le fil d'Ariane de vos projets, pilier des forges modernes -JDEV 2017 -Claire MOUTON Core notions > A scenario with 2 developers and a remote repository?

Core notions > Organization

Identifying a commit

A commit has a unique identifier :

• Revision number (SHA-1 identifier)

• String (commit message)

A commit can be identified in multiple ways, e.g.:

• Its SHA1 (possibly abbreviated)

• A reference (e.g. HEAD)

• An indirect reference : HEAD^, HEAD~, ... CVS and its evolution, SVN

• Are versioned :

• Files • Directories • Meta-data (properties)
• Possible to move / rename elements (no history loss)

• Atomic commit

push

Refine your git add ! > Partial commits git add [-p | --patch]

Interactively choose hunks of patch between the index and the work tree and add them to the index. This gives the user a chance to review the difference before adding modified contents to the index.

Find the culprit ! git blame

Show what revision and author last modified each line of a file.

Clean everything in a wink ! git stash

Stash the changes in a dirty working directory away. The commit tree for the topic branch has been rewritten so that the master branch is a part of the commit history. This leaves the chain of commits linear and much easier to read.

Merge versus rebase > Rebase

If you haven't pushed your work yet :

git reset HEAD^
To cancel the last commit. The modifications will remain in the working directory.

git reset --hard HEAD

To restore the version of the last commit (by removing the new files and the modifications)

git reset --hard HEAD^

To remove the last commit, the new files and the modifications of the files.

WARNING : these 2 operations can not be cancelled

••

 fil d'Ariane de vos projets, pilier des forges modernes -JDEV 2017 -Claire MOUTON Core notions > Conflict fil d'Ariane de vos projets, pilier des forges modernes -JDEV 2017 -Claire MOUTON Core notions > Conflict Often used to tag the repository on important events such as a software release or article submission • Allows you to easily retrieve a specific version of the software/article • Use / distribute a given release • Reproduce bugs for a given release my_project-v1.3 Push a tag: git push origin mytag or git push --tags tag Core notions > Branch Why? Git : le fil d'Ariane de vos projets, pilier des forges modernes -JDEV 2017 -Claire MOUTON Work unit of Source Code Management A repository contains the complete history of the project (i.e. all the revisions) A revision (a.k.a. commit or version) • Is a snapshot of all the tracked files • Is usually based upon one other revision • Corresponds to an identified author • Contains a message that explains the rationale for the modifications introduced by the revision and any other info the author considers relevant • Is atomic For example, changeset = modifications on « calc.c AND calc.h ».

 Conclusion on centralized SCMA central/core repository Easy to use Need to be on line for almost commands Privileged users (committers) can have his own repository • Off-line use (commands available offline) -ex: Do a local commit • Create a branch without having to ask authorization -ex: Open Source community • Synchronisation needed between repositories • pull = get changes from a remote repository to your local repository • push = post your changes to a

 Print lines matching a pattern.Look for specified patterns in the tracked files in the work tree. No, thanks ! .gitignore Exclude files from versioning. Templates adapted for specific languages. https://github.com/github/gitignore Too big ?!? git-lfs (Large File Storage) Alternative to git annex. An open source Git extension for versioning large files via symlinks. Git Large File Storage (LFS) replaces large files such as audio samples, videos, datasets, and graphics with text pointers inside Git, while storing the file contents on a remote server like GitHub.com or GitHub Enterprise. https://git-lfs.github.com/ Too big ?!? BFG Repo-Cleaner Removes large or troublesome blobs like git-filter-branch does, but faster. The BFG is a simpler, faster alternative to git-filter-branch for cleaning bad data out of your Git repository history: -Removing Crazy Big Files, Binary Files -Removing Passwords, Credentials & other Private data https://rtyley.github.io/bfg-repo-cleaner/ git-rebase -Reapply commits on top of another base tip Current branch is topic git rebase master OR git rebase master topic

 Alternatives to: submodules, subtrees Git subrepo allows you to work with embedded git repositories 1 Conclusion 102 Git : le fil d'Ariane de vos projets, pilier des forges modernes -JDEV 2017 -Claire MOUTON Conclusion • A decentralized SCM remains a tool • No default usage policy • Policy to be defined -From centralized to decentralized -Pull-only vs shared-per functionality -Workflow Gitflow (branches master, develop, release-v*) -Duplication workflow (fork to get your own public repository) https://fr.atlassian.com/git/tutorials/comparing-workflows/ http://nvie.com/posts/a-successful-git-branching-model/ Centralized-style workflow Integration manager workflow Classic workflow Every one has a local repository on his machine, a reference repository exists on a server. git clone repository_URL -to retrieve a module git pull origin master -to retrieve the latest version from the server to update your local version git status -is recommended to see the status of your local repository and the modifications ready for the commit (i.e. in the index) git diff -to check the current modifications since the last commit git add modified_file -to add a new file to the module git commit -a -m"Appropriate message describing the fixed bug or the feature added." -to create a local commit for all added files git push origin master -to post your local commits to a remote repository git log -to view the history with commit messages and authors git command --help -integrated help

 How to get back ? > When use what ?

	How to get back ? > When use what ? Git > Bisection Git > Bisection Git > Subrepo
	If you haven't pushed your work yet : Finds the commit introducing a bug by dichotomy Finds the commit introducing a bug by dichotomy
	git checkout --file_name		
	file_name will be at its state in the last commit.
	?	?	?
	git reset HEAD file_to_remove_from_the_index
	To revert the git add on file_to_remove_from_the_index. good good suspect suspect	bad bad

Git : le fil d'Ariane de vos projets, pilier des forges modernes -JDEV 2017 -Claire MOUTON Decentralized benefits ?

Git : le fil d'Ariane de vos projets, pilier des forges modernes -JDEV 2017 -Claire MOUTON Git status is your friend ! How to get back ? > When use what ?

https://github.com/ingydotnet/git-subrepo

Git : le fil d'Ariane de vos projets, pilier des forges modernes -JDEV 2017 -Claire MOUTON Around Git > configuring mergetool

Examples and Demonstration

Core notions > Conflict

Use rebase …

When the exact history of the commit branch is important (since rebase rewrites the commit history).

Advice

Use rebase for short-lived, local branches ;

Use merge for branches in the public repository. git

rebase [-i | --interactive] HEAD~5

To modify the message commits, their order or their number.

How to get back ? > When use what ?

If you have already pushed your work :

Do not modify the history !!! git revert 6261cc2

To create the inverse commit of 6261cc2.

How to get back ? > When use what ?

Git > Hooks Custom scripts in .git/hooks triggered on specific events. Predefined hooks on platforms such as forges or GitLab/GitHub.

-Client-side hooks: on events such as commit or merge -pre-commit: to run test, to format the code or check the doc -prepare-commit-msg: to edit the default commit message -commit-msg: to check commit message compliance to a pattern -post-commit: for notification -post-checkout, post-merge, pre-rebase, pre-push -Server-side hooks: on events such as reception of a pushed commit -pre-receive: access control, no non-fast-forwards -update: similar (pre-receive runs only once, whereas update runs once per branch) -post-receive: notification to a list by e-mail, to a continuous integration server, to update a ticket-tracking system https://git-scm.com/book/it/v2/Customizing-Git-Git-Hooks https://fr.atlassian.com/git/tutorials/git-hooks/ • With CVS or SVN:

• We create a branch for a single (or some) commits ?

• We send patch(es) manually to each machine?

• Do not forget cvs up each time

• We would like to test a modification on several machines

• With Git:

• Create a branch and git push/pull from/to each machine

Advised practice > How to commit properly?

• A commit is not a backup!

• A commit should be atomic: it corresponds to one specific feature (a bug correction, a new function…).

• Before a commit: • Commit message:

• Concise and precise. For example:

• # IssueNb Added the method FunctionName to the class ClassName.

• # IssueNb Removed the file BadClass.c.

• # IssueNb Fixed a bug in Class::Method : the method performed bad access.

Advised practice

• Commits should be atomic, with pertinent messages

• Synchronize frequently to avoid conflicts

• Bug / task manager allowing to link a commit to an issue