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Abstract

The complex flow resulting from the laminar-turbulent transition in a sud-
den expansion pipe flow, with expansion ratio of 1:2, subjected to an inlet
parabolic velocity profile and a vortex perturbation, is investigated by means
of direct numerical simulations. It is shown that the threshold amplitude for
disordered motion is described by a power law scaling, with -3 exponent,
as a function of the subcritical Reynolds number. The instability originates
from a region of intense shear rate, which results on the flow symmetry
breakdown. Above the threshold, several unsteady states are identified us-
ing space-time diagrams of the centreline axial velocity fluctuation and their
energy. In addition, the simulations show a small hysteresis transition mode
due to the reestablishment of the recirculation region in the subcritical range
of Reynolds numbers, which depends on (i) the initial and final quasi-steady
states, (ii) the observation time and (iii) the number of intermediate steps
taken when increasing and decreasing the Reynolds number.
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1. Introduction

The flow through an axisymmetric sudden expansion in a circular pipe
is a basic configuration, which occurs in many industrial applications, such
as heat exchanger, mixing chamber, combustion chamber, etc. This basic
geometry is also used as a building block to model more complex flows such
as those occurring in arterial stenoses (Pollard, 1981), pistons (Boughamoura
et al., 2003), and transportation pipes (Koronaki et al., 2001), among others.
In these applications, the capacity of predicting when the flow will become
turbulent is crucial. In the literature, there are many efforts in theoretical
analysis (Teyssandiert and Wilson, 1974), experimental explorations (Back
and Roschke, 1972; Latornell and Pollard, 1986) and numerical simulations
(Macagno and Hung, 1967; Varghese et al., 2007) focusing on this problem, or
a similar geometries such as the planar abrupt expansion (Fearn et al., 1990;
Xia et al., 1992; Baloch et al., 1995; Bertolotti et al., 2001; Varghese et al.,
2007; Tsukahara et al., 2011). More recently, Lebon et al. (2018a) found a
new mechanism for periodic bursting of the recirculation region in the flow
of a circular pipe with the expansion ratio of 1:2. Yet, a consensus about the
sequence of events in the transition from laminar to turbulence seems to be
relatively well-established, but the exact value of critical Reynolds number
is still not firmly determined, and the different transition scenarios are not
yet fully elucidated.

The flow is mainly controlled by the inlet Reynolds number, Re = Ud/ν,
where U is the bulk velocity at the inlet, d is the inlet diameter and ν is the
fluid kinematic viscosity. In the laminar state, the flow is axisymmetric. As
Re increases, the flow starts to break its symmetrical properties but remains
steady until Re = 1139± 10 as reported in the experiments by Mullin et al.
(2009). It should be noted that the onset of symmetry breakdown is at
much lower value for the case of channel sudden expansion, as reported to
be Re ≈ 40 by Fearn et al. (1990) and Re = 216 by Drikakis (1997). In
the sudden circular pipe expansion flows, oscillatory and intermittent bursts
were reported to appear at Re ≈ 1567 ± 16 by Mullin et al. (2009), 1500 <
Re < 1700 by Sreenivasan and Strykowski (1983), and Re = 750 by Latornell
and Pollard (1986). Then, the flow develops into localised turbulence at even
higher Reynolds numbers (Lebon et al., 2018b).

Recently, a global stability analysis was performed by Sanmiguel-Rojas
et al. (2010). They showed that the flow can remain axisymmetric up to Re ≈
3273, which is much larger than the value found experimentally. Subsequent
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simulations by Cliffe et al. (2011) also indicated that the steady supercritical
bifurcation point lies at even higher Reynolds numbers, i.e. Re ≈ 5000.
Moreover, a detailed study of transient growth stability was performed by
Cantwell et al. (2010). They showed that the sudden expansion amplifies the
energy of infinitesimal perturbations up to six orders of magnitude in the inlet
and then decay. The difference between the critical Re in experiments and
simulations may be explained by the fact that, in experimental studies, the
imperfections of the apparatus have a strong impact on the measured critical
Reynolds number. Therefore, the values of critical Reynolds number seem
to be dependant both on the perturbation nature and its amplitude. In this
case, a numerical simulation with a well-defined finite amplitude perturbation
is required to better understand the underlying physics.

Many direct numerical simulations (DNS) on 1:2 expansions were per-
formed before, but with an initial arbitrary velocity field. For example,
Tsukahara et al. (2011) showed in a orifice configuration how the turbulent
kinetic energy evolves into localised turbulence. Moallemi and Brinkerhoff
(2018) used a steady parabolic inflow in a circular pipe expansion and showed
the emergence of an instantaneous fluctuating vorticity fields with a maxi-
mum near the reattachment point of the recirculation region. The first DNS
of finite amplitude perturbation in sudden expansion flow was performed by
Sanmiguel-Rojas and Mullin (2012), where many interesting results are re-
ported. They showed that, for a range of Re, the flow in laminar state can be
forced to disordered motion when a transverse velocity perturbation is added
at the inlet. The minimal amplitude of the transverse velocity perturbation
required to initiate disordered motion scaled with Re−0.006. This result has
an important role in the passive flow control. Now, it is natural to ask if
this result is universal? Will another kind of perturbation have the same
behaviour? Is the scaling law still valid? The question is crucial especially
by knowing that the previous perturbation scheme used by Sanmiguel-Rojas
and Mullin (2012) is simply a transverse velocity disturbance in the velocity
field. Therefore, it does not satisfy the no-slip boundary condition at the
inlet wall. Another interesting result is: when Sanmiguel-Rojas and Mullin
(2012) increased and then decreased Re, a hysteresis loop was found for
1450 < Re < 1850. This point deserves more attention, since in the original
work, the process of variation of Reynolds number as well as the physical
time of the reported flow state are not specified. Recently, Selvam et al.
(2016) presented results on a vortex perturbation but no systematic study of
the amplitude threshold and the hysteresis was carried out. One may ask,
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will the hysteresis occur if Re varies in quasi-static manner? Or will the
results change if the observation time is different? In the present study, the
authors propose a similar study, but with the vortex disturbance in order to
revisit the threshold scaling and the hysteresis loop behaviour.

2. Numerical set-up

The present work focuses on a circular pipe flow with a sudden expansion
with the expansion ratio of 1:2. The fluid flow system is solved using Nek5000
(Fischer et al., 2008), a well-validated high-order spectral element code for
transitional and fully turbulent flows (Selvam et al., 2015; Ducoin et al.,
2017). The governing equations are mass and momentum conservations in
an isothermal incompressible limit:

∇ · u = 0 (1)

∂

∂t
u + u · ∇u = −∇p+

1

Re
∆u (2)

where u is the velocity field, p is the pressure, and t is the physical time.
The density of flow is set to unity for simplicity.

The computational domain is axisymmetric as depicted in Fig. 1(b).
The region upstream of the expansion is called inlet and has a diameter,
d, and a 5d length. The downstream region, after the expansion, has a
diameter D = 2d and a length L = 150d. The whole domain contains 62 300
spectral elements where each element consists of P 3 Gauss-Legendre-Lobatto
(GLL) points, P being the polynomial order. P = 5, with total number of
7.9 million calculating points, is used for the reported results. Moreover,
additional simulations, performed with P = 6 (13.5 million GLL points) for
Re = 1000, showed the laminar recirculation length and the drag coefficient
remain essentially the same. A classical set up for the inlet velocity, located at
z = −5d, is the Hagen-Poiseuille profile, which satisfies the non-slip condition
at the inlet wall: uoinlet(r = d/2, z = −5d) = 0 when r =

√
x2 + y2 = d/2

and
uoinlet(x, y, z = −5d) = 2U

[
1− 4(x2 + y2)/d2

]
ez, (3)

where (ex, ey, ez) are the three unit vectors of the cartesian base.
In order to initiate turbulence in subcritical Re, a vortex perturbation is

added to the inlet parabolic profile (Selvam et al., 2016). This modifies the
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expression of velocity inlet as:

uinlet(x, y, z = −5d) = uoinlet +AΩ

 −yx
0

 =


−AΩy
AΩx

2

1− 4(x2 + y2︸ ︷︷ ︸
r2

)



 , (4)

where A and Ω are the amplitude and the intensity of the vortex perturba-
tion, respectively. Ω is defined by (i) the vortex radius, RΩ = d/4, (ii) the
center (xΩ, yΩ) and (iii) the distance from the centerline to the center of the

vortex: rΩ =
√

(x− xΩ)2 + (y − yΩ)2. Then, the expression of Ω is given by:

Ω =


1, rΩ ≤ RΩ/2
8 (RΩ − rΩ) /d, RΩ/2 ≤ rΩ ≤ RΩ

0, rΩ > RΩ

(5)

The position of the vortex is fixed with xΩ = −d/4 and yΩ = 0, such as the
inlet profile obeys the incompressible, non-slip and non-penetrate boundary
conditions. The radius and the position of the vortex, rΩ, is chosen such that
Ω vanishes at the boundary. By injecting Ω = 0 into Eq. (4), one can easily
verify that uinlet vanishes at the boundary as well.

Preliminary tests with a large vortex perturbation on the pipe centreline
indicate the required amplitude to initiate turbulence is relatively large. It
corresponds to the limit case of the rotating Hagen-Poiseuille flow discharging
into a sudden expansion (Miranda-Barea et al., 2015). By positioning the
vortex at (xΩ, yΩ) = (−d/4, 0), the vortex breaks the axial symmetry (Wu
et al., 2015) of the flow and naturally deflects the recirculation region. The
distribution of Ω(x, y) can be visualised in Fig. 1(a).

3. Distinction between different states of instabilities

The laminar or turbulent state of a flow can be monitored from the time
evolution of the drag coefficient:

Cz(t) =
ν

πdLU
2

L∫
z=0

2π∫
θ=0

[
∂uz
∂r

]
r=d

r dθ dz, (6)

where d and L = 150d are the radius and the length of the downstream
pipe, respectively. Here r =

√
x2 + y2 and θ = arctan (y/x) are the positions

5



Case Re A Initial condition Remark

1 1100 0 H-P LS
1a 1100 0.458 1 LS
1b 1100 0.480 1 LS, US2
1c 1100 0.494 1 US1
2 1300 0 H-P LS
2a 1300 0.2 2 LS
2b 1300 0.239 2 LS, US2
2c 1300 0.385 2 US1
3a 1325 0.2 2a LS
4a 1350 0.2 3a LS
5a 1360 0.2 4a LS, US2
6a 1375 0.2 4a LS, US2
7a 1400 0.2 6a LS, US2
7b 1400 0.2 2a LS, US2
6b 1375 0.2 7b LS, US2
5b 1360 0.2 6b LS, US2
4b 1350 0.2 6b LS, US2
3b 1325 0.2 4b LS, US2
2b 1300 0.2 3b LS, US2
8 1600 0 H-P LS
8a 1600 0.123 8 LS
8b 1600 0.128 8 LS, US2
8c 1600 0.16 8 US1
9a 1700 0.2 9e US1
9a 2000 0.0773 9 LS
9b 2000 0.0782 9 LS, US2
9c 2000 0.09 9 LS, US2
9d 2000 0.1 9 US2
9e 2000 0.2 9 US1
9f 2000 0.5 9 US1

10a 1700 0.2 3a US1
L1d 1700 0.2 9e US1
L2d 1350 0.2 L1d US2
L3d 1000 0.2 L2d LS
L2i 1350 0.2 L3d US2
L1i 1700 0.2 L2i US1

L3dbis 1325 0.2 L2d LS

Table 1: Summary of the simulations. Abbreviations: LS: laminar state and US: unsteady
state. The initial condition could be the Hagen-Poiseuille profile, noted as H-P, or the
final times of a past simulation.
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Figure 1: (a) Axial vorticity of the vortex perturbation (RΩ = d/4, (xΩ, yΩ) = (0,−d/4)
and A = 1) and (b) Sketch of fluid domain with 2 cross-sections inlet and outlet mesh.

in the radial and azimuthal direction in the cylindrical coordinate system,
respectively.

Table 1 presents a summary of the selected simulations along with param-
eters: Re, A, initial conditions and observed states. While the laminar state
is noted as LS, there exist two unsteady states, US1 and US2, with distinct
amplitudes and axial position for the disordered turbulent patch. For LS, Cz
is steady, i.e. dCz/dt ≈ 0. However, for US, Cz is unsteady and larger than
the laminar Cz, i.e. Cz,LS < Cz,US.

In order to describe the unsteady flow patterns, the axial velocity fluctua-
tions, u′z, at the pipe centreline are obtained by subtracting the instantaneous
axial velocity, uz, to the steady laminar case u0

z at the same spatial location:

u′z(0, 0, z, t) = uz(0, 0, z, t)− u0
z(0, 0, z), (7)

and plotted in a space-time diagram. The reference value u0
z is the laminar

state with no perturbation, i.e. A = 0. The diagram is constructed from
horizontal lines at given times. The colour within the line is the value of
u′z described by 1500 points along the centreline in the z direction at each
100 time-step. The final diagram is the superposition all computed times
with the resolutions of 0.1d in space. This diagram is completed by time
evolution of Cz graduated at the top of the diagram. Fig. 2 presents u′z
space-time diagrams and the evolution of drag coefficient, Cz, for four dif-
ferent perturbation amplitudes, A, at Re = 2000. The colour intensity in
the diagrams increases with the deceleration of the streamwise velocity. The
centreline position is typical of this flow configuration and other radial po-
sitions close to the centreline would lead to essentially the same qualitative
behavior as the localized turbulence fills up the pipe radially. There are two
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(a) (b) (c) (d)

Figure 2: Space-time diagrams of the centreline perturbed streamwise velocity, u′z, and
drag coefficient, Cz, as a (red) line, indicated on the top, for Re = 2000 at (a) A = 0.0782,
(b) A = 0.09, (c) A = 0.2 and (d) A = 0.5. All the diagrams use the same colour code
shown on the top right corner, such that light colour corresponds to laminar flow. The
whole pipe section downstream the expansion, up to z = 150d, is also sketched in the top
right corner below the colour bar.
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Figure 3: Contour plot of instantaneous streamwise velocity at Re = 2000, y = 0 and
zoomed into the range of 0 < z < 100d. (a) LS at A = 0.09, t = 750, (b) US2 at A = 0.09,
t = 1250 and (c) US1 at A = 0.2, t = 1000.

main mechanisms that cause this deceleration. The first one is when the
perturbation breaks the flow symmetry down and subsequently the centroid
maximum value in the velocity profile is moved away from the centreline.
The second mechanism is when the flow becomes disordered, i.e. the instan-
taneous streamwise velocity fluctuates. Moreover, the mean velocity profile
is flattened, which also results in a deceleration in the pipe centreline and
is identified in the space-time diagrams by dark (blue) colour and a noisy
interface. From the interface and the evolution of Cz, it is clear that the un-
steady pattern is closely related to the fluctuations of Cz. For low amplitude
disturbance, or low values of A, i.e. A ≤ 0.09, depicted in Fig. 2(a) and (b),
the disordered turbulent patch is carried downstream, Cz relaminarises for
750 < t < 1000 and then disordered motion reappears, suggesting an inter-
mittent behaviour. For A = 0.2, depicted in Fig. 2(c), the disordered motion
initiated by the perturbation remains unsteady and is labelled US1, as long
as the perturbation is applied. Note that the position of the trailing edge of
the turbulent patch and Cz fluctuate with time. For even larger A, see e.g.
Fig. 2(d), the position of the trailing edge is firmly located at z ≈ 10d and
is labelled US2.

Typical flow fields, for Re = 2000, are shown in Fig. 3. The contour plots
present the laminar asymmetric flow pattern, see Fig. 3(a), and the breakup
of the recirculation region into localised turbulent patch, see Fig. 3(b) and
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Figure 4: Critical amplitude, A, of the vortex perturbation as a function of Re. The
(green) triangles down indicate US and the (blue) triangles up LS. The (red) dashed line
is power-law fit: A ∝ Re−3.

(c), which can move axially along the downstream section.
In Fig. 4, a summary of the simulation cases is presented in the form

of a threshold curve where the boundaries between LS and US2 are shown.
Systematically, the US1 is between the LS and the US2 indicating the bor-
der between laminar and disordered motion is sensitive to initial conditions.
The threshold can be described by a power-law fit: A ∝ Re−3, which is
much steeper than the value of −0.006 that is reported by Sanmiguel-Rojas
and Mullin (2012) indicating that the flow is more and more sensitive as Re
increases. Note that the perturbation used by Sanmiguel-Rojas and Mullin
(2012) is a transverse velocity (tilt), i.e. an addition of a y-transverse velocity
component to the parabolic inlet flow, which creates a velocity discontinuity
in the inlet section and at the wall. The effects of the generated shear could
depend on the mesh resolution as well as on how the solver interpolates the
discontinuity. A recent experimental study from Lebon et al. (2018a,b) has
shown a power-law of Re−2.3, which is in closer agreement to the present
numerical results. In the experiments, several disturbances mechanism were
tested: (i) single, (ii) suction and (iii) periodic inout or synthetic jet from a
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(a) (b)z

t u′z

z

Figure 5: (a) Space-time diagram for Re = 1360 and A = 0.2, corresponding to case 5a.
(b) u′z(0, 0, z, t) profiles along the centreline at t = 1000 (LS ) and t = 2500 (US2 ).

hole in the wall. Clearly, a direct comparison between the experiments and
the DNS is not straightforward for the reason that the vortex perturbations
and the jet disturbances are different. Yet, the effect of the vortex pertur-
bation or the jet disturbance is to break the flow symmetry and distort the
recirculation region.

4. Transient growth of unsteady flow patterns

Taking advantage of the time-accurate and 3D opportunities of our DNS
results, the unsteady flow patterns are examined. Figure 5(a) presents the
space-time diagram for Re = 1360 and A = 0.2, corresponding to case 5a
in Table 1. The flow experiences several sequences of laminar, oscillatory
and disordered motion, as well as relaminarisation of the turbulent localised
patches. In Fig. 5(b), two profiles of u′z along the centreline at t = 1000
s, before the emergence of a turbulent patch, and at t = 2500 s, during a
turbulent patch, are presented. The profiles can be divided into three regions.
In the first region, z < 20d, the flow experiences a gradual deceleration.
For 20d < z < 50d, weak wavy unsteady oscillations are observed. The
wavelength is ≈ 2.3d. In the third region, z > 50d, the oscillations decay
for t = 1000 s, whereas they are considerably amplified for t = 2500 s. The
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t

(a) (b) (c) (d)u′z u′z u′z u′z

Figure 6: u′z(0, 0, z, t) signal over time for Re = 1360 and A = 0.2 recorded at z = 40d
(a ) and z = 80d (b ). The time range of (a) and (b) are in LS, whereas the time
rage in (c) and (d) are in US2, recorded at z = 40d (c ) and z = 80d (d ). The time
range in this figure are marked with the corresponding colour in Fig. 5(a).

fluctuations in the unsteady localised patch become large compared to the
oscillations discussed before.

Fig. 6 presents two streamwise velocity fluctuations, u′z, signals, recorded
respectively at z = 40d and z = 80d along the pipe centreline. The signals at
z = 40d depicted in Fig. 6(a) and (c) have a similar noise amplitude u′z ≈ 0.1
and frequency around 0.2 Hz. However, the signals presented in Fig. 6(b)
and (d) at z = 80d have a different behaviour, correspond to LS and US2,
respectively. Thus, at early stages of development, the differences between
the two cases are not particularly striking, so the transition process involves
subtle effects. These observations are in disagreement with the transient
growth analysis (Cantwell et al., 2010) in the sense that the disturbance
generated at the inlet grows while traveling downstream, mainly because of
its interactions with the recirculation region. In the current DNS, the present
methodology uses finite amplitude perturbation, which can either decay or
grow. Furthermore, the perturbation can remain silent or bounded for a long
time and then suddenly grow because of the nonlinear interactions between
the unsteady flow and the downstream of the recirculation region, where the
reattachment point is located.

The unsteady flow pattern can be also analysed by using a Reynolds
averaging technique based on a LS domain. The base flow is approximated
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by taking the average fields during the LS from t = 1500 to 1800 s:

u(x, y, z) = 〈u(x, y, z, t)〉1500<t<1800 . (8)

Then, the unsteady pattern can be expressed using:

u′(x, y, z, t) = u(x, y, z, t)− u(x, y, z). (9)

The amplitude of u′(x, y, z, t) is small and stays bounded in laminar phase.
For convenience, the coordinate system is converted from Cartesian, u′(x, y, z, t),
to cylindrical, u′(r, θ, z, t). Next, the Fourier transform of u′(r, θ, z, t) in az-
imuthal direction, noted as û′, is computed:

û′(r, kθ, z, t) =
1

2π

2π∫
0

u′(r, θ, z, t)e−2iπθkθdθ, (10)

where, the azimuthal modes energy are computed point-wise as: ez(r, kθ, z, t)
ey(r, kθ, z, t)
ez(r, kθ, z, t)

 =
1

2

 |û
′
x(r, kθ, z, t)|2
|û′y(r, kθ, z, t)|2
|û′z(r, kθ, z, t)|2

 , (11)

and the total energy of each azimuthal modes is the sum of all three direc-
tions.

From the linear stability point of view, the perturbation u′ could be
decomposed into growing and decaying modes. However, in our case, its
magnitude stays bounded and fluctuates for a long time, before the transient
growth starts and US2 emerges. It suggests there should be a slow growing
mode. The observation of the time evolution of all azimuthal modes, over
all z, r and kθ, reveals no steady increasing of energy. Instead, in addition
to the regular unsteady pattern, a perturbation appears in the steady zone,
z < 20d, and evolves into turbulence. A closer look into the time evolution
of the perturbation amplitude in the vicinity of transition, for 1900 s < t <
2200 s, is shown in Fig. 7 for an arbitrary value of r, here r = d/4, and
three different streamwise positions. The other values of r exhibit similar
behaviours. The fluctuations of energy in streamwise direction, ez(r, kθ, z, t),
or spanwise direction, exy = ex+ey, are recorded as a signal in time for given
values of z, r and kθ. The magnitude of the energy of the azimuthal modes
is several orders smaller than the streamwise energy. From these signals, a
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(a) (b) (c)

(d) (e) (f)t t t

t t t

epxy

epz

3 3 3

3 3 3

Figure 7: Time-evolution of the energy of the most relevant azimuthal modes at r = d/4
for Re = 1360 and A = 0.2. The colour code is: blue line for the mode 0, red (thick) line
for the mode 1, black line for mode 2, and magenta line for mode 3. The three plots in
upper row (a,b,c) show the energy of fluctuation pattern in streamwise direction, ez, and
the three plots in the lower row (d,e,f) show the energy of fluctuation pattern in spanwise
direction. The three columns correspond to (a,d) z = 17d, (b,e) z = 47d and (c,f) z = 67d.
The (green) circles indicate the peaks of energy.

14



(a) (b) (c)

Figure 8: Contour plot in the cross-sectional plane at z = 17d for Re = 1360 and A =
0.2. (a) up

z(z = 17d) = uz(z = 17d, tp = 2080) − uz(z = 17d, t = 2070), (b) mean
flow: uz(x, y, z = 17d) and (c) regular unsteady pattern that remains bounded over time:
u′z(x, y, z = 17d, t = 2070)

local energy peak in the time-evolution can be observed and is located close
to the transition. This peak can be recorded as a time tp corresponding
to the maximum of the energy signal. The values of collected tp will be
a function of spatial positions r, z and the mode kθ. By comparing the
fluctuation patterns, it is found that fluctuations in streamwise direction
are approximately two orders of magnitude stronger than the sum of energy
fluctuations in the two other spanwise directions in the laminar region, z <
20d. However, the gap in the energy levels gets closer at the transition
point in the second zone: z ≈ 50d and the non-linear region, in the third
zone: z > 60d. Another observation is that the position of the energy peaks
mainly depends on the streamwise position, z, and seems to be independent
of spanwise variables, r and kθ. For z ≈ 17d, the peaks start to be observed
at t = 2080 s.

Fig. 8 presents the contour plots at z = 17d of different streamwise veloc-
ity in the cross-sectional plane. It is found that the most intense perturbation
in the energy peak appears close to the strongest shear rate position in the
streamwise velocity mean profile uz, see Fig. 8(b). This suggests the en-
ergy peak is related to a shear instability and is independent of the regular
unsteady pattern u′z. The regular unsteady pattern, see Fig. 8(c), is the fluc-
tuation collected before the peak emerges. The latter structure is different
from both the peak velocity and the mean flow profile.

Considering the first four modes (kθ ∈ {0, 1, 2, 3}), as shown in Fig. 7,
one can notice the position of local energy peak evolves smoothly and linearly
in the streamwise direction in the range of 10d < z < 50d. This suggests that
the energy peak is a perturbation that appears, gets carried downstream by
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Figure 9: Tracking position of the energy peak for Re = 1360 and A = 0.2. (a) Time
and axial position with the scaling represented as a (green) line: tp = z/V0 + c1, c1 is a
constant and the different colours represented different radial position. (b) Energy peak
amplitude, epz, versus axial position, z, for the first four modes: mode 0 (×), mode 1 (o),
mode 2 (�), mode 3 (∗), with the scaling in (green) line epz = c2z

20 where c2 is a constant.

the main flow and amplifies. In Fig. 9(a), the tracking of the local peaks
velocity in space, z, and time, t, is shown for all the value of r, where a
linear fit of z/V0 + c1 with c1 is a constant and V0 ≈ 0.667. The error of
the tracking process mainly comes from the output frequency of the data
and the fluctuation in z direction. All the peaks are found in the range
10d < z < 40d. It is interesting to mention that the peak evolution tracking
in space, z, and in time, t, collapse for all the values of spanwise variables
(r and kθ). As a consequence the magnitude of the energy peaks over time
grows following a power law as shown in Fig. 9(b). The growth for the first
four azimuthal modes takes place until z ≈ 50d where the energy saturates.
It is noted that the phenomenon of the convective instability is also observed
in the numerical simulations of flow over a backward-facing step (see i.e.
Blackburn et al. (2008)).

5. Hysteresis

In general, a hysteresis appears when two flow solutions can exist for
the same Re. Therefore, the initial conditions and the parameters of the
disturbance control the appearance of the two solutions. To test the hys-
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Figure 10: Hysteresis loop of transitional flows for A = 0.2. (a) Space-time diagrams of
the increasing Re, (cases 3a, 4a, 6a and 7a) and (b) the decreasing Re, (cases 7b, 6b, 4b
and 3b) branches. The diagrams also indicate the value of Cz as a (red) continuous line
labeled on the top and the corresponding values of Re on the right.

u′z
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z z
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Re Re
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Figure 11: Hysteresis loop of transitional flows for A = 0.2.. (a) Space-time diagrams of
the increasing Re (cases L1d,L2d and L3d) and (b) the decreasing Re (cases L3d,L2i,L1i)
branches. The diagrams also indicate the value of Cz as a (red) continuous line labeled
on the top and the corresponding values of Re on the right.
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Figure 12: Hysteresis loop of transitional flows for A = 0.5. (a) Space-time diagrams of
the increasing Re (cases L1d,L2d,L3dbis) and (b) the decreasing Re (cases 3a, 4a and 10a)
branches. The diagrams also indicate the value of Cz as a (red) continuous line and the
corresponding value of Re on the right.

teresic behaviour, two branches of the simulations with Re increasing and
Re decreasing are investigated. The Re increasing branch starts from lami-
nar flow, whereas the Re decreasing branch begins from an unsteady state,
here US2. This approach was also considered by Sanmiguel-Rojas and Mullin
(2012) using a transverse velocity disturbance of amplitude δ. Depending on
δ and Re, a domain of hysteresis was observed. Specifically, for δ = 0.001,
the coexistence region was reported for 1475 < Re < 1850. Moreover, they
found that the hysteresis region grows as δ decreases. It is not possible to
directly compare the effect of the transverse velocity disturbance with our
vortex disturbance because these perturbations are of different nature: the
vortex disturbance perturbation introduces rotation, whereas the transverse
velocity disturbance introduces a translation to the flow. However, the fol-
lowing results discuss the universality of the hysteresis behaviour. A series
of eight simulations were performed, with a fixed amplitude of vortex per-
turbation, A = 0.2. The initial condition is case 3a with Re = 1300. When
the simulation time reached 1500 s, the final state is analysed and used as
the initial condition for the next run at a higher Re. Then, Re, is increased
with steps of 25, up to Re = 1400 (case 4a, 5a, 7a, 8a), as depicted in the
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space-time diagrams of Fig. 10(a). In Fig. 10(b), the decreasing Re branch
is initialised with a laminar state (case 3a), then Re is directly increased to
1400 (case 8b) and the decreasing path down to 1300 with a step of 25 (case
7b, 5b, 4b). The simulations from the increasing and decreasing paths are
compared for the same Re. The results are presented in Fig. 10(a) and 10(b)
and show minor changes. Looking at the drag coefficient also represented
in Fig. 10(a) and (b), every change in Re initiates a peak or a transient in-
crease of Cz corresponding to a disordered patch that propagates and decays
downstream. A small hysteresis is found while following this procedure.

Additional simulations were performed using different Re steps and a
larger range of Re. The decreasing branch started with Re = 2000. Then
Re, is decreased to 1700, 1350 and 1000 (simulation L1d, L2d, L3d). The
results is compared with the increasing branch which start from Re = 1000
then increase to 1350, then 1700 (simulation L3d, L2i, L1i). Again, the
results are represented in the form of space-time diagrams, in Fig. 11(a)
and 11(b). The data show minor differences in the space-time behaviour.
However, the drag, Cz, now suggests a small loop of hysteresis.

When comparing two series of simulations, one could notice: in the first
loop, with small steps of Re (∆Re = 25), the two cases with Re = 1350
are laminar in both increasing and decreasing branches. Whereas, in the
second series, with larger steps of Re (∆Re = 350), the two cases with same
Re = 1350 show US2. The space-time diagram of 4 cases with Re = 1350
are extracted in the two series and shown in Fig. 12. The different behaviour
of the same Re suggests that larger steps of Re could eventually trigger the
unsteady behaviour and potentially the hysteresis loop sooner than smaller
steps.

To quantify the hysteresis behaviour, S, the integral of the curve Cz over
Re for both increasing and decreasing branches is defined:

S =
∫
Cz(Re)dRe. (12)

The relative difference, H, is defined to quantify the hysteresis behaviour:

H =
∆S

S
. (13)

where ∆S is the difference between two branches and S is the mean value. It
is noted that in order to observe the hysteresis phenomenon clearly, a specific
procedure needs to be implemented. In the decreasing branch, the variation
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of Re should be large enough to avoid the transformation from US1 to US2.
On the other hand, in the increasing branch, the variation of Re should be
small enough to keep the flow laminar. The loops are presented in Fig. 13,
with the decreasing branch initiated at Re = 2000, then decreasing consecu-
tively to 1700, 1350 and 1325 (simulation L1d, L2d, L3dbis). The increasing
branch is initiated at Re = 1300 and is then increased consecutively to 1325,
1350 and 1700 (simulation 3a, 4a, 10a). Based on the criteria defined in Eq.
(13), this last procedure leads to a hysteresis of H = 27.87% compared to
the two previous loops with the measure of hysteresis are H = 1.15% and
H = 0.75% respectively. In Fig. 13, Cz is obtained from the last 100 seconds
of each case and is plotted against Re. The laminar states, Re = 1325 and
Re = 1350, lead to Cz with almost the same value within 0.04%. The un-
steady states at Re = 1375 and Re = 1400 have slightly different final value
of Cz within 3% because of the unsteady nature of the flow. The systematic
study of all possible steps with extremely long time scales would be a tedious
investigation thus beyond the scope of this study. The fact that the hystere-
sis measure, H, increases with the Re steps height suggests the hysteresis is
related to the re-establishment of the recirculation region.

6. Conclusion

The results of numerical simulations of the flow through a circular pipe
with a sudden expansion have been reported. The expansion ratio is 1:2 and
the inlet velocity profile is parabolic together with a finite amplitude vortex
perturbation. The spatio-temporal velocity fluctuation have been presented
when the perturbation amplitude is larger than the threshold. In the sub-
critical range of Reynolds number, the critical threshold scales with Re−3,
which is consistent with recent experiments (Lebon et al., 2018a,b). The
present vortex perturbation, added at the inlet, distorts the flow and the
recirculation region before the appearance of disordered motion close to the
reattachment point of the laminar recirculation region.

Using the present DNS, it was possible to monitor spatially and tem-
porally the velocity fluctuations, the drag coefficient and the energy of the
flow. Furthermore, it was found that the velocity fluctuations in the stream-
wise direction are dominant, i.e. about two orders of magnitude larger than
the transverse flow components. Additionally, a peak of energy fluctuations
was observed around to the region of high shear rate close to point of reat-
tachment of the recirculation region and its amplitude grows exponentially
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Figure 13: Hysteresis loop: Cz as a function of Re. The left hand side plot is the global view
and the right hand-side plot shows a zoom into to loop. Three sequences of simulations
are presented: the cases shown in Fig. 10 in green line with square markers and the
cases shown in Fig. 11 in magenta lines with circular markers. In each sequence, the
simulations in increasing branch are differentiated with the ones in decreasing branch by
the arrows showing the direction of variation of Re. Additionally, the increasing branches
are presented with slightly bigger red marker and red arrows, whereas the one in decreasing
branch are with smaller blue marker and blue arrows.
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along the axial position of the expansion. Finally, a hysteresis quantification
procedure, increasing and decreasing the Reynolds number, indicate a small
hysteresis region. Its measure depends on the step and computation time,
suggesting a transient effect due to the re-establishment of the recirculation
region. In the future, it is planned to extend the present simulations to
other types of disturbances and to expansions with various expansion ratio
and diverging angles (Lanzerstorfer and Kuhlmann, 2012; Jotkar et al., 2015;
Jotkar and Govindarajan, 2019; Kfuri et al., 2017).

The computations were conducted using HPC resources of the Centre
Régional Informatique et d’Applications Numériques de Normandie (CRI-
ANN). The authors acknowledge financial support of the Agence National
de la Recherche (ANR) thought the programme ‘Investissement d’Avenir’
from the laboratoire d’excellence Energy Materials and Clean Combustion
Center (LabEx EMC3). Our work has also benefited from helpful discussions
with Ashley P. Willis (University of Sheffield, UK), who suggested this form
for the vortex perturbation.
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