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Introduction

The flow through an axisymmetric sudden expansion in a circular pipe is a basic configuration, which occurs in many industrial applications, such as heat exchanger, mixing chamber, combustion chamber, etc. This basic geometry is also used as a building block to model more complex flows such as those occurring in arterial stenoses [START_REF] Pollard | A contribution on the effects of inlet conditions when modelling stenoses using sudden expansions[END_REF], pistons [START_REF] Boughamoura | Numerical study of a piston-driven laminar flow and heat transfer in a pipe with a sudden expansion[END_REF], and transportation pipes [START_REF] Koronaki | Numerical study of turbulent diesel flow in a pipe with sudden expansion[END_REF], among others. In these applications, the capacity of predicting when the flow will become turbulent is crucial. In the literature, there are many efforts in theoretical analysis [START_REF] Teyssandiert | An analysis of flow through sudden enlargements in pipes[END_REF], experimental explorations [START_REF] Back | Shear-layer flow regimes and wave instabilities and reattachment lengths downstream of an abrupt circular channel expansion[END_REF][START_REF] Latornell | Some observations on the evolution of shear layer instabilities in laminar flow through a sudden expansion[END_REF] and numerical simulations [START_REF] Macagno | Computational and experimental study of a captive annular eddy[END_REF][START_REF] Varghese | Direct numerical simulation of stenotic flows. Part 1. Steady flow[END_REF] focusing on this problem, or a similar geometries such as the planar abrupt expansion [START_REF] Fearn | Nonlinear phenomena in a symmetric sudden expansion[END_REF][START_REF] Xia | Imaging velocity profiles: Flow through an abrupt contraction and expansion[END_REF][START_REF] Baloch | On two-and threedimensional expansion flows[END_REF][START_REF] Bertolotti | Numerical and experimental models of post-operative realistic flows in stenosed coronary bypasses[END_REF][START_REF] Varghese | Direct numerical simulation of stenotic flows. Part 1. Steady flow[END_REF][START_REF] Tsukahara | DNS of viscoelastic turbulent channel flow with rectangular orifice at low Reynolds number[END_REF]. More recently, Lebon et al. (2018a) found a new mechanism for periodic bursting of the recirculation region in the flow of a circular pipe with the expansion ratio of 1:2. Yet, a consensus about the sequence of events in the transition from laminar to turbulence seems to be relatively well-established, but the exact value of critical Reynolds number is still not firmly determined, and the different transition scenarios are not yet fully elucidated.

The flow is mainly controlled by the inlet Reynolds number, Re = U d/ν, where U is the bulk velocity at the inlet, d is the inlet diameter and ν is the fluid kinematic viscosity. In the laminar state, the flow is axisymmetric. As Re increases, the flow starts to break its symmetrical properties but remains steady until Re = 1139 ± 10 as reported in the experiments by [START_REF] Mullin | Bifurcation phenomena in the flow through a sudden expansion in a circular pipe[END_REF]. It should be noted that the onset of symmetry breakdown is at much lower value for the case of channel sudden expansion, as reported to be Re ≈ 40 by [START_REF] Fearn | Nonlinear phenomena in a symmetric sudden expansion[END_REF] and Re = 216 by [START_REF] Drikakis | Bifurcation phenomena in incompressible sudden expansion flows[END_REF]. In the sudden circular pipe expansion flows, oscillatory and intermittent bursts were reported to appear at Re ≈ 1567 ± 16 by [START_REF] Mullin | Bifurcation phenomena in the flow through a sudden expansion in a circular pipe[END_REF], 1500 < Re < 1700 by [START_REF] Sreenivasan | An instability associated with a sudden expansion in a pipe flow[END_REF], and Re = 750 by [START_REF] Latornell | Some observations on the evolution of shear layer instabilities in laminar flow through a sudden expansion[END_REF]. Then, the flow develops into localised turbulence at even higher Reynolds numbers (Lebon et al., 2018b).

Recently, a global stability analysis was performed by [START_REF] Sanmiguel-Rojas | Global mode analysis of a pipe flow through a 1:2 axisymmetric sudden expansion[END_REF]. They showed that the flow can remain axisymmetric up to Re ≈ 3273, which is much larger than the value found experimentally. Subsequent simulations by [START_REF] Cliffe | Adaptivity and a posteriori error control for bifurcation problems II: Incompressible fluid flow in open systems with Z 2 symmetry[END_REF] also indicated that the steady supercritical bifurcation point lies at even higher Reynolds numbers, i.e. Re ≈ 5000. Moreover, a detailed study of transient growth stability was performed by [START_REF] Cantwell | Transient growth analysis of flow through a sudden expansion in a circular pipe[END_REF]. They showed that the sudden expansion amplifies the energy of infinitesimal perturbations up to six orders of magnitude in the inlet and then decay. The difference between the critical Re in experiments and simulations may be explained by the fact that, in experimental studies, the imperfections of the apparatus have a strong impact on the measured critical Reynolds number. Therefore, the values of critical Reynolds number seem to be dependant both on the perturbation nature and its amplitude. In this case, a numerical simulation with a well-defined finite amplitude perturbation is required to better understand the underlying physics.

Many direct numerical simulations (DNS) on 1:2 expansions were performed before, but with an initial arbitrary velocity field. For example, [START_REF] Tsukahara | DNS of viscoelastic turbulent channel flow with rectangular orifice at low Reynolds number[END_REF] showed in a orifice configuration how the turbulent kinetic energy evolves into localised turbulence. [START_REF] Moallemi | Instability and localized turbulence associated with flow through an axisymmetric sudden expansion[END_REF] used a steady parabolic inflow in a circular pipe expansion and showed the emergence of an instantaneous fluctuating vorticity fields with a maximum near the reattachment point of the recirculation region. The first DNS of finite amplitude perturbation in sudden expansion flow was performed by Sanmiguel-Rojas and [START_REF] Sanmiguel-Rojas | Finite-amplitude solutions in the flow through a sudden expansion in a circular pipe[END_REF], where many interesting results are reported. They showed that, for a range of Re, the flow in laminar state can be forced to disordered motion when a transverse velocity perturbation is added at the inlet. The minimal amplitude of the transverse velocity perturbation required to initiate disordered motion scaled with Re -0.006 . This result has an important role in the passive flow control. Now, it is natural to ask if this result is universal? Will another kind of perturbation have the same behaviour? Is the scaling law still valid? The question is crucial especially by knowing that the previous perturbation scheme used by Sanmiguel-Rojas and Mullin ( 2012) is simply a transverse velocity disturbance in the velocity field. Therefore, it does not satisfy the no-slip boundary condition at the inlet wall. Another interesting result is: when Sanmiguel-Rojas and Mullin (2012) increased and then decreased Re, a hysteresis loop was found for 1450 < Re < 1850. This point deserves more attention, since in the original work, the process of variation of Reynolds number as well as the physical time of the reported flow state are not specified. Recently, [START_REF] Selvam | Flow in a circular expansion pipe flow: effect of a vortex perturbation on localised turbulence[END_REF] presented results on a vortex perturbation but no systematic study of the amplitude threshold and the hysteresis was carried out. One may ask, will the hysteresis occur if Re varies in quasi-static manner? Or will the results change if the observation time is different? In the present study, the authors propose a similar study, but with the vortex disturbance in order to revisit the threshold scaling and the hysteresis loop behaviour.

Numerical set-up

The present work focuses on a circular pipe flow with a sudden expansion with the expansion ratio of 1:2. The fluid flow system is solved using Nek5000 [START_REF] Fischer | nek5000 Web page[END_REF], a well-validated high-order spectral element code for transitional and fully turbulent flows [START_REF] Selvam | Localised turbulence in a circular pipe flow with gradual expansion[END_REF][START_REF] Ducoin | Direct numerical simulation of flow instabilities over Savonius style wind turbine blades[END_REF]. The governing equations are mass and momentum conservations in an isothermal incompressible limit:

∇ • u = 0 (1) ∂ ∂t u + u • ∇u = -∇p + 1 Re ∆u ( 2 
)
where u is the velocity field, p is the pressure, and t is the physical time.

The density of flow is set to unity for simplicity. The computational domain is axisymmetric as depicted in Fig. 1(b). The region upstream of the expansion is called inlet and has a diameter, d, and a 5d length. The downstream region, after the expansion, has a diameter D = 2d and a length L = 150d. The whole domain contains 62 300 spectral elements where each element consists of P 3 Gauss-Legendre-Lobatto (GLL) points, P being the polynomial order. P = 5, with total number of 7.9 million calculating points, is used for the reported results. Moreover, additional simulations, performed with P = 6 (13.5 million GLL points) for Re = 1000, showed the laminar recirculation length and the drag coefficient remain essentially the same. A classical set up for the inlet velocity, located at z = -5d, is the Hagen-Poiseuille profile, which satisfies the non-slip condition at the inlet wall:

u o inlet (r = d/2, z = -5d) = 0 when r = √ x 2 + y 2 = d/2 and u o inlet (x, y, z = -5d) = 2U 1 -4(x 2 + y 2 )/d 2 e z , (3) 
where (e x , e y , e z ) are the three unit vectors of the cartesian base.

In order to initiate turbulence in subcritical Re, a vortex perturbation is added to the inlet parabolic profile [START_REF] Selvam | Flow in a circular expansion pipe flow: effect of a vortex perturbation on localised turbulence[END_REF]. This modifies the expression of velocity inlet as:

u inlet (x, y, z = -5d) = u o inlet + AΩ    -y x 0    =         -AΩy AΩx 2   1 -4(x 2 + y 2 r 2 )            , (4) 
where A and Ω are the amplitude and the intensity of the vortex perturbation, respectively. Ω is defined by (i) the vortex radius, R Ω = d/4, (ii) the center (x Ω , y Ω ) and (iii) the distance from the centerline to the center of the vortex:

r Ω = (x -x Ω ) 2 + (y -y Ω ) 2 .
Then, the expression of Ω is given by:

Ω =      1, r Ω ≤ R Ω /2 8 (R Ω -r Ω ) /d, R Ω /2 ≤ r Ω ≤ R Ω 0, r Ω > R Ω (5)
The position of the vortex is fixed with x Ω = -d/4 and y Ω = 0, such as the inlet profile obeys the incompressible, non-slip and non-penetrate boundary conditions. The radius and the position of the vortex, r Ω , is chosen such that Ω vanishes at the boundary. By injecting Ω = 0 into Eq. ( 4), one can easily verify that u inlet vanishes at the boundary as well.

Preliminary tests with a large vortex perturbation on the pipe centreline indicate the required amplitude to initiate turbulence is relatively large. It corresponds to the limit case of the rotating Hagen-Poiseuille flow discharging into a sudden expansion [START_REF] Miranda-Barea | Experimental study of rotating hagen-poiseuille flow discharging into a 1:8 sudden expansion[END_REF]. By positioning the vortex at (x Ω , y Ω ) = (-d/4, 0), the vortex breaks the axial symmetry [START_REF] Wu | Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence[END_REF] of the flow and naturally deflects the recirculation region. The distribution of Ω(x, y) can be visualised in Fig. 1(a).

Distinction between different states of instabilities

The laminar or turbulent state of a flow can be monitored from the time evolution of the drag coefficient:

C z (t) = ν πdLU 2 L z=0 2π θ=0 ∂u z ∂r r=d r dθ dz, (6) 
where d and L = 150d are the radius and the length of the downstream pipe, respectively. Here r = √ x 2 + y 2 and θ = arctan (y/x) are the positions in the radial and azimuthal direction in the cylindrical coordinate system, respectively.

Table 1 presents a summary of the selected simulations along with parameters: Re, A, initial conditions and observed states. While the laminar state is noted as LS, there exist two unsteady states, US1 and US2, with distinct amplitudes and axial position for the disordered turbulent patch. For LS, C z is steady, i.e. dC z /dt ≈ 0. However, for US, C z is unsteady and larger than the laminar C z , i.e. C z,LS < C z,U S .

In order to describe the unsteady flow patterns, the axial velocity fluctuations, u z , at the pipe centreline are obtained by subtracting the instantaneous axial velocity, u z , to the steady laminar case u 0 z at the same spatial location:

u z (0, 0, z, t) = u z (0, 0, z, t) -u 0 z (0, 0, z), (7) 
and plotted in a space-time diagram. The reference value u 0 z is the laminar state with no perturbation, i.e. A = 0. The diagram is constructed from horizontal lines at given times. The colour within the line is the value of u z described by 1500 points along the centreline in the z direction at each 100 time-step. The final diagram is the superposition all computed times with the resolutions of 0.1d in space. This diagram is completed by time evolution of C z graduated at the top of the diagram. Fig. 2 presents u z space-time diagrams and the evolution of drag coefficient, C z , for four different perturbation amplitudes, A, at Re = 2000. The colour intensity in the diagrams increases with the deceleration of the streamwise velocity. The centreline position is typical of this flow configuration and other radial positions close to the centreline would lead to essentially the same qualitative behavior as the localized turbulence fills up the pipe radially. There are two (c), which can move axially along the downstream section.

In Fig. 4, a summary of the simulation cases is presented in the form of a threshold curve where the boundaries between LS and US2 are shown. Systematically, the US1 is between the LS and the US2 indicating the border between laminar and disordered motion is sensitive to initial conditions. The threshold can be described by a power-law fit: A ∝ Re -3 , which is much steeper than the value of -0.006 that is reported by Sanmiguel-Rojas and [START_REF] Sanmiguel-Rojas | Finite-amplitude solutions in the flow through a sudden expansion in a circular pipe[END_REF] indicating that the flow is more and more sensitive as Re increases. Note that the perturbation used by Sanmiguel-Rojas and Mullin ( 2012) is a transverse velocity (tilt), i.e. an addition of a y-transverse velocity component to the parabolic inlet flow, which creates a velocity discontinuity in the inlet section and at the wall. The effects of the generated shear could depend on the mesh resolution as well as on how the solver interpolates the discontinuity. A recent experimental study from Lebon et al. (2018a,b) has shown a power-law of Re -2.3 , which is in closer agreement to the present numerical results. In the experiments, several disturbances mechanism were tested: (i) single, (ii) suction and (iii) periodic inout or synthetic jet from a hole in the wall. Clearly, a direct comparison between the experiments and the DNS is not straightforward for the reason that the vortex perturbations and the jet disturbances are different. Yet, the effect of the vortex perturbation or the jet disturbance is to break the flow symmetry and distort the recirculation region.

Transient growth of unsteady flow patterns

Taking advantage of the time-accurate and 3D opportunities of our DNS results, the unsteady flow patterns are examined. Figure 5(a) presents the space-time diagram for Re = 1360 and A = 0.2, corresponding to case 5a in Table 1. The flow experiences several sequences of laminar, oscillatory and disordered motion, as well as relaminarisation of the turbulent localised patches. In Fig. 5(b), two profiles of u z along the centreline at t = 1000 s, before the emergence of a turbulent patch, and at t = 2500 s, during a turbulent patch, are presented. The profiles can be divided into three regions. In the first region, z < 20d, the flow experiences a gradual deceleration. For 20d < z < 50d, weak wavy unsteady oscillations are observed. The wavelength is ≈ 2.3d. In the third region, z > 50d, the oscillations decay for t = 1000 s, whereas they are considerably amplified for t = 2500 s. The and (d) at z = 80d have a different behaviour, correspond to LS and US2, respectively. Thus, at early stages of development, the differences between the two cases are not particularly striking, so the transition process involves subtle effects. These observations are in disagreement with the transient growth analysis [START_REF] Cantwell | Transient growth analysis of flow through a sudden expansion in a circular pipe[END_REF] in the sense that the disturbance generated at the inlet grows while traveling downstream, mainly because of its interactions with the recirculation region. In the current DNS, the present methodology uses finite amplitude perturbation, which can either decay or grow. Furthermore, the perturbation can remain silent or bounded for a long time and then suddenly grow because of the nonlinear interactions between the unsteady flow and the downstream of the recirculation region, where the reattachment point is located.

The unsteady flow pattern can be also analysed by using a Reynolds averaging technique based on a LS domain. The base flow is approximated by taking the average fields during the LS from t = 1500 to 1800 s: u(x, y, z) = u(x, y, z, t) 1500<t<1800 .

(8)

Then, the unsteady pattern can be expressed using:

u (x, y, z, t) = u(x, y, z, t) -u(x, y, z). (9) 
The amplitude of u (x, y, z, t) is small and stays bounded in laminar phase.

For convenience, the coordinate system is converted from Cartesian, u (x, y, z, t), to cylindrical, u (r, θ, z, t). Next, the Fourier transform of u (r, θ, z, t) in azimuthal direction, noted as u , is computed:

u (r, k θ , z, t) = 1 2π 2π 0 u (r, θ, z, t)e -2iπθk θ dθ, (10) 
where, the azimuthal modes energy are computed point-wise as:

   e z (r, k θ , z, t) e y (r, k θ , z, t) e z (r, k θ , z, t)    = 1 2    | u x (r, k θ , z, t)| 2 | u y (r, k θ , z, t)| 2 | u z (r, k θ , z, t)| 2    , (11) 
and the total energy of each azimuthal modes is the sum of all three directions.

From the linear stability point of view, the perturbation u could be decomposed into growing and decaying modes. However, in our case, its magnitude stays bounded and fluctuates for a long time, before the transient growth starts and US2 emerges. It suggests there should be a slow growing mode. The observation of the time evolution of all azimuthal modes, over all z, r and k θ , reveals no steady increasing of energy. Instead, in addition to the regular unsteady pattern, a perturbation appears in the steady zone, z < 20d, and evolves into turbulence. A closer look into the time evolution of the perturbation amplitude in the vicinity of transition, for 1900 s < t < 2200 s, is shown in Fig. 7 for an arbitrary value of r, here r = d/4, and three different streamwise positions. The other values of r exhibit similar behaviours. The fluctuations of energy in streamwise direction, e z (r, k θ , z, t), or spanwise direction, e xy = e x + e y , are recorded as a signal in time for given values of z, r and k θ . The magnitude of the energy of the azimuthal modes is several orders smaller than the streamwise energy. From these signals, a local energy peak in the time-evolution can be observed and is located close to the transition. This peak can be recorded as a time t p corresponding to the maximum of the energy signal. The values of collected t p will be a function of spatial positions r, z and the mode k θ . By comparing the fluctuation patterns, it is found that fluctuations in streamwise direction are approximately two orders of magnitude stronger than the sum of energy fluctuations in the two other spanwise directions in the laminar region, z < 20d. However, the gap in the energy levels gets closer at the transition point in the second zone: z ≈ 50d and the non-linear region, in the third zone: z > 60d. Another observation is that the position of the energy peaks mainly depends on the streamwise position, z, and seems to be independent of spanwise variables, r and k θ . For z ≈ 17d, the peaks start to be observed at t = 2080 s.

Fig. 8 presents the contour plots at z = 17d of different streamwise velocity in the cross-sectional plane. It is found that the most intense perturbation in the energy peak appears close to the strongest shear rate position in the streamwise velocity mean profile u z , see Fig. 8(b). This suggests the energy peak is related to a shear instability and is independent of the regular unsteady pattern u z . The regular unsteady pattern, see Fig. 8(c), is the fluctuation collected before the peak emerges. The latter structure is different from both the peak velocity and the mean flow profile.

Considering the first four modes (k θ ∈ {0, 1, 2, 3}), as shown in Fig. 7, one can notice the position of local energy peak evolves smoothly and linearly in the streamwise direction in the range of 10d < z < 50d. This suggests that the energy peak is a perturbation that appears, gets carried downstream by the main flow and amplifies. In Fig. 9(a), the tracking of the local peaks velocity in space, z, and time, t, is shown for all the value of r, where a linear fit of z/V 0 + c 1 with c 1 is a constant and V 0 ≈ 0.667. The error of the tracking process mainly comes from the output frequency of the data and the fluctuation in z direction. All the peaks are found in the range 10d < z < 40d. It is interesting to mention that the peak evolution tracking in space, z, and in time, t, collapse for all the values of spanwise variables (r and k θ ). As a consequence the magnitude of the energy peaks over time grows following a power law as shown in Fig. 9(b). The growth for the first four azimuthal modes takes place until z ≈ 50d where the energy saturates.

It is noted that the phenomenon of the convective instability is also observed in the numerical simulations of flow over a backward-facing step (see i.e. [START_REF] Blackburn | Convective instability and transient growth in flow over a backward-facing step[END_REF]).

Hysteresis

In general, a hysteresis appears when two flow solutions can exist for the same Re. Therefore, the initial conditions and the parameters of the disturbance control the appearance of the two solutions. To test the hys- teresic behaviour, two branches of the simulations with Re increasing and Re decreasing are investigated. The Re increasing branch starts from laminar flow, whereas the Re decreasing branch begins from an unsteady state, here US2. This approach was also considered by Sanmiguel-Rojas and Mullin (2012) using a transverse velocity disturbance of amplitude δ. Depending on δ and Re, a domain of hysteresis was observed. Specifically, for δ = 0.001, the coexistence region was reported for 1475 < Re < 1850. Moreover, they found that the hysteresis region grows as δ decreases. It is not possible to directly compare the effect of the transverse velocity disturbance with our vortex disturbance because these perturbations are of different nature: the vortex disturbance perturbation introduces rotation, whereas the transverse velocity disturbance introduces a translation to the flow. However, the following results discuss the universality of the hysteresis behaviour. A series of eight simulations were performed, with a fixed amplitude of vortex perturbation, A = 0.2. The initial condition is case 3a with Re = 1300. When the simulation time reached 1500 s, the final state is analysed and used as the initial condition for the next run at a higher Re. Then, Re, is increased with steps of 25, up to Re = 1400 (case 4a, 5a, 7a, 8a), as depicted in the space-time diagrams of Fig. 10(a). In Fig. 10(b), the decreasing Re branch is initialised with a laminar state (case 3a), then Re is directly increased to 1400 (case 8b) and the decreasing path down to 1300 with a step of 25 (case 7b, 5b, 4b). The simulations from the increasing and decreasing paths are compared for the same Re. The results are presented in Fig. 10(a) and 10(b) and show minor changes. Looking at the drag coefficient also represented in Fig. 10(a) and (b), every change in Re initiates a peak or a transient increase of C z corresponding to a disordered patch that propagates and decays downstream. A small hysteresis is found while following this procedure. Additional simulations were performed using different Re steps and a larger range of Re. The decreasing branch started with Re = 2000. Then Re, is decreased to 1700, 1350 and 1000 (simulation L1d, L2d, L3d). The results is compared with the increasing branch which start from Re = 1000 then increase to 1350, then 1700 (simulation L3d, L2i, L1i). Again, the results are represented in the form of space-time diagrams, in Fig. 11(a) and 11(b). The data show minor differences in the space-time behaviour. However, the drag, C z , now suggests a small loop of hysteresis.

When comparing two series of simulations, one could notice: in the first loop, with small steps of Re (∆Re = 25), the two cases with Re = 1350 are laminar in both increasing and decreasing branches. Whereas, in the second series, with larger steps of Re (∆Re = 350), the two cases with same Re = 1350 show US2. The space-time diagram of 4 cases with Re = 1350 are extracted in the two series and shown in Fig. 12. The different behaviour of the same Re suggests that larger steps of Re could eventually trigger the unsteady behaviour and potentially the hysteresis loop sooner than smaller steps.

To quantify the hysteresis behaviour, S, the integral of the curve C z over Re for both increasing and decreasing branches is defined:

S = C z (Re)dRe. ( 12 
)
The relative difference, H, is defined to quantify the hysteresis behaviour:

H = ∆S S . ( 13 
)
where ∆S is the difference between two branches and S is the mean value. It is noted that in order to observe the hysteresis phenomenon clearly, a specific procedure needs to be implemented. In the decreasing branch, the variation of Re should be large enough to avoid the transformation from US1 to US2. On the other hand, in the increasing branch, the variation of Re should be small enough to keep the flow laminar. The loops are presented in Fig. 13, with the decreasing branch initiated at Re = 2000, then decreasing consecutively to 1700, 1350 and 1325 (simulation L1d, L2d, L3dbis). The increasing branch is initiated at Re = 1300 and is then increased consecutively to 1325, 1350 and 1700 (simulation 3a, 4a, 10a). Based on the criteria defined in Eq. ( 13), this last procedure leads to a hysteresis of H = 27.87% compared to the two previous loops with the measure of hysteresis are H = 1.15% and H = 0.75% respectively. In Fig. 13, C z is obtained from the last 100 seconds of each case and is plotted against Re. The laminar states, Re = 1325 and Re = 1350, lead to C z with almost the same value within 0.04%. The unsteady states at Re = 1375 and Re = 1400 have slightly different final value of C z within 3% because of the unsteady nature of the flow. The systematic study of all possible steps with extremely long time scales would be a tedious investigation thus beyond the scope of this study. The fact that the hysteresis measure, H, increases with the Re steps height suggests the hysteresis is related to the re-establishment of the recirculation region.

Conclusion

The results of numerical simulations of the flow through a circular pipe with a sudden expansion have been reported. The expansion ratio is 1:2 and the inlet velocity profile is parabolic together with a finite amplitude vortex perturbation. The spatio-temporal velocity fluctuation have been presented when the perturbation amplitude is larger than the threshold. In the subcritical range of Reynolds number, the critical threshold scales with Re -3 , which is consistent with recent experiments (Lebon et al., 2018a,b). The present vortex perturbation, added at the inlet, distorts the flow and the recirculation region before the appearance of disordered motion close to the reattachment point of the laminar recirculation region.

Using the present DNS, it was possible to monitor spatially and temporally the velocity fluctuations, the drag coefficient and the energy of the flow. Furthermore, it was found that the velocity fluctuations in the streamwise direction are dominant, i.e. about two orders of magnitude larger than the transverse flow components. Additionally, a peak of energy fluctuations was observed around to the region of high shear rate close to point of reattachment of the recirculation region and its amplitude grows exponentially along the axial position of the expansion. Finally, a hysteresis quantification procedure, increasing and decreasing the Reynolds number, indicate a small hysteresis region. Its measure depends on the step and computation time, suggesting a transient effect due to the re-establishment of the recirculation region. In the future, it is planned to extend the present simulations to other types of disturbances and to expansions with various expansion ratio and diverging angles [START_REF] Lanzerstorfer | Global stability of the twodimensional flow over a backward-facing step[END_REF][START_REF] Jotkar | Instability mechanisms in straight-diverging-straight channels[END_REF][START_REF] Jotkar | Two-dimensional modal and non-modal instabilities un straight-diverging-straight channel flow[END_REF][START_REF] Kfuri | Friction coefficients for Bingham and power-law fluids in abrupt contractions and expansions[END_REF].

The computations were conducted using HPC resources of the Centre Régional Informatique et d'Applications Numériques de Normandie (CRI-ANN). The authors acknowledge financial support of the Agence National de la Recherche (ANR) thought the programme 'Investissement d'Avenir' from the laboratoire d'excellence Energy Materials and Clean Combustion Center (LabEx EMC3). Our work has also benefited from helpful discussions with Ashley P. Willis (University of Sheffield, UK), who suggested this form for the vortex perturbation.

Figure 1 :

 1 Figure 1: (a) Axial vorticity of the vortex perturbation (R Ω = d/4, (x Ω , y Ω ) = (0, -d/4) and A = 1) and (b) Sketch of fluid domain with 2 cross-sections inlet and outlet mesh.

Figure 2 :

 2 Figure 2: Space-time diagrams of the centreline perturbed streamwise velocity, u z , and drag coefficient, C z , as a (red) line, indicated on the top, for Re = 2000 at (a) A = 0.0782, (b) A = 0.09, (c) A = 0.2 and (d) A = 0.5. All the diagrams use the same colour code shown on the top right corner, such that light colour corresponds to laminar flow. The whole pipe section downstream the expansion, up to z = 150d, is also sketched in the top right corner below the colour bar.

Figure 3 :

 3 Figure 3: Contour plot of instantaneous streamwise velocity at Re = 2000, y = 0 and zoomed into the range of 0 < z < 100d. (a) LS at A = 0.09, t = 750, (b) US2 at A = 0.09, t = 1250 and (c) US1 at A = 0.2, t = 1000.

Figure 4 :

 4 Figure 4: Critical amplitude, A, of the vortex perturbation as a function of Re. The (green) triangles down indicate US and the (blue) triangles up LS. The (red) dashed line is power-law fit: A ∝ Re -3 .

Figure 5 :

 5 Figure 5: (a) Space-time diagram for Re = 1360 and A = 0.2, corresponding to case 5a. (b) u z (0, 0, z, t) profiles along the centreline at t = 1000 (LS ) and t = 2500 (US2 ).

Figure 6 :

 6 Figure 6: u z (0, 0, z, t) signal over time for Re = 1360 and A = 0.2 recorded at z = 40d (a ) and z = 80d (b ). The time range of (a) and (b) are in LS, whereas the time rage in (c) and (d) are in US2, recorded at z = 40d (c ) and z = 80d (d ). The time range in this figure are marked with the corresponding colour in Fig. 5(a).
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 78 Figure 7: Time-evolution of the energy of the most relevant azimuthal modes at r = d/4 for Re = 1360 and A = 0.2. The colour code is: blue line for the mode 0, red (thick) line for the mode 1, black line for mode 2, and magenta line for mode 3. The three plots in upper row (a,b,c) show the energy of fluctuation pattern in streamwise direction, e z , and the three plots in the lower row (d,e,f) show the energy of fluctuation pattern in spanwise direction. The three columns correspond to (a,d) z = 17d, (b,e) z = 47d and (c,f) z = 67d. The (green) circles indicate the peaks of energy.

Figure 9 :

 9 Figure 9: Tracking position of the energy peak for Re = 1360 and A = 0.2. (a) Time and axial position with the scaling represented as a (green) line: t p = z/V 0 + c 1 , c 1 is a constant and the different colours represented different radial position. (b) Energy peak amplitude, e p z , versus axial position, z, for the first four modes: mode 0 (×), mode 1 (o), mode 2 ( ), mode 3 ( * ), with the scaling in (green) line e p z = c 2 z 20 where c 2 is a constant.
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 101112 Figure 10: Hysteresis loop of transitional flows for A = 0.2. (a) Space-time diagrams of the increasing Re, (cases 3a, 4a, 6a and 7a) and (b) the decreasing Re, (cases 7b, 6b, 4b and 3b) branches. The diagrams also indicate the value of C z as a (red) continuous line labeled on the top and the corresponding values of Re on the right.

  

  

Table 1 :

 1 Summary of the simulations. Abbreviations: LS: laminar state and US: unsteady state. The initial condition could be the Hagen-Poiseuille profile, noted as H-P, or the final times of a past simulation.

	Case	Re	A	Initial condition Remark
	1	1100	0	H-P	LS
	1a	1100 0.458	1	LS
	1b	1100 0.480	1	LS, US2
	1c	1100 0.494	1	US1
	2	1300	0	H-P	LS
	2a	1300	0.2	2	LS
	2b	1300 0.239	2	LS, US2
	2c	1300 0.385	2	US1
	3a	1325	0.2	2a	LS
	4a	1350	0.2	3a	LS
	5a	1360	0.2	4a	LS, US2
	6a	1375	0.2	4a	LS, US2
	7a	1400	0.2	6a	LS, US2
	7b	1400	0.2	2a	LS, US2
	6b	1375	0.2	7b	LS, US2
	5b	1360	0.2	6b	LS, US2
	4b	1350	0.2	6b	LS, US2
	3b	1325	0.2	4b	LS, US2
	2b	1300	0.2	3b	LS, US2
	8	1600	0	H-P	LS
	8a	1600 0.123	8	LS
	8b	1600 0.128	8	LS, US2
	8c	1600 0.16	8	US1
	9a	1700	0.2	9e	US1
	9a	2000 0.0773	9	LS
	9b	2000 0.0782	9	LS, US2
	9c	2000 0.09	9	LS, US2
	9d	2000	0.1	9	US2
	9e	2000	0.2	9	US1
	9f	2000	0.5	9	US1
	10a	1700	0.2	3a	US1
	L1d	1700	0.2	9e	US1
	L2d	1350	0.2	L1d	US2
	L3d	1000	0.2	L2d	LS
	L2i	1350	0.2	L3d	US2
	L1i	1700	0.2	L2i	US1
	L3dbis 1325	0.2	L2d	LS