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ABSTRACT  

The use of hyperspectral spectroscopy for oil detection recently sparked a growing interest for  

risk assessment over vegetated areas. In a perspective of image applications, we conducted a  

greenhouse experiment on a brownfield-established species, Rubus fruticosus L. (bramble), to  

evaluate the potential of vegetation reflectance to detect and discriminate among various oil- 

contaminated soils. The species was grown for 32 days on four different soils with mixtures of  

petroleum hydrocarbons and heavy metals. Additional plants were grown on either  

uncontaminated control or water-deficient soils for comparison. Repeated reflectance  

measurements indicated modified spectral signatures under both oil and water-deficit exposure,  

from leaf to multi-plant scales. The amplitude of the response varied with mixture composition,  

exposure time, acquisition scale and spectrum region. Reflectance changes were linked to  

alterations in chlorophyll, carotenoid and water contents using vegetation indices. These indices  

were used to catch spectral similarities among acquisition scales and to discriminate among  

treatments using Kendall’s coefficient of concordance (W) and regularized logistic regression.  

Of the 33 vegetation indices tested, 14 were concordant from leaf to multi-plant scales (W >  

0.75, p < 0.05) and strongly related to leaf biochemistry (R
2
 > 0.7). The 14 indices allowed 

discriminating between each mixture and the control treatment with no or minor confusions (≤ 5  

%) at all acquisition scales, depending on exposure time. Some of the mixtures remained difficult  

to discriminate among them and from the water-deficit treatment. The approach was tested at the  

canopy scale under natural conditions and performed well for identifying bramble exposed to  

either one of the experimentally-tested mixtures (90 % accuracy) or to uncontaminated soil (83  

% accuracy). This study provided better understanding of vegetation spectral response to oil  

mixtures and opens up promising perspectives for future applications.  
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1. Introduction 

In oil and gas industry, exploration and production activities require efficient detection of total 

petroleum hydrocarbons (TPH) for assessing environmental risks from accidental leakages  

(Logan et al. 2010, Wang et al. 1999). For both purposes, active and passive remote sensing  

have recently raised a growing interest (Angelliaume et al.2017, Konik & Bradtke 2016, Leifer  

et al. 2012). Thanks to high spectral resolution, hyperspectral remote sensing revealed to be  

particularly efficient onshore (Scafutto et al. 2017). For example, direct oil detection can be  

achieved by analyzing the spectral signature of soils at wavelengths corresponding to light  

absorption of TPH (Scafutto et al. 2016, Asadzadeh & de De Souza Filho 2016). However, this  

technique implies the presence of apparent oil at the surface, so its application on-shore is  

restricted to bare soils and not effective in densely vegetated areas. As a solution, recent studies  

suggest to detect oil indirectly, through its effects on vegetation health (Credoz et al. 2016,  

Noomen et al. 2012, Sanches et al. 2013a).  

TPH and heavy metals (HM) present in oil both affect vegetation biochemical and biophysical  

parameters related to leaf optical properties (Athar et al. 2016, Balliana et al. 2017, Baruah et al.  

2014, Nagajyoti et al. 2010). Authors noticed alterations of leaf anatomy, pigment and water  

contents under TPH and HM exposure, resulting in reflectance modifications at corresponding  

wavelengths (Lassalle et al. 2017, Rosso et al. 2005, Sanches et al. 2013a, Zhu et al. 2014). By  

exploiting these modifications, it is thus possible to detect oil in soils from the spectral signature  

of vegetation. For such purpose, vegetation indices (VI) provided encouraging results but remain  

underexploited (Arellano et al. 2015, Emengini et al. 2013a, Lassalle et al. 2017).  

Although the reliability of TPH and HM detection has been demonstrated experimentally, its  

application from airborne and satellite hyperspectral images leads to the apparition of false  
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alarms (i.e. a vegetation stress not related to the presence of oil) (Arellano et al. 2015, Noomen  

et al. 2012, van der Werff et al. 2008, Wang et al. 2018). As pointed out by authors, a better  

knowledge about the spectral response of vegetation to TPH and HM exposure is necessary for  

improving the detection. In that sense, studies carried out under controlled conditions may help  

to better identify the factors influencing this response.  

The sensitivity of species to TPH and HM exposure is among the most influential factors  

(Merkl et al. 2005, Pérez-Hernández et al. 2017), as it leads to an important interspecific 

variability of vegetation spectral response (Arellano et al. 2017, Credoz et al. 2016, Emengini et  

al. 2013c, Sanches et al. 2013b). Hence, the less a species is sensitive to TPH and HM, the  

harder it is to detect oil contamination. But even when considering a sensitive species, several  

sources of variability compromise the detection. For instance, the presence of other stressors that  

induce almost similar effects to TPH and HM (e.g. water-deficit) induce false alarms (Emengini  

et al. 2013b, Lassalle et al. 2018). Likewise, the study scale (leaf, plant or canopy) strongly  

influences the spectral response (Emengini et al. 2013b, Sanches et al. 2013a). Contrasted  

spectral signatures of a single species exposed to TPH and HM mixtures appear in the near- 

infrared (NIR) when measured at different scales (Sanches et al. 2013a). The composition and  

overall concentration of oil products also contribute to the response of vegetation, but have been  

rarely studied (Emengini et al. 2013a, Rosso et al. 2005, Sanches et al. 2013a). However, they  

are of great importance, because they vary substantially among regions and contexts (natural oil  

seeps, pipelines, production mud pits, etc.) (Adeniyi & Afolabi 2002, Credoz et al. 2016,  

Metwally et al. 1997). In a perspective of airborne and satellite applications, it is therefore  

essential to account for all these factors under controlled conditions by reproducing as faithfully  

as possible the contexts of oil exposure encountered under natural conditions.  
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This study focuses on the detection of various oil products, with the aim to distinguish among  

them from the spectral signature of shrubby temperate vegetation, under controlled conditions.  

Their discrimination with a water deficit stress, which is very common under natural conditions,  

was also investigated. A particular attention has been given to the biochemical response of the  

species, and its consequences on reflectance at three scales of measurement. A concrete case of  

field application is also presented for validating the approach.  

 

2. Materials and Methods 

2.1. Study site and species 

An experiment was carried out for 32 days at the Pôle d’Etudes et de Recherche de Lacq  

(Platform for Experimental Research in Lacq (PERL), France), to study the biochemical and  

spectral responses of vegetation to various TPH and HM contaminations under controlled  

conditions. This experiment consisted in reproducing under greenhouse the conditions of a  

realistic case of oil contamination. For this purpose, an industrial brownfield located in temperate  

region, also known as “mud pit”, was identified. The site served as a deposit of oil and gas  

production residues for a long time and is now contaminated by TPH and HM. The soil consists  

in two layers, made of muddy residues at the bottom, covered by a clayed coat at the surface.  

This brownfield has been colonized by vegetation, mainly Rubus fruticosus L. (bramble). The  

greenhouse experiment focused on this species, which is typically encountered on industrial sites  

under temperate climate (Credoz et al. 2016, Pini et al. 2009, Nujkić et al. 2016).   

 

2.2. Plant materials and treatments  
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The greenhouse experiment consisted in six treatments applied to bramble, including four  

different mixtures of TPH and HM (Tab. 1). Wild plants of bramble were sampled from an  

uncontaminated site and acclimated in their soil of origin for 15 days under greenhouse. All the  

plants reached 15 cm-height before the study began. Both soil layers from the brownfield were  

collected and used for the treatments applied to brambles. An uncontaminated soil was also  

sampled and has been analyzed to ensure similar texture than that of the brownfield. All the soils  

were sieved to 10 mm to remove residual roots and homogenized manually.  

Bramble plants were exposed to six treatments, including four different mixtures of TPH and  

HM (Tab. 1). The first one (Clay) was made of 100% clayed layer from the brownfield. This soil  

also contained various heavy metals known for their phytotoxicity (Nagajyoti et al. 2010). Two  

other treatments were made of muddy residues (Mud_B) or “Dahlia” crude oil (Crude) diluted in  

an uncontaminated soil. All these treatments exhibited similar C10-C40 TPH concentrations  

(25 000 mg.kg
-1

), but differed from each other by their composition in other contaminants. A 

fourth contaminated treatment (Mud_A) was applied to the plants. This involved muddy residues  

diluted to 6000 mg.kg
-1

 C10-C40 TPH. The remaining treatments consisted in 100 % 

uncontaminated soil, with (Control) or without (Water_str) water supply.  
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Table 1 Composition of soil treatments used in this study. Concentrations are given in mg.kg
-1

. 

Polycyclic Aromatic Hydrocarbons (PAH) represent the 16 priority pollutants of the U.S.  

Environmental Protection Agency (EPA 2014). (< DL: below detection limit.). Only low  

concentrations of HM were found in the uncontaminated soil (Control and Water-str) and  

corresponded to the local geochemical background.  

Control Water-str Clay Mud_A Mud_B Crude 

Origin of oil mixture None 
Brownfield 

(clay) 

Brownfield 

(muddy residues) 
“Dahlia” crude oil 

Heavy metals: 

arsenic 7.5 22 12 14 12 

cadmium < DL 1.7 0.20 0.67 < DL 

chromium 23 2000 74 310 30 

copper 4.5 73 9.9 17 9.1 

mercury < DL 11 0.14 0.72 0.05 

lead 38 92 43 40 33 

nickel 12 61 15 18 14 

zinc 28 4000 170 660 57 

Polycyclic Aromatic Hydrocarbons < DL 19 63 260 25 

Total petroleum hydrocarbons: 

C5-C10 < DL < DL 52 200 4000 

C10-C40 < DL 25000 6000 25000 25000 

 

Bramble roots were cleaned with water before transplanting in individual black pots filled with  

a 3-cm height layer of clay balls and 3 L of the corresponding treatment soil. 13 plant replicates  

were used for each treatment. They were grown between April and May at 27 °C and 60%  

hygrometry, under natural and artificial light providing a 12:12 light:dark photoperiod. All the 

plants were fertilized weekly (N-K-P: 6-6-6) and irrigated to field capacity on a daily basis,  

except those subject to water-deficit (Water_str) which were not watered during the study.  
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2.3. Biochemical analysis  

The biochemical response of plants to the treatments was analyzed during the experiment. For  

this purpose, three leaves were sampled per treatment, on which two 15-mm wide disks were  

collected. The first one was used to determine leaf fresh (FW) and dry (DW) weights, leaf water  

content (LWC) and equivalent water thickness (EWT) (Arellano et al. 2015, Ceccato et al. 2001,  

Yilmaz et al. 2008). Leaf pigments were extracted in methanol from the second disk using the  

protocol of Diepens et al. (2017) and analyzed by High Pressure Liquid Chromatography  

(HPLC) according to the method described by Barlow et al. (1997). Analyses included  

chlorophyll a, b and various carotenoids. LWC, EWT and pigment content were examined  

together through Principal Component Analysis (PCA) (Hotelling 1933, Pearson 1901). The  

importance of the different variables was identified from their contribution to the main  

components (Jolliffe 2002). In addition, the spectral signatures of all disks were measured using  

the protocol described for leaves in section 2.4. and linked to LWC, EWT and pigment content  

for further analysis described in section 2.5. Biochemical analyses were performed at  

intermediate stages (days 11 and 18) and at the end of the experiment (day 32). No leaf was  

sampled during early stages to avoid influencing plant growth.  
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2.4. Spectral reflectance measurements and preprocessing  

The spectral signatures of the species were measured using an ASD FieldSpec 4 Hi-Res  

spectroradiometer (Analytical Spectral Device Inc. Boulder, Colorado, USA), with a spectral  

range of 350 to 2500 nm. Data were acquired in radiance and converted to reflectance from the  

formula of Milton (1987), using a white reference calibration panel (Spectralon, Labsphere Inc.,  

North Sutton, USA). Measurements were performed at leaf, plant and multi-plant scales
1
, from 

early (day 4) to intermediate (days 11 and 18) stages and at the end of the experiment (day 32).  

Leaf reflectance was measured using a leaf-clip with an internal light source. For each of the six  

treatments, the measurements were made on 3 young leaves per replicate (n = 234 measurements  

per date). For each leaf, 5 consecutive spectral signatures were acquired and averaged to obtain a  

single one.  

Additional measurements were carried out with a 10°-FOV fore-optic placed above the pots,  

providing a corresponding acquisition footprint of 5 and 20 cm at plant and multi-plant scales,  

respectively. Measurements were performed under natural light between 11.30 am. and 1.30 pm.,  

in the absence of clouds. The reflectance of each replicate was thus measured at plant scale (n =  

78 measurements per date). Four replicates of the same treatment were joined for measurements  

at multi-plant scale. The operation was repeated three times for each treatment, with different  

replicates (n = 18 measurements per date). 10 consecutive spectral signatures were acquired per  

measurement at plant and multi-plant scales and averaged to obtain a single one.  

Reflectance data located below 400 and above 2400 nm were removed at all acquisition scales,  

because of a low signal-to-noise ratio (SNR). Likewise, we did not conserve those from the  

1350-1450 and 1800-1950 intervals due to low atmospheric transmission at plant and multi-plant  

1
 In this study, the term “canopy scale” was restricted to in situ measurements to avoid confusions. 
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scales. At all acquisition scales, a Savitzky-Golay smoothing filter with a second order  

polynomial and a seven-point window was then applied to the spectral signatures to improve the  

SNR at the remaining wavelengths (Gomez et al. 2008, Savitzky & Golay 1964).  

 

2.5. Vegetation indices  

In order to catch similarities among acquisition scales, 33 simple and normalized vegetation  

indices (VI) were computed and used in a three-steps approach. These indices are presented in 

Table 2. The first step consisted in identifying which biochemical parameters (pigments, LWC  

and EWT) were responsible for index changes among treatments (Fig. 1). This was achieved by  

regression using the leaves sampled for biochemical analysis. A strong multicollinearity was 

detected among pigments by calculating Variance Inflation Factor (VIF > 10) (Belsley et al.  

1980). Multicollinearity occurs when predictors (i.e. pigments, LWC, EWT) are linear  

combination of each other, and leads to confusions when identifying those contributing most to  

the response variable (i.e. VI) (Dormann et al. 2013). To prevent such consequence, we used the  

elastic net regression (Zou & Hastie 2005), a penalized least squared method allowing efficient  

predictor selection under multicollinearity (Chakraborty et al. 2017). The elastic net regression  

was performed on each VI. Their best set of predictors and the resulting R
2
 of the model are 

presented.  

Once we linked VI to biochemical parameters, we tested for their ability to discriminate among  

treatments, at all acquisition scales. The 33 VI were computed from the spectral signatures  

acquired on (unsampled) leaves, plants and multi-plants. The second step of the approach  

consisted in detecting similarities in VI among acquisition scales, through the ranking of  

treatments. This was achieved for each VI using Kendall’s coefficient of concordance (W)  
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(Kendall & Smith 1939) based on VI values of treatments at day 32, as it was the most  

representative of a long-term exposure of vegetation in our study. Kendall’s W evaluates the  

degree of agreement of treatment ranking among acquisition scales for a given VI and is tested  

for significance using a 1000-fold permutation test (Elger & Barrat-Segretain 2004, Legendre  

2005). As a result, we only retained VI with best elastic net results (R
2
 > 0.7) and high 

significant concordance (W > 0.75, p < 0.05), thus expressing changes in pigment and water  

content resulting from treatment exposure at leaf, plant and multi-plant scales (Fig. 1). The  

selected VI were finally tested to discriminate among treatments using L
2
-Regularized Logistic 

Regression (RLR), also known as Ridge regression (Friedman & Popescu 2004, Hoerl &  

Kennard 1970). RLR has been widely used for classification purposes in various domains  

including remote sensing (Tuia et al. 2016, Zhang et al. 2015), and revealed to be efficient when  

applied on vegetation (Erudel et al. 2017). We only trained the RLR classifier at leaf scale to  

assess the robustness of VI at higher acquisition scales. For this purpose, half of the leaf dataset  

was used for training, and the remaining half as test set. In addition, the entire plant and multi- 

plant datasets were used to test the method. The classification was carried out on each date  

separately and iterated 30 times. The overall quality of predictions was evaluated by Mean  

Overall Accuracy (MOA) and mean Cohen’s Kappa coefficient (Erudel et al. 2017, Wei et al.  

2017). Confusion matrices are also presented to illustrate the results. These matrices were  

obtained by comparing the predicted treatments to the true ones, and thus allowed identifying the  

confusions among treatments. User’s and Producer’s accuracies (UA and PA, respectively) were  

also computed as described in Story & Congalton (1986). UA indicates the probability for a  

sample being classified in a given treatment, to actually correspond to this treatment, whereas PA  

indicates the probability of a sample from this treatment to be correctly classified. All data  
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analyses were performed under Python language using Statsmodels (Seabold & Perktold 2010),  

Scipy (Oliphant 2007) and Scikit-Learn (Pedregosa et al. 2011) libraries.  
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Table 2 Vegetation indices used in this study (R: Reflectance, D: First derivative).  

Index Formula Reference 

Chlorophyll Absorption Ratio Index 
CARI = R700|R670a + R670 + b| R670(a2 + 1)0.5⁄
with a = (R

700
− R

550
) 150⁄  and b = R550 − R

550
a Kim et al. 1994 

Chlorophyll/Carotenoids Index CCI = D720 D700⁄ Sims et al. 2006 

Carter Index 1 CTR1 = R695 R420⁄ Carter et al. 1994 

Carter Index 2 CTR2 = R695 R760⁄ Carter et al. 1994 

Gitelson & Merzlyak Index 1 GM1 = R750 R550⁄ Gitelson & Merzlyak 1997 

Gitelson & Merzlyak Index 2 GM2 = R750 R700⁄ Gitelson & Merzlyak 1997 

Lichtenthaler Index 1 LI1 = (R800 − R680) (R800 + R680)⁄  Lichtenthaler et al. 1996 

Lichtenthaler Index 2 LI2 = R440 R690⁄ Lichtenthaler et al. 1996 

Lichtenthaler Index 3 LI3 = R440 R740⁄ Lichtenthaler et al. 1996 

modified Chlorophyll Absorption Ratio Index 1 mCARI1 = 1.2[2.5(R800 − R670) − 1.3(R800 − R550)] Haboudane et al. 2004 

modified Chlorophyll Absorption Ratio Index 2 
mCARI2 =

1.5[2.5(R800 − R670) − 1.3(R800 − R550)]

√(2R800 + 1)2 − (6R800 − 5√R670) − 0.5
Haboudane et al. 2004 

modified Simple Ratio 705 nm mSR705 = (R750 − R445) (R750 + R445)⁄  Sims & Gamon 2002 

MERIS Terrestrial Chlorophyll Index MTCI = (R754 − R709) (R709 + R681)⁄  Dash & Curan 2007 

Normalized Difference 705 nm ND705 or NDVI705 = (R750 − R705) (R750 + R705)⁄  Sims & Gamon 2002 

Normalized Pigment Chlorophyll Index NPCI = (R680 − R430) (R680 + R430)⁄  Peñuelas et al. 1994 

Optimized Soil-Adjusted Vegetation Index OSAVI = (1 + 0.16) (R800 − R670) (R800 + R670 + 0.16)⁄  Rondeaux et al. 1996 

Photochemical Reflectance Index 1 PRI1 = (R528 − R567) (R528 + R567)⁄  Gamon et al. 1992 

Photochemical Reflectance Index 2 PRI2 = (R531 − R570) (R531 + R570)⁄  Gamon et al. 1992 

Photochemical Reflectance Index 3 PRI3 = (R570 − R539) (R570 + R539)⁄  Gamon et al. 1992 

Plant Senescence Reflectance Index PSRI = (R678 − R500) R750⁄ Merzlyak et al. 1999 

Pigment Specific Simple Ratio a PSSRa = R800 R680⁄ Blackburn 1998a 

Pigment Specific Simple Ratio b PSSRb = R800 R635⁄ Blackburn 1998a 

Pigment Specific Simple Ratio c PSSRc = R800 R470⁄ Blackburn 1998a 

Structure Intensive Pigment Index 1 SIPI1 = (R800 − R445) (R800 + R680)⁄  Blackburn 1998b 

Structure Intensive Pigment Index 2 SIPI2 = (R800 − R505) (R800 + R690)⁄  Blackburn 1998b 

Structure Intensive Pigment Index 3 SIPI3 = (R800 − R470) (R800 + R680)⁄  Blackburn 1998b 

Simple Ratio 705 nm SR705 = R750 R705⁄ Sims & Gamon 2002 

Transformed CARI TCARI = 3[(R700 − R670) − 0.2(R700 − R550) (R700 R670)⁄ ] Haboudane et al. 2002 

Transformed CARI / OSAVI 
TCARI

OSAVI
=

3[(R700 − R670) − 0.2(R700 − R550) (R700 R670)⁄ ]

(1 + 0.16) (R800 − R670) (R800 + R670 + 0.16)⁄
Haboudane et al. 2002 

Vogelmann Index 1 VOG1 = R740 R720⁄ Vogelmann et al. 1993 

Vogelmann Index 2 VOG2 = (R734 − R747) (R715 + R726)⁄  Zarco-Tejada et al. 2001 

Vogelmann Index 3 VOG3 = (R734 − R747) (R715 + R720)⁄  Zarco-Tejada et al. 2001 

Disease Water Stress Index DWSI = (R800 − R550) (R1660 + R680)⁄  Apan et al. 2004 
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2.6. Field validation  

In order to validate the approach under natural conditions, additional measurements were  

performed on brambles directly on both the brownfield and on uncontaminated sites. For this  

purpose, 30 patches were identified on the brownfield. Their soil was analyzed and showed  

similar TPH and HM concentrations to those of the Clay treatment from the experiment. 30 other  

patches from five natural sites were also identified. These sites were located a few kilometers  

away from the brownfield and had never been subject to industrial activities. They were  

considered as controls, because no contaminant was found in their soil. The spectral signatures of  

all patches were collected at canopy scale in June, under the same conditions of acquisition as  

those of multi-plant scale during the experiment (11.30 am. – 1.30 pm., 20-cm radiance  

acquisition footprint). VI were computed and tested with the RLR classifier (Fig. 1), following  

training on the leaf dataset from the greenhouse experiment exclusively.  
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Figure 1 Flowchart of the approach using vegetation indices presented in this study. Sections and  

tables associated to the different steps are specified in brackets. The dotted line indicates the  

steps carried out at leaf scale only.  

 

Leaf samples 

Greenhouse 

experiment (2.2) 

Pigment + water 

contents (3.2) 

Elastic net 

regressions 

(3.4.1) 

Kendall’s W 

(3.4.2) 

RLR 

classifications 

(3.4.3) 

In situ canopy 

reflectance (2.6) 

Selected vegetation indices Unselected vegetation indices (Tab. 2) 

Reflectance measurements (3.3) 

Leaf scale Plant scale Multi-plant scale 

Selected vegetation indices 

Validation (3.5) 
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3. Results and Discussion 

3.1. Visible symptoms 

Visible symptoms of leaf discoloration appeared on all plants exposed to TPH and HM  

mixtures and to water-deficit after 18 days of experiment (Fig. 2). Commonly described as  

chlorosis, these symptoms have been frequently observed on plant species exposed to crude oil  

or refined products (Athar et al. 2016, Baruah et al. 2014, Rosso et al. 2005) and various HM  

such as Ni, Pb and Zn (Nagajyoti et al. 2010), including Rubus fruticosus (Dorrington & Pyatt  

1983, Lassalle et al. 2018). In our study, it was particularly pronounced for plants exposed to  

crude oil or muddy residues. The latter also exhibited a singular red pigmentation on leaf margin,  

along with symmetric interveinal marks on leaf adaxial face at highest concentrations (Mud_B)  

(Fig. 2). No similar symptom has already been described in previous experiments involving TPH  

and HM. However, several authors noticed that brambles are able to accumulate HM in leaves  

(Dorrington & Pyatt 1983, Nujkić et al. 2016, Yoon et al. 2006). Hence, the observed symptoms  

may be linked to HM toxicity (Hagemeyer 1999, Kvesitadze et al. 2006). All these symptoms  

were associated to a reduced plant growth when compared to Control. Plants undergoing water- 

deficit also showed a drooping habit, which is typically observed in those conditions (Percival et  

al. 1998). On day 32, substantial evolutions appeared on plants from the Mud_A and Clay  

treatments. No or very few symptoms were observed on newly appeared leaves from these  

treatments and plant development was similar to that of the Control (Fig. 2). None of the plants  

exposed to any of the TPH and HM mixtures died during the experiment. This tolerance of  

bramble to oil contamination explains its marked presence on industrial brownfields in temperate  

regions.  
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Figure 2 Visible symptoms observed on Rubus fruticosus (bramble) leaves after 18 and 32 days  

of exposure to the treatments (see section 2.2 for further information about the treatments). These  

symptoms were confirmed later by biochemical analyses described in section 3.2.  

 

3.2. Biochemical responses to the treatments  

The PCA performed on biochemical analyses of sampled leaves confirmed the differentiated  

effects of TPH and HM mixtures on plants. Most of biochemical parameters were positively  

correlated to the first Principal Component (PC1) (Fig. 3a), with major contribution of  

chlorophylls and carotenoids. Antheraxanthin and zeaxanthin were the only pigments  

contributing to PC2. As PC1 explained most of the variability (72 %), we focused on the  

temporal evolution of plant treatments along this axis. Results indicated no difference after 11  

days of exposure (Fig. 3b). However, significant changes appeared on day 18, thus reflecting  

stress symptoms described in section 3.1. Control plants moved toward positive PC1 values,  

Control Water_str Clay Mud_A Mud_B Crude 

Water_str Clay Mud_A Mud_B Crude Control 

18 days of exposure 

32 days of exposure 
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indicating an increase in pigment and water contents resulting from healthy plant growth. All  

other treatments remained close to the initial axis values. Plants exhibiting pronounced  

symptoms (Crude, Mud_B and Water_str) slightly moved toward negative PC1 values, as their  

pigment and water contents began to decrease. This was confirmed at the end of the study (day  

32), with an opposite trajectory compared to Control. In contrast, the disappearance of stress  

symptoms on Mud_A- and Clay-exposed plants on day 32 reflected an increase of pigment and  

water contents, expressed by positive PC1 values.  
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Figure 3 (a) PCA performed on pigment and water content data from three dates (days 11, 18 and  

32, n = 51). The first two Principal Components (PC) are represented. Correlations between each  

variable and PC are represented by annotated arrows. The length of the arrows was multiplied by  

five on each PC for graphical convenience. (b) Temporal evolution of treatments along the first  

principal component (PC1), from day 11 to 32.  

a 



20 

 

Alterations of pigment and water contents are frequently observed under TPH and HM  

exposure, alone or in mixture (Balliana et al. 2017, Baruah et al. 2014, Garg & Singla 2011,  

Shanker et al. 2005). They might be due to modifications of soil physico-chemical and biological  

properties (Dindar et al. 2015, Khamehchiyan et al. 2007, Kisic et al. 2009), which lead to  

decreasing nutrient and water availability for plants (Nie et al. 2011, Athar et al. 2016). PAH,  

TPH and HM can penetrate plant tissues and affect plant water status and photosynthetic  

capacity (Athar et al. 2016, Barceló & Poschenrieder 1990, Emengini et al. 2013b, Nagajyoti et  

al. 2010). However, their uptake by plant roots strongly varies with their chemical properties and  

association in mixtures (Kvesitadze et al. 2006, Nie et al. 2010, Semple et al. 2003). For  

example, low-carbon PAH and C5-C10 TPH penetrate roots more easily than larger chemical  

compounds (Su & Zhu 2008, Tao et al. 2004), so they might be main responsible for  

biochemical alterations in our study. HM were also probably involved, since their bioavailability  

is enhanced in the presence of TPH (Barceló & Poschenrieder 1990, Nagajyoti et al. 2010, Nie et  

al. 2010). Judging by the evolution of Mud_A- and Clay-exposed plants, the effects of C5-C10  

TPH and HM are however reversible at low concentrations, thanks to detoxification mechanisms  

(Kvesitadze et al. 2006, Parrish et al. 2006).  

None of the Control and contaminated treatments followed a clear trajectory on PC2.  

However, a noticeable evolution of water-deficient plants toward positive values appeared along  

this axis on day 18, indicating a peak of antheraxanthin and zeaxanthin. These pigments have  

already been reported as affected by TPH and HM exposure for the same species (Lassalle et al.  

2017). Their increase is however closely involved in plant response to water stress through the  
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activation of the xanthophyll cycle (Alonso et al. 2001, Galmés et al. 2007, Shvaleva et al.  

2006). This demonstrates differentiated effects of these two stressors on plant biochemistry.  

 

3.3. Reflectance modifications  

The spectral signatures of brambles were consistent with their biochemical response (Fig. 4a- 

c). No difference appeared among treatments on days 4 and 11, and the spectral signatures were  

representative of healthy vegetation at all acquisition scales. These signatures were characterized  

by a low reflectance in the VIS with a peak around 550 nm, followed by a plateau in the NIR,  

and two marked peaks in the SWIR around 1650 and 2200 nm. On day 18, several reflectance  

changes appeared for brambles exposed to TPH and HM mixtures or to water deficit. Compared  

to Control, they showed an increase of reflectance in the VIS, which is consistent with previous  

studies (Credoz et al. 2016, Emengini et al. 2013a, Rosso et al. 2005, Sanches et al. 2013a). The  

affected wavelengths corresponded to those of chlorophyll and carotenoid absorption (Zhang et  

al. 2017). This increase was more pronounced on Crude, Mud_B and Water_str treatments,  

which shows that the spectral response intensity was in accordance to that of the biochemical  

response. Such changes in reflectance are commonly observed on stressed vegetation (Rosso et  

al. 2005, Smith et al. 2005, Stimson et al. 2005). However, because brambles are naturally  

tolerant to stressful conditions, their response to TPH and HM remained less pronounced than  

that of other species found in similar studies, especially crops (Emengini et al. 2013a, Credoz et  

al. 2016, Sanches et al. 2013a). The most important differences among acquisition scales  

appeared in the NIR and short-wave infrared (SWIR). Because of reduced leaf density and  

ground cover (Asner 1998, Asner & Martin 2008), reflectance was lower than that of Control at  

plant and multi-plant scales in the NIR. This response was however not observed on leaf  
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reflectance, which is mostly dependent on leaf anatomy in this region of the spectrum (Slaton et  

al. 2001). These results are consistent with those described in similar studies (Sanches et al.  

2013a, Zhu et al. 2014). In the short-wave infrared (SWIR), reflectance was also affected by  

biochemical alterations at leaf scale and by reduced ground cover at plant and multi-plant scales  

when compared to that of Control.  

 



23 

 

 

 

Figure 4 Mean spectral signatures of Rubus fruticosus (bramble) measured after 32 days of  

exposure to the treatments at (a) leaf, (b) plant and (c) multi-plant scales. Reflectance data  

a 
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located in the 1350-1450 and 1800-1950 intervals were removed, because of significant  

atmospheric effects at plant and multi-plant scales.  

 

After 32 days, important changes occurred among treatments. Brambles growing on Mud_B  

and Crude soils exhibited lower pigment content (Fig. 3b), so leaf reflectance continued to  

increase in the VIS (Fig. 4a). In contrast, the late pigment increase of brambles exposed to Clay  

and Mud_A treatments induced a reduction of reflectance in the VIS, compared to day 18. As a  

result, the spectral signatures of Mud_A became closely similar to Control in this region, at all  

acquisition scales. The late growth of brambles also modified plant and multi-plant reflectance.  

Plant reflectance from the Clay treatment exceeded that of Control in the NIR (Fig. 4b), which  

confirmed previous results obtained with similar TPH and HM mixtures (Lassalle et al. 2018).  

Such changes were however not observed at multi-plant scale (Fig. 4c), since ground cover was  

still limited. On the same date, brambles from other treatments remained severely impacted in  

the NIR and the SWIR, especially those exposed to the Crude treatment. A similar response was  

observed on Brachiaria brizantha H.S. exposed to 10 L.m
-3 

gasoline spill in a previous study 

(Sanches et al. 2013a). In addition, this treatment induced an important increase of reflectance in  

the NIR and SWIR at leaf scale, which might be related to the strong alterations of leaf anatomy  

and water content specifically induced by this mixture (Baruah et al. 2014).  

 

3.4. Vegetation indices  

3.4.1. Relationship between biochemical and spectral responses  

Regressions performed on each VI from leaf samples led to the identification of at least one  

contributing pigment (Tab. 3), except for the DWSI which was only correlated to LWC. From  
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the 33 indices, 15 were retained after this step (R
2
 > 0.7). For almost all VI, variations were 

mainly explained by total chlorophylls (a + b), β-carotene and lutein, which were implicated in  

the biochemical response of brambles to the treatments (Fig. 3a). These results confirmed that VI  

are suitable for tracking changes in pigment and water contents resulting from TPH and HM  

exposure, as suggested by previous studies (Arellano et al. 2015, Lassalle et al. 2017). Other  

carotenoids were sometimes involved, especially antheraxanthin and zeaxanthin. Total  

carotenoid estimation has been widely assessed using VI, but only few studies attempted to  

separate carotenes and xanthophylls (Boelman et al. 2016, Stylinski et al. 2002). Our study  

showed that it is of great importance for understanding the biochemical and spectral responses of  

vegetation to TPH and HM exposure.  

 

Table 3 Results of elastic net regressions and Kendall’s W selection procedure obtained on  

vegetation indices. Biochemical parameters contributing to index variations are presented in  

order of importance, along with the resulting R
2
. (Chl: Total chlorophylls, Lut: Lutein, B-car: β- 

carotene, Ant: Antheraxanthin, Zea: Zeaxanthin, Vio: Violaxanthin, LWC: Leaf Water Content.)  

Indices showing significant Kendall’s W (p < 0.05) are denoted by a *. Those retained for  

classifications (R
2
 > 0.7, W > 0.75*) are marked bold. 

Index 

Elastic net regression 

Kendall's W 

Pigments R² 

CARI Chl, Lut 0.77 0.29 

CCI Chl, B-car 0.94 0.92* 

CTR1 Lut, Ant 0.49 0.90* 

CTR2 Chl, Lut 0.87 0.90* 

GM1 Chl, B-car 0.90 0.94* 

GM2 Chl, B-car 0.93 0.90* 
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LI1 Chl 0.17 0.92* 

LI2 Chl, B-car, Zea 0.60 0.97* 

LI3 Lut, Ant 0.19 0.90* 

MTCI Chl, B-car 0.94 0.90* 

ND705 Chl, B-car 0.93 0.90* 

NPCI Lut, Ant 0.41 0.76* 

OSAVI Chl 0.23 0.97* 

PRI1 B-car, Vio 0.67 0.97* 

PRI2 Chl, B-car 0.82 0.92* 

PRI3 Lut, B-car 0.87 0.90* 

PSRI Chl, B-car 0.50 0.34 

PSSRa B-car, Zea, Vio 0.20 0.38 

PSSRb B-car, Zea, Vio 0.49 0.83* 

PSSRc B-car, Zea, Vio 0.28 0.64 

SIPI1 Lut, Ant 0.51 0.62 

SIPI2 Lut, Ant 0.75 0.92* 

SIPI3 Lut, Ant 0.45 0.62 

SR705 Chl, B-car 0.94 0.90* 

TCARI Lut, Zea 0.67 0.34 

TCARI / OSAVI Lut, Ant 0.08 0.23 

VOG1 Chl, B-car 0.22 0.58 

VOG2 Lut 0.93 0.90* 

VOG3 Lut 0.93 0.90* 

mCARI1 Lut, Ant 0.09 0.21 

mCARI2 Zea 0.39 0.31 

mSR705 Chl, B-car 0.92 0.90* 

DWSI LWC 0.84 0.85* 

 

3.4.2. Concordance of VI among acquisition scales  

When applied to all spectral signatures, the same VI showed similarities among acquisition  

scales, despite differences described in section 3.3. Most of them exploited the VIS, which is  

suitable for tracking alterations of vegetation pigments at varying scales of measurement  

(Blackburn 1998, Daughtry et al. 2000, Garbulsky et al. 2011, Xiao et al. 2014). Based on  

treatment ranking at day 32, Kendall’s W was significant and greater than 0.75 for 22 of the 33  

VI, indicating good concordance among acquisition scales (Tab. 3). This included 14 out of the  
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15 indices strongly linked to biochemical parameters (R
2
 > 0.7), which were selected for 

classifications. For most of the retained VI, treatments were arranged as follows. As expected,  

Mud_B, Crude and Water_str treatments often exhibited similar VI values, which corresponded  

to low pigment and water contents (Fig. 5). They were followed by Clay and Mud_A treatments,  

which values were close – and sometimes equal – to Control, because of pigment and growth  

recovery after 32 days. A lower variability was observed among replicates at multi-plant scale  

due to strong influence of bare soil fraction.  

 

 

Figure 5 MTCI index computed from leaf, plant and multi-plant reflectance data acquired on day  

32. This vegetation index was linked to total chlorophyll and β-carotene contents (R
2
 = 0.94) and 

exhibited strong similarities among acquisition scales following Kendall’s W selection procedure  

(W = 0.90, p < 0.05).  

 

3.4.3. Discrimination of treatments using VI  
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RLR classifications performed on the 14 retained VI confirmed the concordance among  

acquisition scales. Same classifications using the original 33 VI led to worse results at day 18  

and 32 and highlighted the improvements brought by the selection procedure (data not shown).  

Following training on half of leaf dataset exclusively, MOA and Kappa obtained from day 4 to  

day 32 on leaf, plant and multi-plant test sets were consistent with evolutions of spectral  

signatures. These results are summarized in Table 4. MOA and Kappa were significantly lower  

while increasing acquisition scale, since the alterations of leaf optical properties became more  

difficult to detect (Tab. 4). From day 4 to 11, MOA and Kappa stayed constant and lower than  

40 % and 0.4, respectively, at all acquisition scales. On these dates, leaf biochemistry and plant  

development were similar among treatments, which explain the difficulty to discriminate among  

them.  
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Table 4 Mean Overall Accuracy (MOA) and mean Cohen’s Kappa (± SD) obtained from RLR  

classifications performed on leaf, plant and multi-plant test sets with the 14 retained vegetation  

indices. The training step was exclusively performed at leaf scale using different samples on  

each of the 30 iterations. For each scale, significant differences of MOA and Kappa between  

dates are denoted by different superscript letters (t-test, p < 0.05).  

Exposure time (days) 

4 11 18 32 

Leaf 
MOA 36.3 (± 5)

a 39.9 (± 6)
a

70.8 (± 3)
b 74 (± 4)

b 

Kappa 0.30 (± 0.06)
a

0.35 (± 0.06)
a
 0.65 (± 0.04)

b 0.69 (± 0.05)
b 

Plant 
MOA 26.8 (± 6)

a
32.2 (± 5)

a
61.8 (± 7)

b 56.7 (± 7)
b 

Kappa 0.13 (± 0.07)
a

0.15 (± 0.08)
a
 0.54 (± 0.09)

b 0.48 (± 0.09)
b 

Multi-plants 
MOA 24.1 (± 6)

a
28.9 (± 4)

a
55.6 (± 6)

b 51.7 (± 5)
b 

Kappa 0.12 (± 0.07)
a

0.14 (± 0.06)
a
 0.48 (± 0.08)

b 0.42 (± 0.06)
b

 

On day 18, MOA and Kappa became significantly higher than on previous dates. On this date,  

the levels of water and pigment alterations differed among the treatments (Fig. 3b). These  

alterations were caught by VI at all acquisition scales, which led to a better discrimination among  

the treatments compared to the previous dates (Tab. 5). Since all VI were not correlated to the  

same set of biochemical parameters (Tab. 3), they were complementary in classifications. No  

significant difference of MOA and Kappa was observed at any acquisition scale between day 18  

and 32, which firstly suggested no evolution in treatment discrimination. However, confusion  

matrices indicated critical changes between the two dates. On day 18, only few confusions were  

made between Control and other treatments at all acquisition scales (≤ 5 %), which agreed with  

biochemical and spectral responses (Tab. 5). Other treatments were however harder to  

discriminate among them, since their responses remained close on this date. Evolutions of VI  

values observed on Clay and Mud_A treatments toward those of Control then introduced  
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confusions with the latter on day 32. More than 25 % of Mud_A samples were thus incorrectly  

labeled as Control at all acquisition scales. As a consequence, classification accuracy of Control  

decreased between day 18 and 32, as the prolonged exposure time to Clay and Mud_A mixtures  

negatively affected their discrimination with Control. In contrast, it was benefit for  

discriminating the Control with other mixtures. Mud_B and Crude treatments were never  

confused with Control on this date and rarely with Clay and Mud_A treatments, at all acquisition  

scales. This was also the case of water-deficient plants. These impacting treatments remained  

however difficult to discriminate among them, because of close VI values (Fig. 5).  

 

Table 5 Examples of relative confusion matrices (%) obtained from RLR classifications  

performed on leaf and plant test sets at day 18 and 32, following training at leaf scale. UA and  

PA stand for User Accuracy and Producer Accuracy (%), respectively.  

18 days of exposure 

Leaf scale Plant scale 

Clay Mud_A Mud_B Crude Water_str Control UA Clay Mud_A Mud_B Crude Water_str Control UA 

Clay 68 11 4 7 7 3 68 Clay 28 38 7 9 14 4 28 

Mud_A 17 54 11 12 2 4 54 Mud_A 24 34 16 14 9 3 34 

Mud_B 2 11 79 3 5 0 79 Mud_B 2 0 76 22 0 0 76 

Crude 2 13 4 64 13 4 64 Crude 8 2 18 58 11 3 58 

Water_str 1 0 9 14 75 1 75 Water_str 4 0 0 15 81 0 81 

Control 3 5 3 4 0 85 85 Control 2 1 1 2 0 94 94 

PA  73 54 72 62 74 88 PA 41 45 64 48 70 90 

32 days of exposure 

Leaf scale Plant scale 

Clay Mud_A Mud_B Crude Water_str Control UA Clay Mud_A Mud_B Crude Water_str Control UA 

Clay 68 14 2 5 3 8 68 Clay 52 25 7 4 3 9 52 

Mud_A 4 65 2 0 1 28 65 Mud_A 7 62 0 3 0 28 62 

Mud_B 6 1 75 17 1 0 75 Mud_B 14 7 42 22 15 0 42 

Crude 3 0 8 83 6 0 83 Crude 13 11 23 36 17 0 36 

Water_str 1 0 6 5 88 0 88 Water_str 7 3 14 10 66 0 66 

Control 9 26 0 0 0 65 65 Control 2 16 0 0 0 82 82 

PA 75 61 81 75 89 64 PA 55 50 49 48 65 69 
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3.5. Field validation  

Following training on leaf dataset from the greenhouse experiment, RLR classifications  

performed on brownfield canopy measurements allowed identifying 27 out of the 30 bramble  

patches (90 %) as Clay-exposed vegetation. The remaining ones were confused with Mud_A (7  

%) and Control (3 %) treatments. These results were better than those obtained on the same  

treatment at leaf and plant scales at the end of the experiment (Tab. 5) and suggest involvement  

of additional factors in vegetation long-term response to TPH and HM under natural conditions.  

For example, Emengini et al. (2013a) showed that a combination of oil and water-deficit stress  

lead to stronger modifications of vegetation reflectance than oil stress alone. This might facilitate  

the discrimination with healthy vegetation. Of the 30 patches measured on uncontaminated sites,  

25 were correctly labeled as Control (83 %). Confusions with Clay (3 %) and Mud_A (13 %)  

treatments were consistent with those observed for the Control after 32 days of experiment.  

These results thus demonstrated the potential of the approach developed under controlled  

conditions for discriminating among contaminated and uncontaminated soils under natural  

conditions.  

 

4. Conclusion and Perspectives 

This study aimed to demonstrate the potential of bramble reflectance for detecting and 

discriminating among various oil contaminations under controlled and natural conditions.  

Modifications of reflectance occurred from leaf to multi-plant scales under exposure to TPH and  

HM mixtures. This study revealed that the composition of mixtures is largely responsible for  

these modifications and determines their temporal evolution. A clear link was established  
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between modifications of reflectance and the biochemical response of brambles using VI. This  

confirmed that chlorophylls are not the only pigments involved in the spectral response of  

vegetation to TPH and HM. Following a leaf-scale training approach, VI enabled discriminating  

among mixtures and with uncontaminated control and water-deficient soils, from leaf to multi- 

plant scales. This highlighted the consequences of leaf biochemical alterations on the reflectance  

observed at higher scales. The results emphasized the importance of multitemporal acquisitions  

to ensure detection of various oil-contaminated soils at appropriate time. The soils contaminated  

by high levels of oil production residues or crude oil were particularly well detected after a  

prolonged time (32 days). Conversely, the best detection of low levels of production residues  

was obtained after a moderate time (18 days). VI showed great potential when applied under  

natural conditions. 

The proposed method thus proved to be efficient for monitoring oil contamination at field  

scale. The diversity of soils being detected emphasizes the potential of this method for various  

operational applications, such as the detection of chronic pipeline leakages or soil  

contaminations resulting from past production activities. To expand its scope, the method needs  

to be assessed in other contexts, involving different plant species and oil contaminations. In that  

sense, upcoming study will focus on the tropical context, where the remote detection of oil  

remains a major challenge for environmental risk assessment. The method could be adapted to be  

applied to hyperspectral images with high spectral and spatial resolutions acquired from airborne  

or future satellite sensors. This represents a major challenge for a monitoring over large areas  

that will be addressed in future work.  
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