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Abstract

The exponential stability and the concentration properties of a class of extended
Kalman-Bucy filters are analyzed. New estimation concentration inequalities around
partially observed signals are derived in terms of the stability properties of the filters.
These non asymptotic exponential inequalities allow to design confidence interval type
estimates in terms of the filter forgetting properties with respect to erroneous initial
conditions. For uniformly stable and fully observable signals, we also provide explicit
non-asymptotic estimates for the exponential forgetting rate of the filters and the
associated stochastic Riccati equations w.r.t. Frobenius norms. These non asymptotic
exponential concentration and quantitative stability estimates seem to be the first
results of this type for this class of nonlinear filters. Our techniques combine χ-square
concentration inequalities and Laplace estimates with spectral and random matrices
theory, and the non asymptotic stability theory of quadratic type stochastic processes.
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1 Introduction

The linear-Gaussian stochastic filtering problem has been solved in the beginning
of the 1960s by Kalman and Bucy in their seminal articles [7, 8, 20]. Since this period,
Kalman-Bucy filters have became one of the most powerful estimation algorithm in
applied probability, statistical inference, information theory and engineering sciences.
The Kalman-Bucy filter is designed to estimate in an optimal way (minimum variance)
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Stability and concentration of extended Kalman-Bucy filters

the internal states of linear-Gaussian time series from a sequence of partial and noisy
measurements. The range of applications goes from tracking, navigation and control to
computer vision, econometrics, statistics, finance, and many others. For linear-Gaussian
filtering problems, the conditional distribution of the internal states of the signal given
the observations up to a give time horizon are Gaussian. The Kalman-Bucy filters coincide
with the evolution of the conditional averages of some Gaussian distributions and the
associated Riccati equation coincide with the conditional covariances error matrices of
these conditional Gaussian distributions.

Using natural local linearization techniques, Kalman-Bucy filters are also currently
used to solve nonlinear and/or non Gaussian signal observation filtering problems. The
resulting Extended Kalman-Bucy filter (abbreviated EKF) often yields powerful and
computational efficient estimators. Nevertheless it is well known that it fails to be
optimal with respect to the minimum variance criteria. For a more thorough discussion
on the origins and the applications of these observer type filtering techniques we refer
to the articles [25, 34, 33] and the book by D. Simon [32].

There is a vast literature on the applications and the performance of extended Kalman
filter, most on discrete time filtering problems, but very few on the stability properties,
none on the exponential concentration properties.

In the last two decades, the convergence properties of the EKF have been mainly
developed into three different but somehow related directions:

The first commonly used approach is to analyze the long-time behaviour of the
estimation error between the filter and the partially observed signal. To bypass the
fluctuations induced by the signal noise and the observation perturbations, one natural
strategy is to design judicious deterministic observers as the asymptotic limit of the
EKF when the observation and the sensor noise tend to zero. As underlined in [6], in
deterministic setting the original covariance matrices of the stochastic signal and of the
observation perturbations are interpreted as design/tuning type parameters associated
with the confidence type matrices of the trusted model and the confidence matrix of
associated with the measurements.

For a more detailed discussion on deterministic type observers as the limit of filters
when the sensor and the observation noise tend to zero we refer the reader to the
seminal article [3] and the more recent study [6]. Several articles proposed a series
of observability and controllability conditions under which the estimation error of the
corresponding discrete time observer converges to zero [3, 5, 34, 33]. These regularity
conditions allow to control the maximal and the minimal eigenvalues of the solution of
the Riccati equations (and its inverse).

One of the drawbacks of this approach is that it gives no precise information on
the stochastic EKF but on the limiting noise free-type deterministic observer. On the
other hand, up to our knowledge there does not exist any uniform result that allow to
quantify the difference between the filter and its asymptotic limit with respect to the
time parameter. Another drawback is that the initial estimation errors need to be rather
small and the signal model close to linear.

In general practical and stochastic situations, mean square errors do not converge
to zero as the time parameter tends to 8. The reasons are two folds: Firstly, the
observation noise of the sensors cannot be totally cancelled. On the other hand the
internal signal states are usually only partially observed, and some components may not
be fully observable.

A second closely related strategy is to design a Lyapunov function to ensure the
stochastic stability of the EKF. Here these Lyapunov functions are expressed in terms
of the inverse of the Riccati equation. These stability properties ensure that the mean
square estimation error is uniformly bounded w.r.t. the time horizon [3, 22, 29, 30]. The
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Stability and concentration of extended Kalman-Bucy filters

regularity conditions are also based on a series of local observability and controllability
conditions. As any variance type estimate, these mean square error control are somehow
difficult to use in practical situations with rather crude confidence interval estimates.

The third and more recent approach is based on the contraction theory developed
by W. Lohmiller and J.J.E. Slotine in the seminal articles [23, 24], and further developed
in [6]. This approach is also designed to study deterministic type observers. The idea
is to control the estimation error between a couple of close EKF trajectories in a given
region w.r.t. the metric induced by the quadratic form associated with the inverse of
the solution of the Riccati equation. This approach considers the partially observed
signal as a deterministic system and requires the filter to start in a basin of attraction
of the true state. In summary, these techniques show that the observer induced by
the EKF converges locally exponentially to the state of the signal when the quadratic
form induced by the inverse of the Riccati equation is sufficiently regular and under
appropriate observability and controllability conditions.

The objective of this article is to complement these three approaches with a novel
stochastic analysis based on exponential concentration inequalities and uniform χ-square
type estimates for stochastic quadratic type processes.

Our regularity conditions are somehow stronger than the ones discussed in the above
referenced articles but they do not rely on suitable local initial conditions nearby the true
signal state. Last but not least our methodology applies to stochastic filtering problems,
not to deterministic type observers.

In our framework the signal process is a uniformly and exponentially stable Langevin
type diffusion, and the sensor function is the identity matrix up to a change of basis.

In this apparently simple nonlinear filtering problem, with strong stability and ob-
servability conditions, the quantitative analysis of the EKF exponential stability is based
on sophisticated probabilistic tools. The complexity of these stochastic processes can
be measured by the fact that the EKF is a nonlinear diffusion process equipped with
a diffusion correlation matrix satisfying a coupled nonlinear and stochastic Riccati
equation.

This study has been motivated by one of our recent research project on the refined
convergence analysis of Ensemble type Kalman-Bucy filters. To derive some useful
uniform convergence results with respect to the time horizon we have shown in [16] that
the signal process needs to be uniformly stable and fully observed by some noisy sensor.
These rather strong conditions cannot be relaxed even for linear Gaussian filtering
models. We plan to extend these results for nonlinear filtering models based on the non
asymptotic estimates presented in this article.

In this context we present new exponential concentration inequalities to quantify the
stochastic stability of the EKF. They allow to derive confidence intervals for the deviations
of the stochastic flow of the EKF around the internal states of the partially observed
signal. These estimates also show that the fluctuations induced by any erroneous initial
condition tend to zero as the time horizon tends to `8.

Our second objective is to develop a non asymptotic quantitative analysis of the sta-
bility properties of the EFK. In contrast to the linear-Gaussian case discussed in [16], the
Riccati equation associated with the EFK depends on the states of the filter. The resulting
system is a nonlinear stochastic process evolving in multidimensional inner product
spaces. To analyze these complex models we develop a stability theory of quadratic type
stochastic processes. Our main contribution is a non asymptotic Lp-exponential stability
theorem. This theorem shows that the Lp-distance between two solutions of the EKF
and the stochastic Riccati equation with possibly different initial conditions converge to
zero as the time horizon tends to `8. We also provide a non asymptotic estimate of the
exponential decay rate.
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Stability and concentration of extended Kalman-Bucy filters

The rest of the article is organized as follows:
In the next two sections, Section 1.1 and Section 1.2, we present the nonlinear

filtering models discussed in the article and we state the main results developed in this
work. Section 2 is concerned with the stability properties of quadratic type processes.
This section presents the main technical results used in the further development of the
article. Most of the technical proofs are provided in the appendix. Section 3 is dedicated
to the stochastic stability properties of the signal and the EKF. The end of the article is
mainly concerned with the proofs of the two main theorems presented in Section 1.2.

1.1 Description of the models

This section presents the nonlinear filtering models in this article. We also discuss
and illustrate our regularity conditions with several classes of Langevin type signal
processes partially observed by noisy sensors.

Consider a time homogeneous nonlinear filtering problem of the following form
#

dXt “ ApXtq dt ` R
1{2
1 dWt

dYt “ BXt dt ` R
1{2
2 dVt

and we set Ft “ σ pYs, s ď tq. (1.1)

In the above display, pWt, Vtq is an pr1 ` r2q-dimensional Brownian motion, X0 is a
r1-valued Gaussian random vector with mean and covariance matrix pEpX0q, P0q (in-

dependent of pWt, Vtq), the symmetric matrices R
1{2
1 and R

1{2
2 are invertible, B is an

pr2 ˆ r1q-matrix, and Y0 “ 0. The drift of the signal is a differentiable vector valued
function A : x P Rr1 ÞÑ Apxq P Rr1 with a Jacobian denoted by BA : x P Rr1 ÞÑ BApxq P

Rpr1ˆr1q.
The Extended Kalman-Bucy filter associated with the filtering problem (1.1) is defined

by the evolution equations

d pXt “ Ap pXtq dt ` PtB
1R´1

2

”

dYt ´ B pXtdt
ı

with pX0 “ EpX0q

BtPt “ BAp pXtqPt ` PtBAp pXtq
1 ` R1 ´ Pt SPt with S :“ B1R´1

2 B (1.2)

where B1 stands for the transpose of the matrix B. For nonlinear signal processes the ran-
dom matrices Pt cannot be interpreted as the error covariance matrices. Nevertheless,
rewriting the EKF in terms of the signal process we have

dpXt ´ pXtq “ rpApXtq ´ Ap pXtqq ´ PtSpXt ´ pXtqs dt ` R
´1{2
1 dWt ´ PtB

1R
´1{2
2 dVt

Replacing pApXtq ´ Ap pXtqq by the first order approximation BAp pXtqpXt ´ pXtq we define
a process

d rXt :“ rBAp pXtq ´ PtSs rXt dt ` R
´1{2
1 dWt ´ PtB

1R
´1{2
2 dVt

law
“ rBAp pXtq ´ PtSs rXt dt ` pR1 ` PtSPtq

1{2
dĂWt

for some Brownian motion ĂWt independent of pXt. It is a simple exercise to check that
the solution of the Riccati equation (1.2) coincides with the Ft-conditional covariance

matrices of rXt; that is, for any t ě 0 we have Pt “ E
´

rXt
rX 1
t | Ft

¯

.

1.1.1 Langevin-type signal processes

In the further development of the article we assume that the Jacobian matrix of A
satisfies the following regularity conditions:

#

´λBA :“ supxPRr1 ρpBApxq ` BApxq1q ă 0

}BApxq ´ BApyq} ď κBA }x ´ y} for some κBA ă 8.
(1.3)
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where ρpP q :“ λmaxpP q stands for the maximal eigenvalue of a symmetric matrix P .
In the above display }BApxq ´ BApyq} stands for the L2-norm of the matrix operator
pBApxq ´ BApyqq, and }x´ y} the Euclidean distance between x and y. A Taylor first order
expansion shows that

p1.3q ùñ xx ´ y,Apxq ´ Apyqy ď ´λA }x ´ y}2 with λA ě λBA{2 ą 0. (1.4)

The above rather strong conditions ensure the contraction needed to ensure the
stability of the EFK. They are also used to derive uniform estimates w.r.t. the time
horizon for Ensemble Kalman-Bucy particle filters [15]. For linear systems Apxq “ Ax,
associated with some matrix A, the parameters λA “ λBA{2 coincide with the logarithmic
norm of A. We also highlight that the second Lipschitz condition of (1.3) will be used in
Theorem 1.2.

The prototype of signals satisfying these conditions are multidimensional diffusions
with drift functions pA, BAq “ p´BV,´B2Vq associated with a gradient Lipschitz strongly
convex confining potential V : x P Rr1 ÞÑ Vpxq P r0,8r. The logarithmic norm condition
(1.3) is met as soon as B2V ě v Id with v “ 2|λBA|. Equivalently the smallest eigenvalue
λminpB2Vpxqq of the Hessian is uniformly lower bounded by v. In this case (1.3) is met
with λBA “ v{2. These conditions are fairly standard in the stability theory of nonlinear
diffusions, we refer the reader to the review article [26], and the references therein.
Choosing R1 “ σ2

1 Id and A “ ´βBV, for some β, σ1 ě 0 the signal process Xt resumes
to a multidimensional Langevin-diffusion

dXt “ ´β BVpXtq dt ` σ1 dWt. (1.5)

This process is reversible w.r.t. the invariant distribution µβ , where µβ is the probability
distribution on Rr1 given by

µβpdxq “
1

Zβ
exp

ˆ

´
2β

σ2
1

Vpxq

˙

dx with Zβ “

ż

exp

ˆ

´
2β

σ2
1

Vpxq

˙

dx Ps0,8r.

In the above display dx stands for the Lebesgue measure on Rr1 . The Lipschitz-continuity
condition of the Hessian B2V introduced in (1.3) ensures the continuity of the stochastic
Riccati equation (1.2) w.r.t. the fluctuations around the random states pXt. We illustrate
this condition with a nonlinear example given by the function

Vpxq “
1

2
xQ1x, xy ` xq, xy `

1

3
xQ2x, xy3{2

with some symmetric positive definite matrices pQ1,Q2q and some given vector q P Rr1 .
In this case we have

BVpxq “ q ` Q1x ` xQ2x, xy1{2 Q2x,

B2Vpxq “ Q1 ` xQ2x, xy1{2 Q2 ` xQ2x, xy´1{2 Q2xx
1Q2 ě Q1.

In this situation we have

}B2Vpxq ´ B2Vpyq} ď 2 }Q2}3{2 }y ´ x}. (1.6)

This shows that conditions (1.3) are met with the parameters

pλBA, κBAq “ β
´

2´1λminpQ1q, 2λ3{2
maxpQ2q

¯

.

A proof of (1.6) is provided in the appendix on page 27. More generally these regularity
conditions also hold if we replace in (1.5) the parameter σ1 by any choice of covariance
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matrix R1. Also observe that the Langevin diffusion associated with the null form Q2 “ 0

coincides with the conventional linear-Gaussian filtering problem discussed in [16].
Stochastic gradient-flow diffusions of the form (1.5) arise in a variety of application
domains. In mathematical finance and mean field game theory [9, 17], these Langevin
models describe the interacting-collective behaviour of r1-individuals. For instance in
the Langevin model discussed in [17] the state variables Xt “

`

Xi
t

˘

1ďiďr1
represent the

log-monetary reserves of r1 banks lending and borrowing to each other. The quadratic
potential function is given by

xQ1x, xy “
ÿ

1ďiďr1

˜

xi ´
1

r1

ÿ

1ďjďr1

xj

¸2

ñ Q1 ą

ˆ

1 ´
1

r1

˙

Ir1 .

In this context, the parameter β represents the mean-reversion rate between banks.
More general interacting potential functions can be considered. Mean field type diffusion
processes are also used to design low-representation of fluid flow velocity fields. These
vortex-type particle filtering problems are developed in some details in the pioneering
articles by E. Mémin and his co-authors [10, 11, 13, 28]. These probabilistic interpreta-
tions of the 2d-incompressible Navier-Stokes equation represent the vorticity map as a
mixture of basis functions centered around each vortex.

In this connexion, we mention that our approach also applies to interacting diffusion
gradient flows described by a potential function of the form

Vpxq “
ÿ

1ďiďr1

U1pxiq `
ÿ

1ďi “jďr1

U2pxi, xjq

for some gradient Lipschitz strongly convex confining potential Ui : R
i ÞÑ r0,8r, i “ 1, 2.

In this situation, we have

B2U1 ě u1 and B2U2 ě u2 I2 ùñ B2V ě v Ir1 with v :“ pu1 ` pr1 ´ 1qu2q ą 0. (1.7)

We further assume that

|B2U1px1q ´ B2U1py1q| ď κB2U1
|x1 ´ x2|,

}B2U2px1, x2q ´ B2U2py1, y2q} ď κB2U2
}px1, x2q ´ py1, y2q}.

In this case, we have

}B2Vpxq ´ B2Vpyq} ď κB2V }x´ y} with κB2V :“ κB2U1
`κB2U2

pr1 ´ 1q
a

2pr1 ´ 1q. (1.8)

This shows that conditions (1.3) are met with

pλBA, κBAq “ β
´

2´1pu1 ` pr1 ´ 1qu2q, κB2U1
` κB2U2

pr1 ´ 1q
a

2pr1 ´ 1q

¯

.

The detailed proofs of (1.7)-(1.8) are provided in the appendix on page 27.

1.1.2 Observability conditions

When the observation variables are the same as the ones of the signal, the signal
observation has the same dimension as the signal and resumes to some equation of the
form

dYt “ b Xt dt ` σ2 dVt (1.9)

for some parameters b P R and σ2 ě 0. These sensors are used in data grid-type
assimilation problems when measurements can be evaluated at each cell. These fully
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observed models are discussed in [19, Section 4] in the context of the Lorentz-96 filtering
problems. These observation processes are also used in [4] for application to nonlinear
and multi-scale filtering problem. In this context, the observed variables represent the
slow components of the signal.

For partially observed signals we cannot expect any stability properties of the EKF
and the EnKF without introducing some structural conditions of observability and
controllability on the signal-observation equation (1.1). Observe that the EKF equation
(1.2) implies that

dp pXt ´ Xtq “

”

pAp pXtq ´ ApXtqq ´ PtSp pXt ´ Xtq

ı

dt ` Pt B
1R

´1{2
2 dVt ` R

1{2
1 dWt.

This equation shows that the stability properties of this process depends on the nature of
the real eigenvalues of the symmetric matrices pApxq ´PSqsym, with x P Rr1 . In contrast
with the conventional Kalman-Bucy filter, the Riccati equation (1.2) is a stochastic
equation. As a result, the stability property of the EKF is not induced by some kind
of observability condition that ensures the existence of a steady state deterministic
covariance matrix.

The random fluctuations of the matrices BAp pXtq entering in the Riccati equation (1.2)
may corrupt the stability in the EKF, even if the linearized filtering problem around
some chosen state is observable and controllable. For a more thorough discussion on
the stability properties of Kalman-Bucy filters and Riccati equations for linear Gaussian
filtering problems we refer the reader to [1, 2, 18, 35, 37, 38].

The stability analysis of diffusion processes is always much more documented than
the one on their possible divergence. For instance, in contrast with conventional
Kalman-Bucy filters, the stability properties of the EKF are not induced by some kind
of observability or controllability condition. The only known result in this direction is
the recent pioneering work by X. T. Tong, A. J. Majda and D. Kelly [36] in the context of
discrete generation Ensemble Kalman filters. One of the main assumptions of the article
is that the sensor-matrix has full rank and the signal is uniformly bounded under the
expectation of some Lyapunov function. The authors also provide a concrete numerical
example of filtering problem with sparse observations for which the EnKF experiences a
catastrophic divergence.

In the recent article [16], in the context of linear drift functions we also show that
the uniform propagation of chaos properties of EnKF require strong signal stability
properties and the same type of observability conditions.

There are some strong similarities between the EKF and the EnKF. The first one
comes from the fact that the predictable part of the EKF is stochastic and nonlinear. The
predictable part of the EnKF also depends on stochastic covariance matrices. These
interaction functions are clearly nonlinear in the internal states of the particle system.
The second one comes from the fact that the Riccati equation associated with the EKF
is stochastic. The stochastic perturbation theorem obtained in [16, Theorem 3.1] also
shows that the sample covariance matrices satisfy a stochastic diffusion type Riccati
equation.

Without any strong observability conditions, these stochastic nonlinearities may
corrupt severally the stability of the EKF. In the further development of the article we
shall assume that the sensor function has the same form as the one discussed in [16].
More precisely, we assume that the following observability condition is satisfied:

S “ ρpSq Id for some ρpSq ą 0. (1.10)

The fully observed model discussed in (1.9) clearly satisfies condition (1.10) with the
parameter ρpSq “ pb{σ2q2. As mentioned above, in the context of linear-Gaussian filtering
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problems this condition is also essential to ensure the uniform convergence of Ensemble
Kalman-Bucy filter w.r.t. the time parameter. Section 4 in the article [16] provides a
detailed discussion on spectral estimates and semigroup contraction inequalities based
on this condition. A geometric description of global divergence regions in the set of
positive covariances matrices is also provided in the context of 2-dimensional partially
observed filtering problems.

Last but not least, we mention that (1.10) is satisfied when the filtering problem
is similar to the ones discussed above; that is, up to a change of basis functions. For
instance (1.10) is met with S “ Ir1 for sensors with orthonormal matrices BR

´1{2
2 . Under

this condition, up to a change of observation basis, the observation process reduces to

Y t :“ B1R´1
2 Yt ñ dY t “ ρpSq Xt dt ` dV t

with an r1-dimensional Wiener process V t :“ B1R
´1{2
2 Vt. Inversely, any filtering problem

(1.1) with r1 “ r2 and s.t. pR
´1{2
2 Bq is invertible can be turned into that form. To check

this claim we observe that

Yt :“ R
´1{2
2 Yt and Xt :“ R

´1{2
2 BXt ùñ

#

dXt “ ApXtq dt ` R1{2
1 dWt

dYt “ Xt dt ` dVt

with the drift function

A :“ pR
´1{2
2 Bq ˝ A ˝ pR

´1{2
2 Bq´1 and the matrix R1 :“ R

´1{2
2 BR1B

1R
´1{2
2 .

In this situation the filtering model pXt,Ytq satisfies (1.10) with ρpSq “ 1. In addition, we
have

A “ pR
´1{2
2 Bq´1 ˝ BU ˝ pR

´1{2
2 Bq ñ pA, BAq “ pBU, B2Uq.

1.2 Statement of the main results

We let φtpxq :“ Xt and ϕtpxq :“ xt be the stochastic and the deterministic flows of
the stochastic and the deterministic systems

#

dXt “ ApXtq dt ` R
1{2
1 dWt

Btxt “ Apxtq starting at x0 “ ϕ0pxq “ x “ X0 “ φ0pxq.

We also let Φt :“ pΦt,Ψtq be the stochastic flow associated with the EKF and the Riccati
stochastic differential equations; that is

Φtp pX0, P0q “

´

Φtp pX0, P0q,Ψtp pX0, P0q

¯

:“
´

pXt, Pt

¯

.

Given pr1 ˆ r2q matrices P,Q we define the Frobenius inner product

xP,Qy “ trpP 1Qq and the associated norm }P }2F “ trpP 1P q

where trpCq stands for the trace of the matrix C. We also equip the product space
Rr1 ˆRr1ˆr1 with the inner product

xpx1, P1q, px2, P2qy :“ xx1, x2y ` xP1, P2y and the norm }px, P q}2 :“ xpx, P q, px, P qy.

We also denote by Sr1 the set of positive semidefinite pr1 ˆ r1q-matrices.
Most of the analysis developed in the article relies on the following quantities:

σ2
BA :“ 1 ` 2 πBA with πBAptq :“ τ2t pP q ρpSq trpR1q´1 ÝÑtÑ8 πBA :“

ρpSq

λBA

trpR1q

λBA

(1.11)
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Stability and concentration of extended Kalman-Bucy filters

where τtpP q :“ e´λBAt tr pP0q ` trpR1q{λBA. We will actually show in Section 4 that τtpP q

is a upper bound for trpPtq. Our first main result concerns the stochastic stability of the
EKF and is described in terms of the function

δ P r0,8rÞÑ $pδq :“
e2
?
2

„

1

2
`

´

δ `
?
δ
¯



.

More precisely we have the following exponential concentration theorem.

Theorem 1.1. For any initial states px, pxq P Rr1`r1 , p P S`
r1 , any time horizon t P r0,8r,

and any δ ě 0, the probabilities of the following events are greater than 1 ´ e´δ:

}φtpxq ´ ϕtpxq}2 ď $pδq
trpR1q

λA
, (1.12)

}φtpxq ´ Φtppx, pq}2 ď 4 $pδq
trpR1q

λA
σ2

BA (1.13)

`2e´λBAt }x ´ px}2 ` 8$pδq
|e´λAt ´ e´λBAt|

|λA ´ λBA|
ρpSq trppq2.

The proofs of the concentration inequalities (1.12) and (1.13) are provided respec-
tively in Section 3.1 and Section 3.2. See also Theorem 3.2 and Theorem 3.3 for related
Laplace χ-square estimates of time average distances.

The role of each quantity in (1.12) and (1.13) is clear. The size of the “confidence
events” are proportional to the signal or the observation perturbations, and inversely
proportional to the stability rate of the systems. More interestingly, formula (1.13) shows
that the impact of the initial conditions is exponentially small when the time horizon
increases.

The concentration inequalities stated in the above theorem should not be interpreted
as estimation errors but in terms of boundedness properties of the signal and the EKF
state estimates. For instance, when ρpSq “ trpR1q “ λA “ λBA{2 “ 1 and trppq “

}x ´ px} “ 1 the probability of both events

}φtpxq ´ ϕtpxq} ď
a

$pδq and }φtpxq ´ Φtppx, pq} ď 4
a

$pδq p1 ` e´t{2q ` e´t

is greater than 1 ´ e´δ, for any δ ą 0. Besides the fact that uniform exponential tail
probability estimates can be used to obtain uniform moments estimates at any order,
exponential concentration estimates provide more precise information than any variance
estimates usually obtained using Lyapunov techniques. For instance, in the situation
discussed above using Markov inequality we have the rather poor estimate

E
“

}φtpxq ´ ϕtpxq}2
‰

ď 1 ùñ Pp}φtpxq ´ ϕtpxq} ď δq ě 1 ´ δ´2

Our next objective is to better understand the stability properties of the EKF and the
corresponding stochastic Riccati equation. To this end, it is convenient to strengthen
our regularity conditions. We further assume that

λBA ą
a

2κBAtrpR1q _ p4ρpSqq (1.14)

and for some α ą 1

4eα

d

ρpSq

λBA

trpR1q

λA

„

1 ` 2
trpR1q

λBA

ρpSq

λBA



ă 1. (1.15)

In contrast with the linear-Gaussian case, the Riccati equation (1.2) depends on the
internal states of the EKF. As a result its stability properties are characterized by a
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Stability and concentration of extended Kalman-Bucy filters

stochastic Lyapunov exponent that depends on the random trajectories of the filter as
well as on the signal-observation processes. Condition (1.15) is a technical condition that
allows to control uniformly the fluctuations of these stochastic exponents with respect to
the time horizon. By (1.14) this condition is met as soon as

αe trpR1q

„

1 `
1

8

trpR1q

ρpSq



ă λA{2.

Loosely speaking, when the signal is not sufficiently stable the erroneous initial
conditions of EKF may be too sensitive to small perturbations of the sensor. When the
exponential decay to equilibrium of the signal is stronger than these spectral instabilities
the EKF and the corresponding stochastic Riccati equations are stable and forgets any
erroneous initial conditions.

We set
∆t :“ }Φt

´

pX0, P0

¯

´ Φt

´

qX0, qP0

¯

}2

and

Λ{λBA :“ 1 ´ 2
κBA

λBA

trpR1q

λBA
´

d

ρpSq

λBA

»

–1 ´
3

4

d

ρpSq

λBA

fi

fl ě
1

2
´ 2

κBA

λBA

trpR1q

λBA
ą 0.

We are now in position to state our second main result.

Theorem 1.2. When λBA ą 0 we have the uniform estimates

@n ě 1 sup
tě0

Ep∆n
t q ă 8.

Assume conditions (1.14) and (1.15) are satisfied for some α ą 1. In this situation, for
any ε Ps0, 1s there exists some time horizon s such that for any t ě s we have the almost
sure contraction estimate

δ :“
1

2

d

λBA

ρpSq
p ą 1q ùñ E

´

∆
δ{2
t | Fs

¯2{δ

ď Zs exp r´ p1 ´ εqΛpt ´ sqs ∆s

for some random process Zt s.t. suptě0E
`

Zαδ
t

˘

ă 8.

Theorem 1.2 readily implies the stability δ-moment Lyapunov exponent estimates

lim inf
tÑ8

´
1

δt
logEp∆δ

t q ě Λ.

In addition we have the non asymptotic estimates

E
´

∆
δ{2
t

¯2{δ

ď νpαq exp t´ p1 ´ εqΛ pt ´ squ E
”

∆δα{p2α´1q
s

ıp2α´1q{pδαq

with
νpαq :“ sup

tě0
E

`

Zαδ
t

˘1{pδαq
ă 8.

Next corollary is a direct consequence of the above estimate.

Corollary 1.3. Under the assumptions of Theorem 1.2, there exists some time horizon
t0 such that for any t ě t0 and any initial states pxi, piq P pRr1 ˆ S`

r1q, with i “ 1, 2 and
any 1 ď n ď δ we have the exponential stability inequalities

E p}Φtpx1, p1q ´ Φtpx2, p2q}nq
1{n

` E p}Ψtpx1, p1q ´ Ψtpx2, p2q}nF q
1{n

ď c exp t´Λ t{4u

for some finite constant c whose values may depends on the parameters pt0, δ, xi, piq.
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We illustrate conditions (1.14) and (1.15) in the nonlinear Langevin-type signal
diffusion discussed in (1.5) with σ1 “ 1, λminpQ1q “ 2, and λmaxpQ2q “ 2´2{3. We also
assume that ρpSq “ 1{4. in this situation we have λBA “ κBA “ β and

p1.14q ðñ β ą
a

2β _ 1 and 4eα
1

β3{2

„

1 `
1

2β2



ă 1 ùñ p1.15q

In addition, the parameter δ introduced in Theorem 1.2 is given by δ :“
?
β. Therefore

the assumptions of Theorem 1.2 are satisfied as soon as β ě 4.
We end this section with some comments on our regularity conditions. Notice that Λ

does not depend on the parameter δ nor on ρpSq. As mentioned above, we believe that
these technical conditions can somehow be relaxed. These conditions are stronger than
the ones discussed in [16] for linear-Gaussian models. In contrast with the linear case,
the Riccati equation in nonlinear settings is a stochastic process in matrix spaces. For
this class of models, these technical conditions are used to control the fluctuations of
the stochastic Riccati equation entering into the EKF.

2 Stability properties of quadratic type processes

Let pUt,Vt,Wt,Ytq be some non-negative processes defined on some probability space
pΩ,F ,Pq equipped with a filtration F “ pFtqtě0 of σ-fields. Also let pZt,Z`

t q be some
processes and Mt be some continuous Ft-martingale. We use the notation

dYt ď Z`
t dt ` dMt ðñ

`

dYt “ Zt dt ` dMt with Zt ď Z`
t

˘

(2.1)

Let us mention some useful properties of the above stochastic inequalities.
Let pYt,Z

`

t ,Zt,Mtq be another collection of processes satisfying the above inequali-
ties. In this case it is readily checked that

dpYt ` Ytq ď pZ`
t ` Z`

t q dt ` dpMt ` Mtq

and
dpYtYtq ď

”

Z`

t Yt ` Z`
t Yt ` BtxM,Myt

ı

dt ` Yt dMt ` Yt dMt.

Let pH, x., .yHq be some inner product space, and let At : x P H ÞÑ Atpxq P H
be a linear operator-valued stochastic process with finite logarithmic norm ρpAtq ă 8.
Consider an H-valued stochastic process Xt such that

d}Xt}
2 ď rxXt,AtXtyH ` Uts dt ` dMt (2.2)

for some continuous Ft-martingale Mt with angle bracket satisfying the following
property

BtxMyt ď Vt }Xt}
2 ` Wt }Xt}

4.

This section is concerned with the long-time quantitative behaviour of the above
quadratic type processes. The main difficulty here comes from the fact that At is
a stochastic flow of operators. As a result we cannot apply conventional Lyapunov
techniques based on Dynkin’s formula, supermartingale theory and/or more conventional
Gronwall type estimates.

Next theorem provides a way to estimate these processes in terms of geometric type
processes and exponential martingales.

Theorem 2.1. When Ut “ 0 “ Vt we have the almost sure estimate

}Xt}
2 ď }X0}2 exp

ˆ
ż t

0

ρpAsq ds

˙

exp

ˆ
ż t

0

a

Ws dNs ´
1

2

ż t

0

Ws ds

˙
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with a martingale Nt s.t. BtxN yt ď 1. More generally, for any n ě 1 we have

E p}Xt}
n | F0q

2{n
ď E

„

exp

ˆ

n

ż t

0

"

ρpAsq `
pn ´ 1q

2
Ws

*

ds | F0

˙1{n

ˆ

"

}X0}2 `

ż t

0

ˆ

E
”

Un

s | F0

ı1{n

`
pn ´ 1q

2
E

”

Vn

s | F0

ı1{n
˙

ds

*

(2.3)

with the rescaled processes

U t{Ut :“ exp

ˆ

´

ż t

0

rρpAsq ` pn ´ 1qWss ds

˙

:“ Vt{Vt.

The proof of this theorem is rather technical thus it is housed in Section A.2 in the
appendix.

Corollary 2.2. When Ut “ 0 “ Vt we have

E p}Xt}
n | F0q ď E

ˆ

exp

ˆ
ż t

0

„

n ρpAsq `
npn ´ 1q

2
Ws



ds

˙

| F0

˙1{2

}X0}n. (2.4)

When ρpAtq ď ´at and Wt ď wt for some constants at, wt, and X0 “ 0 we have

E p}Xt}
nq

2{n
ď

ż t

0

exp

ˆ

´

„
ż t

s

λnpau, wuq du `
n ´ 1

2

ż s

0

wu du

˙

ˆ

„

E pUn
s q

1{n
`

pn ´ 1q

2
E pVn

s q
1{n



ds

(2.5)

with

λnpas, wsq :“ as ´
n ´ 1

2
ws.

Proof. The first assertion is a direct consequence of the estimates stated in Theorem 2.1.
Replacing Wt and ρpAtq by wt and p´atq from the start in the proof of Theorem 2.1 we
find that

E p}Xt}
n | F0q

2{n
ď exp

ˆ

´

ż t

0

λnpas, wsq ds

˙

}X0}2

`

ż t

0

exp

ˆ

´

„
ż t

s

λnpau, wuq du `
n ´ 1

2

ż s

0

wu du

˙

ˆ

„

E pUn
s | F0q

1{n
`

pn ´ 1q

2
E pVn

s | F0q
1{n



ds.

In the above display we have used the fact that
ż t

s

ˆ

´au `
n ´ 1

2
wu

˙

du `

ż s

0

ˆ

´au `
n ´ 1

2
wu

˙

du `

ż s

0

pau ´ pn ´ 1q wuq du

ď ´

ż t

s

ˆ

au ´
n ´ 1

2
wu

˙

du ´
n ´ 1

2

ż s

0

wu du.

This ends the proof of the corollary.

We also have the following exponential estimates for }Xt}
2.
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Proposition 2.3. Assume that ρpAtq ď ´a for some parameter a ą 0, and X0 “ 0 “ Wt.
Also assume that for any n ě 1 and any t ě 0 we have

E pUn
t q

1{n
ď ut and E pVn

t q
1{n

ď vt

for some functions ut, vt ě 0. In this situation, for any ε Ps0, 1s we have the uniform
estimates

sup
tě0

E

ˆ

exp

„

p1 ´ εq

e

1

2vtpaq
}Xt}

2

˙

ď
1

2
exp

ˆ

1 ´ ε

e

utpaq

vtpaq

˙

`
e

2
?
2

1
?
ε

(2.6)

for any functions putpaq, vtpaqq such that
ż t

0

e´apt´sq us ds ď utpaq and

ż t

0

e´apt´sq vs ds ď vtpaq.

In addition, when vt “ v for any ε P r0, 1s we have

E

ˆ

exp

„

a2

4v
ε

ż t

0

}Xs}2 ds

˙

ď E

ˆ

exp

„

a

v

ε

1 `
?
1 ´ ε

ż t

0

Us ds

˙1{2

. (2.7)

The proof of the proposition is provided in the appendix, Section A.3.
We end this section with some comments on the estimate (2.7). Let us suppose that

d}Xt}
2 “

“

´a }Xt}
2 ` u

‰

dt ` dMt

for some u ě 0 (with X0 “ 0). In this case, by Jensen’s inequality we have

a Ep}Xt}
2q “ u p1 ´ e´atq

ñ E

ˆ

exp

„

a2

v
ε

ż t

0

}Xs}2 ds

˙

ě exp

„

a

v
ε u t

ˆ

1 ´
1

at

“

1 ´ e´at
‰

˙

ě exp

„

a

v
ε u t

ˆ

1 ´
1

at

˙

.

The r.h.s. of (2.7) gives the estimate

E

ˆ

exp

„

a2

v
ε

ż t

0

}Xs}2 ds

˙

ď exp

„

a

v
ε u t

1

1 `
?
1 ´ ε



.

The above estimates coincides for any ε P r0, 1s and any u ě 0 as soon as

t ě
1

a

ˆ

1 `
1

?
1 ´ ε

˙

.

3 Stochastic stability properties

Let us start this section with a technical result, that will be very useful in the following

Lemma 3.1. For any non negative random variable Z such that

E
`

Z2n
˘1{p2nq

ď z
?
n for some parameter z ě 0

and for any n ě 1 we have for some Gaussian centered random variable V with unit
variance

E
`

Z2n
˘

ď pz2nqn ď
e

?
2

´e

2
z2

¯n

EpV 2nq.

Moreover, the following Laplace inequality holds

@ε Ps0, 1s E

˜

exp

«

1 ´ ε

e

ˆ

Z

z

˙2
ff¸

ď
e

?
2

exp

ˆ

1

4

1 ´ ε2

ε

˙

.
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Proof. We check this claim using Stirling approximation

EpV 2nq “ 2´n p2nq!

n!

ě e´1 2´n

?
4πn p2nq2n e´2n

?
2πn nn e´n

“
?
2e´1

ˆ

2

e

˙n

nn. (3.1)

The above estimate also implies that

E
`

exp
`

tZ2
˘˘

ď
e

?
2
E

`

exp
`

tpzqV 2
˘˘

“
e

?
2

1
a

1 ´ 2tpzq
with tpzq “

e

2
z2t ă 1{2

from which we check that

tpzq ď p1´εq{2 ñ E
`

exp
`

tZ2
˘˘

ď e?
2
exp

´

tpzq

”

1 `
tpzq

1´2tpzq

ı¯

ď e?
2
exp

`

tpzq
“

1 ` 1
2

`

1
ε ´ 1

˘‰˘

“ e?
2
exp

´

tpzq

2

“

1 ` 1
ε

‰

¯

.

In summary we have

t ď p1 ´ εq{pz2eq ñ E
`

exp
`

tZ2
˘˘

ď
e

?
2

exp

ˆ

e

4
z2t

„

1 `
1

ε

˙

.

Choosing t “ p1 ´ εq{pz2eq, we conclude that

@ε Ps0, 1s E

˜

exp

«

1 ´ ε

e

ˆ

Z

z

˙2
ff¸

ď
e

?
2

exp

ˆ

1

4

1 ´ ε2

ε

˙

.

3.1 The signal process

This section is mainly concerned with the stochastic stability properties of the signal
process. One natural way to derive some useful concentration inequalities is to compare
the flow of the stochastic process with the one of the noise free deterministic system
discussed in the beginning of Section 1.2.

We start with a brief review on the long-time behaviour of the semigroup ϕtpxq. It is
readily checked that

Bt}ϕtpxq ´ ϕtpyq}2 ď ´2λA}ϕtpxq ´ ϕtpyq}2 ñ }ϕtpxq ´ ϕtpyq} ď e´λAt }x ´ y}.

This contraction property ensures the existence and the uniqueness of a fixed point

@t ě 0 ϕtpx‹q :“ x‹ ðñ Apx‹q “ 0 ùñ }ϕtpxq ´ x‹} ď e´λAt }x ´ x‹}.

We let δφtpxq be the Jacobian of the stochastic flow φtpxq. We have the matrix valued
equation

Btδφtpxq “ BApφtpxqq δφtpxq ñ δφtpxq u “ exp

ˆ
ż t

0

BApφspxqq ds

˙

u

for any u P Rr1 . This implies that

}δφtpxq} :“ sup
}u}ď1

}δφtpxq u} ď exp p´λBAt{2q ÝÑtÑ8 0.

Using the formula

φtpyq ´ φtpxq “

ż 1

0

δφtpx ` εpy ´ xqq py ´ xq dε,
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we easily check the almost sure exponential stability property

}φtpxq ´ φtpyq} ď exp p´λBAt{2q }x ´ y}. (3.2)

The same analysis applies to estimate the Jacobian δϕtpxq of the deterministic flow ϕtpxq.
Using the estimate

}φtpX0q ´ φt pE pX0qq } ď e´λBAt{2 }X0 ´ E pX0q }

we also have

λBA

ż t

0

}φspX0q ´ φs pE pX0qq }2 ds ď }X0 ´ E pX0q }2. (3.3)

Let us recall the χ-square Laplace estimate

E
´

exp
”

}X0 ´ pX0}2{χpP0q

ı¯

ď e with χpP0q :“ 4r1ρpP0q. (3.4)

The proof of (3.4) and more refined estimates are housed in the appendix.
We conclude from (3.3) that

(3.4) ùñ E

ˆ

exp

ˆ

λBA

χpP0q

ż t

0

}φspX0q ´ φs pE pX0qq }2 ds

˙˙

ď e.

The next proposition quantifies the relative stochastic stability of the flows pϕt, φtq in
terms of Ln-norms and χ-square uniform Laplace estimates.

Proposition 3.2. For any n ě 1 and any x P Rr1 we have the uniform moment estimates

E
`

}φtpxq ´ ϕtpxq}2n
˘1{n

ď pn ´ 1{2q trpR1q{λA. (3.5)

In addition, for any ε Ps0, 1s we have the uniform Laplace estimates

sup
tě0

E

ˆ

exp

„

p1 ´ εq

4e

λA

trpR1q
}φtpxq ´ ϕtpxq}2

˙

ď
e

2
?
2

1
?
ε

`
1

2
exp

„

1 ´ ε

4e



as well as

E

ˆ

exp

„

λ2
A

4trpR1q
ε

ż t

0

}φspxq ´ ϕspxq}2 ds

˙

ď exp

„

λA

2
ε t



.

Using the notation of Lemma 3.1, we have by [14, Proposition 11.6.6],that the
probability of the following event

pZ{zq2 ď
e2
?
2

„

1

2
`

´

δ `
?
δ
¯



(3.6)

is greater than 1 ´ e´δ, for any δ ě 0. Combining (3.5) with the following concentration
inequality (3.6), we prove that the probability of the event

}φtpxq ´ ϕtpxq}2 ď $pδq trpR1q{λA

is greater than 1 ´ e´δ, for any δ ě 0 and any initial states x P Rr1 . This ends the proof
of (1.12).

Proof of Proposition 3.2. We have

dpXt ´ xtq “ rApXtq ´ Apxtqs dt ` R
1{2
1 dWt

with X0 “ x0, and therefore

d}Xt ´ xt}
2 “ r2xApXtq ´ Apxtq, Xt ´ xtyH ` trpR1qs dt ` dMt

ď
“

´2λA}Xt ´ xt}
2 ` trpR1q

‰

dt ` dMt
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with the martingale

dMt :“ 2xXt ´ xt, R
1{2
1 dWty ùñ BtxMyt “ 4 tr

`

R1pXt ´ xtqpXt ´ xtq
1
˘

ď 4 trpR1q }Xt ´ xt}
2.

The end of the proof is now a direct consequence of (2.5) and Proposition 2.3 applied to

Xt “ }Xt ´ xt}, Atx :“ ´ax “ ´2λAx, Ut “ u “ trpR1q and Vt “ v “ 4 trpR1q.

The proof of the proposition is now completed.

3.2 The Extended Kalman-Bucy filter

This section is mainly concerned with the stochastic stability and the concentration
properties of the semigroup of the EKF stochastic process. As for the signal process
discussed in Section 3.1 these properties are related to Lp-mean error estimates and
related χ-square type Laplace inequalities. Our main results are described by the
following theorem.

Let p pXt, Ptq be the solution of the evolution equations (1.2) starting at p pX0, P0q.

Theorem 3.3. For any n ě 1 we have

E
´

}φtp pX0q ´ pXt}
n

¯2{n

ď p2n ´ 1q

"

trpR1q

λA

σ2
BA

2
`

|e´λAt ´ e´λBAt|

|λA ´ λBA|
ρpSq trpP0q2

*

. (3.7)

For any ε Ps0, 1s and any P0 there exists some time horizon t0pε, P0q such that

sup
tět0pε,P0q

E

ˆ

exp

„

p1 ´ εq

4eσ2
BA

λA

trpR1q
}φtp pX0q ´ pXt}

2

˙

ď
1

2
exp

ˆ

1 ´ ε

4e

˙

`
e

2
?
2

1
?
ε
. (3.8)

In addition for any t ě s ě 0 and any ε Ps0, 1s we have

E

ˆ

exp

„

ε

1 ` πBApsq

λ2
A

4trpR1q

ż t

s

}φr´sp pXsq ´ pXr}2 ds

˙

ď exp

„

λA

2
ε pt ´ sq



. (3.9)

Before getting into the details of the proof of this theorem we mention that (1.13)
is a direct consequence of (3.7) combined with Lemma 3.1 and (3.2). Indeed, applying
Lemma 3.1 to

Z “ }φtp pX0q ´ pXt} and z2 “ 4

"

trpR1q

λA

σ2
BA

2
`

|e´λAt ´ e´λBAt|

|λA ´ λBA|
ρpSq trpP0q2

*

by (3.7) we readily check that the probability of the events

}φtpxq ´ Φtppx, pq}2 ď 2}φtpxq ´ φtppxq}2 ` 2}φtppxq ´ Φtppx, pq}2

ď 2 exp p´λBAtq }x ´ px}2 ` 8$pδq

"

trpR1q

λA

σ2
BA

2
`

|e´λAt ´ e´λBAt|

|λA ´ λBA|
ρpSq trpP0q2

*

is greater than 1 ´ e´δ, for any δ ě 0 and any initial states px, px, pq P Rr1`r1`pr1ˆr1q. In
this connection, the Laplace estimates (3.9) readily imply that the probability of the
events

1

t ´ s

ż t

s

}φup pXsq ´ pXu}2 du ď

ˆ

1

2
`

δ

λA

˙

p1 ` πBApsqq
4trpR1q

λA

is greater than 1 ´ e´δ, for any δ ě 0 and any time horizon t.
Now we come to the proof of the theorem.
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Proof of Theorem 3.3. We set Xt :“ φtp pX0q ´ pXt. We have

d}Xt}
2 ď

´

2 xApφtp pX0qq ´ Ap pXtq,Xty ´ 2 xPtSXt,Xty ` trpR1q ` trpSP 2
t q

¯

dt ` dMt

with the martingale

dMt :“ 2X 1
t

´

R
´1{2
1 dWt ´ PtB

1R
´1{2
2 dVt

¯

.

This yields the estimate

d}Xt}
2 ď

“

´2λA }Xt}
2 ` Ut

‰

dt ` dMt with Ut “ ut :“
“

trpR1q ` τ2t pP q ρpSq
‰

.

Also observe that

BtxMyt ď 4 }Xt}
2

`

trpR1q ` trpSP 2
t q

˘

ď Vt }Xt}
2 with Vt “ vt :“ 4ut.

On the other hand we have

2e´2λAt

ż t

0

e2pλA´λBAqs ds “
|e´λAt ´ e´λBAt|

|λA ´ λBA|
.

This implies that
ż t

0

e´2λApt´sq τ2s ds ď 2trpP0q2 e´2λAt

ż t

0

e´2∆As ds `
1

λA

ˆ

trpR1q

λBA

˙2

ď
|e´λAt ´ e´λBAt|

|λA ´ λBA|
trpP0q2 `

1

λA

ˆ

trpR1q

λBA

˙2

.

This implies that

ż t

0

e´2λApt´sq us ds ď
trpR1q

2λA
` ρpSq

«

|e´λAt ´ e´λBAt|

|λA ´ λBA|
trpP0q2 `

1

λA

ˆ

trpR1q

λBA

˙2
ff

“
trpR1q

λA

ˆ

1

2
`

ρpSq

λBA

trpR1q

λBA

˙

`
|e´λAt ´ e´λBAt|

|λA ´ λBA|
ρpSq trpP0q2

:“ utpaq :“ vtpaq{4.

Applying Proposition 2.3 to Atx :“ ´ax “ ´2λAx, we find that

E

ˆ

exp

„

p1 ´ εq

e

1

8utpaq
}Xt}

2

˙

ď
1

2
exp

ˆ

1 ´ ε

4e

˙

`
e

2
?
2

1
?
ε

for any ε Ps0, 1s.

Using the fact that for any non negative real numbers x, y, λ we have

1

x ` e´λ y
“

1

x

ˆ

1 ´
e´λ y{x

1 ` e´λ y{x

˙

ě
1

x

`

1 ´ e´λ y{x
˘

and
|e´λAt ´ e´λBAt|

|λA ´ λBA|
ÝÑtÑ8 0,

we find that

1

utpaq
ě p1 ´ εq

λA

λBA

„

trpR1q

λBA

ˆ

1

2
`

ρpSq

λBA

trpR1q

λBA

˙´1

for any t ě tpεq, for any ε P r0, 1r and some tpεq.
The end of the proof is now a direct consequence of (2.5) and Proposition 2.3 applied

to
Atx :“ ´ax “ ´2λAx and ut “ vt{4 ď u “ v{4 :“

“

trpR1q ` τ2s pP q ρpSq
‰

with t P rs,8r. The proof of the theorem is now completed.
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4 Proof of Theorem 1.2

We let p pXt, Ptq be the solution of Equations (1.2) starting at p pX0, P0q. We denote by
p qXt, qPtq the solution of these equations starting at some possibly different state p qX0, qP0q.

We have the rather crude almost sure estimate

Bttr pPtq “ tr
´

pBAp pXtq ` BAp pXtq
1qPt

¯

` trpR1q ´ trpSP 2
t q

ď ´λBA tr pPtq ` trpR1q.

This readily yields the upper bound

trpPtq ď τtpP q :“ e´λBAt tr pP0q ` trpR1q{λBA ñ sup
tě0

trpPtq ď tr pP0q ` trpR1q{λBA.

(4.1)

Firstly we have

pp3.5q, p3.7q and (4.1)q ùñ @n ě 1 sup
tě0

E
´

r} pXt ´ qXt}
2 ` }Pt ´ qPt}

2
F sn

¯

ă 8.

We couple the equations with the same observation processes. In this situation we
find the evolution equation

dp pXt ´ qXtq “

´

Ap pXtq ´ Ap qXtq

¯

dt ` PtB
1R´1

2

”

dYt ´ B pXtdt
ı

´ qPtB
1R´1

2

”

dYt ´ B qXtdt
ı

“

´”

Ap pXtq ´ Ap qXtq

ı

` qPtB
1R´1

2

”

B p qXt ´ Xtq

ı¯

dt

`pPt ´ qPtqB
1R´1

2

”

BpXt ´ pXtq

ı

dt ` qPtB
1R´1

2

”

BpXt ´ pXtq

ı

dt ` dMt

with the martingale

dMt :“
”

Pt ´ qPt

ı

B1R
´1{2
2 dVt.

This implies that

dp pXt ´ qXtq

“

´

rAp pXtq ´ Ap qXtqs ` qPtS p qXt ´ pXtq ` pPt ´ qPtqSpXt ´ pXtq

¯

dt ` dMt

from which we conclude that

d} pXt ´ qXt}
2

“ 2x pXt ´ qXt, rAp pXtq ´ Ap qXtqs ´ qPtS p pXt ´ qXtq ` pPt ´ qPtqSpXt ´ pXtq y dt

`tr

ˆ

S
”

Pt ´ qPt

ı2
˙

dt ` dM t

(4.2)

with the martingale
dM t “ 2 x pXt ´ qXt, dMty.

The angle bracket of M t is given by

BtxMyt “ 4 tr
´”

Pt ´ qPt

ı

S
”

Pt ´ qPt

ı

p pXt ´ qXtqp pXt ´ qXtq
1
¯

“ 4 xp pXt ´ qXtq,
”

Pt ´ qPt

ı

S
”

Pt ´ qPt

ı

p pXt ´ qXtqy

ď 4 ρpSq } pXt ´ qXt}
2 }Pt ´ qPt}

2
F ď 2 ρpSq

´

} pXt ´ qXt}
2 ` }Pt ´ qPt}

2
F

¯2

.
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Recalling that λA ě λBA{2, also observe that the drift term in (4.2) is bounded by

´λBA } pXt ´ qXt}
2 ` 2βt } pXt ´ qXt}}Pt ´ qPt}F ` ρpSq }Pt ´ qPt}

2
F

with
βt :“ ρpSq}Xt ´ pXt}.

In much the same way we have

BtpPt ´ qPtq

“

´

BAp pXtqPt ´ BAp qXtq qPt

¯

`

´

BAp pXtqPt ´ BAp qXtq qPt

¯1

` qPt S qPt ´ Pt SPt

“

´

rBAp pXtq ´ BAp qXtqsPt ` BAp qXtqrPt ´ qPts

¯

`

´

rBAp pXtq ´ BAp qXtqsPt ` BAp qXtqrPt ´ qPts

¯1

` 1
2 p qPt ` PtqSp qPt ´ Ptq ` 1

2 p qPt ´ PtqSp qPt ` Ptq.

In the last assertion we have used the matrix decomposition

PSP ´ QSQ “
1

2
pP ` QqSpP ´ Qq `

1

2
pP ´ QqSpP ` Qq.

Recalling that

2´1Bt}Pt´ qPt}
2 “ 2´1BtxPt´ qPt, Pt´ qPty “ xPt´ qPt, BtpPt´ qPtqy “ tr

´

pPt ´ qPtqBtpPt ´ qPtq

¯

,

we find that

2´1Bt}Pt ´ qPt}
2
F “ 2tr

´

BAp qXtqpPt ´ qPtq
2
¯

` 2tr
´

rBAp pXtq ´ BAp qXtqsPtpPt ´ qPtq

¯

´tr
´

p qPt ` PtqSp qPt ´ Ptq
2
¯

ď 2tr
´

BAp qXtqpPt ´ qPtq
2
¯

` 2tr
´

rBAp pXtq ´ BAp qXtqsPtpPt ´ qPtq

¯

.

This implies that

Bt}Pt ´ qPt}
2
F ď ´2λBA }Pt ´ qPt}

2
F ` 2αt}Pt ´ qPt}F } pXt ´ qXt}

with
αt :“ 2κBAτtpP q.

We set

Xt “

˜

} pXt ´ qXt}

}Pt ´ qPt}F

¸

P H :“ R2 ùñ d}Xt}
2 ď xXt,AtXty dt ` dMt

with

At “

ˆ

´λBA 2βt

2αt ´2λBA ` ρpSq

˙

and Mt “ M t.

Notice that

pAt ` A1
tq{2 “

ˆ

´λBA βt ` αt

βt ` αt ´2λBA ` ρpSq

˙

.

Observe that

ρpAtq :“ λmax

`

pAt ` A1
tq{2

˘

“ ´
1

2
p3λBA ´ ρpSqq `

c

1

4
pλBA ´ ρpSqq

2
` pβt ` αtq

2
ď ´λBA ` βt ` αt

ď ρpAtq :“ ´

´

λBA ´ 2κBAτtpP q ´ ρpSq }Xt ´ pXt}

¯

The final step is based on the following technical lemma.
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Lemma 4.1. Assume Condition (1.15) is satisfied for some α ą 1. In this situation, for
any ε Ps0, 1s there exists some time horizon s such that for any t ě s we have the almost
sure estimate

δ :“
1

2

d

λBA

ρpSq
ùñ E

ˆ

exp

„

δ

ż t

s

tpρpAuq ` pδ ´ 1qρpSqqu du



| Fs

˙1{δ

ď Zs exp p´ p1 ´ εqΛpt ´ sqq

(4.3)

for some positive random process Zt s.t. suptě0E
`

Zαδ
t

˘

ă 8.

The end of the proof of Theorem 1.2 is a direct consequence of this lemma, so we
give it first. Combining (4.3) with (2.3) we find that

E
`

}Xt}
δ | Fs

˘2{δ
ď Zs exp p´ p1 ´ εqΛpt ´ sqq }Xs}2

This ends the proof of Theorem 1.2.
Now we come to the proof of the lemma.

Proof of Lemma 4.1. For any t ě s ě 0 we have the estimate

ρpAtq ď ´ pλBA ´ 2κBAτspP qq ` βt “ ´∆BApsq ` ρpSq }Xt ´ pXt}

with

∆BApsq :“ λBA ´ 2κBA τspP q ÝÑsÑ8 ∆BA :“ λBA ´ 2κBA trpR1q{λBA ą 0

as soon as

λBA ą
a

2κBA trpR1q.

For any ε Ps0, 1s, there exists some time horizon ςεpP0q such that

t ě s ě ςεpP0q ùñ p1 ´ εq ď ∆BApsq{∆BA ď 1

ùñ ρpAtq ď ´p1 ´ εq∆BA ` ρpSq }Xt ´ pXt}

On the other hand, the contraction inequality (3.2) implies that

ż t

s

}Xr ´ pXr} dr “

ż t

s

}φr´spφspX0qq ´ pXr} dr

ď

ż t

s

}φr´spXsq ´ φr´sp pXsq} dr `

ż t

s

}φr´sp pXsq ´ pXr} dr

ď

ˆ
ż t

s

e´λBAr{2 dr

˙

}Xs ´ pXs} `

ż t

s

}φr´sp pXsq ´ pXr} dr

ď 2}Xs ´ pXs}{λBA `

ż t

s

}φr´sp pXsq ´ pXr} dr

The above inequality yields the almost sure estimate

E

ˆ

exp

„

δ

"
ż t

s

pρpAuq ` pδ ´ 1qρpSqq du

*

| Fs

˙

ď exp r´δ tp1 ´ εq∆BA ` p1 ´ δqρpSqu pt ´ sqs

ˆ Zs E

ˆ

exp

„

δ

"

ρpSq

ż t

s

}φu´sp pXsq ´ pXu} du

*

| Fs

˙
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with
Zs :“ exp

”

2ρpSq}Xs ´ pXs}{λBA

ı

.

Using the estimate x ´ 1{4 ď x2, which is valid for any x, we have
ż t

s

pp}φu´sp pXsq ´ pXu} ´ 1{4q ` 1{4q du ď pt ´ sq{4 `

ż t

s

}φu´sp pXsq ´ pXu}2du.

We find that

E

ˆ

exp

„

δ

"
ż t

s

pρpAuq ` pδ ´ 1qρpSqq

*

du



| Fs

˙

ď exp r´δ tp1 ´ εq∆BA ` p3{4 ´ δqρpSqu pt ´ sqs

ˆ Zs E

ˆ

exp

„

δρpSq

ż t

s

}φu´sp pXsq ´ pXu}2 du



| Fs

˙

By (1.15) we can also choose s sufficiently large so that

δ “
1

2

d

λBA

ρpSq
ùñ δρpSq4trpR1q p1 ` πBApsqq ď λA

λBA

2
.

In this situation, by (3.9), we have

δρpSq ď

ď1
hkkikkj

λBA

2λA

1

1 ` πBApsq

λ2
A

4trpR1q

ñ E

ˆ

exp

ˆ

δρpSq

ż t

s

}φr´sp pXsq ´ pXr}2 dr

˙

| Fs

˙

ď exp

„

λBA

4
pt ´ sq



.

We conclude that

E

ˆ

exp

„

δ

"
ż t

s

pρpAuq ` pδ ´ 1qρpSqq

*

du



| Fs

˙1{δ

ď exp

„

´p1 ´ εq λBA

"

1 ´ 2
κBA

λBA

trpR1q

λBA
´

1

4δ
` p3{4 ´ δq

ρpSq

λBA

*

pt ´ sq



Zs

ď exp r´p1 ´ εq Λpt ´ sqs Zs.

The last assertion comes from the formula

δ “
1

2

d

λBA

ρpSq

ùñ 1 `
3

4

ρpSq

λBA
´ 2

κBA

λBA

trpR1q

λBA
´

1

4δ
´ δ

ρpSq

λBA

“ 1 ´ 2
κBA

λBA

trpR1q

λBA
`

d

ρpSq

λBA

»

–

3

4

d

ρpSq

λBA
´ 1

fi

fl ą 0.

We also have

}Xs ´ pXs} “ }φspX0q ´ pXs} ď }φspX0q ´ φsp pX0q} ` }φsp pX0q ´ pXs}

ď e´λBAs{2 }X0 ´ E pX0q } ` }φsp pX0q ´ pXs}.
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This shows that

Zs ď exp

ˆ

ρpSq

λBA
}φsp pX0q ´ pXs}

˙

exp

ˆ

ρpSq

λBA
e´λBAs{2 }X0 ´ E pX0q }

˙

.

Under the assumption (1.15) and using (3.8) we have

α δ
ρpSq

λBA
“

α

2

d

ρpSq

λBA
ă

1

8eσ2
BA

λBA

trpR1q

ùñ Dp ą 1 : supsě0E
´

exp
´

pαδ}φsp pX0q ´ pXs}pρpSq{λBAq

¯¯

ă 8.

We can also choose s sufficiently large so that

α

α ´ 1
δρpSq e´λBAs{2 ă λBA{χpP0q

ùñ E

ˆ

exp

ˆ

αδ
p

p ´ 1
pρpSq{λBAq e´λBAs{2 }X0 ´ E pX0q }

˙˙

ď e.

This ends the proof of the lemma.

A Appendix

A.1 Concentration properties and Laplace estimates

This section is mainly concerned with the proof of (3.4).
The initial state X0 of the signal is a Gaussian random variable with mean pX0 and

some covariance matrix P0. In this case X0 ´ pX0
law
“ P

1{2
0 W1 (where W1 is a centered

Gaussian variable with unit variance) and

E
´

}X0 ´ pX0}2n
¯

ď ρpP0qn E
`

}W1}2n
˘

.

Recalling that }W1}2 is distributed according to the chi-squared distribution with r1
degrees of freedom we have

@γ ă 1{p2ρpP0qq E
´

eγ}X0´xX0}
2
¯

ď E
´

eγρpP0q}W1}
2
¯

“ p1 ´ 2γρpP0qq
´r1{2

ă 8.

Using the fact that

´t ´
1

2
log p1 ´ 2tq “ t2

ÿ

ně0

2

2 ` n
p2tqn ď

t2

1 ´ 2t
ñ p1 ´ 2tq

´1{2
ď exp

ˆ

t `
t2

1 ´ 2t

˙

for any 0 ă t ă 1{2, we check that

@0 ă t ă p1 ´ r1εq{2 t `
t2

1 ´ 2t
“ t

1 ´ t

1 ´ 2t
ď

t

r1ε

for any ε Ps0, 1{r1r. This yields

@0 ă γ ă p1 ´ r1εq{p2ρpP0qq E
´

eγ}X0´xX0}
2
¯

ď exp pρpP0qγ{εq.

Choosing γ “ p1 ´ 2r1εq{p2ρpP0qq, with ε Ps0, 1{p2r1qr we find that

@ε Ps0, 1{p2r1qr E

˜

exp

«

ˆ

1

2
´ pr1εq

˙

}X0 ´ pX0}2

ρpP0q

ff¸

ď exp

ˆˆ

1

2
´ r1ε

˙

1

ε

˙

.

We check (3.4) by choosing

ε “
2r1 ´ 1

4r21
“

1

2r1
´

1

4r21
ñ E

˜

exp

«

}X0 ´ pX0}2

4r1ρpP0q

ff¸

ď exp

ˆ

r1
2r1 ´ 1

˙

ď e.
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A.2 Proof of Theorem 2.1

When Ut “ Vt “ 0 we have

d}Xt}
2 ď ρpAtq }Xt}

2 dt `
a

Wt }Xt}
2 dNt

with the martingale

dNt :“
1

?
Wt }Xt}

2
dMt ùñ BtxN yt ď 1.

This implies that

d log }Xt}
2 ď }Xt}

´2
´

ρpAtq }Xt}
2 dt `

a

Wt }Xt}
2 dNt

¯

´
1

2
Wt dt

“

ˆ

ρpAtq ´
1

2
Wt

˙

dt `
a

Wt dNt

from which we prove that

exp

ˆ

´

ż t

0

ρpAsq ds

˙

}Xt}
2 ď }X0}2 Et

with the exponential martingale

Et :“ exp

ˆ
ż t

0

a

Ws dNs ´
1

2

ż t

0

Ws ds

˙

.

Next we provide a proof of the second assertion based on the above formula. For any
n ě 0, we observe that

exp

ˆ

´n

ż t

0

ρpAsq ds

˙

}Xt}
2n ď exp

ˆ

npn ´ 1q

2

ż t

0

Ws ds

˙

}X0}2n Etpnq

with the collection of exponential martingales

Etpnq :“ exp

ˆ

n

ż t

0

a

Ws dNs ´
n2

2

ż t

0

Ws ds

˙

.

This implies that

E

ˆ

exp

ˆ

´n

ż t

0

ˆ

ρpAsq `
pn ´ 1q

2
Ws

˙

ds

˙

}Xt}
2n | F0

˙

ď }X0}2n.

Arguing as above we use the decomposition

E p}Xt}
n | F0q “ E

ˆ

exp

ˆ

n

2

ż t

0

ˆ

ρpAsq `
pn ´ 1q

2
Ws

˙

ds

˙

exp

ˆ

´
n

2

ż t

0

ˆ

ρpAsq `
pn ´ 1q

2
Ws

˙

ds

˙

}Xt}
n | F0

˙

to check that

E p}Xt}
n | F0q ď E

ˆ

exp

ˆ

n

ż t

0

ˆ

ρpAsq `
pn ´ 1q

2
Ws

˙

ds

˙

| F0

˙1{2

}X0}n.

This ends the proof of the first assertion.
More generally, we have

d}Xt}
2 ď

“

ρpAtq }Xt}
2 ` Ut

‰

dt ` dMt.
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This yields

d}Xt}
2n ď n }Xt}

2pn´1q d}Xt}
2 `

npn ´ 1q

2
}Xt}

2pn´2q
“

Wt }Xt}
4 ` Vt }Xt}

2
‰

dt (A.1)

ď ´ΛnpAt,Wtq }Xt}
2ndt ` n

„

pn ´ 1q

2
Vt ` Ut



}Xt}
2pn´1q dt ` n }Xt}

2pn´1q dMt

with

´ΛnpAt,Wtq :“ n ρpAtq `
npn ´ 1q

2
Wt.

Observe that

ΛnpAt,Wtq ´ Λn´1pAt,Wtq “ ´n ρpAtq ´ npn ´ 1q Wt{2

`pn ´ 1q ρpAtq ` pn ´ 1qpn ´ 2q Wt{2

“ ´ρpAtq ´ pn ´ 1qWt.

This shows that

U t{Ut “ exp

ˆ
ż t

0

rΛnpAs,Wsq ´ Λn´1pAs,Wsqs ds

˙

“ Vt{Vt. (A.2)

We set

Yn
t :“ exp

ˆ
ż t

0

ΛnpAs,Wsqds

˙

}Xt}
2n.

Notice that

exp

ˆ
ż t

0

ΛnpAs,Wsqds

˙

Ut }Xt}
2pn´1q

“ }Xt}
2pn´1q exp

ˆ
ż t

0

Λn´1pAs,Wsqds

˙

ˆ exp

ˆ
ż t

0

rΛnpAs,Wsq ´ Λn´1pAs,Wsqs ds

˙

Ut “ Yn´1
t U t.

Using (A.1) and (A.2), this shows that

dYn
t ď n Yn´1

t

„

U t `
pn ´ 1q

2
Vt



dt ` dMt

with the martingale

dMt :“ n exp

ˆ
ż t

0

ΛnpAs,Wsqds

˙

}Xt}
2pn´1q dMt.

This implies that

BtE pYn
t | F0q ď n E

ˆ

Yn´1
t

„

U t `
pn ´ 1q

2
Vt



| F0

˙

.

Using Hölder inequality we have

E
`

U t Yn´1
t | F0

˘

ď E
´

Un

t | F0

¯1{n

E pYn
t | F0q

1´1{n
.

This yields the estimate

BtE pYn
t | F0q ď n E pYn

t | F0q
1´1{n

„

E
´

Un

t | F0

¯1{n

`
pn ´ 1q

2
E

´

Vn

t | F0

¯1{n
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and therefore

BtE pYn
t | F0q

1{n
“

1

n
E pYn

t | F0q
´p1´1{nq

BtE pYn
t | F0q

ď E
´

Un

t | F0

¯1{n

`
pn ´ 1q

2
E

´

Vn

t | F0

¯1{n

.

We conclude that

E pYn
t | F0q

1{n
ď E pYn

0 | F0q
1{n

`

ż t

0

„

E
´

Un

s | F0

¯1{n

`
pn ´ 1q

2
E

´

Vn

s | F0

¯1{n


ds.

Using the decomposition

E p}Xt}
n | F0q “ E

ˆ

exp

ˆ

´
1

2

ż t

0

ΛnpAs,Wsqds

˙

exp

ˆ

1

2

ż t

0

ΛnpAs,Wsqds

˙

}Xt}
n | F0

˙

and Cauchy-Schwartz inequality we check that

E p}Xt}
n | F0q

2{n
ď E

ˆ

exp

ˆ

´

ż t

0

ΛnpAs,Wsqds

˙

| F0

˙1{n

E pYn
t | F0q

1{n
.

This implies that

E p}Xt}
n | F0q

2{n
ď E

ˆ

exp

ˆ

´

ż t

0

ΛnpAs,Wsqds

˙˙1{n

ˆ

„

}X0}2 `

ż t

0

„

E
´

Un

s | F0

¯1{n

`
pn ´ 1q

2
E

´

Vn

s | F0

¯1{n


ds



.

This ends the proof of the theorem.

A.3 Proof of Proposition 2.3

By (2.5), for any m ě 1 we have the uniform estimate

E
`

}Xt}
2m

˘1{m
ď putpaq ` mvtpaqq ñ 2 E

`

}Xt}
2m

˘

ď p2utpaqqm ` p2vtpaqqm mm.

Using again Stirling approximation (3.1) we have

p2γ vtpaqqmmm ď
e

?
2

peγvtpaqq
m

2´m p2mq!

m!
ñ

ÿ

mě0

p2vtpaqqm mm ď
e

?
2

1
a

1 ´ 2evtpaqγ

for any γ ă 1{p2evtpaqq. This yields

2 E
´

eγ}Xt}
2
¯

ď e2γutpaq `
e

?
2

1
a

1 ´ 2eγvtpaq
.

Choosing γ “ p1 ´ εq{p2evtpaqq, with ε Ps0, 1s we find that

E

ˆ

exp

„

p1 ´ εq

e

1

2vtpaq
}Xt}

2

˙

ď
1

2
e

1´ε
e

utpaq

vtpaq `
e

2
?
2

1
?
ε
.

This ends the proof of (2.6). Now we come to the proof of (2.7).
We have

d}Xt}
2 ď

“

´a }Xt}
2 ` Ut

‰

dt ` dMt.
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This implies that

ż t

0

}Xs}2 ds ď

ż t

0

e´as

„
ż s

0

eau Uu du



ds `

ż t

0

e´as

„
ż s

0

eau dMu



ds.

On the other hand, by an integration by part we have

a

ż t

0

e´as

ˆ
ż s

0

eau Uu du

˙

ds “

ż t

0

´

1 ´ e´apt´sq
¯

Us ds

and

a

ż t

0

e´as

ˆ
ż s

0

eau dMu

˙

ds “

ż t

0

´

1 ´ e´apt´sq
¯

dMs.

This implies that

a

ż t

0

}Xs}2 ds ď

ż t

0

Us ds ` Mptq

t

with the terminal state Mptq

t of the collection of martingales Mptq

u on r0, ts defined by

@0 ď u ď t Mptq

u :“

ż u

0

´

1 ´ e´apt´sq
¯

dMs

ùñ BuxMptq
yu ď v }Xu}2.

Therefore for any γ ě 0 we have

γ

„

´

a ´
γ

2
v

¯

ż t

0

}Xs}2 ds ´

ż t

0

Us ds



ď γMptq

t ´
γ2

2
xMptq

yt.

This implies that

E

ˆ

exp

„

γ

„

´

a ´
γ

2
v

¯

ż t

0

}Xs}2 ds ´

ż t

0

Us ds



| F0

˙

ď 1.

Using the decomposition

exp

„

γ

2

´

a ´
γ

2
v

¯

ż t

0

}Xs}2 ds



“ exp

„

γ

2

„

´

a ´
γ

2
v

¯

ż t

0

}Xs}2 ds ´

ż t

0

Us ds



ˆ exp

„

γ

2

ż t

0

Us ds



,

replacing γ{2 by γ, by Cauchy-Schwarz inequality we find that

E

ˆ

exp

„

v γ
´a

v
´ γ

¯

ż t

0

}Xs}2 ds

˙

ď E

ˆ

exp

„

2γ

ż t

0

Us ds

˙1{2

for any γ ď a{v. Observe that

γ
´a

v
´ γ

¯

:“
α

v
ď c2 with c “

a

v
.

We also have

γ
´a

v
´ γ

¯

“
α

v
ðñ γ P

!

c{2 ´
a

pc{2q2 ´ α{v, c{2 `
a

pc{2q2 ´ α{v
)

.
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Choosing the smallest value we prove that

E

ˆ

exp

„

v α{v

ż t

0

}Xs}2 ds

˙2

ď E

ˆ

exp

„

´

pa{vq ´
a

pa{vq2 ´ 4α{v
¯

ż t

0

Us ds

˙

“ E

˜

exp

«

4α{v

pa{vq `
a

pa{vq2 ´ 4α{v

ż t

0

Us ds

ff¸

for any β “ α{v ď a2{p2vq2, or equivalently

E

ˆ

exp

„

v β

ż t

0

}Xs}2 ds

˙

ď E

˜

exp

«

4β

pa{vq `
a

pa{vq2 ´ 4α{v

ż t

0

Us ds

ff¸1{2

.

This ends the proof of the proposition.

B Proof of formulae (1.6), (1.7) and (1.8)

We start with the proof of (1.6). To clarify the presentation, we write Q instead of Q2.
Let xx, yyQ “ xx,Qyy and xx, xy

1{2
Q “ }x}Q be the inner product and the norm associated

with the symmetric definite positive matrix Q. Let zptq “ x ` tpy ´ xq be an interpolating
path from x to y, indexed by t P r0, 1s. Also let

ϕptq :“ xs, B2Vpzptqqsy “ }x ` tpy ´ xq}Q }s}2Q

`
1

}x ` tpy ´ xq}Q
xs, x ` tpy ´ xqy2Q ` }s}2Q1

.

Taking the derivative w.r.t. t we find that

Bϕptq “
xx ` tpy ´ xq, y ´ xyQ

}x ` tpy ´ xq}Q
}s}2Q `

2

}x ` tpy ´ xq}Q
xs, x ` tpy ´ xqyQ xs, y ´ xyQ

´
xs, x ` tpy ´ xqy2Q
}x ` tpy ´ xq}3Q

xx ` tpy ´ xq, y ´ xyQ

“
xx ` tpy ´ xq, y ´ xyQ

}x ` tpy ´ xq}Q
}s}2Q

„

1 ´
xs, x ` tpy ´ xqy2Q

}s}2Q }x ` tpy ´ xq}2Q



`2
xs, x ` tpy ´ xqyQ

}x ` tpy ´ xq}Q}s}Q
xs, y ´ xyQ }s}Q

On the other hand we have

´1 ď
xs, x ` tpy ´ xqyQ

}x ` tpy ´ xq}Q }s}Q
ď 1 ùñ |Bϕptq| ď 4 }y ´ x}Q }s}2Q.

This yields

|xs,
“

B2Vpxq ´ B2Vpyq
‰

sy| ď 4 }y ´ x}Q }s}2Q ď 4 }Q}3{2 }y ´ x} }s}2

This ends the proof of (1.6).
Now we come to the proof of (1.7).

Bxi
Vpxq “ BU1pxiq `

ÿ

1ďkďr1, k “i

pB1U2pxi, xkq ` B2U2pxk, xiqq

Bxi,xj
Vpxq “

$

’

’

&

’

’

%

B2,1U2pxi, xjq ` B1,2U2pxj , xiq for i “ j

B2U1pxiq `
ÿ

1ďjďr1, j “i

pB2,2 ` B1,1qU2pxi, xjq for i “ j
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In the above display, BU1 and B2U1 stands for the first and second derivative of U1 on R;
and BiU2 stands for the partial derivatives of U2 : px1, x2q P R2 ÞÑ U2px1, x2q P r0,8r with
respect to the i-th coordinate xi; and Bi,j :“ BiBj “ BjBi, with i, j P t1, 2u.

xB2Vpxq s, sy “
ÿ

1ďiďr1

xB2U1pxiq si, siy `
ÿ

1ďi “jďr1

xB2U2pxi, xjq psi, sjq, psi, sjqy

ě u1

ÿ

1ďiďr1

s2i ` u2

ÿ

1ďi“jďr1

ps2i ` s2j q “ v xs, sy.

This ends the proof of (1.7).
We end this section with the proof of (1.8). We have

|xps1, s2q,
“

B2U2px1, x2q ´ B2U2py1, y2q
‰

ps1, s2qy| ď κB2U2
}px1, x2q ´ py1, y2q} }ps1, s2q}2

from which we find that

|xs,
“

B2Vpxq ´ B2Vpyq
‰

sy| ď κB2U1

ÿ

1ďiďr1

|xi ´ yi| s
2
i

`κB2U2

ÿ

1ďi “jďr1

b

pxi ´ yiq2 ` pxj ´ yjq2
`

s2i ` s2j
˘

.

Using the fact that

ÿ

1ďiďr1

|xi ´ yi|
s2i

ř

1ďjďr1
s2j

ď

«

ÿ

1ďiďr1

|xi ´ yi|
2 s2i

ř

1ďjďr1
s2j

ff1{2

ď }x ´ y}

and

ÿ

1ďi“jďr1

b

pxi ´ yiq2 ` pxj ´ yjq2

`

s2i ` s2j
˘

ř

1ďk “lďr1
ps2k ` s2l q

ď
a

2pr1 ´ 1q }x ´ y},

we prove that

|xs,
“

B2Vpxq ´ B2Vpyq
‰

sy| ď κB2U1
}x ´ y} }s}2 ` κB2U2

pr1 ´ 1q
a

2pr1 ´ 1q }x ´ y} }s}2.

This ends the proof of (1.8).
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