate, which is inspired by the approach observed in humans: i.e. trust increases slowly but decays rapidly. This asymmetrical behaviour is also arguably important from a practical point of view, for many implications (see the case of malicious attacks in the security domain [START_REF] Duma | Dynamic trust metrics for peer-to-peer systems[END_REF]).

Objectives and Outline. The first goal of this paper is to increase user's understanding of a dynamic trust computation model, namely the ReLiC model recalled in Section 2. ReLiC assesses trust by aggregating three dimensions, which opens the possibility for different trust behaviours that highly depend on the type of quality problem at hand. By analysing these behaviours it is possible to highlight important trust evolutions for each encountered problem this showing the user how trust reacts in different scenarios.

Note that, in the expression of trust evolution, trust is actually successively computed for different pieces of information and it is not a description of the trustworthiness of the source which can be updated by including more information. Evolution is understood at a general level, for the successive messages of a given sensor.

The second goal is to propose a methodology to evaluate any quality scoring method, with two important features. First, the methodology is based on real data from a given application domain, it is crucial as most of the models are not universal and are designed only for data from the specific domain including specific attributes. Second, contrary to most related works, this method does not use ground truth but only statistical properties derived from the data. This property can be very beneficial as ground truth is often expensive or impossible to obtain.

Using a visual and formal study of trust behaviours we differentiate key trust evolution types that can occur. We first focus on a controlled evaluation of the ReLiC method in the case of railway data showing its capabilities of highlighting possible quality problems. Then, the method is applied to a real dataset, named MoTRicS2015 and described in Section 3.2, to observe the propagation of trust among multiple sensors.

The paper is organised as follows: Section 2 describes the ReLiC model used in this paper. Section 3 presents in more details the proposed methodology for trust dynamics evaluation where the conducted studies are divided into the following three sections: the visualisation of single sensor trust evolution is proposed in Section 4 to evaluate the scoring method and illustrate its trust evolution, then a formal analysis is presented on the ReLiC in Section 5. Finally the real data is used to test the trust propagation on multiple sensors in Section 6. Section 7 concludes the paper and discusses future research directions.

THE ReLiC MODEL

This section details the information quality model for sensors [START_REF] Lenart | Dynamic trust scoring of railway sensor information[END_REF], from hereon referred to as ReLiC, on which the study conducted in this paper is based. ReLiC differs from related work by aiming to be as self-contained as possible: no ground truth is needed and all necessary meta-information can be extracted from the data. Also, the method can be used in real time as it computes trust dynamically using only currently available information.

After making explicit the required data structure and used notations, this section describes in turn each of the three dimensions as well as their aggregation.

Data Structure. The ReLiC method proposes to score pieces of information corresponding to sensor temporal outputs stored as successive log entries for which the following attributes are available: a date, a time, a sensor ID and an output message. An example of the entries from such a log file is given Table 1 (first four columns) for a single sensor with ID S1, which outputs two messages: occupied and clear.

In addition, the ReLiC model requires a state transition graph and a network of sensors. The state transition graph represents admissible consecutive log entries for one sensor, defining valid transitions: a node corresponds to the sensor's output message, an edge The sensor network is a graph whose nodes represent the sensors and an edge between two nodes indicates that these sensors are correlated, in the sense that, due to their physical geographical proximity, the activity of the first one is related to the other one: their messages are expected to be correlated (see Figure 1).

Notations. Throughout the paper, L denotes the complete set of log entries and L s the set of log entries produced by sensor s. The notation l corresponds to one log entry defined as a vector containing three values: l.fullDate corresponding to date and time, l.sensor to the sensor ID and l.message to the provided piece of information describing the sensor's state. The set of all sensors is denoted by S and the set of all time stamps by T .

Reliability. The first dimension used in the ReLiC model scores the source independently of its current message, thus focusing on the specifics of a sensor to assess an a priori trustworthiness level.

The ReLiC method proposes to consider recent errors produced by the sensor based on the assumption that an error message suggests a problem with the sensor. Formally, it is defined as:

r : S × T -→ [0, 1] (s, w) -→ 1 - |error(recent(L s , w))| |recent(L s , w)| (1)
where recent : L × T → P (L) provides the set of the w latest entries produced by sensor s: w defines a time window that should depend on the sensor's output frequency. In the experiments described in Sections 4 and 6, w is set to 20 based on the preliminary experimental studies which consider density of messages.

error : L → P (L) is the function which extracts the set of error entries in this set. Likelihood. The second dimension measures whether the considered log entry is in line with its expected possible value, independently of its source, based on the state transition graph. More precisely, it examines whether the message flow is compatible with the model or not. The formal definition of

lkh : L → [0, 1] is: lkh(l) =      trust(prv(l)), if l.message compatible with prv(l).message 1 -trust(prv(l)), otherwise (2) 
where prv : L → L returns the single log entry l provided by the same sensor just before the current entry l and l.message is compatible with l .message when that state transition exists in the model.

Credibility. The third dimension exploits information from other sensors to confirm or deny the considered entry, also independently of its source. More precisely, the ReLiC method considers validations and invalidations taken from the sensor neighbours, where the neighbourhood is defined by the sensor network, as illustrated in Figure 1. Formally, the credibility function cr is defined as:

cr : L -→ [0, 1] l -→ agg 1 (agg 2 (con f (l)), agg 3 (in f (l))) (3) 
where con f : L → P (L) returns a set of entries that confirm l; in f (l) : L → P (L) returns a set of entries that contradict l. agg 2 and agg 3 are the aggregation operators applied to the trust scores of their set of logs. In [START_REF] Lenart | Dynamic trust scoring of railway sensor information[END_REF], they are set to be the average. The agg 1 operator combines the respective results provided by agg 2 and agg 3 ; [START_REF] Lenart | Dynamic trust scoring of railway sensor information[END_REF] sets it as agg 1 (c, i) = c+1-i 2 .

Trust. The final step is to aggregate the three previous dimensions. [START_REF] Lenart | Dynamic trust scoring of railway sensor information[END_REF] proposes to score trust in two steps: it first combines reliability and likelihood with a conjunctive operator and it then integrates credibility. The proposed definition is:

tr : L -→ [0, 1] l -→ α • r(l.sensor, l. f ullDate) • lkl(l)+ (1 -α) • cr(l) (4 
) where the parameter α ∈ [0, 1] weighs the desired influence of each of the two parts of this equation. In the experiments described in Sections 4 and 6, α is set to 0.75. The value is proposed in [START_REF] Lenart | Dynamic trust scoring of railway sensor information[END_REF] so as to put more influence on the two dimensions describing the source and the piece of information it produces.

As mentioned before, the trust value with its components does not depend on a ground truth for an a priori setup. This separates the ReLiC method from other approaches taken in the literature.

PROPOSED EXPERIMENTAL METHODOLOGY

This section describes the methodology for the study of trust dynamics proposed in the paper, discussing the relevance of data simulation, the considered tools as well as the proposed experimental protocol applied to obtain the results presented in Sections 4 and 6.

Proposed Protocol

The ability to validate a quality scoring method is a crucial and difficult task as, most often, different methods use different dimensions which might be more relevant in one domain and less in other. Usually, validation is done by using ground truth to compare results provided by the method with the expected ones. However, the access to ground truth is often difficult, expensive or sometimes even impossible.

To address this issue, we propose to use realistically simulated data, based on the real data set we consider. This approach has two major advantages apart from making ground truth unnecessary. First, it gives the ability to create multiple scenarios which happen rarely in real data or did not happen yet. Second, it gives the ability to use data from the same domain as the real data which, as mentioned before, is important with general quality evaluation systems.

Data Simulation. Creating a synthetic database helps with controlling the type of introduced quality problems, their intensity, distribution and it allows to cover a larger spectrum of problems. This opens the possibility to review different quality problem scenarios to check how the considered method behaves.

We thus propose to create a synthetic log entries set by randomly modifying a certain amount of original entries, to introduce quality problems in the data. The modifications consist in replacing the message that an entry carries with a different one in the possible set of messages thus creating a noisy dataset. Then, the original data serves as a ground truth for future validation.

For a given set of log entries, the simulation modifies a certain percentage of the entries produced by a sensor with different distributions.

Analysis Methodology. The analysis of trust dynamics consists in studying the difference between two consecutive trust values, which we denote ∆(tr) = trust 2trust 1 in the following. By introducing noise to one of the sensors we can study how ∆(trust) changes as well as ∆(r), ∆(lkl) and ∆(cr).

First, a visual analysis of local dynamics considers the level of decrease in simulated entries and its later recovery to observe the effectiveness of the ReLiC method in recognising quality problems and to illustrate its trust evolution behaviours in these situations in Section 4. Then, a formal study of the formulas to score each dimension is performed to observe theoretical dependencies and explain previously observed behaviours in Section 5.

Finally, the ReLiC method is used to compute trust for real data and to observe the global trust dynamics of information from multiple sensors interacting with each other in Section 6. A new visualisation scheme is proposed for plotting the trust evolution for all available sensors simultaneously. This can easily show how neighbouring sensors can influence each other.

The presented method as well as the proposed experimental methodology apply to any information produced by event-based sensors, even though this study focuses on railway data.

The MoTRicS2015 Real Data

Data Presentation. In this paper we consider a dataset called MoTRicS2015 which stems from the rail signalling domain and incorporates different kinds of monitoring devices such as axle counters or point machines. It consists of entries which store the information about asynchronous events produced by the devices located on the railway tracks. We consider one of the stations covered in MoTRicS2015 and its surrounding tracks for one year of available data. In the experiments, only one type of sensor is evaluated, the axle counter (AC). This device provides information about a train entering a specific part of track or In the considered part of the railway there are 60 AC providing 1,142,302 log entries within one year time.

State Transition Graph Extraction. In the absence of a theoretical model we propose to build the state transition graph automatically from the data. First, for each AC, its log entries are extracted and their unique messages are used as nodes in a graph. The transition between two nodes is created if the two subsequent messages can be found in the analysed entries. This transition graph is created for every AC in the data thus amounting to 60 such graphs. Next, they are aggregated into a global graph with the aim of keeping a maximum number of nodes and transitions. Each transition is weighted by the proportion of AC that have this transition (the percentages shown in Figure 2). Some connections above the threshold were removed when their temporal frequency (percentage of occurencies per AC) is below a given threshold of 10%.

The result of this data extraction is shown in Figure 2, where the red connections are the removed ones. The main nodes indicate that a train entered the track section (occupied), a train left the track section (clear) or different error states (the other messages).

ILLUSTRATIVE EXAMPLE

This section analyses the trust evolution at a local level, when a single sensor has quality problems. It analyses the visual representation of its trust evolution, in particular different types of trust decreases as well as the later increases leading to get back to the previous trust degree, called recovery.

Two noise distributions are considered: in the first case, noise is uniformly distributed in the whole period; in the second case, burst noise is considered, i.e. noise concentrated within a short time period. To illustrate the results, the first case is denoted as C1 and the second as C2.

Considered Visualisation

By altering the original data we can observe how the trust value evolves for a given sensor. It is possible to analyse not only the level of decrease but also what happens immediately after trust decreases in a simulated entry.

Figures 3 to 10 present the trust evolution over time, as well as the evolution of the three considered dimensions. Fig. 3 to 6 correspond to the uniform noise distribution, Fig. 7 to 10 the concentrated one. The trust evolution is shown on Fig. 3 and7, reliability on Fig. 4 and8, likelihood on Fig. 5 and9 and credibility on Fig. 6 and10.

In each graph, the x-axis represents time measured as the log entry number, the y-axis represents the considered dimension (trust, reliability, likelihood and credibility). The graphs only show the noisy sensor, all the others in the data set being left intact and having a trust value of 1 over the considered interval.

A simulated entry change is highlighted by a vertical line. Additional information about the applied modification is provided by the line colour:

• blue: occupied modified to clear

• orange: occupied modified to one of the error states

• violet: clear modified to occupied

• green: clear modified to one of the error states Note that, for the analysis, not all of the error states are considered when introducing noise, but only two of the most common ones.

Observations

This section comments the trust evolution and then of its components: reliability, likelihood and credibility.

Trust. The first important observation is that all simulated entries indeed have a decreased trust value, which is a first validation of the proposed method. A clear example of this decrease is provided by case C1, entry 146: it illustrates the level of single decrease for a non-error noise and the recovery taking place afterwards, where trust increases but not instantly. This behaviour is desired (see Section 1), where the trust evolution patterns are asymmetrical, with fast decreases and slow recoveries. We can observe that the amplitude can vary, up to -0.92 (C1, entry 95) followed by a quick recovery next (∆(tr) = 0.83). In the case of denser noise, more fluctuations can be observed comparing to the noise distributed more sparsely (entries 8-54, C1). This behaviour is further studied with the burst noise trust evolution illustrated in graphs 7-10.

Here, an interesting fact can be highlighted: as in C1 (entries 90-105) the trust level highly fluctuates differentiating the noisy parts from the unchanged entries. This shows that even in the dense noise scenario the ReLiC method can successfully find the periods where the sensor works properly. Again, trust can quickly recover thanks to credibility which is very high since all neighbouring sensors are working correctly and are able to confirm the correct message.

Reliability. Figures 4 and8 show the evolution of reliability. As expected, reliability decreases after simulated error-type entries (orange and green lines) and this decrease remains for 20 entries, which is in line with the window parameter of the recent function (see Equation 1). Note that in the considered part of data, there is no simulated error messages. We can observe a "stair-like" behaviour where reliability encounters another error entry or recovers from one. Other types of entry modifications (blue and violet) do not impact reliability in any way, as expected.

Likelihood. Figures 5 and9 show the evolution of likelihood. We can observe that, for C1, its shape is highly similar to that of trust, with a very small delay of one time stamp: the simulated entries appear to be usually compatible with the previous messages, making the likelihood equal to the trust value of the previous message (see Equation 2). However, this is not the case with the concentrated noise represented in C2, where compatibility is not observed anymore, leading to more contrasted behaviours.

These figures also illustrate the case where noise does not break the possible sequence of messages with the previous entry and does not contribute to lowering the trust value (e.g. entry 9 in C1). However it disrupts the next entry as there is no connection from the noisy message to the normal one. It is observed here as a likelihood decrease after the highlighted noise (e.g. entries 11 or 155 in C1). That can also be the cause, apart from reliability, to further decrease trust instead of recovering it.

Credibility.

The two examples of credibility evolution are illustrated in Figures 6 and10. Most of the time, credibility stays close to 1 or 0. As already stated, in this local level study, a single sensor has noisy entries, the neighbouring sensors do not have modified entries. Therefore, their trust is usually close to 1. This causes such an instant decrease in credibility in short time. This behaviour is especially highlighted in C2 where credibility is instantly high when the message is not simulated even though it is in the However we can observe that credibility is not affected by one of the modification types or it is in small level, i.e. the change from clear to occupied, represented by the violet line (e.g. entry 146 in C1). This behaviour is strange as this only happens in clear to occupied transition and does not in occupied to clear. It is caused by an improper confirmation recognition made possible due to the fact that occupied state is produced shortly before clear.

FORMAL STUDY OF THE TRUST EVOLUTION

This section analyses the trust behaviour by studying the equations defining each dimension, as well as the final aggregation into the trust value. By analysing each dimension separately, we want to emphasise the extent of their ability to modify trust over time. In addition, by combining the analysis of each dimension, we investigate the largest possible trust decrease.

In the following, the notion of ∆(trust) is computed as a difference between the trust value of the current sensor output trust(r 2 , lkl 2 , c 2 ) and the trust value of the previous sensor output trust(r 1 , lkl 1 , c 1 ) which shows the level of decrease or recovery for trust. Formally it is then:

∆(trust) = trust(r 2 , lkl 2 , c 2 ) -trust(r 1 , lkl 1 , c 1 ) = α • r 2 • lkl 2 + (1 -α) • c 2 -(α • r 1 • lkl 1 + (1 -α) • c 1 )
where α ∈ [0, 1] and reliability depends on fixed window of w > 0 previous entries (see Section 2).

Reliability Analysis. Let us consider the influence of reliability independently of other dimensions by making lkl and c constants, then:

∆(trust) = trust(r 2 , lkl, c) -trust(r 1 , lkl, c) = α • lkl • (r 2 -r 1 ) = α • lkl • ∆(r)
i.e. the evolution of trust is expressed as the level of reliability change multiplied by α • lkl. Therefore, reliability has the biggest impact when likelihood is set to its maximum value, lkl = 1. Reliability strongly depends on the "recent" function which returns w previous entries of the same sensor. Within those w entries we denote the number of error entries e and regular entries m, e + m = w. When considering the next entry we discard the oldest one. This gives us two possibilities, if both entries belong to the same group (error or regular), then the change in reliability is 0, ∆(r) = 0. If they belong to different groups, we have two possibilities as well: either the latest entry is an error (m decreases and e increases by 1) or it is a regular message (m increases and e decreases by 1), in that case, the change in reliability can be a decrease:

∆(r) = w -(e + 1) w - w -e w = - 1 w or recovery: ∆(r) = w -(e -1) w - w -e w = 1 w
Considering this behaviour of reliability and by setting constant lkl = 1, we can narrow the possible trust evolution to three values:

∆(trust) ∈ -α • 1 w , 0, α • 1 w
We can notice only one decrease and recovery level for reliability, that explains the previously described behaviour in Figures 4 and8 where the reliability evolution has a stair-like behaviour.

Likelihood Analysis. To study the influence of likelihood on trust, let us consider r and c as constants, then:

∆(trust) = trust(r, lkl 2 , c) -trust(r, lkl 1 , c) = α • r • (lkl 2 -lkl 1 ) = α • r • ∆(lkl)
Again, we can observe that the trust evolution is proportional to likelihood, with multiplicative factor α • r, which means that the biggest decrease happens with r as maximum value, r = 1.

Even though there are no dependencies from the previous likelihood value to the current one, we can highlight some interesting properties. Let us consider three consecutive entries l 0 , l 1 and l 2 with constant reliability and credibility where either both transitions are valid according to the considered state transition graph or not.

In the first case, according to the ReLiC model, lkl(l 1 ) = trust(l 0 ) and lkl(l 2 ) = trust(l 1 ), which leads to

∆ 2 (trust) = tr(l 2 ) -tr(l 1 ) = α • r • (lkl 2 -lkl 1 ) = α • r • (tr(l 1 ) -tr(l 0 )) = α • r • ∆ 1 (trust)
Thus we can observe that if the information flow appears as likely, then trust continues its previous decrease or recovery multiplied by α • r. Since α ∈ [0, 1] and r ∈ [0, 1], that makes each following decrease or recovery equal or slower:

|∆ n (trust)| |∆ n-1 (trust)|.
On the other hand, when the two consecutive pieces of information are not compatible with the model, lkl(l 1 ) = 1trust(l 0 ) and lkl(l 2 ) = 1trust(l 1 ), leading to

∆ 2 (trust) = -α • r • ∆ 1 (trust)
We can see that in a case where pieces of information are considered as unlikely, likelihood reverses the trend of trust, changing decreasing to recovery and vice versa. This observation shows that in continuous quality problems, detected by likelihood, a fluctuation behaviour can be observed, where the trust evolution can consist in alternated decreases and increases. Again, since it is multiplied by α • r, where α ∈ [0, 1] and r ∈ [0, 1], |∆ 2 (trust)| |∆ 1 (trust)| which creates the oscillation of equal or decreasing magnitude. This type of behaviour was indeed observed in Figure 3 (see Section 4.2).

Credibility Analysis. The credibility dimension is defined independently from the previous two dimensions and its scoring is based entirely on the comparison of the considered piece of information with the ones provided by different sensors. When considering r and lkl as constant, it holds that

∆(trust) = trust(r, lkl, c 2 ) -trust(r, lkl, c 1 ) = (1 -α) • (c 2 -c 1 ) = (1 -α) • ∆(c)
We can notice that constant r and lkl are irrelevant when analysing the impact of credibility on trust difference. The evolution of trust is proportional to credibility's, with multiplicative factor (1α). However, there is no correlation between the previous credibility value and the current one, nor with any previous dimension. This can be observed by analysing credibility's formula which only aggregates messages from other sources. Therefore ∆(c) is only limited by credibility value itself which is in [0, 1] range. Then, by including (1α) factor, the possible trust evolution:

∆(trust) ∈ [α -1, 1 -α].

TRUST DYNAMICS OF MULTIPLE SENSORS IN REAL DATA

The analysis from the previous sections shows the ability of the ReLiC method to highlight possible quality problems at a local level (single sensor). In this section we analyse the global behaviour of the trust evolution and how different trust levels impact other sensors based on the MoTRicS2015 real dataset from railway domain (see Section 3.2). Indeed, the ReLiC method gives an opportunity to observe how a sudden decrease in trust for one sensor can impact other ones and their trust computation. However, to observe this possible propagation to neighbouring sensors, we need a way to illustrate trust level for all sensors in one chart.

In the following we describe our approach to illustrate results provided by all sensors at once in Section 6.1 to later use it as a tool to analyse and interpret the results in Section 6.2.

Proposed Visualisation

The trust values are computed for the 60 axle counters, each having around 25 000 entries in the dataset (see Section 3.2). In order to compare the trust dynamics for all of them we propose the following RGB visualisation.

RGB Chart. The chart uses time on the x-axis and a sensor ID on the y-axis. Using time instead of an entry line number in the x-axis allows an easy comparison of trust values between multiple sensors. The trust values are represented by a colour between yellow, representing the highest trust, and red representing the lowest trust. White spaces indicate the lack of entries within that time for the corresponding line.

Trust Temporal Aggregation. The trust values presented in the chart are aggregated within an a priori specified time window t. A higher t allows to display a bigger time frame, however a lower t displays a more detailed view.

In MoTRicS2015, sensors produce a low number of entries per hour which makes t = 1h a good compromise between displaying a large time frame and important details.

A conjunctive behaviour is desired for this aggregation operator. Indeed we want to strongly highlight the decrease in trust value within the data. The currently proposed function is the minimum, which prioritises the lowest trust value.

The procedure for visualising trust values as an RGB chart is as follows: entries produced by the same sensor are grouped together. For each group, trust values within the same hour are aggregated to create a pair (d,tr), where d is a date and hour for this aggregation and tr is an aggregated trust value. Each trust value is then translated to a colour between red and yellow. Then, for each group, their pairs are plotted in the RGB chart.

Sensor Order. The order of the displayed sensors is another issue. One possibility is to choose the first sensor and use for the next one its neighbour. This gives an opportunity to observe a behaviour which affects multiple neighbouring sensors.

All 60 sensors can be divided into three groups. The first two represent ACs in the same set of tracks, for trains going in each direction, the third set contains the rest which mostly corresponds to backup tracks on the platform. To keep an understandable quantity of data, these backup sensors are omitted for simplicity in this study, the remaining ones correspond to 39 sensors in total. Figure 11 shows the obtained results, the thicker black line indicates that two sensors are not neighbours. The chart width is limited to 3000 hours which corresponds to approximately 4 months out of 1 year available data.

Results

We can first observe that sensors do not report activity all the time, there are hours where there is lack of any activity for numerous sensors showed as white spaces.

We can also see that even though the beginning of the chart looks trustworthy, some major quality problems are later encountered, visualised as low trust information across multiple sensors (groups A and B) which are further discussed below. In addition, we can notice multiple smaller sites where the trust value is low (e.g. C group), this behaviour is analysed later.

Global Issues. Different problems with readings from sensors can be caused by external sources, for instance, power outages, software updates or global system failures. Usually that kind of problems can be observed for many sensors at the same time.

In Figure 11, the A & B groups of trust decreases are similar for many sensors in the same time. Such a behaviour can indeed indicate some external problems which influence many neighbouring sensors at the same time and raise alerts for a domain expert.

Trust Decrease Propagation. The analysis of the dynamic trust scoring method shows its dependency on other sources scored by the credibility dimension (see Section 2). In the considered AC case, the credibility score directly depends on the trust value of one of its neighbours. By defining confirming and contradicting information, the neighbouring sensors have an impact to the trust of the evaluated log entry which can be increased or decreased. As shown in Section This visualisation shows that the low-trust in this sensor messages, as expected, affects the neighbouring ones in this time window. The reason for this is that the initial trust decrease disrupts a further chain of confirmations. The neighbour either lacks the expected confirming entry or has to consider a low-trust one. In either case, it causes the propagation of trust decrease to the neighbouring sensor. The level of trust decrease is lesser in each new sensor. The difference is controlled by the a priori set α value (see Equation 4). By manipulating this constant, it is possible to change the level of low trust propagation to the neighbour, which also affects the number of sensors that are affected by the original trust decrease.

In Figure 11 we can observe many similar single trust decreases. As this dataset was not preprocessed by an expert, its quality is unknown beforehand and possible quality problems can be encountered. While most of the time trust is high on this dataset, our method points out several low-trust entries. This can be used as an alert procedure for the operational system indicating a drift in quality either in the data collection process (data loggers) or the sensors themselves.

CONCLUSION AND PERSPECTIVES

Understanding the process of trust assessment is a much needed feature for a sensor-based decisionaid system: low-trust sensor information may be excluded from fusion or maintenance scheduling, but this is conditioned by the validation of the scoring as well. This can be tackled by studying the dynamics of trust over time for a single sensor, as well as for multiple sensors simultaneously. In this paper we have analysed this dynamics in a three-dimensional scoring framework, where the contributions of each independent dimension to the global trust score were considered, both at formal and experimental levels.

We proposed a methodology based on simulated data, obtained by noise injection in real data which makes it possible to perform an experimental study of the considered trust model in the absence of an available ground truth for the real data. We have shown that the expected evolution of trust based on its definition indeed occurs when different types of faulty messages are injected in the data. Moreover, we have experimentally illustrated the propagation of trust decreases in a network of neighbouring sensors on a real-world dataset without ground truth. Future work includes field-expert validation of the models extracted from the data as well as the usability of the different obtained trust levels and recovery delays.
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 1 Figure 1: An example of a small sensor network, extracted from the real data MOTRIcS2015 (see Section 3.2).
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 2 Figure 2: State transition graph, extracted from the real data MoTRicS2015 (see Section 3.2).
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 3 Figure 3: C1, uniform noise distribution: trust.
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 4 Figure 4: C1, uniform noise distribution: reliability.
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 5 Figure 5: C1, uniform noise distribution: likelihood.
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 6 Figure 6: C1, uniform noise distribution: credibility.
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 7 Figure 7: C2, concentrated noise distribution: trust.
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 8 Figure 8: C2, concentrated noise distribution: reliability.
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 9 Figure 9: C2, concentrated noise distribution: likelihood.

Figure 10 :

 10 Figure 10: C2, concentrated noise distribution: credibility. middle of high dense noise.However we can observe that credibility is not affected by one of the modification types or it is in small level, i.e. the change from clear to occupied, represented by the violet line (e.g. entry 146 in C1). This behaviour is strange as this only happens in clear to occupied transition and does not in occupied to clear.It is caused by an improper confirmation recognition
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 11 Figure 11: Trust value evolution for 39 sensors of the real data MOTRIcS2015.
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 12 Figure 12: Trust decrease propagation to multiple sensors.

Table 1 :

 1 Input data structure and output trust scores.

	Date	Time	Sensor ID	Message	Trust
	11.03.2015 07:24:53	S1	occupied	0.9
	11.03.2015 07:25:40	S1	occupied	0.3
	11.03.2015 08:23:18	S1	occupied	0.7
	11.03.2015 08:24:08	S1	clear	0.7
	11.03.2015 09:15:23	S1	occupied	0.8
	11.03.2015 09:16:08	S1	clear	0.8
	11.03.2015 09:39:45	S1	occupied	0.8
	11.03.2015 09:40:29	S1	clear	0.8
	11.03.2015 10:22:14	S1	occupied	0.8
	11.03.2015 10:23:03	S1	clear	0.9
	between two nodes indicates that it is possible to have
	these two subsequent states (see Section 3.2 and Fig-
	ure 2).