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Passive source depth discrimination in

deep-water

Rémi Emmetiere, Julien Bonnel, Member, IEEE, Xavier Cristol, Marie Géhant

and Thierry Chonavel, Member, IEEE.

Abstract

This paper addresses the problem of passive source depth discrimination in ocean acoustics using a horizontal
line array (HLA). The scope is restricted to low-frequency sources (frequency f < 500 Hz), broadband signals
(bandwidth B of a few Hz), deep-water environment (water depth D > 1000 m), and distant sources (range 7
greater than several km) at the endfire position. In this context, the environment acts as a dispersive waveguide, and
one should not use classical source localization methods based on plane waves or any other simplistic wave model.
Instead, a method based on the modal behavior driving the propagation is proposed. It notably uses the concept of
the waveguide invariant, a scalar that summarizes the waveguide dispersion. In deep water, the waveguide invariant
largely depends on source depth, and thus is an interesting input for source depth discrimination. An algorithm is
proposed to compute energy ratio in groups of modal interferences. The input data for the algorithm is a range-
frequency intensity, as measured on a HLA. The modal interference groups are defined based on their respective
waveguide invariant values which in turns depend on source depth. This idea is formalized to propose a source depth
discrimination method, which is performed as a binary classification problem. As long as the sound speed profile
features a surface thermocline, the algorithm does not require detailed knowledge about the environment and it allows

the classification of sources under two hypotheses, above or under a user-chosen threshold depth.

Index Terms

Source localization, underwater acoustics, waveguide invariant, interference pattern, binary classification,

[. INTRODUCTION

When considering low frequency acoustic waves, the oceanic soundscape arises from various sources (biological,
anthropological or geological). In passive acoustics, it is of primary interest to localize and/or classify sources
contributing to this soundscape. For instance, human experts or algorithms are able to recognize sources because
they feature specific sound characteristics such as known time-frequency signatures. In some cases, assessing the
depth also allows classification of the source. In particular, such idea is very attractive in an anti-submarine warfare
context. Indeed, depth estimation algorithms can passively distinguish noise radiated by a surface ship from noise

radiated by a submerged submarine.
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In this paper we address the problem of passive source depth discrimination using a Horizontal Line Array
(HLA). The objective of source depth discrimination is to classify a sound source based on its depth, above or
below a chosen threshold. Such discrimination methods are useful in place of traditional source depth estimation
methods, in context that are too complex for classical methods to perform properly. This is notably the case of the
underwater environment, which is highly fluctuating, supports a multipath/multimodal propagation, and is usually
poorly known. The scope of the paper is restricted to low-frequency sources (frequency f < 500 Hz), broadband
signals (bandwidth B of a few Hz), deep-water environment (water depth D > 1000 m), and distant sources
(range r greater than at least several km) at the endfire position. In this context, the acoustic propagation is largely
impacted by the oceanic environment (the geo-acoustic properties of the propagation media). Thus, classical plane
wave or other simple wave models cannot be used, and beamforming-like localization methods are not performing
well. In fact, the acoustic propagation is more conveniently described by the normal modes theory [1]. The oceanic
environment acts as a dispersive waveguide, where several modes are propagating, each mode having its own
dispersive (i.e. non-linear) group delay. The acoustic field is then described in terms of depth functions (vertically
standing wave) and range propagating dispersive waves. It gave birth to several physics-based methods to either
estimate the source depth or perform depth discrimination.

For instance, matched-field processing (MFP) has been proposed to include better environmental models, but it
is known to perform poorly as soon as the environment is not perfectly known [2], [3]. Within a classification
framework, MFP-like processing will be tested here using the generalized likelihood ratio test [4], [5], [6]. In real-
life, the ocean environment is a dynamic system with properties varying over space and time so that it is usually
not possible to model it accurately. Thus, MFP is often not applicable. Specific signal processing methods have
been developed to detect this environmental mismatch [7] or to mitigate it [8], [9]. Another way to circumvent this
issue is to design localization schemes that extract specific features of the acoustic signal which are less sensitive
to environmental mismatch than the pressure field itself. Most of these methods, such as matched mode processing
(MMP) [10], [11] or modal subspace analysis (MSA) [12], [13], [14], use propagation features that are extracted
from the sound pressure. In particular, these algorithms are based on mode filtering, and thus require the modes
to be resolvable. Unfortunately, this is usually not doable in a deep water. Indeed, the modal density increases
with water depth, and even advanced modal filtering methods (e.g. [15], [16], [17]) usually fail in deep-water. As
a result, MMP and MSA arc mostly adapted to shallow water environments. However, a possible extension of
the MSA to scenarios where modes are not resolvable is suggested by Conan et al. [18], who propose to use a
simple wavenumber spectrum analysis instead of mode filters. The original method is proposed for shallow-water
environment and monochromatic sources. In this paper, the method will be applied to deep-water scenario. This
-as well as the MFP likelihood ratio test mentioned earlier- will be used as references to benchmark the method
proposed in this paper.

On the other hand, other localization methods are based on the acoustic intensity signal (square modulus of the
pressure), such as localization schemes based on the modal scintillation [19], [20] or the mode (or ray) interference
pattern [21], [22], [23], [24]. In deep water, interference properties of the intensity have been used to localize sources

at relatively short ranges (at max several tens of kilometers). In particular, one can use Lloyd mirror properties and



a deep vertical array [22], the interference pattern of four eigenrays in the first shadow zone [24], or interference
of highly refracted waves as measured on a deep sensor [25]. All these methods are based on the specific physics
driving the propagation in a particular area of the oceanic waveguide, as illustrated in Fig. 1. As such, they perform
very well in their own area of interest, but none of them are suitable for our context: a distant source observed
with a HLA whose maximum immersion depth is about a few hundred meters.

This paper proposes a depth discrimination method based on the underlying physics driving the propagation in
the context described above, and thus is complementary with the literature. It notably uses the mode interference
pattern (intensity signal) as an input data and a quantity called waveguide invariant [26]. Indeed, the waveguide
invariant is a scalar, usually noted (3, that summarizes the waveguide dispersion. Its relative invariance makes it a
robust input for source range localization in shallow waters [27]. However, it is also well known that the invariant
is not strictly constant for all the mode pairs [28]. In particular, the variation of 3 in shallow water can be related
to the source depth [29], [21]. A previous study [30] has shown that the S-values are also largely driven by the
source depth in deep waters, and is thus interesting for our problem. This idea is further explored in this paper,
and extended to propose a new depth discrimination method.

To do so, we use the concept of mode trapping and some general features of the wide-band interference pattern
involving the waveguide invariant theory. The depth discrimination method is designed to work in environments
where the water sound speed profile (SSP) has one unique minimum far from the surface, which is a common
situation in the Mediterranean sea. Also, the source/array range has to be known or preliminary estimated [27], [31],
although further analysis will show that the poposed method is robust to a 10% ranging error. However, the method
does not require detailed knowledge about the environment, and is particularly robust to mismatch. In particular,
neither the water SSP nor the seabed properties need to be known accurately. Because of the physical hypotheses
used to derive the method, it is designed to perform well for sufficiently long range, which corresponds to the
distance after which the propagating modes have performed at least a half interference cycle [30]. This range is
about 10 km in a classical Mediterranean sea context. Because of the underlying physics, the proposed method is
restricted to source/array depth that are less than a few hundred meters. This is not a strong constraint because
sources of interest are rarely deeper than that.

The paper is organized as follows. In Sec. II, the physical derivation of the acoustic field under the normal mode
theory is reminded. Then introducing the concept of mode trapping, the general idea of the depth discrimination
concept is presented. In Sec. III, the depth discrimination problem is stated as a binary classification problem. The
statistical classifier based on the generalized likelihood ratio test along with the physic-based approaches involving
wavenumber and interference spectral analyses are exposed in details. The main contribution of this paper relies
on a new interference spectral analyses which notably involves a ratio of energy estimated on the 2-D Fast Fourier
Transform (2-D FFT) of the interference pattern. Finally, in Sec. IV, the classifiers are validated against synthetic
data in ideal deep-water experimental conditions and their performances are compared. The classifiers are also
tested against synthetic data in degraded experimental conditions, by introducing realistic distortion of the array
geometry or of the environmental model. The limitations of the methods are discussed in Sec. V, and the article

ends with a brief conclusion.
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Fig. 1. A typical rays trace corresponding to a shallow source in a deep-water Mediterranean environment. One finds three types of rays:
water born rays (dark blue), surface reflected rays (light blue) and bottom reflected surface reflected rays (orange). The superimposed black
lines represent the possible positions of the receiver(s) where the McCargar’s depth estimation method [22], indexed (1), the Weng’s depth
estimation method [24], indexed (2), the Duan’s depth estimation method [25], indexed (3) and the proposed depth discrimination, indexed (4),

are expected to work well.

II. NORMAL MODE PROPAGATION
A. The acoustic field

At low-frequencies, underwater sound propagation is conveniently described by a set of normal modes [1]. We
denote s the complex pressure received at range  and depth z, which originates from a point source radiating a
broadband signal with spectrum S(f) at depth zs. From the normal mode theory, s is a sum of M propagating

waves called modes. Up to a multiplicative constant, the pressure field is
M

$(zs, 20,1 ) = S(F)P(2s, 20,7 ) = S(F) D am (25, 20,7, e om (D) ()

m=1

am (25, 20y 1, f)ewm("f ) the impulse response of the waveguide. The phase of mode m
1

with p(zs7 Zry T, f) =

INE

is given by
G (1, f) = km (f)1, )

and its amplitude by

am (237 Zr, T,y f) = /l/}m(zs’g)llf?)(:rv f) 7 3)

where k,, and 1, are the wavenumber and the depth function of the mode m, respectively.

In the following, the source spectrum is considered to be flat over the frequency bandwidth under study and is
removed from the equations for notation convenience. Also, when considering relatively long range propagation,
the modal amplitude a,, is a slowly varying function of r and f, compared to the exponential term in Eq. (1). As
a result, the range/frequency dependence of a,,, can be ignored [1]. This approximation is referred to as the long
range approximation in the paper. The validity of this approximation dictates the minimal source/receiver range to
be considered with our method, as illustrated on Fig. 1.

In our propagation context, up to a constant term, the intensity of the signal is given by

I(ze, 20,7, ) = |p(25, 2y, £) |2 = Z am (Zs, 2r)an(2s, 20 )08 (T Ak (f)), )

m,n,m#n



with Ak, = ky — kn. The intensity shows interferences between modes that lead to striations in the r — f plane
[26] as illustrated by Fig. 2. Thus, I(r, f) is called the interference pattern. In particular, the interference between

modes m and n is defined by

Imn(Z87 Zry T, f) = Gm (Z87 ZT)an (Zsa ZT)COS(TAkmn (f)): ©)

and it will be called interference striation in the following.

Frequency [Hz|

Range [km]

Fig. 2. The interference pattern I(r, f) of a flat broadband spectrum source at zs = 150 m recorded by a 1 km long HLA submerged at
zr = 200 m. The source-to-array range is r = 50 km. The intensity is computed using the normal mode KRAKEN code [32] with the
deep-water waveguide environment defined by the TABLE 1.

One already notes that, under the long range approximation, the source depth information is carried only by the

mode amplitudes in both the pressure and the intensity fields.

B. Mode trapping

From the normal modes theory, the modal depth functions oscillate between an upper and a lower turning point
(at depths 2} and 2., respectively) and their amplitudes are exponentially decaying beyond these points [1]. For

a given sound speed profile (SSP), noted ¢(z), these turning points verify
C(ertz) = Voms (6)
with

Voom = 2m7— (M

m



the phase velocity of the mode indexed by m.

The modes can be thus grouped in different types depending on where the depth functions oscillate. In deep-water
the SSP is composed of at least one barocline. Indeed, increasing static pressure with depth produces a positive
sound speed gradient in the water column. Especially in summer, the ocean surface is heated over the first few
hundred meters and a negative thermocline (negative gradient of temperature) appears close to the surface. Thus, the

SSP at the surface can be modeled by a negative gradient. An example of a typical Mediterranean sea environment

TABLE 1

TYPICAL SUMMER DEEP WATER MEDITERRANEAN ENVIRONMENT

depth [m] | sound speed [m/s] | density [kg/m®] | attenuation [dB/\]

0 Courf = 1530 1030 0
100 Cmin = 1500 1030 0
2500 Cmaz = 1550 1030 0
2500 | Cseapeq = 1700 1700 0.6
o | Cseabed = 1700 1700 0.6

is presented in TABLE I and illustrated on Fig. 3(b). Considering this type of environment with four specific values

of sound speed, it leads to three types of modes defined as follows:

« Trapped Modes (TM) for the modes verifying cpin < Vi < Courys

« Surface Interacting Modes (SIM) for the modes verifying csyrf < Vpm < Cmasz and

« Surface Interacting-Bottom Interacting Modes (SIBIM) for the modes verifying ez < Vpm < Cseabed-

An example of one depth function of each type is displayed on Fig. 3(a). The colored zones of Fig. 3(b) illustrate

the depth areas where the mode functions are non-zero as a function of their phase velocity.

C. The source depth discrimination concept

The source depth discrimination problem can be formalized as a binary classification problem. One wants to know
if the source is above or under a threshold depth. One way to do so arises from the mode trapping phenomena. In
fact, when considering a SSP with a surface thermocline, TMs have low amplitude near the surface. As a result,
the mode amplitude a,, [see Eq. (2)] is very small for a surface source if m is a TM, while it is likely higher if
the source is submerged. Thus, the depth discrimination problem can be recasted as a mode amplitude estimation
problem. It can also be rephrased as follows: does the source excites TMs ?

According to Eq. (2) and Eq. (4), the acoustic field is a sum of complex exponential terms, and thus, they are
conveniently represented in the Fourier domain. Using a HLA, the mode amplitudes can be assessed either in the
spatial Fourier domain of the pressure field (wavenumbers) or in the spatial Fourier domain of the intensity field
(interferences). In this paper, the first case is referred to as the wavenumber spectral analysis and the second as
the interference spectral analysis. Please note that, the wavenumber spectral analysis is used in [12], [13], [14] to

perform depth discrimination in shallow-water but has never been used in deep water. On the other hand, Turgut et
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Fig. 3. (a) The depth functions of one arbitrary mode of each type: TM (dark blue), SIM (light blue) and SIBIM (orange). (b) The colored
zones illustrate the depth areas where the mode functions are oscillating as a function of the phase velocity considering the SSP (drawn in black)
with values listed in TABLE 1. (¢) The modes are displayed as a function of their phase speed and group speed. The modes are calculated

using KRAKEN at frequency f = 100Hz.

al. [21] has demonstrated that the interference pattern can be used to perform depth discrimination in shallow-water.
However, none of these methods has ever been extended to deep-water. In this paper, building on Turguts idea, we
will formalize a depth discrimination method based on the interference pattern. Because of the deep-water context,
more modes are propagating, and the interference patterns are more complex than in shallow water. We thus propose
a discrimination method that is explicitly based on the modal groups presented earlier: TM, SIM and SIBIM. As
stated carlier, the method proposed by Conan ct al [14] will also be directly transferred to a deep-water scenario.
The deep-water extension of Conans method, as well as a generalized likelihood ratio test based on MFP, will serve
as references to benchmark the proposed method. The next section presents these two existing methods, and then

details the method proposed in this paper.

III. DEPTH DISCRIMINATION
A. Tested hypotheses
As explained before, the source depth classification is formalized as a binary classification problem. The obser-
vation is classified into two classes: above or under a discrimination depth zj;,,, within a set of possible depth

Z € [0 D]. The classifier must choose between the two hypotheses

HO:O<ZSSZlim
®)
Hy o zpim < 25 < Dv

where Hy and H; are the tested hypotheses corresponding to a shallow source and a submerged source, respectively.



For the specific application of the classification of radiated noise originating from surface ships or from submerged
submarines, the discrimination depth is chosen to be a few meters below the surface. Indeed, when recorded at large
range, a surface ship is known to be roughly equivalent to a point source with source depth from 1 m to 20 m. Thus,
a discrimination depth of zj;,, = 20 m is an appropriate candidate and will be used in the following. Nonetheless,
the classifiers may features better performance for other discrimination depths where no obvious application arises.

Within this binary classification framework, the classifier also relies on a decision metric noted 7. Then 7 is
compared to a decision threshold v, enabling a classification decision. Considering the two hypotheses Hy and H;

the problem is defined as follows:

T<v— Hy
)

T>Uv— Hy.

In the next section, three different approaches will be presented to design 7, based on the signal model given by
Eq. (10) . In particular, we introduce a statistical test based on the well known generalized likelihood ratio test [4],
[5], [6]. Two other methods are detailed based on more heuristic arguments originating from the wavenumber and
interference spectral analysis. The last one is the original contribution presented in this paper. Because it carefully

takes into account the underlying physics, it will be shown to be more robust to model mismatch than the state-of-art.

B. Generalized likelihood ratio test (LRT)

As stated above in Eq. (8), the alternative hypothesis H; is such that the parameter z; is in the complement of
Hy. Traditionally, to solve this kind of problem one uses a statistical test, namely the generalized likelihood ratio
test (LRT) where unknown parameters for each hypothesis are replaced by their maximum likelihood estimates
(MLE). For notation convenience, we consider a version of Eq. (2) spatially sampled over a HLA. Then, the noisy

signal sampled at positions given by vector r yields the multivariate observation:

s(r.,f;zs) :S(f)p(r,f;25)+77(f), (10)

where n(f) is spatially white noise following n(f) ~ N(0,02) and p is a vector collecting the theoretical impulse
response of the waveguide at ranges r, as given by Eq. (1).
In our case, unknown parameters are S(f), o2 and zs. Considering the model (10) at a fixed frequency f, up to

a constant factor and a power transform, the likelihood function is given by

1
il 11
(rafa Z ) ||S(I‘7f; Zs) — p(r, f7 ZS)SMLE” (11)
where t
SMLE = P (I‘,f; ZS)S(rvf; Zs) (]2)

Ip(r, f; 25|17

is the maximum likelihood estimation of the source spectrum at frequency f and t denotes the transpose conjugate
operator. This function measures the likeness of the noisy signal to replica p generated for different values of the

parameter z.



Then, the decision metric associated to the LRT is defined as follows [6]

max{L(r, f;z) : H1}
max{L(r, f;zs): HoUH;}’

The LRT takes values between 0 and 1. Defined as Eq. (13), a high value of the test means the source is likely to

r(f; ) =

(13)

be under hypothesis H; whereas a low value means it is more likely represented by the alternative Hy.

C. Wavenumber spectral analysis (WSA)

In this section, we summarize the method developed in [14] for shallow water. It will later be applied to our
deep water context. First, we introduce the wavenumber spectrum of the signal given by Eq. (1) by performing the
spatial Fourier transform (FT) as

'fo+% )
8k, f12) = / s(r, f 2)e " dr, (14)

L
Jro—zg

where L is the array aperture and ry the mean source-to-array range.
Using Eqgs. (6) and (7), the resulting wavenumber spectrum § is split into two subspaces. The first subspace is
associated to the TMs
kiim < k < Epyin- (15)

The second subspace gathers all the propagating modes together

kseabed <k< kminv (16)

2nf

Cmin

with k,m = + QT’T, kiim = ﬁ%, and kseaped = 2nf QT’T When needed, the bounds have been stretched

Cseabed
out by iQT’T in order to include the main lobes due to the finite aperture L of the HLA. An example of such
subspaces are displayed in Fig. 4 for a surface source (red) and a submerged source (black).
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Fig. 4. Wavenumber spectrum calculated at f = 100 Hz for a 1 km long HLA with a 2 m spatial sampling and an infinite SNR. The pressure

signal has been generated using the KRAKEN code with the same experimental conditions as the ones in Fig. 2.

In this example, there are 145 propagating modes in the deep-water waveguide, including 27 TMs. Fig. 4 clearly

illustrates that the modes cannot be resolved and that modes amplitudes cannot be extracted from the wavenumber



spectrum. As suggested by Conan et al. [14], the decision metric for the classifier is computed as a simple integral
over the two subspaces of wavenumber defined by Eq. (15) and Eq. (16)

kmin ~
o (k5 2)dk
mO(frz) = e ~ ar
I S(k, f;zs)dk

seabed

As a reminder, the decision metric is expected to be close to 0 for surface sources and close to 1 for submerged

sources which excite TMs.

D. Interference spectral analysis (ISA)

The main contribution of this paper is to conduct a similar analysis in the intensity domain. The goal is to
define two subspaces, one gathering all the TMs together and the other all the propagating modes. Since it is not
straightforward, the subsection is divided into successive steps for the sake of clarity. First, we define the 2-D Fourier
transform of the interference pattern. Then, using a specific feature of the broadband structure of the acoustic field
(the waveguide invariant), we show how to identify the interferences which involve TMs. This leads to the definition
of two specific subspaces of the interference pattern. Finally, the decision metric for the classifier is presented.

1) Interference spectrum: The 2-D Fourier transform (2-D FT) of the interference pattern of bandwidth B and
central frequency fo observed by a HLA is defined by

. fo+% prot+%
I(k,t;z5) = / / ) I(r, f:zs)e 2 sr D qrd f, (18)
3

B "~ L

0~ To— 35
with % (in m™') and ¢ (in s) the Fourier transform variables conjugate to range and frequency, respectively. Please
note that x is a wavenumber up to a 27 multiplicative term. Inserting Eq. (4) into Eq. (18), the 2-D FT of a given

striation pattern is

I(k,t;z5) = Z am (25, 2r)an (25, 2 ) sinc(wr L) sinc(rt B)
m,n,m#n (]9)

[5(5 - H/mmt - 7'77rm) + 6(H + Rmn, t+ tmn)] 9
where * denotes the convolution, ¢ is the Dirac delta function, and the pair (Kmn, tmn) is the Fourier coordinates of
the particular interference striation I,,,,,. In terms of image processing, k., is the spatial frequency of I,,,,, along

the range axis and ¢,,, is the spatial frequency of I,,, along the frequency axis. According to Eq. (2) one finds

() = Snd) o)
and
A
tmn (T, f) :Ta2k+anf(f). 1)

Recognizing the phase velocity V), ,, = 27rkim and the group velocity V; ,,, = 271'% (respectively the phase

slowness S = —L and the group slowness Sy ,, = —), one obtains
’ Vp.m ’ Van

Kmn(f) = FASpmn(f) (22)

and

tmn(”'-, j) = TASg,mn(f)a (23)



with ASy mn(f) = Spm(f) — Spn(f) and ASg mn(f) = Sgm(f) — Sgn(f). In physical terms, ¢,y is the
difference of travel times between the two interfering modes m and n. Furthermore, x.,, refers to a wavenumber
difference which is similar to a difference of arrival angles.

An example of such a transform is displayed by Fig. 5. This is the 2-D FT of the intensity shown in Fig. 2.
Focusing on the interference identified by the dark dot, one recognizes the 2-D main lobe and the secondary lobes
along the ~ and the ¢ axis. Especially, this interference correspond to striations in Fig. 2 with spatial frequency

along the frequency axis of t = —0.95 Hz ™!

and along the range axis of xk = 0.0038 m~'. In other terms this
interference involves modes m and n with travel time difference t,,, = —0.95 s and wavenumber difference

Kmn = 0.0038 m™!. These specific striations are visible in figure 2 over the 1 km aperture between 95 to 105 Hz.

K [km™1]

Fig. 5. 2-D FT I (k,t) of the interference pattern presented in figure 2

Furthermore, from Eq. (19), the intensity is real-valued. Thus, the interference spectrum is symmetrical along the
horizontal and the vertical axis, because the Fourier transform is Hermitian. In the following we chose to consider
the right half of the interference spectrum (x > 0) which contains the entire signal information.

2) Interferences involving trapped energy: In this subsection we use the broadband properties of the modes to
identify the interferences that involve TMs. In particular, a quantity called waveguide invariant, usually noted S,
has been introduced to quantify the slope of the interference striations in the log r—logf plane [26]. This quantity
is not derived in this manuscript, but the following result can be demonstrated by setting to zero the first-order

Taylor series expansion of I(log r,log f). For more details see [1]. Considering the particular interference between



modes m and n the waveguide invariant is defined by:

A’Spvmn(f)
A'Sg,mn(f).

One notes from Eq. (24) that the waveguide invariant describes the slope of the interference striation with a scalar

ﬁmn(f) - = (24)

that does not depend on the source-receiver configuration and only depends on the interfering modes m and n.
This is a key property for our problem. It allows the characterization of interferences with a quantity that does not
depend on the source/recciver configuration. In the Fourier domain, inserting Egs. (22) and (23) in Eq. (24), the

waveguide invariant is given by

_r Komn (f)
J ton (7. f)

This means that the position of one interference (Kymn,tms) in the interference spectrum can be associated to the

Brnn (f) = (25)

waveguide invariant.

Furthermore, usually the waveguide invariant is roughly constant for modes having the same type of propagation
(i.e. TMs, SIMs, SIBIMs). This can be visualized by plotting the group velocity as a function of the phase velocity,
as illustrated by Fig. 3(c). According to Eq. (24), the waveguide invariant is closely related to this representation
since it relies on these two quantities (or more precisely the inverse of these two quantities). Considering the SSP
previously presented, it is well known that 3,,, ~ 1 if m and n are both SIBIMs and f,,, =~ —3 il m and n are
TMs or SIMs [1] .

Finally, Fig. 6 displays an example of I(k,t) for (a) a shallow source and (b) a submerged source. Lines have
been superimposed corresponding to waveguide invariants 8 = —3 and 8 = 1, according to Eq. (25). One can
see that different interferences with different values of 3 are located into different areas of I(k,t). One can thus
define subspaces of I(k,t) that are associated to a given type of interference, estimate the modal energy in these
subspaces, and use it as an input for depth discrimination. This will be detailed in the following subsection, but
one can already note that a high energy content along the black line 8 = —3 in Fig. 6 refers to a submerged source
whereas a low energy content is associated to a surface source.

3) Subspaces of the interference spectrum: As stated before, there are three types of modes : TMs, SIMs,
SIBIMs. There are thus six types of possible interferences: TM-TM, TM-SIM, TM-SIBIM, SIM-SIM, SIM-SIBIM
and SIBIM-SIBIM. Among them, we are interested in the subspace of the interference spectrum that contains at
least one TM (i.e. interferences TM-TM, TM-SIM and TM-SIBIM), because the energy in this subspace highly
depends on source depth, as explained before. In the following, we will use physical arguments to localize various
interference subspaces in the T (k,t) domain. To do so, we define a subset of modes N driven by a common
waveguide invariant noted On. In particular, with the SSP defined in TABLE I

e On ~ —3if N is a subset of TMs,

e On =~ —3 if N is a subset of SIMs,

e On & 1if N is a subset of SRIRMs.

Next, lets consider a mode n € N. For any other mode m, the Fourier coordinates of the interference between

modes m and n is given by Eq. (25). However, S, is unknown if m ¢ N , in this case 5,,, may take a wide



Fig. 6. The 2-D FFT I(k,t) of a 20 Hz bandwidth acoustic intensity simulated over a 1 km long array with the KRAKEN code, (a) for a
shallow source z; = 5m and (b) for a deep sourcezs = 150m. The red lines shows the direction of interference with 8 = 1 and the black line

shows the direction of interference with 3 = —3.

range of values from almost —oo to +o0o. Nevertheless, because Eq. (23) is linear, one can always decompose

Eq. (25) by picking an arbitrary mode [ as

r, 1 1
ton =tmi +tin = ——=(—FKmi + —FKin)- (26)
e " / (/5ml " Bin )
To simplify Eq. (26), we restrain the choice of [ so that [ € N and (3,,,; = +o00 hence
T
tn = 7%Hln~ (27)
We will see later the impacts of such a choice. For now, using the linearity of Eq. (22), Eq. (27) can be reformulated
as follows
7
tmn - _%("imn - ’iml)- (28)

Finally, remembering that &, is the Fourier coordinate conjugate to the range variable, the interferences between

a mode m and all the modes of the subset N are aligned in the interference spectrum along a straight line of equation
r

t(k) = 7fb’N

where AS) nin and AS) 1,4, are defined as the minimum and the maximum phase slowness difference between

(’i - Kml)v K€ [fASp,min 5 fAS ,max]a (29)

the mode m and the subset N.
Equation (29) is particularly important. It gives the position of the modal interferences in the I (k,t) domain.

However, if the environment is unknown, the quantities Ky, ASp min and ASp mqq are also unknown. Nonetheless,



they can be roughly estimated based on the mode type(s) of m and N. For instance one can show, based on Fig. 3(c),

that

o if m and N are both of the same type then f3,,; = +oo only if ASy ., = 0. As a result, m = [ and thus

Rml = 0.
o if m is a SIM and N the subset of SIBIMs then x,,; can be roughly bounded by 0 < K,y < f(csin — c#)
e if m is a TM and N the subset of SIBIMs then k,,; can be roughly bounded by f(ﬁ — Cl) < Kl <
Hem o)

e if mis a TM and N the subset of SIMs then AS, ,,; = 0 only if m = hence Ky, = 0.

The previous list, giving the values of BN, Kmi, ASp min and ASp e, depending on mode type, is summarized

by the TABLE 1L

TABLE II

INTERFERENCE PARAMETERS SORTED BY TYPE OF INTERFERENCES

m /N TMs SIMs SIBIMs
™ BN = —3 AN = —3 Bn =1
ASp min =0 ASp min =0 ASy min = ﬁ -
Kmi =0 Kmy =0 FASy min < Emi < f(ry:m - lear)
SIM Bn = —3 Bn =1
ASp min =0 ASp min =0
ASpmaz = ﬁ - ﬁ ASpmaz = csi'r'j' B CsctlLbcd
Kt =0 ASpmin < fimi < f(o— = )
SIBIM B =1
ASp min =0
ASp.maz = ﬁ - Cseclr.bed
Kmi =0

Using the model defined by Eq. (29) and the bounds given in TABLE II, we build two subspaces of the interference
spectrum noted Dy and D;. Subspace Dy gathers all the possible interferences and D; gathers only interferences
involving at least one TM. In addition, the interference pattern is windowed (finite bandwidth over a finite range
aperture) and thus the 2-D FT is a sum of delta function convoluted by sinc functions. In order to include in the
subspaces the main lobes, some bounds have been stretched out by % Moreover, one knows that exotic -values
can arise from the micro-structures in the SSP [26] or from spatial variations of the environment [33]. To be less
restrictive, the upper borders of the D, and D, are defined with 5 = —1 (instead of —3) and the left border with

B = 0.75 (instecad of 1 previously). The shape of these subspaces are schematically illustrated by Fig. 7.
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Fig. 7. From TABLE II, the interferences involving TMs are within D1 and the all the possible interferences are within Dg. The specific points
A=(f(Ghs = )0 and B= (f(2- - =)+ 1,0).

Cmax Cmin Cseabed

Now that the subspaces are clearly defined, the decision metric used by the classifier is computed as follow
Ip, I(k,t;25)drdf
I, I(k,t;z5)drdf

An example of the subspaces are superimposed on the interference spectrum of Fig. 8 for (a) a surface source

T([SA)(fO; z5) = (30)

and (b) a submerged source. The decision metric is expected to be close from 1 for submerged sources and close
from O for surface source.

The proposed methods has several differences with the state of the art [12], [13], [14], where modal subspaces
are built in the wavenumber domain. Because we consider intensity, a quadratic quantity, one has to deal with cross
terms, and thus interferences between mode types. This complicates the definition of the subspaces that are used to
build the discrimination metrics. On the other hand, by using broadband information and the waveguide invariant
concept, we showed that the interference subspaces can be defined with minimal environment information: only
crude estimates of (3 are required. Nonetheless, the price to pay is that the method requires a priori information
about the source/array range 7, which can be a strong limitation in real-life. However, it will be shown later that r
and (3 do not need to be known accurately. In the next section, the three approaches (LRT, WSA and ISA) will be

compared for different scenarios that include realistic model errors.

IV. PERFORMANCE EVALUATION WITH MONTE CARLOS METHOD
A. General methodology

The performance of a binary problem can be cvaluated using the detection probability Pp and the false alarm

probability Pr4 of a given classifier. We chose to call detection the observations attributed to the hypothesis H;.



Fig. 8. Interference spectrum calculated for the same configuration than in Fig. 6. Subspace Dg is superimposed with dashed orange lines

whereas subspace D1 is displayed in blue line.

With this convention, Pp is the probability of a submerged source to be classified under the hypothesis H; and
Pr 4 is the probability of a surface source to be classified under the hypothesis Hi. The compromise between Pp
and Pr 4 allows one to choose the decision threshold based on desired performances.

Like in Ref. [14], these probabilities are numerically estimated using Monte Carlo methods. The results are
then displayed using Receiver Operating Characteristic (ROC) curves which provides a general representation of
the relevance of the decision metric. The performance of the classifiers along with the choice of the decision
thresholds are presented for the ideal case of perfectly known experimental conditions, as well as in degraded
experimental conditions, where the environment and the array geometry are partially unknown (environmental and
array mismatch). Since the ISA requires a priori knowledge of the source/array range, which in practice cannot be

perfeclty known, our approach is also tested against ranging errors.

B. Numerical simulation specification

For the simulations, we consider a HLA of aperture L = 1 km and an inter-sensor spacing of Ar = 10 m. The
HLA is placed at depth z. = 200 m. We also consider a white noise source with a flat spectrum S(f) over a
bandwidth B = 20Hz with central frequency fy = 100Hz. Gaussian white noise is added on the recieved signal so

that the signal-to-noise ratio ,
o s 52l

31
B} Gh



is constant for all source/receiver combinations, and set to 0 dB. Last but not least, please note that a smaller
Ar = 5 m is chosen for the wavenumber spectral analysis method, in order to respect the Nyquist-Shannon
sampling theorem.

The scenario is repeated for different source positions, with ranges from 1 to 99 km with 0.5 km steps, and
depths from 1 to 400 m, with 1 m steps. This defines a grid of almost 80,000 observations with different
source/array configurations. Only one noise realization is computed for cach configuration but considering the
amount of source/array configurations of the experimental grid, it still provides a good assessment for the ROC
curves.

It is important to note that in the following the generalized likelihood ratio test (LRT) along with the wavenumber
spectral analysis (WSA) will be computed only at the central frequency fj, whereas the interference spectral analysis
(ISA) uses the whole signal bandwidth. However, this is enough to illustrate the sensitivity of the LRT and of the
WSA to respectively the environmental mismatch and the array geometry mismatch.

As a first step, simulated data will be generated using a modal code (KRAKEN [32]) for both the observations
and the replica needed for the LRT. In particular, in Sec. IV-C, the LRT, WSA and the ISA will be validated against
this KRAKEN’s data under perfectly known experimental conditions. In the same section, the decision thresholds v
for the different methods are determined in order to ensure a desired maximal Pr4 of 5%. The decision threshold
along with the decision metric fully define a classifier for ecach approach. Next, the observations will be synthesized
using the RAM code [34]. The RAM code is a fully numerical model that does not use the concept of modes, but
is based on Parabolic Equations (PE). It allows one to test the classifiers (based on a mode decomposition of the
acoustic field) against numerical data generated by a model that does not use modes, preventing the inverse crime

[35]. Also, realistic array geometry mismatch and environmental mismatch will be considered.

C. Classifications with known experimental conditions

The considered environment is a range and azimuth independent waveguide fully defined by its SSP. The seabed
and the water column characteristics are given in TABLE I. In this section we use the same environmental model
for the direct problem (generating the data) and for the inversion (performing the depth discrimination). This allows
one 1) to obtain a proof of concept for the depth discrimination methods and 2) to chose the decision threshold.

As described in Sec. IV-B, the decision metrics for the three methods are calculated for each source/array
configuration defined by the experimental grid. Their empirical distributions under the two hypothesis are estimated
based on the 79, 600 obscrvations and are displayed in Fig. 9. The color correspond to the considered hypothesis
(blue for H; and orange for Hp). The line style is associated to the method, especially, the probability density
function of 7URY is displayed with dotted line, 7™¥5» with dashed line and the proposed 705" with solid line. This
convention will be kept along the section.

In the case of a perfectly experimental condition, the LRT is known to be optimal. As displayed by Fig. 9,
the density probability functions (PDF) of the associated metric decision under the two hypothesis are very well

separated. For WSA and ISA, the PDFs are also separated, validating the approaches in deep-water.
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Fig. 9. PDFs of 7s under the two hypotheses H7 (blue) and Hq (orange). They are estimated using Monte Carlos methods for the three
approaches : LRT (dotted line), WSA (dashed line) and the ISA (solid line). The probability axis has been cut off at 0.1 on purpose for

representation convenience. However, the sharply peacked distribution function for the LRT under the hypothesis H1 does not fit the scale.

The relevance of the different approaches are compared using the ROC curves. They are directly estimated using
the repartition functions previously evaluated. Fig. 10 gives a representation of these ROC curves. Please note that
for the ISA, two ROCs have been calculated 1) for relatively short range configurations (r < 10km) and 2) for long
range propagation (r > 10km). The differences between the two ROC curves is due to the long range approximation
used in Eq. (4). This approximation is not valid for ranges » < 10 km, which impacts the waveguide invariant [30]
and negatively affects our method. Beyond this range, the decision metric is more stable. In the following, the ISA
classifier is designed to guarantee its performance only for long range configurations (r > 10 km). Moreover, as
expected, the LRT approach has results that are nearly perfect.

For the targeted false alarm probability of Pr4 = 5% the classifiers achieve respectively detection probabilities
of PO™Y = 99.9%, PSSY = 84.3% and P3*™ = 93.8%. The associated decision thresholds are X" = (.995,
vWSY = 0.56 and v = 0.45.

By inserting v into Eq. (9), the classifications is processed for the three methods and the results are displayed
on Fig. 10. The sources classified under H; are displayed with black color whereas the ones associated to Hy
are in white. The LRT method almost provides a perfect classification for every source/array configuration. It is
interesting to note that for the ISA, most of the false detections are done for ranges of few kilometers where, by
design, the performances are not guaranteed. Considering only » > 10 km (denoted by the gray dashed line in
Fig. 10), all the missed detections and the false alarms are concentrated around the discrimination depth, which
leads to a satisfactory classification result. Actually, the effective discrimination depth is largely influenced by the
water column SSP. In the case under study, the depth where TMs are really dominating the acoustic field is located
around 50 m, so that many classification errors occur between zy;,, = 20 m and 50 m. This can also be seen on the

WSA results, because the method is based on the same physics. However, at ranges r > 10 km, the WSA method
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Fig. 10. Top panel: ROC curves for the scenario presented in Sec. IV-B. The red dashed line represent the targeted P 4. Bottom panels:
Observations classified under the hypothesis Hp are displayed in black and in white for the hypothesis Hp. The desired discrimination depth

is plotted with a red dashed line.

has extra errors at every depth.
In the following, the classifiers and detection thresholds defined in this section will be used in more realistic

scenarios.

D. Results with environmental mismatch

Although range-dependent models are convenient to model underwater acoustic propagation, a true ocean is always
more complicated. In this section, we consider the impact of range-dependent effect on our localization method.
Data are now simulated in a range-dependent waveguide, with a varying SSP in the water column and a varying
bathymetry. As stated before, simulations are perfomed with RAM, a numerical PE code. In these simulations,
the range-dependent SSP is defined using three different SSPs at three specific ranges (20km, 30km and 75km),
and linear interpolation between these ranges. A zoom on the first 400 m of these three SSPs and the one used
by the classifier is plotted in Fig. 11(a). The 2-D representation of the environment is displayed in Fig. 11(b),
which notably shows the range varying bathymetry. A zoom on the first 400 m of the water column is presented
in Fig. 11(c), which allows a good assessment of the SSP variability.

As previously, the data are generated at each node of the experimental grid, using the full 2-D SSP. On the other
hand, the classifiers are ran assuming the previous simple 1-D SSP (dashed curve on Fig. 11(a)), which created
environmental mismatch. The obtained ROC curves are plotted in Fig. 12.

The LRT performance drastically falls with environmental mismatch. The associated ROC curve tells that the

decision metric is not discriminating. As it can be seen on Fig. 12, the LRT nearly behaves as a random classifier.
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Fig. 11. (a) The SSPs that define the environment in which data have been simulated. The dashed black plot is the SSP used by the classifier.
(b) 2-D representation of the environment with range variations of the SSP and the bathymetry. (¢) Zoom on the first 400 m of the SSP where

the range variations are relatively high. Note that the colorscales for (b) and (c) are different.

On the other hand. the WSA results are relatively equivalent to the previous case with perfectly known experimental
conditions. However, the classification features better results around the array depth (i.e. around the minimum of
sound speed of the environment), concentrating the errors around the discrimination depth and far beyond the array
depth. The performances of the ISA are degraded but not as seriously. It still provides good results for the depth
discrimination problem. In particular one finds a Pp = 90% for the targeted ppa = 5%, which outperforms the
WSA, as can be seen on the ROC curve in Fig. 12.

As earlier, ISA errors are mostly located around the discrimination depth or at short range. Moreover, because
the environment is range-dependent, the effective discrimination depth induced by the environment may vary with
the source/receiver configuration. This can be seen in Fig. 12. The ISA performance improves after 75 km, because

the minimum of the sound speed channel becomes more pronounced (see Fig. 11). This comment also applies to

the WSA.

E. Results with array geometry mismatch

Most of the time, in operational conditions, the relative positions of the sensors of the array are not completely
determined. In this section we investigate the robustness of the depth discriminations to array geometry mismatch.
The experimental conditions are the same than in the previous Sec. IV-C (perfectly known environment). However,
WSA and ISA are performed assuming a noisy inter sensor spacing Ar~ N (Ar,0.1A7) and one uses the RAM
to generate the data. Because the LRT already failed to discriminate the source depth with environmental model
mismatch, it is not computed here.

As before, the decision metrics are computed for the WSA and the ISA, and ROC curves are displayed in Fig. 13.
It notability shows that the WSA is very sensitive to array geometry mismatch. The associated decision metric is
not relevant. This is due to a translation of the wavenumber subspaces Eqs.(16) (15) on the measured wavenumber

spectrum. The same translation also affect the ISA. However, the wavenumber difference k., is less impacted by
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Fig. 12. Top panel: ROC curves for the scenario with environmental mismatch. The data are generated by the RAM code using the environment
with values listed in TABLE 1. The vertical red dashed line represents the targeted Pj 4. Bottom panels: Observations classified under the
hypothesis H7 are displayed in black and in white for the hypothesis Hg. The desired discrimination depth is plotted with a horizontal red

dashed line.

this translation than the wavenumber themselves. As a result, the ISA still provides good performances. One finds

a Pp = 89% for the targeted Pr4 of 5%.

E Results with source/array range errors

As demonstrated by the study, the proposed depth discrimination based on ISA does not need a thorough model
of the array or of the environment. However, the knowledge of the source/array range is required to build the zones
Dg and D; via Eq. (29). If this quantity is unknown, it can be estimated using, for instance, the interference pattern
[27] or the waveguide invariant [31]. An algorithm, based only on the waveguide invariant, that simultaneously
assesses the source/array range and performs the depth discrimination should be built. The performance of such a
classifier will be obviously dependent of the range estimation accuracy.

Here, we consider that a localization method is able to provide a range estimation # ~ N (r,0.1r). This is typically
the range estimation errors that one obtains with range estimation methods that use the waveguide invariant [31],
[27]. Thus, the decision metric is calculated for each source-array configuration of the experimental grid by replacing
r in Eq. (29) by #. Also, the observation are computed with the RAM code using the 2-D environment displayed
in Fig 11 with the noisy inter-sensors spacing Ar as in the previous subsection. Then, this study considers all at
once, the environmental/array/range mismatch in order to simulate a more realistic scenario.

Following the same procedure as previously, the ROC curves for the ISA are evaluated and they are presented
in Fig. 14(a). The performances are degraded but still decent. The method still provides a Pp = 84% for all the

ranges, and Pp = 88% for the long range propagation case (r > 10km). The decision metric appears to be robust
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Fig. 13. Top panel: ROC curves for the scenario with both environment and array geometry mismatches. The data are generated by the
RAM code using the environment with values listed in TABLE I. The vertical red dashed line represents the targeted Pr 4. Bottom panels:
Observations classified under the hypothesis H; are displayed in black and in white for the hypothesis Ho. The desired discrimination depth

is plotted with a horizontal red dashed line.

to source/array range errors and more precisely to a combination of environmental/array/range mismatch. As an
example, the classifier is performed on these data and the classification results are displayed by Fig. 14(b). It still

provide a satisfactory discrimination.
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Fig. 14. (a) ROC curves for the scenario with environment, array geometry, and range mismatches. The data are generated by the RAM code
using the environment with values listed in TABLE I. The vertical red dashed line represents the targeted Pr 4. (b) Observations classified under
the hypothesis H are displayed in black and in white for the hypothesis Hy. The desired discrimination depth is plotted with a horizontal red

dashed line. The vertical red dahed line is the limit r=10 km.
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V. DISCUSSION
A. Importance of the environment

In this section we emphasize the limitations of the proposed ISA for the depth discrimination problem. Indeed,
the method is dedicated to several specific contexts. First of all, because the approach is based on the mode
trapping concept, it is evident that the method needs the environment to allow mode trapping. In deep water this is
always true, if the frequency of the signal is high enough so that the first modes can be trapped. Typically, with a
water column of few thousands meters, mode trapping happens for signals with frequencies higher than few Hertz.
Moreover, the method requires some of the modes to be trapped around the depth of the sources of interest, i.e. one
needs a sound speed minimum (called sound channel) at a few hundred meters. This is (nearly) always the case
in the Mediterranean sea. In some other oceans, such as the Atlantic, the sound channel is usually deeper, around
1000 m. In this case, a large amount of TMs are not excited by submerged sources, if those are not very deep. As
a result, it is expected that the method would not perform as well as illustrated on a Mediterrancan scenario. In
polar regions, the problem would be different, because the sound speed channel is usually at the surface. In this
specific case, a surface source would excite more TMs than a submerged source, and the ISA method would need
to be adapted.

Another requirement of the method is that the receiving array must be located in the vicinity of the sound channel,
so that it received all mode types. In particular, considering the environment defined in TABLE I, further studies
(not presented) here have shown that the array should be submerged between 75 to 500 m. Moreover, as already
discussed, the arrayshould be far enough from the source, so that the derivation of the waveguide invariant is valid.

As a reminder, this area is schematically illustrated by the area (4) of Fig. 1.

B. Coherence loss on long arrays

In real life, when considering a long HLA (1km), the signal is subject to coherence loss, which may impact
the processing performance. Coherence loss can be due to both deterministic and stochastic phenomena. In our
context, modal dispersion induces a deterministic coherence loss, which negatively impacts classical processing
such as plane-wave beamforming. However, the modal dispersion is taken into account in our model, and thus
the method is barely impacted by the deterministic coherence loss. Also, the performance study shows that ISA
is robust to environmental mismatch, which is particularly important when complex environmental model are used
within localization schemes.

On the other hand, stochastic coherence loss is also a major issue in underwater acoustics. If coherence loss is
small (e.g. unsaturated regime), it is expected that ISA still performs well. This is also illustrated in the performance
study, when we show robustness to array position (which is equivalent to a multiplicative phase noise, which in
turn can be used to model coherence loss [36]). If coherence loss becomes too strong (e.g. fully saturated regime),
then ISA will become ineffective. However, in such scenario, no signal processing method is doing magic. The
development of source localization methods that perform well under strong stochastic coherence losses is still an

open question, even if some solutions are being proposed in easier contexts, such as plane-wave without multipath
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[37]. Unfortunately, adaptive optics methods (that reduce the effect of wavefront distortions) are not easy to transfer

in the underwater acoustic context.

VI. CONCLUSION

A depth discrimination method based on the deep-water waveguide invariant has been proposed. The classifier is
validated on simulation with ideal experimental conditions and also successfully tested against realistic model errors.
The robustness of the classifier to environmental model errors suggests that it could be successfully applied to real
data. The proposed method proves to be reliable to environmental mismatch, unlike more convenient processing
such as MFP-based LRT.

The robustness of the proposed method to array geometry errors is an important result. In fact, in an operational
context, the soundscape arises from various sources. Hence, the interference pattern is the sum of the contributions
of many sources emanating from different direction. Nevertheless, it has been shown that the interference pattern
belonging to one specific source of interest can be recovered as the output of a horizontal beamformer [38]. In fact,
if the source (and/or the array) is moving over time, the broadband output of a horizontal beamformer I(6(t), f) is
equivalent to the interference pattern I(r(t), f), provided that the source is alone in its beam 6(¢). Thus, one can
use beamformed data and synthetic range aperture as an input of the depth discrimination algorithm proposed in this
paper. However, the synthetic inter-sensors spacing relies on the relative source/array range variations between each
snapshot which is never accurately known. In that case, being robust to array geometry mismatch is of paramount
importance. The resilience of our method to such a model errors suggests that the proposed classifier could perform

well in a multi-source context using the output of a horizontal beamformer.

ACKNOWLEDGMENT

This work was funded by Delegation Général de I’Armement and by Thales Underwater Systems.

REFERENCES

[11 F B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics. Springer Science & Business Media,
2011.

[2] J. L. Krolik, “The performance of matched-field beamformers with mediterrancan vertical array data,” IEEE Transactions on Signal
Processing, vol. 44, no. 10, pp. 26052611, 1996.

[3] Y. Le Gall, E-X. Socheleau, and J. Bonnel, “Matched-field performance prediction with model mismatch,” IEEE Signal Processing Letters,
vol. 23, no. 4, pp. 409-413, 2016.

[4] L. L. Scharf and B. Friedlander, “Matched subspace detectors,” IEEE Transactions on signal processing, vol. 42, no. 8, pp. 2146-2157,
1994.

[5] C.F. Mecklenbriuker, P. Gerstoft, J. F. Bchme, and P-J. Chung, “Hypothesis testing for geoacoustic environmental models using likelihood
ratio,” The Journal of the Acoustical Society of America, vol. 105, no. 3, pp. 1738-1748, 1999.

[6] G. Casella and R. L. Berger, Statistical inference. Duxbury Pacific Grove, CA, 2002, vol. 2.

[7] J. Tabrikian, G. S. Fostick, and H. Messer, “Detection of environmental mismatch in a shallow water waveguide,” IEEE transactions on
signal processing, vol. 47, no. 8, pp. 2181-2190, 1999.

[8] J. C. Preisig, “Robust maximum energy adaptive matched field processing,” IEEE transactions on signal processing, vol. 42, no. 7, pp.

1585-1593, 1994.



[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]
[33]

25

——, “A minmax approach to adaptive matched field processing in an uncertain propagation environment,” IEEE transactions on signal
processing, vol. 42, no. 6, pp. 1305-1316, 1994.

T. Yang, “Effectiveness of mode filtering: A comparison of matched-field and matched-mode processing,” The Journal of the Acoustical
Society of America, vol. 87, no. 5, pp. 2072-2084, 1990.

Y. Le Gall, E-X. Socheleau, and J. Bonnel, “Performance analysis of single-receiver matched-mode localization,” IEEE Journal of Oceanic
Engineering, no. 99, pp. 1-14, 2017.

V. E. Premus and M. N. Helfrick, “Use of mode subspace projections for depth discrimination with a horizontal line array: Theory and
experimental results,” The Journal of the Acoustical Society of America, vol. 133, no. 6, pp. 4019-4031, 2013.

E. Conan, J. Bonnel, T. Chonavel, and B. Nicolas, “Source depth discrimination with a vertical line array,” The Journal of the Acoustical
Society of America, vol. 140, no. 5, pp. EL434-EL440, 2016.

E. Conan, J. Bonnel, B. Nicolas, and T. Chonavel, “Using the trapped energy ratio for source depth discrimination with a horizontal line
array: Theory and experimental results,” The Journal of the Acoustical Society of America, vol. 142, no. 5, pp. 2776-2786, 2017.

J. Bonnel, G. Le Touze, B. Nicolas, and J. I. Mars, “Physics-based time-frequency representations for underwater acoustics: Power class
utilization with waveguide invariant approximation,” IEEE Signal Processing Magazine, vol. 30, no. 6, pp. 120-129, 2013.

K. Xu, J.-G. Minonzio, D. Ta, B. Hu, W. Wang, and P. Laugier, “Sparse svd method for high-resolution extraction of the dispersion curves
of ultrasonic guided waves,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 63, no. 10, pp. 1514-1524, 2016.
A. Drémeau, F. Courtois, and J. Bonnel, “Reconstruction of dispersion curves in the frequency-wavenumber domain using compressed
sensing on a random array,” IEEE J. Ocean. Eng, vol. 42, no. 4, pp. 914-922, 2017.

E. Conan, “Traitements adaptés aux antennes linéaires horizontales pour la discrimination en immersion de sources ultra basse fréquence,”
Ph.D. dissertation, Ecole nationale supérieure Mines-Télécom Atlantique, 2017.

V. Premus, “Modal scintillation index: A physics-based statistic for acoustic source depth discrimination,” The Journal of the Acoustical
Society of America, vol. 105, no. 4, pp. 2170-2180, 1999.

D. Fattaccioli and P. Danet, “A predictive physical model for modal scintillation due to source depth modulation,” in 4th International
Conference and Exhibition on Underwater Acoustic Measurements: Technologies & Results, 2011.

A. Turgut and L. T. Fialkowski, “Depth discrimination using waveguide invariance,” The Journal of the Acoustical Society of America,
vol. 132, no. 3, pp. 2054-2054, Sep. 2012.

R. McCargar and L. M. Zurk, “Depth-based signal separation with vertical line arrays in the deep ocean,” The Journal of the Acoustical
Society of America, vol. 133, no. 4, pp. EL320-EL325, 2013.

R. Duan, K. Yang, H. Li, and Y. Ma, “Acoustic-intensity striations below the critical depth: Interpretation and modeling,” The Journal of
the Acoustical Society of America, vol. 142, no. 3, pp. EL245-EL250, 2017.

J.-B. Weng and Y.-M. Yang, “Experimental demonstration of shadow zone localization using deep water interference patterns measured
by a single hydrophone,” IEEE Journal of Oceanic Engineering, 2017.

R. Duan, K. Yang, H. Li, and Y. Ma, “Acoustic-intensity striations below the critical depth: Interpretation and modeling,” The Journal of
the Acoustical Society of America, vol. 142, no. 3, 2017.

S. Chuprov, “Interference structure of the sound field in stratified ocean,” Ocean Acoustics, 1982.

K. L. Cockrell and H. Schmidt, “Robust passive range estimation using the waveguide invariant,” The Journal of the Acoustical Society
of America, vol. 127, no. 5, pp. 2780-2789, May 2010.

Y. Le Gall and J. Bonnel, “Passive estimation of the waveguide invariant per pair of modes,” The Journal of the Acoustical Society of
America, vol. 134, no. 2, pp. EL230-EL236, 2013.

D. Rouseff and R. C. Spindel, “Modeling the waveguide invariant as a distribution,” in AIP Conference Proceedings, vol. 621. AIP
Publishing, Jun. 2002, pp. 137-150.

R. Emmetic¢re, J. Bonnel, M. Géhant, X. Cristol, and T. Chonavel, “Understanding deep-water striation patterns and predicting the waveguide
invariant as a distribution depending on range and depth,” The Journal of the Acoustical Society of America, vol. 143, no. 6, pp. 3444-3454,
2018.

K. A. Sostrand, “Range localization of 10-100 km explosions by means of an endfire array and a waveguide Invariant,” IEEE Journal of
Oceanic Engineering, vol. 30, no. 1, pp. 207-212, Jan. 2005.

M. B. Porter, “The kraken normal mode program,” Naval Research Lab Washington DC, Tech. Rep., 1992.

G. L. DSpain and W. A. Kuperman, “Application of waveguide invariants to analysis of spectrograms from shallow water environments

that vary in range and azimuth,” The Journal of the Acoustical Society of America, vol. 106, no. 5, pp. 2454-2468, 1999.



[34]
[35]
[36]
[37]

[38]

26

M. D. Collins, “User§ guide for ram versions 1.0 and 1.0 p,” Naval Research Lab, Washington, DC, vol. 20375, 1995.

A. Wirgin, “The inverse crime,” arXiv preprint math-ph/0401050, 2004.

R. Dashen, W. H. Munk, and K. M. Watson, Sound transmission through a fluctuating ocean. Cambridge University Press, 2010.

R. Lefort and A. Drémeau, “Sub-antenna sparse processing for coherence loss in underwater source localization,” in Signal Processing
Conference (EUSIPCO), 2017 25th European. 1EEE, 2017, pp. 2413-2417.

T. C. Yang, “Beam intensity striations and applications,” The Journal of the Acoustical Society of America, vol. 113, no. 3, pp. 1342-1352,

Mar. 2003.



