
HAL Id: hal-02084060
https://hal.science/hal-02084060v1

Submitted on 28 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lock–Unlock: Is That All? A Pragmatic Analysis of
Locking in Software Systems

Rachid Guerraoui, Hugo Guiroux, Renaud Lachaize, Vivien Quéma, Vasileios
Trigonakis

To cite this version:
Rachid Guerraoui, Hugo Guiroux, Renaud Lachaize, Vivien Quéma, Vasileios Trigonakis. Lock–
Unlock: Is That All? A Pragmatic Analysis of Locking in Software Systems. ACM Transactions on
Computer Systems, 2019, 36 (1), pp.1-149. �10.1145/3301501�. �hal-02084060�

https://hal.science/hal-02084060v1
https://hal.archives-ouvertes.fr

Lock – Unlock: Is That All?
A Pragmatic Analysis of Locking in Software Systems

RACHID GUERRAOUI, EPFL, 1015 Lausanne, Switzerland
HUGO GUIROUX∗, Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 3800 Grenoble, France
RENAUD LACHAIZE∗, Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 3800 Grenoble, France
VIVIEN QUÉMA∗, Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 3800 Grenoble, France
VASILEIOS TRIGONAKIS†‡, Oracle Labs, 8005 Zurich, Switzerland

A plethora of optimized mutex lock algorithms have been designed over the past 25 years to mitigate perfor-
mance bottlenecks related to critical sections and locks. Unfortunately, there is currently no broad study of
the behavior of these optimized lock algorithms on realistic applications that consider different performance
metrics, such as energy efficiency and tail latency. In this paper, we perform a thorough and practical analysis
of synchronization, with the goal of providing software developers with enough information to design fast,
scalable and energy-efficient synchronization in their systems. First, we perform a performance study of 28
state-of-the-art mutex lock algorithms, on 40 applications, on four different multicore machines. We not only
consider throughput (traditionally the main performance metric), but also energy efficiency and tail latency,
which are becoming increasingly important. Second, we present an in-depth analysis in which we summarize
our findings for all the studied applications. In particular, we describe nine different lock-related performance
bottlenecks, and propose six guidelines helping software developers with their choice of a lock algorithm
according to the different lock properties and the application characteristics.

From our detailed analysis, we make a number of observations regarding locking algorithms and application
behaviors, several of which have not been previously discovered: (i) applications not only stress the lock/unlock
interface, but also the full locking API (e.g., trylocks, condition variables), (ii) the memory footprint of a lock
can directly affect the application performance, (iii) for many applications, the interaction between locks
and scheduling is an important application performance factor, (iv) lock tail latencies may or may not affect
application tail latency, (v) no single lock is systematically the best, (vi) choosing the best lock is difficult,
and (vii) energy efficiency and throughput go hand in hand in the context of lock algorithms. These findings
highlight that locking involves more considerations than the simple “lock – unlock” interface and call for
further research on designing low-memory footprint adaptive locks that fully and efficiently support the full
lock interface, and consider all performance metrics.

CCS Concepts: • Software and its engineering→Mutual exclusion.

Additional Key Words and Phrases: Multicore, synchronization, locks, performance bottleneck, lock interface

1 INTRODUCTION
Multicore machines are pervasive today but it is not always easy to leverage them. Many multi-
threaded applications suffer from bottlenecks related to critical sections and their corresponding
locks [5, 8, 9, 15, 25, 27, 32, 42, 52, 56, 60, 63, 67–70, 76, 83, 91]. Over the past 25 years, a plethora
∗Grenoble INP stands for Grenoble Institute of Engineering Univ. Grenoble Alpes.
†Project started while the author was at EPFL.
‡Authors appear in alphabetical order.

Authors’ addresses: Rachid Guerraoui, EPFL, 1015 Lausanne, DCL (Station 14), I&C, Lausanne, 1015, Switzerland, rachid.
guerraoui@epfl.ch; Hugo Guiroux, Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 3800 Grenoble, Bâtiment IMAG,
700, avenue centrale, Saint-Martin-d’Hères, 38401, France, hugo.guiroux@univ-grenoble-alpes.fr; Renaud Lachaize, Univ.
Grenoble Alpes, CNRS, Grenoble INP, LIG, 3800 Grenoble, Bâtiment IMAG, 700, avenue centrale, Saint-Martin-d’Hères,
38401, France, renaud.lachaize@univ-grenoble-alpes.fr; Vivien Quéma, Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG,
3800 Grenoble, Bâtiment IMAG, 700, avenue centrale, Saint-Martin-d’Hères, 38401, France, vivien.quema@univ-grenoble-
alpes.fr; Vasileios Trigonakis, Oracle Labs, 8005 Zurich, Prime Tower, Floor 17, Hardstrasse 201, Zurich, 8005, Switzerland,
vasileios.trigonakis@oracle.com.

2 R. Guerraoui et al.

of optimized mutual exclusion (mutex) lock algorithms have been designed to mitigate these is-
sues [8, 20, 21, 24, 27, 29–32, 36, 37, 39, 46, 47, 55, 59, 65, 66, 70, 74, 77, 79, 81, 98]. Application
and library developers can choose from this large set of algorithms for implementing efficient
synchronization in their software. However, there is currently no complete study to guide this
puzzling choice for realistic applications.

In particular, the most recent and comprehensive empirical performance evaluation on multicore
synchronization [27], due to its breadth (from hardware protocols to high-level data structures), only
provides a partial coverage of locking algorithms. Indeed, the aforementioned study only considers
nine algorithms, does not consider hybrid spinning/blocking waiting policies, omits emerging
approaches (e.g., load-control mechanisms described in Section 2.1) and provides a modest coverage
of hierarchical locks [20, 21, 32], a recent and efficient approach for NUMA architectures. Generally,
most of the observations highlighted in the existing literature are based on microbenchmarks and
only consider the lock/unlock interface, ignoring other lock-related operations such as condition
variables and trylocks. Besides, in the case of papers that present a new lock algorithm, the empirical
observations are often focused on the specific workload characteristics for which the actual lock
was designed [52, 63], or mostly based on microbenchmarks [30, 32]. Finally, existing analyses
focus on traditional performance metrics (mainly throughput) and do not cover other metrics, such
as energy efficiency and tail latency, which are becoming increasingly important. In this paper, we
perform a thorough and practical analysis of synchronization, with the goal of providing software
developers with enough information to design fast, scalable and energy-efficient synchronization
in their systems.

The first contribution of this paper is a broad performance study (Sections 5, 6 and 7) on Linux/x86
(i.e., the Linux operating system running on AMD/Intel x86 64-bit processors) of 28 state-of-the-art
mutual exclusion lock algorithms on a set of 40 realistic and diverse applications: PARSEC, Phoenix,
SPLASH2 benchmark suites, MySQL, Kyoto Cabinet, Memcached, RocksDB, SQLite, upscaledb and
an SSL proxy. Among these 40 applications, we determine that performance varies according to
the choice of a lock for roughly 60% of them, and perform our in-depth study on this subset of
applications. We believe this set of applications to be representative of real-world applications: we
consider applications that not only stress the classic lock/unlock interface to different extents, but
also exhibit different usage patterns of condition variables, trylocks, barriers and that use different
number of locks (i.e., from one global lock to thousands of locks). We consider four different
multicore machines and three different metrics: throughput, tail latency and energy efficiency.
In our quest to understand the behavior of locking, when choosing the per-configuration best
lock, we improve on average application throughput by 90%, energy efficiency by 110% and tail
latency 12× with respect to the default POSIX mutex lock (note that, in many cases, different locks
optimize different metrics). As we show in this paper, choosing a well performing lock is difficult,
as this choice depends on many different parameters: the workload, the underlying hardware, the
degree of parallelism, the number of locks, how they are used, the lock-related interfaces that the
application stresses (e.g., lock/unlock, trylock, condition variables), the interaction between the
application and the scheduler, and the performance metric(s) considered.
Our second contribution aims at simplifying the life of software developers: we perform an

in-depth analysis of the different types of lock-related performance bottlenecks that manifest in the
studied applications. In particular, we describe nine different lock-related performance bottlenecks.
Based on the insights of this analysis, we propose six guidelines for helping software developers
with their choice of lock algorithms according to the different lock properties and the application
characteristics. More precisely, by answering to a few questions about her application (e.g., more
threads than cores? blocking syscalls?) and by looking at a few lock-related metrics (e.g., the number

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 3

of allocated locks, the number of threads concurrently trying to acquire a lock), the developer is
able to understand easily and quickly which lock algorithm(s) to choose or to avoid for her specific
use case.
Our third contribution is LiTL1, an open-source, POSIX compliant [48], low-overhead library

that allows transparent interposition of Pthread mutex lock operations and support for main-
stream features like condition variables. Indeed, to conduct our study, manually modifying all
the applications in order to retrofit the studied lock algorithms would have been a daunting task.
Moreover, using a meta-library that allows plugging different lock algorithms under a common
API (such as liblock [63] or libslock [27]) would not have solved the problem, as this still requires
a substantial re-engineering effort for each application. In addition, such meta-libraries provide
no or limited support for important features like Pthread condition variables, used within many
applications. Our approach is a pragmatic one: similarly to what is done by previous works on
memory allocators [3, 12, 41, 58], we argue that transparently switching (i.e., without modifying
the application) lock algorithms (resp. memory allocators) is an efficient and pragmatic solution.

From our exhaustive study and our in-depth analysis, we make a number of observations regard-
ing locking algorithms and applications behaviors, several of which have never been previously
highlighted (to the best of our knowledge).

Applications not only stress the lock/unlock interface, but also the full locking API
(e.g., trylocks, condition variables).Most of previous works focused on the lock/unlock interface
performance of locks. We observe that many performance bottlenecks are related to other, less-
considered lock operations. For example, applications use trylocks to implement busy-waiting as
the traditional Pthread mutex implementation forces a thread to be descheduled while waiting for
a lock. However, many lock algorithms that optimize for the lock/unlock interface perform poorly
for trylock operations. Applications also heavily use condition variables, which directly interact
with the lock instance in a way that was mostly ignored by lock algorithm designers. Pragmatically,
locks should optimize not only the lock/unlock interface, but also all the other locking interfaces
proposed by the Pthread mutex API.

Thememory footprint of a lockmay directly affect the application performance.Many
lock algorithms improve performance by using more complex data structures. As an example, some
algorithms use a per-thread context to store thread lock acquisition status. Other algorithms store
statistics inside the lock instance, using these statistics to adapt the lock acquisition policy at
runtime. However, all this complexity has a cost, as it increases the memory footprint of each lock
instance. Indeed, we observe that some applications allocate thousands of lock instances, sometimes
concurrently, which stresses the memory allocator, as well as hurts the processor cache locality,
and as a consequence affects the application performance. Thus, lock designers should keep in
mind that the memory footprint of their algorithm is an important factor, and they should try to
design algorithms with a low memory footprint.

For many applications, the interaction between locks and scheduling is an important
application performance factor. It is well known [14] that some lock algorithms exhibit poor
performance in the context of over-threading (i.e., when there are more threads than available
cores). Interestingly, we further observe that the interaction between locks and the scheduler affects
the performance of many applications. Indeed, because applications use lock interfaces other than
lock/unlock (e.g., condition variables) as well as other blocking functions (e.g., synchronization
barriers, I/O syscalls), the Linux scheduler can take scheduling decisions that lead to poor application
performance with some lock algorithms. In particular, we see that the lock holder preemption [14]

1LiTL: Library for Transparent Lock interposition.

4 R. Guerraoui et al.

and the lock waiter preemption [85] problems, both well known in the literature, frequently manifest
in practice. A direct consequence of our observation is that lock designers should be aware that
the scheduler decisions can impede application performance, and thus design locks that adapt
themselves to a suboptimal scheduling.

Lock tail latencies may or may not affect application tail latency. Some locks are specif-
ically designed to ensure perfect fairness for thread acquisitions, while others trade fairness for
higher lock acquisition throughput. These properties directly affect the lock tail latency. Still, we
observe that the effect of lock tail latency on the application tail latency is not straightforward.
More precisely, if a high-level application operation is mostly implemented as a single critical
section, then the performance (throughput and tail latency) of this operation highly depends on the
properties of the lock. Hence, if low tail latency is desired, it is possible to choose a lock algorithm
designed for fairness. Alternatively, if the developer is willing to trade application tail latency for
throughput, lock algorithms trading fairness for throughput are a good choice. In contrast, we
observe that for applications with limited concurrency (i.e. where an operation/request consists of
many critical sections and/or sequential parts), the tail latency of locks does not strongly affect the
tail latency of the application. In this case, we observe that lower application tail latency generally
means higher application throughput, and as a consequence, a developer should choose a lock that
brings the best throughput.

We also confirm previous findings [27, 36, 43] on a larger number of applications, machines, and
lock algorithms.

No single lock is systematically the best. We observe that for the three metrics that we
consider, approximately 60% of the studied applications are significantly affected by lock perfor-
mance, hereafter called lock-sensitive applications. For lock-sensitive applications, at their optimized
contention level (individually tuned), the best locks never dominate in more than 53% of the cases.
A direct implication is that providing only a single lock algorithm (i.e., the Pthread lock) to software
developers certainly results in suboptimal performance for most applications.

Choosing the best lock is difficult. For a given application, the best lock varies depending on
the number of contending cores, the machine and the workload. Even worse, making the wrong
choice affects the application, as all locks are harmful (i.e., significantly inefficient compared to the
best one) for at least several workloads. Accordingly, developers should not hardwire the choice of
a lock algorithm into the code of applications.

Energy efficiency and throughput go hand in hand in the context of lock algorithms.
Previous work [36] introduced the POLY2 conjecture. The POLY conjecture states that “energy
efficiency and throughput go hand in hand in the context of lock algorithms”. More precisely, POLY
suggests that “locks can be optimized to improve energy efficiency without degrading throughput”,
and that “[the insights from] prior throughput-oriented research on lock algorithms can be applied
almost as-is in the design of energy-efficient locks”. We verify POLY on a large number of lock
algorithms and applications (the initial paper about POLY considered three lock algorithms and six
applications).

A high-level ramification of many of these observations is that the research community must
focus its efforts on designing low-memory footprint adaptive locks that fully and efficiently
support the full lock interface, and consider all performance metrics.

2POLY stands for “Pareto optimality in locks for energy efficiency”.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 5

The remainder of the paper is organized as follows: Section 2 presents a taxonomy of existing lock
designs and the list of algorithms covered by our study. Section 3 describes our experimental setup
and the studied applications. Section 4 describes the LiTL library. Sections 5, 6 and 7 respectively
describe the main throughput, energy efficiency and tail latency experimental results. Section
8 presents the detailed analysis of lock-related performance bottlenecks and gives guidelines
regarding the choice of a lock algorithm. Section 9 discusses related works and Section 10 concludes
the paper.

2 LOCK ALGORITHMS
In this section, we present the 28 multicore lock algorithms that we consider in this study and
organize them into five different categories based on their design properties. We then discuss an
important lock-algorithm design-dimension, which is the choice of a waiting policy, i.e., what a
thread does when it cannot immediately obtain a requested lock. Finally, we describe the list of the
chosen lock algorithms for our empirical study.

2.1 Background
All modern lock algorithms rely on hardware atomic instructions to ensure that a critical section is
executed in mutual exclusion. To provide atomicity, the processor relies on the cache-coherence
protocol of the machine to implement an atomic read-modify-write operation on a memory address.
Previous work [27] demonstrated that lock algorithm performance is mainly a property of the
hardware, i.e., a lock algorithmmust take into account the characteristics of the underlying machine.
The design of a lock algorithm is thus a careful choice of data structures, lock acquisition/release
policies and (potential) load-control mechanisms.
Section 2.1.2 introduces the locking API. Section 2.1.2 proposes a classification of the lock

algorithms into five categories. Section 2.1.3 discusses the various waiting policies.

2.1.1 Synchronization primitives. Locking is by far the most commonly-used approach to synchro-
nization. Practically all modern software systems employ locks in their design and implementation.
The main reason behind the popularity of locking is that it offers an intuitive abstraction. Locks
ensure mutual exclusion; only the lock holder can proceed with its execution. Executions that
are protected by locks are known as critical sections. Mutual exclusion is a way to synchronize
concurrent accesses to the critical section, i.e., threads synchronize/coordinate to avoid one thread
entering the critical section before the other left it. In addition, condition variables allow threads to
cooperate within a critical section by introducing a happened-before relationship between them.

Mutual exclusion.

Lock/unlock. Upon entering the critical section, a thread must acquire the lock via the lock
operation. This operation is blocking, i.e., a thread trying to acquire a lock instance already held
waits until the instance becomes available. When the lock holder exits the critical section, it must
call the unlock operation, to explicitly release the lock. How to acquire a lock, what to do while
waiting for the lock, and how to release the lock are choices made by a lock algorithm.

Trylock. If a lock is busy, a thread may do other work instead of blocking. In this case, it can use
the non-blocking trylock operation. This operation has a return code to indicate if the lock is
acquired. What a thread does when the trylock does not acquire the lock is up to the software
developer, not the lock algorithm. We observe that developers frequently use trylock to implement
busy-waiting, in order to avoid being descheduled (the policy that the Pthread lock algorithm uses
while waiting for a lock) if the lock is already held. This action is useful when the application

6 R. Guerraoui et al.

developer knows that the critical section protected by the lock is short, and thus that there is a high
chance for a thread to obtain the lock quickly. If the trylock acquires the lock, the lock holder
must call unlock to release the lock.

Conditions variables.
Threads often rely on condition variables to receive notifications when an event happens (e.g.,

when data is put inside a queue). A thread that wants to wait on a condition variable calls waitwhile
holding a lock. As a consequence, the thread releases the lock and blocks3. When the condition is
fulfilled, another thread calls signal or broadcast to wake any or all blocked threads, respectively.
Upon wake-up (and before exiting from wait), threads compete to acquire the lock in order to re-
enter the critical section. Efficiently implementing condition variables on top of locks is non-trivial
(see Section 4.1).

2.1.2 Categorizing lock algorithms. The body of existing work on optimized lock algorithms for
multicore architectures is rich and diverse and can be split into the following five categories.
The first two categories (competitive and direct handoff succession) are based on the succession
policy [30] of the lock algorithm, i.e., how lock ownership is transferred at unlock-time. These
two categories are mutually exclusive. The three other categories regroup algorithms that either
compose algorithms from the first two categories (hierarchical approaches), change how critical
sections are executed (delegation-based approaches), or improve existing locks with load-control
mechanisms. Note that overall these categories overlap: a given algorithm can fall into several
categories.

1) Competitive succession. Some algorithms rely on a competitive succession policy, where the
lock holder sets the lock to an available state, and all competing threads might try to acquire it
concurrently, all executing an atomic instruction on the same memory address. Such algorithms
generally stress the cache-coherence protocol as they trigger cache-line invalidations at unlock-time
to all cores waiting for the lock, while ultimately only one core succeeds in acquiring it. Competitive
succession algorithms might allow barging, i.e., “arriving threads can barge in front of other waiting
threads” [30], leading to unfairness and starvation. Examples of algorithms using a competitive
succession policy are simple spinlock [83], Backoff spinlock [8, 70], test and test-and-set (ttas) lock
[8], Mutexee lock [36] and standard Pthread mutex locks [48, 59].

2) Direct handoff succession. Direct handoff locks (also known as queue-based locks) are lock
algorithms in which the unlock operation identifies a waiting successor and then passes ownership
to that thread [30]. As the successor of the current lock holder is known, it allows each waiting
thread to wait on a non-globally shared memory address (one per waiting thread). Then, the lock
holder passes ownership with the help of this private memory address, thus avoiding cache-line
invalidations to all the other competing cores (contrary to the competitive succession policy). This
approach is known to yield better fairness. Also, this approach generally gives better throughput
under contention compared to simpler locks like spinlock. With direct handoff locks, each thread
spins on its own local variable, avoiding to send cache lines invalidations to all other spinning
cores when the lock is acquired/released (contrary to locks based on a global variable). Examples of
direct handoff lock algorithms are: MCS [70, 83], CLH [24, 66, 83].

Some algorithms do use a globally shared memory address but still use a direct handoff succession
policy. For example, Ticket lock [79] repeatedly reads a single memory address in a non-atomic
fashion, waiting for its turn to come. The Partitioned Ticket lock [29] uses an hybrid solution,
where the same memory address can be observed by a subset of the competing threads.
3Releasing the lock and blocking is atomic, to avoid loosing a signal and being blocked indefinitely.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 7

3) Hierarchical approaches. These approaches aim at providing scalable performance on NUMA
machines, by attempting to reduce the rate of lock migrations (i.e., cache-line transfers), which are
known to be costly between NUMA nodes. This category includes HBO [77], HCLH [65], FC-MCS
[31], HMCS [20] and the algorithms that stem from the lock cohorting framework [32]. A cohort
lock is based on a combination of two lock algorithms (similar or different): one used for the global
lock and one used for the local locks (there is one local lock per NUMA node); in the usual𝐶-𝐿𝐴-𝐿𝐵
notation, 𝐿𝐴 and 𝐿𝐵 respectively correspond to the global and the node-level lock algorithms. The
list notably includes C-BO-MCS, C-PTL-TKT and C-TKT-TKT (also known as HTicket [27]). The
BO, PTL and TKT acronyms respectively correspond to Backoff lock, Partitioned Ticket lock, and
standard Ticket lock.

4) Delegation-based approaches. Delegation-based lock algorithms are locks in which it is (some-
times or always) necessary for a thread to delegate the execution of a critical section to another
thread. The typical benefits expected from such approaches are improved cache locality and better
resilience under very high lock contention. This category includes Oyama [74], Flat Combining
[47], RCL [63], FFWD [81], CC-Synch [37] and DSM-Synch [37].

5) Load-control mechanisms. This category includes lock algorithms implementing mechanisms
that detect situations in which a lock needs to adapt itself, for example to cope with changing
levels of contention (i.e., how many threads concurrently attempt to acquire a lock), or to avoid
lock-related pathological behaviors (e.g., preemption of the lock holder to execute a thread waiting
for the lock). This category includes MCS-TimePub4 [46], GLS [9], SANL [98], LC [52], AHMCS5
[21] and so-called Malthusian algorithms like Malth_Spin and Malth_STP6 [30].

2.1.3 Waiting policy. An important design dimension of lock algorithms is the waiting policy used
when a thread cannot immediately obtain a requested lock [30]. There are three main approaches.

Spinning. The most straightforward solution for waiting is to continuously check the status of
the lock until it becomes available. However, such a policy might waste energy, and the time spent
waiting on a core might prevent other descheduled threads from progressing. Processors provide
special instructions to inform the CPU microarchitecture when a thread is spinning. For example,
x86 CPUs offer the PAUSE instruction7 that is specifically designed to avoid branch-misprediction,
and which informs the core that it can release shared pipeline resources to sibling hyperthreads [30].
In case of a failed lock acquisition attempt, different lock algorithms can use different (and

possibly combine several) techniques to lower the number of simultaneous acquisitions attempts
and the energy consumption while waiting. Using a fixed or randomized backoff (i.e., a thread
avoids attempting to acquire the lock for some time) lowers the number of concurrent atomic
instructions, thus the cache-coherence traffic. Hardware facilities can also be used to lower the
frequency of the waiting thread’s core (DVFS [92]), or to notify the core that it can enter in an
idle state to save power (via the privilegied MONITOR/MWAIT instructions [36], accessible for locks
running in privilegied mode, or via a kernel module [7]). Finally, a thread can voluntarily surrender
its core in a polite fashion by calling sched_yield or sleep.

4MCS-TimePub is mostly known as MCS-TP. Still, we use MC-TimePub to avoid confusion with MCS_STP.
5The original AHMCS paper [21] presents multiple versions of AHMCS. In this article, the version without hardware
transactional memory of AHMCS is considered.
6Malth_Spin and Malth_STP correspond to MCSCR-S and MCSCR-STP respectively in the terminology of Dave Dice [30];
still we do not use the latter names to avoid confusion with other MCS locks.
7The MFENCE instruction can also be used and is known to yield lower energy consumption than the PAUSE instruction on
certain Intel processors [36].

8 R. Guerraoui et al.

Immediate parking. With immediate parking8, a thread waiting for an already held lock immedi-
ately blocks until the thread gets a chance to obtain the lock9. This waiting policy requires kernel
support (via the futex syscall on Linux) to inform the scheduler that the thread is waiting for a
lock, so that it does not try to schedule the thread until the lock is made available. At unlock-time,
the lock holder is then responsible to inform the scheduler that the lock is available.

Hybrid approaches. The motivation behind hybrid approaches is that different waiting policies
have different costs. For example, the spin-then-park policy is a hybrid approach using a fixed or
adaptive spinning threshold [54]. It tries to mitigate the cost of parking as the block and unblock
operations are expensive (both in terms of energy and performance). The spinning threshold
is generally equal to the time of a round-trip context switch. Other techniques mix different
spinning policies, such as backoff and sched_yield [27]. Finally, more complex combinations can
be implemented: some algorithms [36, 90] trade fairness for throughput by avoiding to unpark a
thread at unlock-time if there is another one currently spinning (also known as adaptive unlock).

The choice of the waiting policy is mostly orthogonal to the lock design but, in practice, policies
other than pure spinning are only considered for certain types of locks: the direct handoff locks
(from categories 2, 3 and 5 above), Mutexee and the standard Pthread mutex locks. However, this
choice directly affects both the energy efficiency and the performance of a lock: Falsafi et al. [36]
found that pure spinning inherently hurts power consumption, and that there is no practical way
to reduce the power consumption of pure spinning. They found that blocking can indeed save
power, because when a thread blocks, the kernel can then put the core(s) in one of the low-power
idle states [6, 50]. However, the process of blocking is costly, because the cost of the blocking and
unblocking operations is high on Linux. Switching continuously between blocking and unblocking
can hurt energy efficiency, sometimes even more than using pure spinning policies. Thus, there
is an energy-efficiency tradeoff between spinning and parking. Note that we use hereafter the
expression parking policy to encompass both immediate parking and hybrid spin-then-park waiting
policies.

2.2 Studied algorithms
We now describe the 28 mutex lock algorithms that are representative of both well-established and
state-of-the-art approaches. Our choice of studied locks is guided by the decision to focus on portable
lock algorithms. We therefore exclude the following locks that require strong assumptions on the
application/OS behavior, code modifications, or fragile performance tuning: HCLH, HBO, FC-MCS
(see Dice et al. [32] for detailed arguments). We also do not study delegation-based algorithms,
because they require critical sections to be expressed as a form of closure (i.e., functions) [32], which
is incompatible with our transparent approach (i.e., without source code modification). Finally, we
do not consider runtime approaches like LC and GLS, which require special kernel support and/or
monitoring threads.
We use the _Spin and _STP suffixes to differentiate variants of the same algorithm that only

differ in their waiting policy (pure spinning vs spin-then-park). Unless explicitly specified by the
lock algorithm implementation, we use the PAUSE instruction to pause between spinning loop
iterations. The -ls tag corresponds to algorithms borrowed from libslock [27]. As well, note that
the GNU C library for Linux provides two versions of Pthread mutex locks [40]: the default one
uses immediate parking (via the futex syscall) and the second one uses an adaptive spin-then-park
strategy. The latter version can be enabled with the PTHREAD_MUTEX_ADAPTIVE_NP option [59].
8In the remainder of this paper, we use blocking and (immediate) parking interchangeably.
9Some locks use timeouts to bound the time spent in the blocked state in order to improve responsiveness.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 9

Our set of algorithms is summarized in Table 1 and includes eight competitive succession locks
(Backoff, Mutexee, Pthread, PthreadAdapt, Spinlock, Spinlock-ls, TTAS, TTAS-ls), ten direct handoff
locks (ALock-ls, CLH-ls, CLH_Spin, CLH_STP, MCS-ls, MCS_Spin, MCS_STP, Ticket, Ticket-ls,
Partitioned), six hierarchical locks (C-BO-MCS_Spin, C-BO-MCS_STP, C-PTL-TKT, C-TKT-TKT,
HTicket-ls, HMCS), and four load-control locks (AHMCS, Malth_Spin, Malth_STP, MCS-TimePub).

10 R. Guerraoui et al.

Table 1. A short description of the 28 multicore lock algorithms that we consider.

Name Reference Short description

Competitive
Backoff [70] Test-and-set (TAS) with exponential bounded backoff if the lock is already held.
Mutexee [36] A spin-then-park (STP) lock designed with energy efficiency in mind.
Pthread [39] TAS with direct parking.
PthreadAdapt [59] An adaptive STP algorithm, performing a number of trylocks (before blocking) that

depends on the number of trylocks performed by the lock holder when it acquired the
lock.

Spinlock [8] Compare-and-set algorithm with busy waiting.
Spinlock-ls [27] TAS algorithm with busy waiting.
TTAS [8] Performs non-atomic loads on the lock memory address before trying to acquire it

atomically with a TAS instruction.
TTAS-ls [27] Similar to TTAS but uses an exponential bounded backoff if the TAS fails.

Direct handoff
ALock-ls [8] Thewaiting threads are organized inside a fixed-sized array, i.e., there is a fixed bound

N on the number of waiting threads. A thread waits on one of the private cache-
aligned array slot. At unlock-time, the lock holder wakes the next thread by changing
the content of the slot on which the next thread is waiting.

CLH_Spin [24, 66] Waiting threads are organized as an inverse linked-list, where a thread spins on the
context (i.e., linked-list node) of its predecessor. At unlock-time, the lock holder wakes
up the thread at the head of the waiting list.

CLH_STP [24, 66] Similar to CLH_Spin but uses a STP waiting policy.
CLH-ls [27] Similar to CLH_Spin but uses the PREFETCHW x86 CPU instruction while spinning.
MCS_Spin [70] Waiting threads are organized as a linked-list, where a thread spins on its private

context. At unlock-time, the lock holder wakes up its successor.
MCS_STP [70] Similar to MCS_Spin but uses a STP waiting policy.
MCS-ls [27] Similar to MCS_Spin but uses the PREFETCHW x86 CPU instruction while spinning.
Ticket [79] A thread trying to acquire the lock atomically takes a “ticket” (implemented as an in-

crementing counter) and spins while its ticket is not equal to the “next-ticket” number.
At unlock-time, the lock holder increments the “next-ticket” number.

Ticket-ls [27] Similar to Ticket but a thread waits proportionally to the number of threads waiting
before him.

Partitioned [29] Similar to Ticket but the “next-ticket” number is implemented inside an array, where
a thread waits on its “ticket” slot (𝑠𝑙𝑜𝑡 = 𝑡𝑖𝑐𝑘𝑒𝑡 % 𝑠𝑖𝑧𝑒 (𝑎𝑟𝑟𝑎𝑦)).

Hierarchical
C-BO-MCS_Spin [32] A thread first tries to acquire a MCS_Spin local lock shared by all threads on the same

NUMA node (the local lock), then competes on the Backoff top lock with other threads
holding their respective local locks.

C-BO-MCS_STP [32] Similar to C-BO-MCS_Spin but uses a STP waiting policy for te MCS locks.
C-PTL-TKT [32] Similar to C-BO-MCS_Spin but the local locks are Ticket locks and the top lock is a

Partitioned lock.
C-TKT-TKT [32] Similar to C-BO-MCS_Spin but the top and local locks are Ticket locks.
HTicket-ls [27] Similar to C-TKT-TKT but a thread waits proportionally to the number of threads

waiting before him.
HMCS [20] Similar to C-BO-MCS_Spin but the top and local locks are MCS_Spin locks.

Load-control
AHMCS [21] Similar to HMCS, but when a thread tries to acquire the lock, it remembers if the last

time it released the lock there was a thread waiting. If not, it only locks the top lock
because it assumes low contention the lock. The AHMCS version without hardware
transactional memory is considered.

Malth_Spin [30] A variant of the MCS_Spin lock where, when there is contention on a lock, a subset
of the spinning competing threads are put aside temporarily to let the others progress
more easily.

Malth_STP [30] Similar to Malth_Spin but threads use a STP waiting policy.
MCS-TimePub [46] A variant of the MCS_Spin lock, in which a waiting thread relinquishes its core if

it detects (heuristically, using timers and thresholds) that the lock holder has been
preempted. At unlock-time, the lock holder might bypass some waiting threads if it
detects they have been preempted.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 11

3 METHODOLOGY
In this section we describe our study’s methodology. We first describe the different testbed platforms
we use and the applications we study (Section 3.1). Then, in Section 3.2, we present our tuning
choices and our experimental methodology.

Table 2. Hardware characteristics of the testbed platforms.

Name A-64 A-48
Total #cores 64 48

Server model Dell PE R815 Dell PE R815
Processors 4× AMD Opteron 6272 4× AMD Opteron 6344

Microarchitecture Bulldozer / Interlagos Piledriver / Abu Dhabi
Clock frequency 2.1 GHz 2.6 GHz
Last-level cache (per node) 8 MB 8 MB

Interconnect HT3 - 6.4 GT/s per link HT3 - 6.4 GT/s per link
Memory 256 GB DDR3 1600 MHz 64 GB DDR3 1600 MHz
#NUMA nodes (#cores/node) 8 (8) 8 (6)

Network interfaces (10 GbE) 2× 2-port Intel 82599 2× 2-port Intel 82599
OS & tools Ubuntu 12.04 Ubuntu 12.04
Linux kernel 3.17.6 (CFS scheduler) 3.17.6 (CFS scheduler)
glibc 2.15 2.15
gcc 4.6.3 4.6.3

Name I-48 I-20
Total #cores 48 (no hyperthreading) 20 (no hyperthreading)

Server model SuperMicro SS 4048B-TR4FT SuperMicro X9DRW
Processors 4× Intel Xeon E7-4830 v3 2× Intel Xeon E5-2680 v2

Microarchitecture Haswell-EX Ivy Bridge-EP
Clock frequency 2.1 GHz 2.8 GHz
Last-level cache (per node) 30 MB 25 MB

Interconnect QPI - 8 GT/s per link QPI - 8 GT/s per link
Memory 256 GB DDR4 2133 MHz 256 GB DDRR 1600 MHz
#NUMA nodes (#cores/node) 4 (12) 2 (10)

Network interfaces (10 GbE) 2-port Intel X540-AT2 -
OS & tools Ubuntu 12.04 Ubuntu 14.04
Linux kernel 3.17.6 (CFS scheduler) 3.13 (CFS scheduler)
glibc 2.15 2.19
gcc 4.6.4 4.6.3

3.1 Testbed and studied applications
Our experimental testbed consists of four Linux-based x86 multicore servers whose main char-
acteristics are summarized in Table 2. All the machines run the Ubuntu 12.04 OS with a 3.17.6
Linux kernel (CFS scheduler), except the I-20 machine running an Ubuntu 14.04 OS with a 3.13
Linux kernel. We tried to keep the software configuration as similar as possible for the different
versions: they all use glibc (GNU C Library) version 2.15 (2.19 for I-20) and gcc version 4.6.3 (4.6.4 on

12 R. Guerraoui et al.

Table 3. Applications considered.

Application Benchmark Suite Type

kyotocabinet - database
memcached-old - memory cache
memcached-new - memory cache
mysqld - database
rocksdb - key/value store
sqlite - database
ssl_proxy - ssl reverse proxy
upscaledb - key/value store
blackscholes PARSEC 3.0 financial analysis
bodytrack PARSEC 3.0 computer vision
canneal PARSEC 3.0 engineering
dedup PARSEC 3.0 enterprise storage
facesim PARSEC 3.0 animation
ferret PARSEC 3.0 similarity search
fluidanimate PARSEC 3.0 animation
freqmine PARSEC 3.0 data mining
p_raytrace PARSEC 3.0 rendering
streamcluster PARSEC 3.0 data mining
streamcluster_ll PARSEC 3.0 data mining
swaptions PARSEC 3.0 financial analysis
vips PARSEC 3.0 media processing
x264 PARSEC 3.0 media processing
histogram Phoenix 2 image
kmeans Phoenix 2 statistics
linear_regression Phoenix 2 statistics
matrix_multiply Phoenix 2 mathematical computations
pca Phoenix 2 statistics
pca_ll Phoenix 2 statistics
string_match Phoenix 2 text processing
barnes SPLASH2x physics simulation
fft SPLASH2x mathematical computations
fmm SPLASH2x physics simulation
lu_cb SPLASH2x mathematical computations
lu_ncb SPLASH2x mathematical computations
ocean_cp SPLASH2x physics simulation
ocean_ncp SPLASH2x physics simulation
radiosity SPLASH2x rendering
radiosity_ll SPLASH2x rendering
radix SPLASH2x sorting
s_raytrace SPLASH2x rendering
s_raytrace_ll SPLASH2x rendering
volrend SPLASH2x rendering
water_nsquared SPLASH2x physics simulation
water_spatial SPLASH2x physics simulation
word_count SPLASH2x text processing

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 13

I-48). We configured the BIOS of the A-64 and the A-48 machines in performance mode (processor
throttling is turned off so that all cores run at maximum speed, e.g., no C-state, no turbo mode). The
BIOS of the I-48 and I-20 machines in performance mode for the throughput experiments, and in
energy-saving mode for the energy-efficiency experiments. For all configurations, hyper-threading
is disabled.

Table 3 lists the applications we chose for our comparative study of lock performance and lock
energy efficiency. More precisely, we consider (i) the applications from the PARSEC benchmark
suite version 3.0 (emerging workloads) [13], (ii) the applications from the Phoenix 2.0 MapReduce
benchmark suite [78], (iii) the applications from the SPLASH2x high-performance computing
benchmark suite [13]10, (iv) the MySQL database version 5.7.7 [73] running the Cloudstone work-
load [88], (v) SSL proxy, an event-driven SSL endpoint that processes small messages, (vi) upscaledb
2.2.0 [22], an embedded key/value running the ham_bench benchmark, (vii) the Kyoto Cabinet
database version 1.2.76 [35], a standard relational database management system running the in-
cluded benchmark, (viii) Memcached, versions 1.4.15 and 1.4.3611 [16], an in-memory cache system,
(ix) RocksDB 4.8 [34], a persistent key/value store running the included benchmark, and (x) SQLite
3.13 [89], an embedded SQL database using the dbt2 TPC-C workload generator12. We use remote
network injection for the MySQL and the SSL proxy applications. For Memcached, similarly to
other setups used in the literature [36, 63], the workload runs on a single machine: we dedicate
one socket of the machine where we run memaslap to inject network traffic to the Memcached
instance, the two running on two distinct sets of cores. For the Kyoto Cabinet application, like in
previous work [30], we redirect calls to rw_lock to classic mutex_lock calls. This might change
the synchronization pattern of the application, yet this aplication is still interesting to consider
because its performance is known to vary according to lock algorithms [19]. By default, phoenix
launches one thread per available core, and pins each thread to one core. However, to have the same
baseline for all our benchmarks, we decided to disable pinning in phoenix, leaving to the scheduler
the thread placement decisions. Note that when benchmarks are evaluated in a thread-to-node
pinning configuration (see Section 5.3), phoenix is also evaluated on a thread-to-node pinning
configuration.

In order to evaluate the impact of workload changes on locking performance and energy efficiency,
we also consider “long-lived” variants of four of the above workloads (pca, s_raytrace, radiosity
and streamcluster) denoted with a “_ll” suffix. The motivation behind these versions is to stress
the application’s steady-state phase, where the locks are mostly acquired/released. By contrast,
the short-lived versions allow us to benchmark the performance of the initialization and cleanup
operations of a lock algorithm. For each application, we modified it to report throughput (in
operations per seconds, e.g., number of rays traced for an application that renders a 3-D phase) and
use larger input size. We capture the throughput of the “steady-state” phase exclusively, ignoring
the impact of the start/shutdown phases. Note that six of the applications only accept, by design, a
number of threads that corresponds to a power of two: facesim, fluidanimate (from PARSEC), fft,
ocean cp, ocean ncp, radix (from SPLASH2). We decide to not include experiments for these six
applications on the two 48-core machines and the 20-core machine, in order to keep the presentation
of results uniform and easy. Besides, we were not able to evaluate the applications using network
injection on the I-20 machine due to a lack of high-throughput network connectivity.

Some (application,lock algorithm,machine) configurations cannot be evaluated, for the following
reasons. First, due to a lack of memory (especially on the A-48, which only has 64 GB of memory),
10We excluded the Cholesky application because of extremely short completion times.
11Memcached 1.4.15 uses a global lock to synchronize all accesses to a shared hash table. This lock is known to be the main
bottleneck. Newer versions use per-bucket locks, thus suffer less from contention.
12https://sourceforge.net/projects/osdldbt/

https://sourceforge.net/projects/osdldbt/

14 R. Guerraoui et al.

and because some applications allocate too many lock instances and the memory footprint of
some lock algorithms is high: (i) AHMCS with dedup and fluidanimate on all machines, and
(ii) CLH, ALock-ls, TTAS-ls with dedup on A-48 results are not reported. Second, fluidanimate,
Memcached-old, Memcached-new, streamcluster, streamcluster_ll, vips rely on trylock operations.
CLH algorithms and HTicket-ls do not support trylock, and Partitioned and C-PTL-TKT trylock
implementations might block threads for a short time (which can cause deadlocks with Memcached-
*). Those configurations are not evaluated. Finally, most of the studied applications use a number
of threads equal to the number of cores, except the four following ones: dedup (3× threads), ferret
(4× threads), MySQL (hundreds of threads) and SQLite (hundreds of threads). For applications with
significantly more threads than cores (SQLite and MySQL), we exclude results for algorithms using
a spinning waiting policy: these applications suffer from the lock holder preemption issue (see
Section 8.1.2 for more details) up to a point where performance drops close to zero.

3.2 Tuning and experimental methodology
For the lock algorithms that rely on static thresholds, we use the recommended values from the
original papers and implementations. The algorithms based on a spin-then-park waiting policy (e.g.,
Malth_STP [30]) rely on a fixed threshold for the spinning time that corresponds to the duration of
a round-trip context switch [54]—in this case, we calibrate the duration using a microbenchmark on
the testbed platform. All the applications are run with memory interleaving (via the numactl utility)
in order to avoid NUMA memory bottlenecks13. Datasets are copied inside a temporary file-storage
facility (tmpfs) before running experiments, to avoid disk I/O. For most of the experiments detailed
in the paper, the application threads are not pinned to specific cores. Note that for hierarchical
locks, which are composed of one top lock and one per-NUMA node bottom lock, a thread always
tries to acquire the bottom lock where it is currently running. Doing so, cache coherence traffic
is limited, which is one of the main reason behind the design of hierarchical locks. The effect of
pinning is nonetheless discussed in Section 5.3.

Generally, in the experiments presented in this paper, we study both the throughput, the energy-
efficiency impact and the tail latency of a lock algorithm for a given level of contention, i.e., the
number of threads of the application. We vary the level of contention at the granularity of a NUMA
node (i.e., 8 cores for the A-64 machine, 6 cores for the A-48 machine, 12 cores for the I-48 machine
and 10 cores for the I-20 machine). Note that for Memcached-old and Memcached-new, we use
one socket of the machine to run the injection threads, so the maximum number of cores tested is
lower than the total number of cores on the machine: the figures and tables are modified to take
this into account.
We consider three metrics: application-level throughput, tail latency, and energy efficiency.

More precisely, for throughput, (i) for MySQL, SSL Proxy, upscaledb, Kyoto Cabinet, RocksDB
and SQLite, the application throughput is used as a performance metric, (ii) for the long-lived
applications, progress points are inserted in the source code of the application, and (iii) for all the
other applications, the inverse of the total execution time is used. For tail latency, we consider the
application tail latency, here defined as the 99th percentile of client response time. We perform
energy consumption measurements using the RAPL (Running Average Power Limit) [51] power
meter interface on the two Intel machines (I-48 and I-20). RAPL is an on-chip facility that provides
counters to measure the energy consumption of several components: cores, package and DRAM.
We do not capture energy for our two AMD machines as they do not have APM (Application Power
Management), AMD’s version of RAPL.

13For the Memcached-* experiments where some nodes are dedicated to network injection, memory is interleaved only on
the nodes dedicated to the server.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 15

We run each experiment at least 5 times and compute the average value. For long-lived and
server workloads, a 30-second warmup phase precedes a 60-second capture phase, before killing
the application. For configurations exhibiting high variability (i.e., more than 5% of relative stan-
dard deviation), we run more experiments, trying to lower the relative standard deviation of the
configuration, to increase the confidence in our results. More precisely, we found that roughly
15% of the (application, lock algorithm, machine, number of threads) configurations have a relative
standard deviation (rel.stdev.) higher than 5%. Besides, 6% of the configurations have a rel.stdev
higher than 10% and 2% higher than 20%. C-BO-MCS_STP, TTAS and Spinlock-ls are the studied
lock algorithms that exhibit the higher variability: the rel.stdev of these locks is higher than 5%
for 20% of the configurations. Concerning the applications, ocean_cp, ocean_ncp, streamcluster
and fft exhibit a high rel.stdev (roughly 50% of the configurations have a rel.stdev higher than 5%).
Finally, streamcluster, dedup and streamcluster_ll are applications for which some configurations
exhibit a very high rel.stdev (higher than 20% in 10% of the cases). In order to mitigate the effects
of variability, when comparing two locks, we consider a margin of 5%: lock 𝐴 is considered better
than lock 𝐵 if 𝐵’s performance (resp. energy efficiency or tail latency) is below 95% of 𝐴’s. Besides,
in order to make fair comparisons among applications, the results presented for the Pthread locks
are obtained using the same library interposition mechanism (see Section 4) as with the other locks.

Finally, for the sake of space, we do not report all the results for the four studied machines. We
rather focus on the A-64 machine for the different studies and provide summaries of the results
for the other machines, which are in accordance to the results on the A-64 machine. Nevertheless,
the entire set of results can be found in the Appendix. We also do not systematically report, for
the sake of readability, the standard deviations as they are low for most configuration. Note that
the raw dataset (for all the experiments, on all machines) of throughput, tail latency and energy is
available online [44], letting the readers perform their own analysis.

4 LITL: A LIBRARY FOR TRANSPARENT LOCK INTERPOSITION
In this section we present the LiTL library, an open-source, POSIX compliant, low-overhead library
that allows transparent interposition of Pthread mutex lock operations and support for mainstream
features like condition variables. We first describe the design of LiTL in Section 4.1, discuss its
implementation in Section 4.2, evaluate some elementary costs introduced by LiTL in Section 4.3,
and experimentally assess its performance in Section 4.4.

4.1 Design
We describe the general design principles of LiTL, how it supports condition variables, and how it
can easily be extended to support specific lock semantics. The pseudo-code of the main wrapper
functions of the LiTL library is depicted in Figure 1.

General principles. The primary role of LiTL is to maintain a mapping between an instance of
the standard Pthread lock (pthread_mutex_t) and an instance of the chosen optimized lock type
(e.g., MCS_Spin). This mapping is maintained in an external data structure (see details in §4.2),
rather than using an “in-place” modification of the pthread_mutex_t structure. This choice is
motivated by two main reasons. First, for applications that rely on condition variables, we need to
maintain a standard pthread_mutex_t lock instance (as explained later in this section). Second
(and regardless of the previous reason), LiTL is aimed at being easily portable across C standard
libraries. Given that the POSIX standard does not specify the memory layout and contents of the

16 R. Guerraoui et al.

// Return values and error checks omitted for simplicity.

pthread_mutex_lock(pthread_mutex_t *m) {
optimized_mutex_t *om = get_optimized_mutex(m);
if (om == null) {

om = create_and_store_optimized_mutex(m); // This function deals with
// possibly concurrent
// creation attempts.

}
optimized_mutex_lock(om);
real_pthread_mutex_lock(m); // Acquiring the "real" mutex in order to

// support condition variables.
// Note that there is no contention
// on this mutex.

}

pthread_mutex_unlock(pthread_mutex_t *m) {
optimized_mutex_t *om = get_optmized_mutex(m);
optimized_mutex_unlock(om);
real_pthread_mutex_unlock(m);

}

pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m) {
optimized_mutex_t *om = get_optimized_mutex(m);
optimized_mutex_unlock(om);
real_pthread_cond_wait(c, m);
real_pthread_mutex_unlock(m); // We need to release the "real" mutex;
optimized_mutex_lock(om); // otherwise if a thread calls
real_pthread_mutex_lock(m); // pthread_mutex_lock, grabs the optimized

// mutex, and tries to acquire the "real"
// mutex, there might be a deadlock, as
// the "real" mutex lock is held after
// real_pthread_cond_wait.

}

// Note that the pthread_cond_signal and pthread_cond_broadcast primitives
// do not need to be interposed.

Fig. 1. Pseudocode for the main wrapper functions of LiTL.

pthread_mutex_t structure14, it it is non-trivial to devise an “in-place modification” approach that
is at the same time safe, efficient and portable.

The above-mentioned design choice implies that LiTL must keep track of the lifecycle of all the
locks through interposition of the calls to pthread_mutex_init and pthread_mutex_destroy,
and that each interposed call to pthread_mutex_lock must trigger a lookup for the instance of
the optimized lock. In addition, lock instances that are statically initialized can only be discovered
and tracked upon the first invocation of pthread_mutex_lock on them (i.e., a failed lookup leads
to the creation of a new mapping).

The lock/unlock API of several lock algorithms requires an additional parameter (called struct
hereafter) in addition to the lock pointer, e.g., in the case of an MCS lock, this parameter corresponds

14In fact, different standard libraries [38, 39] and even different versions of the same library have significantly different
implementations.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 17

to the record to be inserted in (or removed from) the lock’s waiting queue. In the general case, a
struct cannot be reused nor freed before the corresponding lock has been released. For instance, an
application may rely on nested critical sections (i.e., a thread𝑇 must acquire a lock 𝐿2 while holding
another lock 𝐿1). In this case, 𝑇 must use a distinct struct for 𝐿2 in order to preserve the integrity
of 𝐿1’s struct. In order to gracefully support the most general cases, LiTL systematically allocates
exactly one struct per lock instance and per thread (a static array is allocated alongside the lock
instance, upon the first access to the lock instance), while taking care of avoiding false-sharing
of cache lines among threads. LiTL uses the default memory allocator (glibc ptmalloc), which has
per-thread arenas to avoid lock contention (since glibc 2.15) [49].

Supporting condition variables. Efficiently dealing with condition variables inside each optimized
lock algorithm would be complex and tedious as most locks have not been designed with condition
variables in mind. Indeed, most lock algorithms suffer from the so-called thundering-herd effect,
where all waiting threads unnecessary contend on the lock after a call to pthread_cond_broadcast15,
which might lead to a scalability collapse. The Linux Pthread implementation does not suffer from
the thundering-herd effect, as it only wakes up a single thread from the wait queue of the condition
variable and directly transfers the remaining threads to the wait queue of the Pthread lock. However,
to implement this optimization, all the waiting threads must block on a single memory address16,
which is incompatible with lock algorithms that are not based on a competitive succession policy.

We therefore use the following generic strategy: our wrapper for pthread_cond_wait internally
calls the actual pthread_cond_wait function. To issue this call, we hold a real Pthread mutex lock
(of type pthread_mutex_t), which we systematically acquire just after the optimized lock. This
strategy (depicted in the pseudocode of Figure 1) does not introduce high contention on the real
Pthread lock. Indeed, (i) for workloads that do not use condition variables17, the Pthread lock is only
requested by the holder of the optimized lock associated with the critical section and, (ii) workloads
that use condition variables are unlikely to have more than two threads competing for the Pthread
lock (the holder of the optimized lock and a notified thread).

A careful reader might suggest to take the Pthread lock only before calling pthread_cond_wait
on it. This approach has been proposed by Lozi et al. [63], but we discovered that it suffers from
liveness hazards due to a race condition. Indeed, when a thread T calls pthread_cond_wait, it is
not guaranteed that the two steps (releasing the lock and blocking the thread) are always executed
atomically. Thus, a wake-up notification issued by another thread may get interleaved between the
two steps and T may remain indefinitely blocked.
We acknowledge that the additional acquire and release calls to the uncontended Pthread lock

lengthen the critical section, which might increase the contention (i.e., multiple threads trying to
acquire the lock simultaneously). However, the large number of studied applications (40) allows us
to observe different critical-section lengths, and the different threads configurations considered
(one node, max nodes and opt nodes) allow us to observe different probabilities of conflict for a given
application.

Support for specific lock semantics. Our implementation is compliant with the specification of
the DEFAULT non-robust POSIX mutex type [48]. More precisely, we do not support lock holder
crashes (robustness), relocking the same lock can lead to deadlock or undefined behavior, and the
behavior of unlocking a lock with a non-holder thread is undefined (it depends on the underlying
lock algorithm).
1519 out of 40 of our studied application uses this operation, in most cases to implement barriers.
16This is a restriction of the Linux futex syscall.
17LiTL comes with a switch to turn off the condition variable algorithm at compile time. However, in order to make fair
comparisons, we always use LiTL with the condition variable algorithm turned on for all the studied applications.

18 R. Guerraoui et al.

linear_regression
m

atrix_m
ultiply

radiosity_ll
s_raytrace_ll

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00N

or
m

al
iz

ed
 a

pp
lic

at
io

n
th

ro
ug

hp
ut

(h
ig

he
r

is
 b

et
te

r)

Fig. 2. Performance comparison (throughput) of manually implemented locks (black bars) vs. transparently
interposed locks using LiTL (white bars) for 4 different applications. The throughput is normalized with
respect to the best performing configuration for a given application (A-64 machine).

The design of LiTL is compatible with specific lock semantics when the underlying lock algo-
rithms offer the corresponding properties. For example, LiTL supports non-blocking lock requests
(pthread_mutex_trylock) for all the currently implemented locks except CLH-based locks and
HTicket-ls, which are not compatible with the trylock non-blocking operation18. Although not yet
implemented, LiTL could easily support blocking requests with timeouts for the so-called “abortable”
locks (e.g., MCS-Try [84] and MCS-TimePub [46]). Moreover, support for optional Pthread mutex
behavior like reentrance and error checks19 could be easily integrated in the generic wrapper code
by managing fields for the current owner and the lock acquisition counter. Note that none of the
applications that we have studied requires a non-DEFAULT POSIX mutex type.

4.2 Implementation
The library relies on a scalable concurrent hash table (CLHT [28]) in order to store, for each
Pthread mutex instance used in the application, the corresponding optimized lock instance, and
the associated per-thread structs. For well-established locking algorithms like MCS, the code of
LiTL borrows from other libraries [4, 27, 36, 63]. Other algorithms (i.e., CLH, C-BO-MCS, C-PTL-
TKT, C-TKT-TKT, HMCS, AHMCS, Malthusian, Partitioned, Spinlock, TTAS) are implemented from
scratch based on the description of the original papers. For algorithms that are based on a parking
waiting policy, our implementation directly relies on the futex Linux system call.

18The design of the Partitioned (and by extension C-PTL-TKT) lock does not allow implementing a perfect trylock, i.e., a
trylock that never blocks. As a consequence, if two threads try to acquire the lock simultaneously, one of them might block
for a short time.
19Using respectively the PTHREAD_MUTEX_RECURSIVE and PTHREAD_MUTEX_ERRORCHECK attributes.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 19

Finally, the source code of LiTL relies on preprocessor macros rather than function pointers.
We have observed that the use of function pointers in the critical path introduced a surprisingly
high overhead (up to a 40% throughput decrease). Moreover, all data structures of the interposition
library as well as the ones used to implement the lock algorithms are cache-aligned, in order
to mitigate the effect of false sharing. The applications’ data structures are not modified, as our
approach aims at being transparent.

4.3 Lookup overhead
To assess the overhead of performing a lookup in the hash table each time a lock is accessed, we
designed a micro-benchmark in which threads perform concurrent lookups, varying the number
of threads (from 1 to 64) and the number of elements20 (from 1 to 32768). On the A-64 machine,
no matter the number of lock instances, at 1 thread, a look-up costs 20 cycles, and from 2 to 64
threads, 25 cycles. The 5-cycle difference is explained by the fact that on the A-64 machine, two
siblings cores share some microarchitectural units of the CPU.
Regardless of the number of lock instances, the number of threads, and the lock algorithm (as

only a pointer is stored), the cost is constant and low. In terms of memory footprint, CLHT stores
3 pairs (pthread lock instance, optimized lock instance) per 64-byte cache-line. Overall, CLHT is a
good choice as a hash map, and using a hash map should not influence the results significantly.

4.4 Experimental validation
In this section, we assess the performance of LiTL using the A-64 machine. To that end, we
compare the performance (throughput) of each lock on a set of applications running in two distinct
configurations: manually modified applications and unmodified applications using interposition
with LiTL. Clearly, one cannot expect to obtain exactly the same results in both configurations, as
the setups differ in several ways, e.g., with respect to the exercised code paths, the process memory
layout and the allocation of the locks (e.g., stack- vs. heap-based). However, we show that, for both
configurations, (i) the achieved performance is close and (ii) the general trends for the different
locks remain stable.

We selected four applications: linear_regression, matrix_multiply, radiosity_ll and s_raytrace_ll.
The first two applications do not use condition variables, thus allowing us to compare LiTL with
manual lock implementation without the extra uncontended Pthread lock acquisition. Because
the two others use condition variables, we compare LiTL with manual lock implementations and
with the condition variable algorithm. These four applications are particularly lock-intensive: they
represent unfavorable cases for LiTL. Moreover, we focus the discussion on the results under the
highest contention level (i.e., when the application uses all the cores of the target machine), as this
again represents an unfavorable case for LiTL.

Figure 2 shows the normalized performance (throughput) of both configurations (manual/inter-
posed) for each (application, lock) pair. In addition, Table 4 summarizes the performance differences
for each application.
We observe that, for all four applications, the results achieved by the two versions of the same

lock are very close: the average performance difference is never higher than 8%. Besides, Figure
2 highlights that the general trends observed with the manual versions are preserved with the
interposed versions.

20The key and value are both pointers – 8 bytes –, to the original pthread lock instance and to the LiTL lock instance (plus
per-thread structs) respectively.

20 R. Guerraoui et al.

Table 4. Detailed statistics for the performance comparison of manually implemented locks vs. transparently
interposed locks using LiTL (A-64 machine).

lin
ear
_re
gre
ssi
on

ma
tri
x_
mu
ltip
ly

rad
ios
ity
_ll

s_r
ay
tra
ce_
ll

Manual
Cases where Manual is better 6 13 2 13
Average gain 3% 1% 7% 4%
Relative standard deviation 2% 1% 8% 4%

LiTL
Cases where LiTL is better 22 15 26 15
Average gain 3% 2% 3% 3%
Relative standard deviation 3% 2% 3% 4%

Table 5. Percentage of lock pairs (𝐴, 𝐵) where if performance with manually implemented locks of 𝐴 is worse,
equal or better than 𝐵, it is also respectively worse, equal or better than 𝐵 with transparently interposed locks
using LiTL. We use a 5% threshold, i.e., 𝐴 is better (resp. worse) than 𝐵 if 𝐴’s performance is at least 5% better
(resp. worse) than 𝐵 (A-64 machine).

lin
ear
_re
gre
ssi
on

ma
tri
x_
mu
ltip
ly

rad
ios
ity
_ll

s_r
ay
tra
ce_
ll

Better 97% 98% 100% 98%
Equal 87% 93% 91% 93%
Worse 96% 99% 98% 98%

Table 5 compares the relative performance of all lock pairs. The table shows that in most cases
(at least 87%), comparing two manually implemented lock algorithms leads to the same conclusion
as comparing their transparently interposed versions.

Statistical test. To assess that the conclusions we draw regarding the choice of a lock and the
performance of locks with respect to each other (i.e., lock hierarchy) are the same with and without
interposition, we use a Student paired t-test. A Student paired t-test tests if two populations for
which observations can be paired have the same mean (for example, a population of patients before
and after taking a medical treatment).

The null hypothesis tested is𝑀𝑒𝑎𝑛𝑤𝑖𝑡ℎ −𝑀𝑒𝑎𝑛𝑤𝑖𝑡ℎ𝑜𝑢𝑡 = 0. However, because the goal is to assess
that the lock hierarchy stays the same (not that the means are the same, i.e., strictly no overhead),
𝑀𝑒𝑎𝑛𝑤𝑖𝑡ℎ −𝑀𝑒𝑎𝑛𝑤𝑖𝑡ℎ𝑜𝑢𝑡 = 𝐶 is used as the null hypothesis, where𝐶 is a (per-application) constant.
If 𝐶 is a constant, then it means that there is a constant overhead, thus the lock hierarchy is
left unchanged (contrary to an overhead dependent of the lock algorithm or proportional to the
performance, in which case the lock hierarchy may change). Ideally, the constant𝐶 should be small
enough, meaning that in addition to not affecting relative lock comparisons, the overhead of using

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 21

Table 6. For each application, the p-value of the paired Student t-test testing the null hypothesis𝑀𝑒𝑎𝑛𝑤𝑖𝑡ℎ −
𝑀𝑒𝑎𝑛𝑤𝑖𝑡ℎ𝑜𝑢𝑡 = 𝐶 . 𝐶𝑛 is 𝐶 normalized w.r.t. the performance of the best lock on a given benchmark).

Application 𝐶𝑛 p-value

linear_regression -1.8% 0.84
matrix_multiply -0.2% 0.60
radiosity_ll -3.1% 0.72
s_raytrace_ll -0.2% 0.85

LiTL on absolute performance is low. We choose𝐶 equal to the average throughput difference with
and without interposition for all locks for a given application.
Table 6 shows the constant 𝐶𝑛 (𝐶 normalized w.r.t. the performance of the best lock on a given

benchmark) as well as the t-test’s p-value. For example, for linear_regression, when removing 1.8%
of the maximal throughput (0.03 seconds) to each interposed configuration, the p-value is 0.84. A
p-value must be compared against a threshold 𝛼 , upon which we reject/accept the null hypothesis
(i.e., in our case„ “means are equal, up to a constant”). The higher the p-value, the lower the risk to
incorrectly reject the null hypothesis. All the tested applications have p-value > 0.05 (the most
commonly used threshold [72]), thus we never reject the null hypothesis, thus the means can be
considered equal (up to a constant 𝐶).
Thus, based on the results of the above table, we conclude that using LiTL to study the

behavior of locks algorithms only yields very modest differences with respect to the per-
formance behavior of a manually modified version.

5 STUDY OF LOCK THROUGHPUT
In this section, we use LiTL to compare the performance (throughput) behavior of the different
lock algorithms on different workloads and at different levels of contention. Our experimental
methodology is described in Section 3. In Sections 6 and 7 we present the results for energy efficiency
and tail latency, respectively.
As a summary, Section 5.1 provides preliminary observations that drive the study. Section 5.2

answers the main questions of the study regarding the observed lock behavior. Section 5.3 discusses
additional observations, such as how the machine, the BIOS configuration, and the thread pinning
affect the results as well as the performance of Pthread locks. Section 5.4 discusses the implications
of our study for software developers and for the lock algorithm research community.

5.1 Preliminary observations
Before proceeding with the detailed study, we highlight some important characteristics of the
applications.

5.1.1 Selection of lock-sensitive applications. Table 7 shows two metrics for each application and
for different numbers of nodes on the A-64 machine (results for the other machines are available in
the Appendix, §A.1 and §B.1): the performance gain of the best lock over the worst one, as well as
the relative standard deviation for the performance of the different locks. Note that columns of
Table 7 cannot be compared to each other. Indeed, the numbers reported are the performance gain
and relative standard deviation for the best vs. worst lock at a given number of nodes, i.e., gain at
max nodes compares the performance of the best vs. worst lock at max nodes, whereas gain at opt
nodes compares the performance of the best vs. worst lock at their respective optimal number of
nodes (where they perform best).

22 R. Guerraoui et al.

Besides, the numbers reported at max nodes are generally higher than at opt nodes because
performance gaps between locks tend to increase under high contention, which is why we chose
the A-64 machine: it has the highest number of cores among our different machines. For the
moment, we only focus on the relative standard deviations at the maximum number of nodes
(max nodes—highest contention) given in the fifth column (the detailed results from this table are
discussed in Section 5.2.1).
We consider that an application is lock-sensitive if the relative standard deviation for the per-

formance of the different locks at max nodes is higher than 10% (highlighted in bold font in the
Table). We observe similar trends on the four studied machines (see Table 8). More precisely, we
observe that about 60% of the applications are affected by locks, for all machines except the I-20
where the percentage of application is slightly lower (49%). Some applications are lock-sensitive on
some machines and not on others. For example, fmm is only lock-sensitive on the AMD machines,
not the Intel ones. For such applications, we observe a moderate relative standard deviation at max
nodes (< 30%), meaning that they are considered lock-sensitive but they are not the applications that
are the most affected by locks. Indeed, we do not observe applications that are highly affected by
locks on one machine and not on another. In the remainder of this study, we focus on lock-sensitive
applications.

5.1.2 Selection of the number of nodes. In multicore applications, optimal performance is not
always achieved at the maximum number of available nodes (abbreviated as max nodes) due to
various kinds of scalability bottlenecks. Therefore, for each (application, lock) pair, we empirically
determine the optimized configuration (abbreviated as opt nodes), i.e., the number of nodes that
yields the best performance. For the A-64 and A-48 machines, we consider 1, 2, 4, 6, and 8 nodes.
For the I-48 machine, we consider 1, 2, 3, and 4 nodes. For the I-20 machine, we consider 1 and 2
nodes. Note that 6 nodes on A-64 and A-48 correspond to 3 nodes on I-48, i.e., 75% of the available
cores.
Table 9 shows for each (application, lock) pair, for the A-64 machine the performance gain of

opt nodes over max nodes and the number of nodes for opt nodes (results for the other machines
are available in the Appendix, §A.2 and §B.2). A line full of black boxes means that the optimal
number of nodes is the maximal number of nodes, i.e., for all locks, the best performance is seen at
max nodes (the performance of the application does not collapse). However, it is still interesting to
consider these applications, because a line full of black boxes does not mean that all locks performs
the same, e.g., for water_nsquared, the gain between the best vs. the worst locks at max nodes and
opt nodes is of 94% (Table 7). In addition, Table 10 provides a breakdown of the (application, lock)
pairs according to their optimized number of nodes for all machines.
We observe that, for many applications, the optimized number of nodes is lower than the max

number of nodes. Moreover, we observe (Table 9) that the performance gain of the optimized
configuration is often extremely large. We note that the performance gains for the I-20 is lower
than the ones for the other machines, which have more cores. This confirms that tuning the degree
of parallelism has frequently a very strong impact on performance. We also notice that, for some
applications, the optimized number of nodes varies according to the chosen lock (on pca_ll ALock-ls
is optimal at 4 nodes, Backoff at 8 nodes), the chosen waiting policy (on pca_ll Malth_Spin is optimal
at 4 nodes, Malth_STP at 8 nodes) and the workload (Backoff is optimal at 2 nodes on pca and at 8
nodes on pca_ll).

5.2 Main questions
In this section we answer the main questions of the study regarding the observed lock behavior.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 23

Table 7. For each application, performance gain of the best vs. worst lock and relative standard deviation
(A-64 machine).

Gain
one

node

R.Dev.
one

node

Gain
max
nodes

R.Dev.
max
nodes

Gain
opt

nodes

R.Dev.
opt

nodes

barnes 10% 2% 36% 8% 31% 7%
blackscholes 11% 2% 2% 1% 2% 1%
bodytrack 1% 0% 9% 2% 4% 1%
canneal 5% 1% 7% 2% 7% 2%
dedup 819% 57% 989% 54% 819% 57%
facesim 9% 2% 771% 67% 13% 3%
ferret 1% 0% 349% 56% 101% 25%
fft 8% 2% 11% 3% 9% 2%
fluidanimate 48% 11% 284% 28% 127% 20%
fmm 17% 5% 42% 10% 42% 10%
freqmine 7% 2% 6% 1% 6% 1%
histogram 7% 2% 19% 5% 13% 3%
kmeans 9% 3% 12% 2% 12% 2%
kyotocabinet 414% 25% 2047% 56% 414% 25%
linear_regression 9% 3% 198% 20% 49% 9%
lu_cb 8% 2% 5% 1% 5% 1%
lu_ncb 26% 5% 8% 2% 8% 2%
matrix_multiply 6% 2% 608% 26% 169% 20%
memcached-new 63% 15% 1021% 53% 120% 19%
memcached-old 73% 14% 308% 50% 73% 14%
mysqld 166% 42% 174% 36% 122% 33%
ocean_cp 19% 4% 129% 14% 21% 4%
ocean_ncp 16% 4% 113% 12% 14% 4%
p_raytrace 2% 0% 1% 0% 2% 0%
pca 5% 2% 347% 32% 40% 8%
pca_ll 6% 1% 713% 44% 160% 20%
radiosity 3% 1% 91% 15% 13% 4%
radiosity_ll 10% 2% 2285% 68% 176% 26%
radix 3% 1% 8% 2% 8% 2%
rocksdb 4% 1% 16% 4% 16% 4%
s_raytrace 9% 2% 1898% 58% 232% 31%
s_raytrace_ll 5% 1% 1601% 63% 402% 51%
sqlite 66% 19% 2382% 102% 81% 25%
ssl_proxy 37% 6% 1309% 59% 58% 11%
streamcluster 14% 3% 1122% 56% 14% 3%
streamcluster_ll 24% 5% 1423% 56% 35% 8%
string_match 5% 2% 11% 2% 11% 2%
swaptions 8% 2% 10% 2% 10% 2%
upscaledb 158% 22% 748% 43% 197% 24%
vips 2% 1% 197% 25% 5% 1%
volrend 7% 1% 163% 22% 24% 5%
water_nsquared 10% 2% 94% 14% 94% 14%
water_spatial 23% 5% 98% 15% 96% 15%
word_count 4% 1% 19% 3% 12% 2%
x264 4% 1% 6% 2% 5% 2%

24 R. Guerraoui et al.

Table 8. Number of applications and number of lock performance sensitive applications (all machines).

A-64 A-48 I-48 I-20

tested applications 45 39 37 35
lock-sensitive applications 28 23 21 17
ratio 62% 59% 57% 49%

5.2.1 How much do locks affect applications? Table 7 shows, for each application, the performance
gain of the best lock over the worst one at one node, max nodes, and opt nodes for the A-64 machine.
The table also shows the relative standard deviation for the performance of the different locks.

We observe that the number of nodes affects the performance of applications. At one node, the
impact of locks on lock-sensitive applications ismoderate formost applications.Nonethe-
less, for the most lock-sensitive ones (upscaledb, MySQL, Kyoto Cabinet, dedup), we observe that
the impact is high. More precisely, most applications exhibit a gain of the best lock over the worst
one that is lower than 30%. In contrast, atmax nodes, the impact of locks is very high for all
lock-sensitive applications. More precisely, the gain brought by the best lock over the worst lock
ranges from 42% to 2382%. Finally, at opt nodes, the impact of locks is high, but noticeably
lower than at max nodes. We explain this difference by the fact that, at max nodes, some of
the locks trigger a performance collapse for certain applications (as shown in Table 9), which
considerably increases the observed performance gaps between locks. Note that the collapse is not
necessarily related to a given lock, but is also a property of the application and how the machine
behaves We observe the same trends on the A-48, the I-48 and the I-20 machines (see the Appendix,
§A.1, §A.2, §B.1 and §B.2).

5.2.2 Are some locks always among the best? Table 11 displays, for each machine, the coverage of
each lock, i.e., how often it stands as the best one (or is within 5% of the best) over all the studied
applications, over the different locks. The details for all machines are available in the Appendix
(§A.3 and §B.3).

We make the following observations. On the A-64, A-48 and I-48 machines, no lock is among
the best for more than 76% of the applications at one node and for more than 53% of the
applications both atmax nodes and at the optimal number of nodes. The results for the I-20
show that the coverage of a given lock algorithm is larger than for the other machines (75% at
one node, max nodes and opt nodes). This can be explained by the fact that the machine has less
cores (and NUMA sockets) than the three others. Nonetheless, for all machines, no lock algorithm
is optimal for all applications. We also observe that the average coverage is much higher at one
node than atmax nodes, and slightly higher at opt nodes than atmax nodes. This is directly explained
by the observations made in Section 5.2.1. First, at one node, locks have a much lower impact
on applications than in other configurations and thus yield closer results, which increases their
likelihood to be among the best ones. Second, at max nodes, all of the different locks cause, in
turn, a performance collapse, which reduces their likelihood to be among the best locks. This latter
phenomenon is not observed at opt nodes.

5.2.3 Is there a clear hierarchy between locks? Figure 3 shows pairwise comparisons for all locks,
at max nodes on the A-64 machine.
We observe that there is no clear global performance hierarchy between locks. More

precisely, for most pairs of locks (row A, col B), there are some applications for which A is better
than B, or vice-versa (Figure 3). The only marginal exceptions are the cells having 0% for value.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 25

Table 9. For each (lock-sensitive application, lock) pair, performance gain (in %) of opt nodes over max nodes.
The background color of a cell indicates the number of nodes for opt nodes: 1 2 4 6 8 . Dashes correspond to
untested cases (A-64 machine).

A
pp

lic
at
io
ns

ahmcs

alock-ls

backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs

hticket-ls

malth_spin

malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread

pthreadadapt

spinlock

spinlock-ls

ticket

ticket-ls

ttas
ttas-ls

de
du

p
-
25
0
12
7

89
90

11
8
11
5
20
0
20
4
22
9

75
95

11
9
11
9
11
0
11
3
10
6

59
17
8
13
6
12
0
12
6
14
7
12
2
14
1
12
5
13
5
19
8

fa
ce
si
m

41
2
90
2
43
9
17
0
12
6
36
4
33
5
89
5

78
91
8
30
4
28
4
71
1

71
94
8

87
1k

26
56

89
5

91
67

72
6
16
0
91
9
45
9
21
1
29
7

fe
rr
et

12
4
15
4

16
83

68
17
3

13
9
11
0
10
2

72
18
3

19
4

17
3

6
17
0

41
flu

id
an
im

at
e

-
71

6
18

-
-

-
-

7
53

12
54

8
7

5
16

13
10

6
64

fm
m

9
6

ky
ot
oc
ab
in
et

27
82

69
17

22
4

35
34

35
49

33
24

29
31

22
36

68
34

49
26
7

55
26
5
20
8

2k
1k

17
9

97
54
1
28
2

lin
ea
r_
re
gr
es
si
on

25
85

35
17
5

15
12

28
39

60
25

33
14

5
21

34
54

8
55

10
8

38
12

20
9

18
22

m
at
rix

_m
ul
tip

ly
25

28
7

16
m
em

ca
ch
ed
-n
ew

12
14

13
39
6

-
10

-
-

-
7

-
17

33
25

41
6

22
19

-
20

11
2
81
8
61
9
16
4

51
25
9

74
m
em

ca
ch
ed
-o
ld

52
0
19
0
41
8
14
9
15
4

-
15
9

-
-

-
12
4

-
95
5
97
0
56
5
69
5
79
4
52
4
37
0

-
56
9
60
0

1k
34
9
80
6
81
5
33
4
41
4

m
ys
ql
d

-
-

-
-

-
-

-
-

-
-

-
-

-
-

25
-

-
-

-
-

-
-

oc
ea
n_

cp
97

79
11
4

96
11
4

91
83

12
5
12
2

94
99

74
88

75
11
4

82
11
5

44
58

10
3

72
73

23
8
12
8
13
6

65
87

10
1

oc
ea
n_

nc
p

93
87

85
79

10
8

74
83

98
79

83
81

65
83

85
92

95
73

61
65

98
95

82
20
6
11
4

90
58

70
10
4

pc
a

56
64

22
22

29
1

44
46

50
14
8

58
58

46
32

56
15
3

44
25

11
6

36
10
3

44
26
9
11
4
11
0

36
21
0
13
9

pc
a_
ll

76
66

49
3

70
78

77
10
8

43
76

53
26

81
10
6

41
39

12
5

59
11
0

20
39
5
30
3

72
37

30
9
21
8

ra
di
os
ity

26
69

29
39

10
22

46
ra
di
os
ity

_l
l

13
5

52
2

31
18

10
47
3

13
8

9
51
4

19
19

27
5

40
18
5

70
92
9
58
1
25
9
11
7
75
6
45
4

s_
ra
yt
ra
ce

25
12

96
5

21
24

39
46
0

24
11

12
7

43
6

15
83

88
14

26
9

74
13
4

88
24
0
17
4

s_
ra
yt
ra
ce
_l
l

16
2

23
9

24
6

12
18
3

73
32

19
0
10
7

sq
lit
e

-
-

-
-
41
4

-
-

-
-

-
-

-
-

-
52
2

-
3k

19
6

-
15
4

84
-

-
-

-
-

-
ss
l_
pr
ox
y

44
69

88
34

95
7

65
82

61
1k

79
28
3

70
36

52
90

1k
10
1

73
35
1

87
26
8
19
5

2k
53
5
36
0
15
3
79
1
65
3

st
re
am

cl
us
te
r

2k
2k

3k
2k

4k
1k

2k
-

-
-

1k
-

4k
16
k

3k
16
k

4k
2k

2k
1k

2k
3k

9k
3k

5k
4k

4k
4k

st
re
am

cl
us
te
r_
ll

39
4
26
0
71
1
40
7

1k
23
6
25
3

-
-

-
25
0

-
81
6

4k
56
5

4k
77
4
25
2
26
0
29
0
41
3
45
2

2k
86
0

1k
68
2
89
6
76
2

up
sc
al
ed
b

13
12

5
10

10
5

17
14

13
35

11
14

17
11

32
10

19
15

59
39

57
5
36
8

71
30

15
7
23
7

vi
ps

72
58

26
23
3

42
12
7
10
4

-
-

-
11
1

-
25
1

18
51

18
46

21
20

55
20

21
20

26
37

31
27

32
vo
lre

nd
52

84
87

72
13
3

48
58

82
12
3

71
52

54
69

12
8

86
10
9

79
82

13
7

83
13
1
16
2
22
2
14
8

74
68

93
10
2

w
at
er
_n

sq
ua
re
d

w
at
er
_s
pa
tia

l

26 R. Guerraoui et al.

Table 10. Breakdown of the (lock-sensitive application, lock) pairs according to their optimized number of
nodes (all machines).

A-64 A-48 I-48 I-20

1 Node 19% 16% 1 Node 37% 1 Node 39%
2 Nodes 23% 21% 2 Nodes 17% 2 Nodes 61%
4 Nodes 26% 23% 3 Nodes 17%
6 Nodes 11% 16% 4 Nodes 29%
8 Nodes 21% 24%

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

20%

40%

60%

80%

Score

Fig. 3. For each pair of locks (rowA, colB) at opt nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive
applications for which lock 𝐴 performs at least 5% better than 𝐵. The cell (𝑟𝑜𝑤𝐴, 𝑐𝑜𝑙𝐵) color indicates the
score of lock 𝐴 vs. lock 𝐵, i.e., the percentage of applications for which lock 𝐴 is at least 5% better than
lock 𝐵. The more lock 𝐴 outperforms 𝐵, the more red (dark) the cell is. For example, for roughly 40% of the
applications, AHMCS performs at least 5% better than Backoff at opt nodes. Similarly, the figure shows that
Backoff is at least 5% better than AHMCS for roughly 35% of the applications. From these two values, we
can conclude that the two above-mentioned locks perform very closely for 25% of the applications. (A-64
machine).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 27

Table 11. Statistics on the coverage of locks on lock-sensitive applications for three configurations: one node,
max nodes, and opt nodes (all machines). The coverage indicates how often a lock algorithm stands as the
best one (or is within 5% of the best).

Coverage A-64 A-48 I-48 I-20

One node
[min; max] [39%; 73%] [33%; 71%] [21%; 76%] [42%; 75%]
Average 59% 59% 51% 57%
Relative Standard Deviation 10% 11% 14% 10%

Max nodes
[min; max] [0%; 29%] [0%; 33%] [0%; 47%] [8%; 75%]
Average 14% 14% 19% 42%
Relative Standard Deviation 8% 9% 13% 16%

Opt nodes
[min; max] [15%; 50%] [4%; 48%] [0%; 53%] [8%; 75%]
Average 30% 24% 20% 43%
Relative Standard Deviation 9% 11% 14% 16%

This corresponds to pairs of locks (row A, col B) for which A never yields better performance than
B. The results at max nodes (available in the Appendix, Figure 15) exhibit similar trends as the ones
at opt nodes. Besides, we make the same observations (both at opt nodes and max nodes) on the
A-48, the I-48 machines and the I-20 (see the Appendix, §A.4 and §B.4).

5.2.4 Are all locks potentially harmful? Our goal is to determine, for each lock, if there are ap-
plications for which it yields substantially lower performance than other locks and to quantify
the magnitude of such performance gaps. Table 12 displays, for each machine, the fraction of
applications that are significantly hurt by a given lock at max nodes and at opt nodes (results for all
machines in the Appendix, §A.5 and §B.5).
On the four machines, we observe that, both at max nodes and at the optimal number of

nodes, all locks are potentially harmful, yielding sub-optimal performance for a signifi-
cant number of applications (Table 12). We also notice that locks are significantly less harmful at
opt nodes than atmax nodes. This is explained by the fact that several of the locks create performance
collapse at max nodes, which does not occur at opt nodes. Moreover, we observe that, for each lock,
the performance gap to the best lock can be significant (Table 12).

5.3 Additional observations
Impact of the number of nodes. Table 13 shows, for each application on the A-64 machine, the

number of pairwise changes in the lock performance hierarchy when the number of nodes is
modified. We observe that, for all applications, the lock performance hierarchy changes
significantly according to the chosen number of nodes. Moreover, we observe the same
trends on the A-48, I-48 and I-20 machines (see the Appendix, §A.6 and §B.6).

Impact of the machine. We look at the number of pairwise lock inversions observed between the
machines (both atmax nodes and at opt nodes). For a given application at a given node configuration,
we check whether two locks are in the same order or not on the target machines. We observe that
the lock performance hierarchy changes significantly according to the chosen machine.
Interestingly, we observe that there is approximately the same number of inversions between each

28 R. Guerraoui et al.

Table 12. For each lock, at max nodes and at opt nodes, fraction of the lock-sensitive applications for which
the lock is harmful, i.e., the performance gain brought by the best lock with respect to the given lock is greater
than 15% (all machines).

A-64 A-48 I-48 I-20

Lock Max Opt Max Opt Max Opt Max Opt

ahmcs 58% 17% 55% 50% 44% 44% 46% 38%
alock-ls 96% 46% 70% 50% 53% 47% 29% 29%
backoff 62% 38% 38% 43% 53% 37% 43% 36%
c-bo-mcs_spin 65% 42% 62% 62% 47% 32% 29% 29%
c-bo-mcs_stp 82% 46% 87% 83% 85% 60% 80% 73%
c-ptl-tkt 58% 25% 58% 53% 47% 29% 29% 21%
c-tkt-tkt 58% 35% 67% 52% 37% 32% 14% 14%
clh_spin 85% 35% 60% 53% 86% 71% 50% 50%
clh_stp 85% 65% 93% 93% 93% 93% 92% 92%
clh-ls 85% 35% 67% 60% 79% 79% 58% 58%
hmcs 54% 31% 38% 38% 42% 32% 14% 14%
hticket-ls 65% 40% 50% 56% 50% 36% 17% 17%
malth_spin 73% 46% 62% 52% 63% 63% 43% 43%
malth_stp 57% 46% 74% 74% 60% 60% 33% 33%
mcs_spin 77% 31% 67% 43% 53% 47% 29% 29%
mcs_stp 75% 57% 78% 74% 75% 75% 80% 73%
mcs-ls 81% 42% 67% 48% 58% 53% 29% 29%
mcs-timepub 50% 29% 61% 48% 55% 50% 47% 40%
mutexee 68% 57% 74% 61% 70% 60% 40% 40%
partitioned 79% 33% 68% 63% 71% 53% 36% 36%
pthread 68% 61% 78% 74% 70% 70% 53% 47%
pthreadadapt 68% 54% 70% 70% 75% 60% 53% 40%
spinlock 69% 50% 81% 67% 74% 63% 64% 50%
spinlock-ls 77% 46% 81% 57% 74% 63% 57% 36%
ticket 77% 50% 90% 62% 89% 79% 43% 36%
ticket-ls 69% 42% 76% 57% 68% 53% 36% 29%
ttas 69% 38% 81% 52% 74% 58% 43% 36%
ttas-ls 92% 54% 90% 60% 84% 68% 71% 57%

pair of machines, roughly 30% for all configurations. The detailed results for each pair of machines
are available inside the Appendix (§A.7 and §B.7).

A note on Pthread locks. The various results presented in this paper show that the current Linux
Pthread locks perform reasonably well (i.e., are among the best locks) for a significant
share of the studied applications, thus providing a different insight than recent results, which
were mostly based on synthetic workloads [27]. Beyond the changes of workloads, these differences
could also be explained by the continuous refinement of the Linux Pthread implementation. It is
nevertheless important to note that on each machine, some locks stand out as the best ones for
a higher fraction of the applications than Pthread locks. Finally, we note that Pthread locks and
PthreadAdapt locks exhibit similar performance.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 29

Table 13. For each lock-sensitive application, percentage of pairwise changes in the lock performance hierarchy
when changing the number of nodes. For example, in the case of the facesim application, there are 17% of the
pairwise performance comparisons between locks that change when moving from a 1-node configuration
to a 2-node configuration. Similarly, there are 97% of pairwise comparisons that change at least once when
considering the 1-node, 2-node, 4-node and 8-node configurations. (A-64 machine).

% of pairwise changes between configurations

Applications 1/2 2/4 4/8 1/2/4/8

dedup 11% 4% 13% 18%
facesim 17% 43% 85% 97%
ferret 0% 71% 25% 85%
fluidanimate 7% 6% 23% 30%
fmm 37% 13% 19% 50%
kyotocabinet 15% 12% 14% 30%
linear_regression 48% 46% 47% 88%
matrix_multiply 41% 26% 45% 72%
memcached-new 53% 18% 0% 64%
memcached-old 77% 73% 0% 95%
mysqld 24% 29% 14% 38%
ocean_cp 46% 45% 69% 94%
ocean_ncp 54% 51% 56% 90%
pca 41% 50% 29% 92%
pca_ll 31% 40% 47% 94%
radiosity 10% 50% 51% 81%
radiosity_ll 67% 26% 15% 90%
s_raytrace 7% 69% 28% 96%
s_raytrace_ll 4% 87% 20% 97%
sqlite 29% 19% 45% 81%
ssl_proxy 62% 13% 21% 77%
streamcluster 66% 29% 32% 93%
streamcluster_ll 61% 34% 30% 95%
upscaledb 41% 17% 14% 54%
vips 1% 3% 83% 83%
volrend 19% 28% 39% 85%
water_nsquared 20% 21% 13% 49%
water_spatial 6% 9% 12% 26%

Impact of thread pinning. As explained in Section 3.2, all the previously-described experiments
were run without any restriction on the placement of threads (i.e., a thread might be scheduled on
any core of the machine), leaving the corresponding decisions to the Linux scheduler. However,
in order to better control cores allocation and improve locality, some developers and system
administrators use pinning to explicitly restrict the placement of each thread to one or several
core(s). The impact of thread pinning can vary greatly according to workloads and can yield both
positive and negative effects [27, 64]. In order to assess the generality of our observations, we also
performed the complete set of experiments on the A-64 machine with an alternative configuration
in which each thread is pinned to a given node, leaving the scheduler free to place the thread among

30 R. Guerraoui et al.

the cores of the node. Note that for an experiment with a 𝑁 -node configuration, the complete
application runs on exactly the first 𝑁 nodes of the machine. We chose thread-to-node pinning
rather than thread-to-core pinning because we observed that the former generally provided better
performance for our studied applications, especially the ones using more threads than cores. The
detailed results of our experiments with thread-to-node pinning are available in the Appendix
(Figures and Tables labelled A-64 machine with thread-to-node pinning).

Overall, we observe that all the conclusions presented in the paper still hold with per-
node thread pinning.

Impact of BIOS configuration. The experiments presented in this section were all ran with the BIOS
configured in performance mode, for all machines. In performance mode: (i) processor throttling is
turned off, so that all cores always run at full speed (i.e., maximum available frequency without
Intel Turbo Boost / AMD Turbo Core), and (ii) idle power saving processor C-states are deactivated,
thus cores are always immediately available to execute threads (i.e., they never need to be resumed
from low-power mode). In addition, for the I-48 and I-20 machines, we also executed the throughput
experiments with the BIOS configured in energy-saving move. In such a configuration, processor
throttling and idle power saving C-states are activated, letting the hardware and the kernel manage
the processors’ state, aiming at reducing power consumption. We observe quantitative throughput
differences between the two configurations. However, changing the BIOS configuration does not
only affect lock performance but also application performance. As a consequence, a full study of
the impact of the BIOS configuration modes on the performance of applications falls out of the
scope of this article. Nonetheless, we observe that all the conclusions presented in the paper
still hold when the BIOS is configured in energy-saving move.

5.4 Effects of the lock choice on application performance
The results of our study have several implications for both the software developers and the lock
algorithm research community. First, we observe that the choice of a lock algorithm should
not be hardwired into the code of applications: applications should always use standard syn-
chronization APIs (e.g., the POSIX Pthread API), so that one can easily interpose the implementation
of the API.
Second, the Pthread library should not provide only one lock algorithm (i.e., the Pthread

lock algorithm) to software developers as it is currently the case. It is a “good generic solution”;
still Pthread locks certainly do not bring the best performance for every application.
Third, the research community should perform further research on optimized lock algo-

rithms. Specifically, there is a need for dynamic approaches to lock algorithms that automatically
adapt to the running workload and its environment (e.g., the machine, the possibly collocated
workloads). Besides, previous work only focused on the lock/unlock API, while we observe that
applications also stress trylocks, barriers and condition variables, thus future research needs to con-
sider complete locking APIs (more details in Section 8). Finally, metrics other than throughput are
becoming more and more important, and as a consequence, when designing a new lock algorithm,
researchers should not only consider throughput, but all performance metrics, including latency
and energy efficiency (as we will see in details in Sections 6 and 7).

6 STUDY OF LOCK ENERGY EFFICIENCY
In this section, we perform experiments on the I-48 and I-20 machines in order to evaluate the
energy efficiency of the different lock algorithms. In Sections 5 and 7, we present the results
for throughput and tail latency, respectively. We are interested in energy efficiency as defined
by Falsafi et al. [36]: energy efficiency represents the amount of work produced for a fixed

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 31

Table 14. Percentage of lock-sensitive applications for which the energy-efficiency gain of opt nodes over
max nodes is at least 5% higher than the performance gain, at least 5% lower than the performance gain or
between +5% and -5% of the performance gain (I-48 and I-20 machines).

I-48 I-20

≥ +5% 64% 38%
≤ −5% 4% 9%
between -5% and +5% 32% 53%

amount of energy and can be defined as throughout per power (abbreviated TPP thereafter, in
#𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠/𝑠𝑒𝑐𝑜𝑛𝑑

𝑤𝑎𝑡𝑡
=

#𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠/𝑠𝑒𝑐𝑜𝑛𝑑
𝑗𝑜𝑢𝑙𝑒/𝑠𝑒𝑐𝑜𝑛𝑑 = #𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠/ 𝑗𝑜𝑢𝑙𝑒). Higher TPP represents better energy ef-

ficiency. As explained in Section 3.2, we use Intel’s RAPL facility to measure the energy consumption
of several components: cores, chip package and DRAM.

This section is structured as follows. First, Section 6.1 discusses the results of the energy-efficiency
study. We also discuss the similarities and differences between performance and energy-efficiency
observations drawn from the study. Next, Section 6.2 discusses and validates the POLY conjecture
previously introduced by Falsafi et al. [36], stating that energy efficiency and throughput go hand
in hand with locks.

6.1 Energy-efficiency lock behavior
For the sake of brevity, we do not describe all the individual results for energy efficiency, available in
the Appendix (§B). Overall, we observe that all the conclusions presented in the paper about
throughput in Section 5 still hold with energy efficiency. More precisely, we observe that:
(i) 50% of the applications are lock-sensitive with respect to energy efficiency, (ii) the optimized
number of nodes for many applications is lower than the max number of nodes, (iii) the energy-
efficiency gap is often large between different kinds of locks, (iv) the impact of locks on lock-sensitive
applications is moderate at one node, and very high at both opt nodes and max nodes, (v) no lock is
among one of the bests for more than 83% of the lock-sensitive applications at one node and for
more than 61% both at max nodes and opt nodes, (vi) there is no clear global performance hierarchy
among locks, (vii) all locks are potentially harmful, both at max nodes and opt nodes, yielding
sub-optimal energy efficiency for a significant number of applications, (viii) the lock performance
hierarchy changes significantly according to the chosen number of nodes. We observe, similarly
to performance, that the I-20 exhibits less pronounced trends than the I-48 machine. Compared
to the four twelve-core NUMA sockets of the I-48 machine, the I-20 machine only has twenty
cores, divided into two NUMA sockets. As a consequence, the max node configuration for the I-20
uses half the threads than the I-48. Thus, some bottlenecks leading to collapse when using a high
number of threads are not observable on the smaller I-20 machine.

We observe similar general trends between performance and energy efficiency. However, looking
at the detailed results and comparing them allows us to discover new interesting facts. The following
observations are made from the results on the I-48 machine. The results for the I-20 machine are
discussed at the end of the section.

We first observe that the set of lock-sensitive applications for throughput is almost the same as
the set with respect to energy efficiency. In other words, changing the lock algorithm affects the
throughput if and only if it affects the energy efficiency. This insight simplifies the monitoring/pro-
filing and optimization process of such applications.

32 R. Guerraoui et al.

Table 15. Percentage of lock-sensitive applications for which opt nodes is lower, the same or higher for energy
efficiency w.r.t. performance. We use a 5% tolerance margin, i.e., if the application performance at opt nodes is
𝑁 1 and the energy efficiency at opt nodes is 𝑁 2, and 𝑁 1 ≠ 𝑁 2, we look the performance at 𝑁 2 and the energy
efficiency at 𝑁 1, and if the performance or the energy-efficiency difference is lower than 5%, we consider that
the application’s opt nodes is the same for performance and energy efficiency. (I-48 and I-20 machines).

I-48 I-20

lower opt nodes 25% 11%
same opt nodes 74% 87%
higher opt nodes 1% 2%

Table 14 shows the gain difference of opt nodes over max nodes between energy efficiency and
throughput. The gain between opt nodes and max nodes for energy efficiency is generally
higher than the one for throughput.We observe that on the I-48, the gain for energy efficiency
is higher for at least half of the lock-sensitive applications, and the same for 32% of the lock-sensitive
applications. Intuitively, for energy efficiency, wasting resources while waiting behind locks costs
both in terms of throughput and wasted energy.

Table 15 shows the percentage of lock-sensitive applications where opt nodes is lower, the same or
higher while considering energy efficiency w.r.t. throughput. On the I-48, 25% of the lock-sensitive
applications collapse at a lower number of nodes with energy efficiency than with throughput, 74%
at the same number of nodes, and 1% at a higher number of nodes. We can conclude that, when
throughput collapses, energy efficiency generally starts collapsing at a similar degree of
parallelism.

6.2 POLY
The POLY21 conjecture introduced by Falsafi et al. [36] states that “energy efficiency and throughput
go hand in hand in the context of lock algorithms”. More precisely, POLY suggests that “locks can
be optimized to improve energy efficiency without degrading throughput”, and that “[the insights
from] prior throughput-oriented research on lock algorithms can be applied almost as-is in the
design of energy-efficiency locks”. The POLY conjecture could explain why we observe similar
trends between our performance and energy-efficiency results. In this section, our goal is to test
this conjecture on a large number of lock algorithms and applications (the initial paper about POLY
considered 3 lock algorithms and 6 applications).

Figure 4 shows the correlation between performance and energy efficiency. Figure 5 shows the
detailed results at one node for each lock-sensitive application (results at max nodes for the I-48 and
at one node and max nodes for the I-20 machines are available in the Appendix, §C). The energy
efficiency (in TPP – throughput per power, see Section 6) and the throughput are normalized
w.r.t. the best performing (resp. energy-efficient) lock for each (machine, application, type, node)
configuration. Most data points fall on, or very close to a linear regression between the two variables
(the blue diagonal line).

Based on Figure 4, Malth_STP and (to a lesser extent) MCS-TimePub are outliers. These two
algorithms use complex load-control algorithms: (i) Malth_STP parks a subset of the threads, while
the others always spin for a few cycles before acquiring the lock ; (ii) MCS-TimePub allows spinning
threads to bypass parked ones). The “exotic” behaviors of these locks most probably explain why
the throughput and the energy consumption are not so well correlated with respect to other locks.

21POLY stands for “Pareto optimality in locks for energy efficiency”.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 33

■■■
■

▰▰▰▰◀◀◀◀
◐◐◐◐ ◠◠

◠

◠

◰◰◰
◰
□□□ □▱▱▱▱◁

◁

◁
◁

◑◑◑◑
◡◡◡◡◱◱◱◱▢▢▢

▢
▲

▲

▲

▲
◂◂◂◂◒◒

◒
◒

◢◢◢
◢
◲◲◲
◲▣▣

▣
▣

△△△△◃◃

◃
◃

◓◓

◓◓

◣◣

◣

◣

◳◳

◳

◳

▤▤
▤

▤

▴▴
▴▴

◄◄◄◄
◔◔◔◔

▰

▰
▰

▰

◀
◀◀
◀

◐

◐

◐

◐

◠

◠

◠

◠

◰

◰

◰

◰

□

□

□

□

▱
▱
▱

▱

◁
◁
◁◁◑
◑
◑

◑

◡

◡

◡

◡

◱

◱

◱

◱

▢

▢

▢

▢

▲

▲

▲

▲

◂

◂

◂

◂

◒

◒

◒

◒

◢

◢

◢

◢

◲

◲

◲

◲

▣

▣
▣
▣

△

△

△

△

◃◃

◃

◃◓◓

◓
◓

◣

◣
◣

◣

◳
◳

◳

◳

▤
▤

▤

▤

▴
▴

▴

▴

◄

◄

◄
◄

◔

◔
◔◔

■■

■

■

▰▰

▰

▰

◀◀

◀

◀

◐
◐

◐

◐

◠◠◠◠◰

◰

◰

◰

□□

□
□

▱▱

▱
▱

◁◁◁◁◑◑

◑

◑

◡◡

◡

◡

◱◱

◱

◱

▢

▢

▢

▢

▲▲▲▲◂◂

◂

◂

◒◒◒◒◢◢

◢

◢

◲◲

◲

◲

▣▣▣▣△△

△

△

◃◃◃◃◓◓◓◓◣◣

◣

◣

◳◳

◳

◳

▤

▤

▤
▤

▴▴

▴

▴

◄◄

◄

◄

◔◔

◔

◔
■■

■
■

▰
▰

▰
▰

◀

◀

◀

◀

◐◐◐◐

◠

◠

◠

◠

◰

◰

◰

◰

□
□

□

□

▱
▱

▱
▱

◁

◁◁
◁

◑
◑

◑◑

◡◡
◡◡

◱
◱◱

◱

▢

▢
▢

▢

▲

▲
▲

▲

◂

◂
◂

◂

◒

◒◒
◒

◢
◢
◢

◢

◲

◲

◲

◲

▣

▣▣
▣

△

△
△

△

◃

◃◃
◃

◓

◓
◓◓

◣

◣

◣

◣

◳

◳

◳

◳

▤

▤
▤

▤

▴

▴▴

▴

◄

◄

◄

◄

◔

◔

◔

◔

■■■

■

▰▰

▰

▰
◀◀◀◀◐

◐

◐
◐

◠

◠

◠

◠

◰◰
◰◰□
□

□

□
▱▱▱▱

◁

◁

◁◁

◑◑◑

◑

◡◡
◡◡

◱◱◱
◱

▢▢

▢

▢▲▲

▲

▲

◂◂◂

◂
◒

◒

◒

◒

◢
◢◢

◢

◲
◲

◲◲

▣
▣

▣▣

△
△

△

△

◃
◃

◃
◃

◓◓◓

◓
◣

◣

◣

◣

◳

◳

◳

◳

▤
▤

▤▤

▴▴

▴

▴

◄
◄
◄◄

◔
◔

◔◔

◠◠◠ ◠

▲

▲▲

▲

◒◒
◒

◒

◲
◲

◲

◲

▣

▣▣

▣◃

◃
◃

◃

◓◓◓

◓

■
■
■

■

▰

▰

▰

▰
◀◀

◀◀

◐

◐
◐◐

◠

◠

◠

◠

◰◰
◰

◰

□

□
□

□

▱

▱
▱

▱

◁

◁
◁◁

◑

◑
◑

◑

◡

◡
◡

◡

◱

◱◱

◱

▢
▢

▢

▢

▲

▲

▲

▲

◂

◂◂

◂

◒

◒◒
◒

◢

◢

◢

◢

◲

◲◲

◲
▣

▣
▣
▣

△

△

△

△

◃

◃
◃

◃

◓

◓

◓◓

◣

◣

◣

◣

◳

◳

◳

◳

▤

▤

▤

▤

▴

▴

▴

▴

◄

◄

◄

◄

◔

◔

◔

◔

■■■■▰
▰▰

▰

◀

◀

◀

◀

◐
◐

◐

◐
◠

◠

◠

◠

◰◰◰◰□□
□□▱▱

▱

▱

◁

◁◁◁

◑
◑

◑

◑

◡◡
◡
◡◱◱◱◱

▢

▢

▢

▢

▲▲

▲
▲

◂
◂◂

◂

◒

◒◒◒

◢
◢
◢

◢

◲◲

◲

◲

▣

▣

▣

▣

△△

△

△

◃

◃

◃

◃

◓

◓

◓

◓

◣

◣

◣

◣

◳

◳

◳

◳

▤▤

▤

▤

▴▴

▴

▴

◄◄

◄

◄

◔
◔

◔

◔

■■■■

▰▰

▰

▰

◀
◀

◀
◀

◐
◐◐
◐◠

◠

◠

◠

◰◰
◰

◰

□
□□

□

▱
▱

▱

▱

◁

◁
◁
◁

◑

◑
◑
◑

◡
◡◡◡

◱
◱
◱

◱
▢

▢

▢
▢

▲

▲▲

▲

◂

◂

◂
◂

◒

◒
◒
◒

◢
◢

◢

◢

◲

◲

◲

◲

▣

▣

▣

▣

△

△

△

△

◃

◃

◃

◃

◓

◓

◓

◓

◣

◣

◣

◣

◳

◳

◳

◳

▤

▤

▤
▤

▴

▴

▴

▴

◄

◄

◄

◄

◔

◔

◔

◔

■
■■
■

▰

▰

▰

▰

◀

◀

◀

◀

◐

◐

◐
◐
◠

◠

◠

◠

◰

◰

◰

◰

□

□
□

□

▱

▱

▱

▱

◁

◁◁◁

◑

◑

◑

◑

◡◡
◡◡

◱

◱
◱

◱
▢

▢

▢

▢

▲

▲

▲▲

◂

◂

◂

◂

◒

◒◒◒

◢

◢

◢

◢

◲

◲

◲

◲

▣

▣

▣

▣

△

△

△

△

◃

◃

◃
◃

◓

◓

◓

◓

◣

◣

◣
◣

◳

◳

◳

◳

▤

▤

▤
▤

▴

▴

▴
▴

◄

◄

◄

◄

◔

◔

◔

◔

■■
■

■

▰▰
▰

▰

◀◀

◀

◀

◐

◐

◐

◐

◠

◠

◠

◠

◰◰
◰

◰

□
□□

□

▱▱

▱

▱

◁

◁◁◁

◑◑

◑

◑

◡◡◡
◡◱

◱

◱

◱

▢

▢

▢

▢

▲

▲

▲

▲

◂◂◂

◂

◒

◒◒◒

◢◢
◢

◢

◲◲

◲

◲

▣

▣

▣

▣

△
△

△

△

◃

◃

◃

◃

◓

◓

◓

◓

◣

◣

◣

◣

◳

◳

◳

◳

▤

▤

▤

▤

▴

▴

▴

▴

◄

◄

◄

◄

◔

◔

◔

◔

■■■■▰
▰

▰

▰

◀

◀

◀

◀

◐

◐

◐
◐

◠

◠

◠

◠

◰◰
◰

◰

□

□

□

□

▱

▱

▱

▱

◁

◁◁
◁

◑

◑

◑

◑

◡◡
◡◡

◱

◱

◱
◱

▢

▢

▢
▢

▲

▲

▲

▲

◂
◂

◂

◂

◒

◒◒
◒

◢◢

◢

◢

◲

◲

◲

◲

▣

▣

▣

▣

△

△

△

△

◃

◃

◃

◃

◓

◓

◓

◓

◣

◣

◣
◣

◳

◳

◳◳

▤

▤

▤

▤

▴

▴

▴

▴

◄

◄

◄

◄

◔

◔

◔

◔

◠◠

◠

◠

▲

▲

▲▲

◒

◒◒
◒

◲

◲

◲

◲

▣

▣

▣

▣

◃

◃

◃

◃

◓

◓

◓

◓

■

■
■

■

▰

▰▰▰

◀

◀

◀

◀

◐

◐

◐

◐

◠

◠

◠

◠

◰

◰

◰
◰

□
□

□

□

▱

▱▱

▱

◁

◁◁
◁

◑

◑
◑
◑

◡

◡◡

◡

◱

◱

◱
◱

▢

▢▢

▢

▲

▲

▲

▲

◂

◂

◂◂

◒

◒◒
◒

◢

◢

◢
◢

◲

◲

◲
◲

▣

▣
▣

▣

△

△

△△
◃

◃
◃

◃

◓

◓
◓

◓

◣

◣

◣◣

◳

◳

◳◳

▤

▤
▤

▤

▴

▴
▴

▴

◄

◄
◄

◄

◔

◔
◔

◔

■

■

■

■

▰▰▰

▰
◀

◀

◀

◀

◐

◐

◐

◐

◠

◠

◠
◠

◰

◰◰

◰

□

□□

□

◡

◡

◡

◡

▢

▢

▢

▢

▲

▲

▲▲

◂

◂

◂

◂

◒

◒

◒

◒

◢

◢

◢

◢

◲

◲

◲

◲

▣

▣

▣

▣

△

△
△

△

◃

◃

◃
◃

◓

◓

◓

◓

◣

◣

◣

◣

◳

◳

◳◳

▤

▤

▤

▤

▴

▴

▴

▴

◄

◄

◄

◄

◔

◔

◔

◔

■

■

■

■

▰▰▰

▰

◀

◀

◀

◀

◐◐

◐

◐

◠

◠

◠
◠

◰

◰
◰

◰

□

□
□□

◡

◡
◡

◡

▢

▢

▢

▢

▲

▲

▲▲

◂

◂

◂

◂

◒

◒

◒
◒

◢

◢

◢

◢

◲

◲

◲

◲

▣

▣

▣

▣

△△
△

△

◃

◃

◃

◃

◓

◓

◓

◓

◣

◣

◣

◣

◳

◳

◳◳

▤

▤

▤

▤

▴

▴

▴

▴

◄

◄

◄

◄

◔

◔

◔

◔

■
■■

■
▰

▰
▰

▰

◀

◀
◀

◀

◐
◐◐

◐

◠

◠◠
◠

◰

◰
◰

◰

□□□

□
▱

▱▱

▱

◁

◁◁◁

◑
◑
◑

◑

◡
◡◡

◡

◱◱◱

◱
▢

▢▢

▢▲

▲

▲

▲

◂

◂◂

◂

◒

◒
◒◒

◢

◢◢

◢

◲

◲
◲

◲

▣

▣

▣▣

△

△
△

△

◃

◃
◃◃

◓

◓
◓
◓

◣

◣

◣

◣

◳

◳

◳

◳

▤

▤
▤

▤

▴

▴▴

▴

◄◄◄

◄

◔

◔
◔

◔

■■■

■

▰▰▰

▰

◀◀◀◀◐◐◐

◐

◠◠◠

◠

◰◰◰

◰

□□□

□

◡◡◡

◡

▢▢▢

▢

▲▲▲▲ ◂◂◂

◂

◒◒
◒

◒

◢◢◢

◢

◲◲◲
◲

▣▣▣▣△△△

△

◃◃◃◃◓◓◓◓◣◣◣

◣

◳◳◳
◳

▤▤▤

▤

▴▴▴

▴

◄◄◄◄◔◔◔◔

■ ■■

■

▰ ▰
▰

▰

◀

◀ ◀

◀

◐
◐◐

◐
◠

◠

◠◠

◰
◰
◰

◰□

□□□

▱
▱▱

▱

◁

◁

◁

◁

◑
◑
◑

◑

◡

◡◡

◡

◱

◱◱

◱

▢
▢
▢

▢

▲

▲

▲

▲

◂
◂◂

◂

◒

◒

◒

◒

◢
◢◢

◢

◲
◲

◲

◲

▣

▣

▣

▣

△
△
△

△

◃
◃

◃

◃

◓

◓

◓

◓

◣
◣

◣◣

◳◳

◳
◳

▤
▤

▤

▤

▴
▴

▴

▴

◄ ◄

◄

◄

◔ ◔

◔

◔

■

■

■
■

▰

▰

▰▰

◀◀◀
◀ ◐◐◐◐◠◠◠◠◰

◰◰◰
□□□□

▱

▱

▱
▱

◁

◁

◁◁

◑

◑

◑
◑

◡◡◡◡◱◱◱◱
▢▢▢▢▲▲▲▲ ◂◂◂◂
◒◒◒◒◢◢◢◢
◲◲

◲◲

▣▣▣▣△△△△◃◃
◃◃◓◓◓◓
◣◣◣◣◳◳◳◳▤▤▤

▤
▴▴
▴
▴◄◄◄◄

◔

◔

◔
◔

■

■
■
■

▰

▰

▰
▰

◀◀◀◀

◐◐◐◐ ◠◠
◠◠

◰◰◰◰
□□□

□

▱

▱

▱
▱

◁

◁

◁
◁

◑

◑

◑
◑

◡
◡◡◡

◱◱◱◱

▢
▢

▢▢

▲
▲

▲▲

◂
◂

◂◂
◒

◒
◒◒

◢

◢◢◢
◲

◲◲◲

▣▣▣
▣△△△△ ◃◃◃◃
◓◓◓◓◣◣◣◣◳◳◳
◳▤▤▤▤
▴▴▴▴◄◄◄◄

◔

◔

◔
◔

▰

▰

◀
◀

◐

◐

◠
◠

◰

◰

□

□

▱

▱

◁
◁

◑

◑

◡

◡

◱

◱
▢

▢

▲
▲◂ ◂

◒

◒

◢

◢

◲
◲

▣
▣

△

△

◃◃
◓
◓

◣
◣◳
◳▤

▤

▴

▴

◄
◄

◔
◔

■

■

▰

▰

◀

◀

◐

◐

◠◠

◰

◰

□

□

▱

▱

◁◁

◑

◑

◡

◡

◱

◱

▢

▢

▲▲

◂

◂

◒◒

◢

◢

◲

◲

▣▣

△

△

◃◃◓◓◣

◣

◳

◳
▤

▤

▴

▴

◄

◄

◔

◔

■

■▰

▰

◀

◀

◐

◐

◠

◠

◰

◰

□

□

▱

▱

◁

◁

◑

◑

◡

◡

◱

◱

▢

▢

▲

▲

◂

◂

◒

◒

◢

◢◲

◲

▣

▣

△

△

◃

◃

◓

◓
◣

◣

◳

◳

▤

▤

▴

▴
◄

◄

◔

◔

■
■
▰▰
◀◀
◐
◐

◠

◠

◰
◰

□□
▱

▱

◁

◁

◑
◑

◡
◡

◱
◱▢

▢
▲▲
◂

◂

◒

◒

◢
◢◲◲▣▣△△◃

◃

◓◓◣

◣

◳
◳
▤

▤

▴
▴

◄◄◔◔

■

▰

◀

◐
◠

□

◡

▢

▲

◂◒
◢

◲

▣
◃

◓

◣
◳

▤▴◄
◔
■

▰

◀

◐

◠

□

◡

▢

▲

◂

◒

◢
◲

▣◃

◓

◣

◳

▤▴
◄
◔

■
■
▰
▰

◀

◀

◐◐

◠

◠

◰◰□□
▱
▱

◁

◁

◑
◑

◡
◡

◱◱▢
▢▲

▲

◂ ◂◒

◒

◢◢
◲◲
▣

▣

△△
◃

◃

◓

◓

◣

◣

◳

◳

▤

▤

▴▴◄

◄

◔

◔

■■▰▰◀

◀

◐
◐◠

◠

◰◰□□▱▱
◁

◁

◑◑◡◡
◱◱▢▢▲

▲

◂
◂◒

◒

◢
◢◲◲
▣

▣

△△

◃

◃

◓

◓

◣◣◳◳▤▤▴▴◄◄◔◔

■■

▰

▰

◀

◀

◐
◐◠

◠

◰◰□□

▱

▱
◁

◁

◑

◑

◡◡◱◱▢

▢

▲

▲

◂
◂◒

◒

◢

◢
◲
◲

▣

▣

△

△

◃

◃

◓

◓

◣

◣

◳

◳

▤

▤

▴

▴

◄

◄

◔

◔

■■▰

▰

◀

◀

◐

◐

◠

◠

◰
◰

□

□▱

▱

◁

◁

◑

◑

◡◡◱
◱▢

▢

▲

▲

◂

◂

◒

◒

◢

◢

◲

◲

▣

▣

△

△

◃

◃

◓

◓

◣

◣

◳

◳

▤

▤

▴

▴

◄

◄

◔

◔

■■▰▰◀◀◐
◐
◠

◠

◰◰□□▱
▱◁

◁

◑◑◡◡◱◱▢▢
▲

▲

◂◂◒

◒

◢◢◲◲▣
▣

△△
◃

◃

◓
◓

◣
◣
◳◳▤▤▴▴◄◄◔◔■

■
▰

▰
◀

◀

◐

◐

◠

◠

◰
◰
□
□
▱

▱
◁

◁

◑
◑
◡

◡
◱

◱
▢

▢
▲

▲
◂

◂
◒

◒

◢
◢
◲

◲
▣

▣

△
△

◃

◃

◓◓◣
◣◳

◳▤▤
▴

▴
◄
◄◔◔◠

◠

▲

▲

◒

◒

◲

◲

▣

▣

◃

◃

◓

◓

■

■

▰

▰

◀

◀

◐

◐

◠
◠
◰
◰

□

□

◡
◡

▢

▢

▲

▲

◂

◂

◒

◒

◢

◢

◲

◲

▣

▣

△△

◃

◃

◓

◓

◣

◣

◳

◳
▤

▤

▴

▴

◄

◄

◔

◔

■

■

▰ ▰

◀

◀

◐

◐

◠

◠

◰

◰

□

□

◡

◡
▢

▢

▲

▲

◂

◂

◒

◒

◢

◢

◲

◲

▣

▣

△△

◃

◃

◓

◓

◣

◣

◳

◳

▤

▤

▴

▴

◄

◄

◔

◔

■

■

▰

▰

◀

◀

◐

◐

◠

◠

◰

◰

□

□

▱

▱

◁

◁

◑

◑

◡

◡

◱

◱

▢

▢

▲

▲

◂

◂

◒

◒

◢

◢

◲

◲

▣

▣

△

△

◃
◃
◓◓

◣

◣

◳

◳

▤

▤

▴

▴

◄

◄

◔

◔

■

■

▰

▰

◀
◀
◐

◐

◠◠◰

◰

□

□

◡

◡

▢

▢

▲▲◂

◂

◒◒◢

◢

◲
◲
▣▣△

△

◃◃◓◓◣
◣
◳

◳
▤

▤

▴

▴

◄◄◔◔

■

■

▰

▰

◀◀◐◐◠◠◰◰□□

▱

▱

◁

◁

◑

◑

◡◡◱◱▢▢▲▲◂◂◒◒◢◢◲◲▣▣△△◃◃◓◓◣◣◳◳▤▤▴▴◄◄

◔
◔

■

■

▰

▰

◀◀
◐◐◠◠
◰◰□□

▱

▱

◁

◁

◑

◑

◡◡
◱

◱
▢▢ ▲

▲
◂

◂
◒

◒ ◢◢ ◲
◲

▣▣△△◃◃◓◓◣◣◳◳▤▤▴▴◄◄

◔

◔

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Normalized Throughput

N
or

m
al

iz
ed

 T
P

P

Lock algorithm
■

▰
◀
◐

◠
◰
□

▱
◁
◑
◡

◱
▢

▲
◂
◒
◢
◲
▣
△

◃

◓
◣
◳
▤
▴
◄
◔

ahmcs
alock-ls
backoff
c-bo-mcs_spin
c-bo-mcs_stp
c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs
hticket-ls
malth_spin
malth_stp
mcs_spin
mcs_stp
mcs-ls
mcs-timepub
mutexee
partitioned
pthread
pthreadadapt
spinlock
spinlock-ls
ticket
ticket-ls
ttas
ttas-ls

Fig. 4. Correlation of throughput with energy efficiency (TPP) on various lock-sensitive applications with
various lock algorithms and various contention levels (all machines).

Besides, on Figure 5, MySQL and (to a lesser extent) SQLite are outliers. These are the only two
applications launching thousand of threads, stressing heavily the Linux scheduler. We conjecture
that the overhead of context switches (due to both lock parking and thread preemption) slightly
breaks the correlation between throughput and energy.

To quantitatively assess the correlation between energy efficiency and performance, we compute
the Pearson correlation coefficient (PCC). The PCC is the value of the slope of a linear regression
between two variables: the closer to 1, the greater the correlation between the variables. Intuitively,
it quantifies the dispersion of the different configurations around the diagonal blue line. Table 16
shows the PCC on I-48 and I-20 for all the studied lock-sensitive applications. We observe that
except MySQL that has a low PCC (0.55), all other configurations have a PCC at least equal to
0.87, which indicates a strong correlation between the performance and energy efficiency. More
generally, the PCC across all configurations (3.1k experiments) is 0.95, an almost perfect
correlation coefficient.

MySQL, upscaledb, Kyoto Cabinet and radiosity_ll have a PCC lower than 0.9. We observe that
these four applications are highly contended. Looking at the detailed results, we observe that

34 R. Guerraoui et al.

■▰◀◐◠◰□▱◁◑◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■▰

◀
◐

◠
□

◡
▢

▲

◂
◒◢◲

▣
◃◓◣
◳▤

▴

◄
◔

■
▰◀◐◠◰□▱

◁
◑

◡◱▢▲
◂

◒

◢◲▣△◃◓◣◳▤
▴◄◔

■
▰

◀◐

◠
◰□

▱

◁

◑

◡◱

▢

▲

◂

◒

◢
◲

▣

△

◃◓

◣

◳▤
▴◄◔

■▰◀◐◠◰□▱◁◑
◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■

▰

◀◐◠◰□

▱◁◑

◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄

◔

▰

◀

◐◠

◰
□

▱◁◑

◡
◱▢▲◂◒◢◲

▣△◃◓◣◳▤▴◄

◔

■
▰

◀
◐◠□◡

▢▲
◂◒

◢◲▣◃◓
◣

◳

▤▴

◄◔

■▰
◀◐◠◰□▱

◁

◑
◡

◱▢
▲

◂

◒

◢◲

▣

△

◃
◓

◣
◳

▤

▴◄◔

■▰

◀

◐◠◰□
◡

▢▲
◂◒

◢◲
▣

△◃

◓
◣◳

▤▴
◄◔

■
▰

◀◐◠◰□

▱◁◑

◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄
◔

■▰◀◐◠◰□▱◁◑◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

◠

▲◒

◲

▣◃◓

■▰◀◐◠◰□▱◁◑◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■
▰

◀

◐◠◰□
◡

▢▲

◂◒
◢

◲
▣

△
◃

◓
◣
◳

▤▴
◄◔

■
▰

◀◐

◠◰
□

▱

◁

◑
◡◱

▢▲
◂

◒

◢
◲

▣

△

◃
◓

◣◳

▤
▴◄◔

■▰
◀
◐

◠

◰□▱

◁

◑◡◱▢▲◂

◒

◢◲
▣

△

◃
◓◣◳▤▴
◄◔

■▰◀◐◠◰□▱◁◑◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■
▰◀

◐

◠

◰□

▱

◁

◑

◡◱
▢

▲
◂

◒

◢
◲

▣

△

◃◓
◣◳

▤▴◄◔

■▰◀◐◠◰□▱◁◑
◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■▰◀◐◠
◰□▱◁◑◡◱▢▲◂◒◢◲▣△

◃
◓◣◳▤▴◄◔

◠

▲

◒

◲
▣
◃
◓

■▰◀◐◠◰□◡▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

water_spatial

volrend water_nsquared

ssl_proxy streamcluster streamcluster_ll upscaledb vips

radiosity radiosity_ll s_raytrace s_raytrace_ll sqlite

memcached-new memcached-old mysqld pca pca_ll

bodytrack dedup ferret kyotocabinet linear_regression

50% 100%

50% 100%

50% 100% 50% 100% 50% 100%

50%

100%

50%

100%

50%

100%

50%

100%

50%

100%

50%

100%

Normalized Throughput

N
or

m
al

iz
ed

 T
P

P

L o c k a lg o rith m

■

▰

◀

◐

◠

◰

□

▱

◁

◑

◡

◱

▢

▲

◂

◒

◢

◲

▣

△

◃

◓

◣

◳

▤

▴

◄

◔

ahmcs

alock-ls

backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs

hticket-ls

malth_spin

malth_stp

mcs_spin

mcs_stp

mcs-ls

mcs-timepub

mutexee

partitioned

pthread

pthreadadapt

spinlock

spinlock-ls

ticket

ticket-ls

ttas

ttas-ls

Fig. 5. Correlation of throughput with energy efficiency (TPP) on various lock-sensitive applications at one
node for the different lock algorithms (I-48 machine).

lock algorithms that use a parking waiting policy generally have a lower performance-to-energy-
efficiency ratio (PtE ratio thereafter) than spinning algorithms. For example, for MySQL, algorithms
using a fixed threshold for the spinning loop part of the spin-then-park waiting policy (e.g., C-BO-
MCS_STP with a PtE of 0.89), have a lower PtE than algorithms that do adaptive spin-then-park (e.g.,
Mutexee with a PtE of 1.28), and even lower than algorithms that do spinning (e.g., MCS-TimePub22
with a PtE of 1.34). Intuitively, these results are expected, because at high levels of contention,

22MySQL is highly multi-threaded (hundreds of threads), and, as a consequence, MCS-TimePub is the only spinning lock
algorithm that we study because it has a preemption tolerance mechanism. With other spinning algorithms the application
throughput drops close to zero.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 35

Table 16. Pearson correlation coefficient between throughput and TPP for all lock-sensitive applications.
Dashes mark applications that are not lock-sensitive (or not evaluated due to a lack of high-throughput
network connectivity, see Section 3.1) on the I-20 machine. (I-48 and I-20 machines).

I-20 I-48

bodytrack - 0.98
dedup 1.00 1.00
ferret 0.98 0.96
kyotocabinet 0.89 0.88
linear_regression 0.96 0.98
memcached-new 0.99 0.91
memcached-old 1.00 0.97
mysqld - 0.55
pca 0.97 0.96
pca_ll 0.95 0.91
radiosity 0.98 0.98
radiosity_ll 0.89 0.94
s_raytrace 0.97 0.95
s_raytrace_ll 0.94 0.98
sqlite 0.98 0.94
ssl_proxy - 0.95
streamcluster 0.97 0.99
streamcluster_ll 0.91 0.98
upscaledb 0.91 0.87
vips 0.97 0.96
volrend - 0.96
water_nsquared 1.00 0.99
water_spatial 0.99 1.00

parking locks can save energy compared to spinning, but spinning might still result in higher
throughput [36].
To conclude, we can state that the POLY conjecture holds on our experimental testbeds,

i.e., for lock algorithms, energy efficiency and throughput go hand in hand.

7 STUDY OF LOCK TAIL LATENCY
In this section, we are interested in the effect of lock algorithms on the application quality of service
(QoS). More precisely, the QoS metric that we consider is the application tail latency, here defined as
the 99th percentile of client response time. Note that in Sections 5 and 6 we discussed the results for
throughput and energy efficiency, respectively. Understanding the relationship between throughput
and tail latency allows us to understand, for example, if some lock properties (i.e., the fairness
of FIFO locks) that improve the tail latency of lock acquisitions indeed improve the application
tail latency. This analysis also enables us to understand which locks to choose to improve the tail
latency of an application, sometimes at the (controlled) expense of throughput.

To perform this analysis, we capture the 99th percentile of the client response time on the A-64
machine for the seven server applications among the lock-sensitive applications that we have stud-
ied: Kyoto Cabinet, Memcached-new, Memcached-old, MySQL, SQLite, SSL Proxy, upscaledb. We
further captured throughput and energy-efficiency metrics. Note that, as we discuss in Section 6.2,

36 R. Guerraoui et al.

throughput and energy efficiency are correlated, thus we do not clutter the plots with energy-
efficiency information and only show throughput. We have also performed the same experiments
on the I-48 machine (our largest Intel multicore machine) and made similar observations as the
ones described hereafter for the A-64 machine.

Figure 6 reports for each application and each lock algorithm at opt nodes the normalized (w.r.t.
Pthread) 99th tail latency, as well as the normalized (w.r.t. Pthread) execution time (black squares).
The results at one node and max nodes are available in the Appendix (§D). Locks are sorted by
increasing tail latency. Note that we plot execution time (rather than throughput) so that “lower is
better” for both displayed metrics (latency and execution time). However, in the text we talk about
throughput (as the inverse of the execution time) for homogeneity with the other sections.

7.1 How does tail latency behave when locks suffer from high levels of contention?
At max nodes, the maximum tail latency is generally higher than at opt nodes and one node. For
example, for Kyoto Cabinet, at max nodes, the tail latency of CLH_STP is 5× higher than Pthread,
while it is of roughly 1.6× higher than Pthread at one node and opt nodes. The tail latency skyrockets
at max nodes: locks suffer from extreme levels of contention and threads wait for a long time to
acquire locks. On average, when increasing the number of threads (from one node to max nodes),
the request execution time increases 3.3× and the tail latency increases 22.9×. Similarly, from opt
nodes to max nodes, the request execution time increases 3.4× and the tail latency increases 21.0×.
The experiments with a single thread for all the studied applications except MySQL and SQLite23
are available in the Appendix (§D). Overall, we found that, on the studied applications with a
single-threaded configuration, the choice of a lock has very little effect on the throughput or the
tail latency of the application.

7.2 Do fair lock algorithms improve the application tail latency?
On the one hand, FIFO locks (cf. Section 2.1) promise fairness among threads acquiring a lock. On
the other hand, unfair locks might increase tail latencies by letting some threads wait for long
durations before acquiring the lock. Interestingly, we observe that fairness affects the tail latency
for only two applications: Kyoto Cabinet and upscaledb. For them, we observe low tail latency
with almost all FIFO locks. Moreover, all hierarchical locks, which by design do not strictly impose
fairness, exhibit roughly the same tail latencies, which are higher than the tail latencies of FIFO
locks. Still, for the four other studied applications, we do not observe a correlation between lock
fairness and application tail latency.
The main distinction among the group of applications where fair lock algorithms improve the

application tail latency and where they do not is how an operation (e.g., a request) uses locks. If an
operation is mainly implemented as a single critical section, then lock properties that affect lock
acquisition tail latencies and throughput also affect the application, which is the case for upscaledb
and Kyoto Cabinet. For example, for upscaledb, at opt nodes, we measured that 90% of the response
time is consumed either while waiting for a single global lock, or inside the critical sections. On
the contrary, for Memcached-new, which is one of the applications where fair lock algorithms do
not necessarily improve the application tail latency, roughly 45% of the response time is spent
either waiting for locks or inside critical sections (55% of the response time is spent in parallel code
sections). Besides, Memcached-new uses more than one lock while processing a request, and two
different threads might use different locks to process different requests: locks are thus less stressed.
To summarize, we observe that, on the seven studied applications, lock properties affect application

23Running MySQL or SQLite with a single thread totally changes the workload, thus numbers cannot be compared with
other configurations with more threads.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 37

tail latency only for applications where an operation is mainly implemented as a single critical
section.

7.3 Do lock tail latencies affect application throughput?
Some lock algorithms explicitly try to trade fairness for higher throughput. For example, hierarchical
locks prefer to give a lock to a thread on the same NUMA node than to a thread executing on another
node. Interestingly, in practice, we observe that this property, which directly affects tail latency and
throughput of lock acquisitions, effectively affects the application tail latency and throughput for
only two applications: upscaledb and Kyoto Cabinet. For these applications, we generally observe
that hierarchical locks lead to higher tail latency and higher throughput. For example, for upscaledb
at opt nodes, increasing the tail latency from 100 𝜇s to 1000 𝜇s increases the throughput by 26%
(using MCS vs. HMCS). Using Ticket and C-TKT-TKT on Kyoto Cabinet, at opt nodes, increasing
the tail latency by 3×, leading to a 33% throughput increase. At max nodes, Mutexee exhibits 80%
higher tail latency than Pthread, but improves throughput by 60%. Applications where the tail
latency is affected by the lock fairness property of some locks (§7.2) are the same applications that
are affected by the fairness/throughput tradeoff property.
For the other applications where an operation is “large”, i.e., an operation consists of many

critical sections and/or whose critical sections are protected by different lock instances accessed by
different threads, we observe that lower application tail latency is correlated with higher application
throughput. In such cases, the tail latencies of individual locks are in the scale of hundreds of 𝜇s
and do not have a significant weight in the operation latencies. Thus, the lock tail latency does not
directly influence the application tail latency and throughput.
Among the 7 server applications for which we studied tail latency, we obtained unexpected

results for Memcached-old. This application is known to suffer from extreme levels of contention
(see Section 8): the main bottleneck is a single global lock serializing most requests. One might
expect that lock properties should directly affect the application throughput and tail latency.
However, Memcached-old uses the trylock operation to acquire a lock. Interestingly, most of the
lock algorithms have been designed to optimize the lock/unlock operation, not the trylock one,
and in practice, there is no such thing as a “fair trylock”, even for locks that promise FIFO lock
acquisitions.

7.4 Implications
Contrary to throughput (see Section 5.2), studying tail latency allows us to draw simpler conclu-
sions, as the results are more stable across applications and machines. We observe two groups of
applications that behave differently regarding tail latency.
If an operation is mostly implemented as a single critical section, then lock properties that

affect lock acquisition tail latency and throughput affect application tail latency and
throughput. In practice, low tail latency can be achieved with FIFO locks. If throughput is
more important and a developer is inclined to trade tail latency for throughput, hierarchi-
cal locks are a good choice.

In contrast, for applicationswith “larger” operations that consist of many critical sections
and/or the critical sections are protected by different lock instances accessed by different
threads, the tail latency of locks does not necessarily affect the application tail latency.
For such applications, a developer should choose a lock that best improves the application through-
put: the tail latency improvements will follow.
Interestingly, we observe in our set of studied applications that software developers use the

trylock operation to implement busy waiting, while the original operation is designed to allow
a developer to write a fallback code if the locking attempt fails. Because the trylock is only a

38 R. Guerraoui et al.

one-shot attempt to acquire a lock, there is actually no lock algorithm that provides a fair trylock.
We believe that developers use trylocks this way because the default Pthread lock operation is
blocking: a developer knows when a critical section is short, and thus would like to avoid the
overhead of a thread blocking if the lock is unavailable. Pragmatically, the trylock operation should
not be used this way, but this demonstrates the need to extend the Pthread lock API with a lock
operation informing the lock algorithm that a thread should busy wait and not block,
e.g., pthread_mutex_busylock24.

24There is a function named pthread_spin_lock that allows spining on a lock instance, but this function only accepts a
pthread_spinlock_t lock, not a pthread_mutex_t lock. Thus, there is no way to either spin or block on the same lock
instance.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 39

ex
e=

30
3%

ex
e=

29
0%

0.
17

m
s

●
●

●●
● ● ●●

●

● ●
●●

●
●●

●

●

●

●
● ●

●
●

●
●

1.
59

m
s

●

●

●

●● ●
●

●●
●

●● ●●
●●

●

●●●● ●

18
0.

81
m

s● ●
●

●

●
●

●

2.
72

m
s

●
●

●
● ● ●●●

●

●
● ●●

●●

●

●●

●

●

●

●
●●● ●

● ●

la
t=

36
4%

la
t=

55
9%

4.
96

m
s

●
●

●
●

●

● ●
●

●

●

●

● ●

●
●

●
●● ●

●
● ●

la
t=

21
3%

la
t=

62
6%

la
t=

31
7%

la
t=

12
55

%

20
.2

2m
s

●

●
●

●

● ● ●

la
t=

48
9%

95
6.

93
m

s

●● ●

● ●

●●
●

●

●● ●

● ●

●
●

● ●

●

●

●

●●● ●
●● ●

upscaledb

sqlite ssl_proxy

memcached−old mysqld

kyotocabinet memcached−new

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp
tic

ke
t

pa
rti

tio
ne

d

m
cs

−t
im

ep
ub

tic
ke

t−
ls

clh
_s

tp

m
cs

_s
tp

clh
_s

pin tta
s

alo
ck

−ls

clh
−ls

m
cs

_s
pin

m
cs

−ls

tta
s−

ls

sp
inl

oc
k−

ls

m
alt

h_
stp

sp
inl

oc
k

m
alt

h_
sp

in

c−
tkt

−t
kt

c−
pt

l−t
kt

ba
ck

of
f

pt
hr

ea
d

ah
m

cs
hm

cs

pt
hr

ea
da

da
pt

ht
ick

et
−ls

m
ut

ex
ee

m
cs

−t
im

ep
ub

m
cs

_s
tp

c−
bo

−m
cs

_s
tp

pt
hr

ea
da

da
pt

m
ut

ex
ee

pt
hr

ea
d

m
alt

h_
stp

sp
inl

oc
k−

ls
tic

ke
t
tta

s

m
cs

_s
tp

tta
s−

ls

sp
inl

oc
k

c−
bo

−m
cs

_s
pin

pt
hr

ea
da

da
pt

m
alt

h_
sp

in

m
alt

h_
stp

c−
bo

−m
cs

_s
tp

m
ut

ex
ee

clh
_s

tp

pt
hr

ea
d
hm

cs

c−
tkt

−t
kt

c−
pt

l−t
kt

alo
ck

−ls

tic
ke

t−
ls

clh
−ls

ht
ick

et
−ls

pa
rti

tio
ne

d

clh
_s

pin

m
cs

_s
pin

m
cs

−ls

m
cs

−t
im

ep
ub

ba
ck

of
f

ah
m

cs

tta
s

tic
ke

t−
ls

tta
s−

ls

m
cs

−ls
tic

ke
t

c−
bo

−m
cs

_s
tp

m
alt

h_
stp

alo
ck

−ls

c−
bo

−m
cs

_s
pin

m
cs

_s
tp

c−
tkt

−t
kt

hm
cs

m
ut

ex
ee

pt
hr

ea
da

da
pt

m
cs

−t
im

ep
ub

sp
inl

oc
k−

ls

pt
hr

ea
d

ba
ck

of
f

m
cs

_s
pin

sp
inl

oc
k

ah
m

cs

m
alt

h_
sp

in

m
ut

ex
ee

pt
hr

ea
d

m
cs

_s
tp

c−
bo

−m
cs

_s
tp

m
cs

−t
im

ep
ub

m
alt

h_
stp

pt
hr

ea
da

da
pt

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

ba
ck

of
f

pa
rti

tio
ne

d

m
cs

_s
pin

tic
ke

t−
ls

clh
_s

pin

m
cs

−t
im

ep
ub

m
cs

−ls

alo
ck

−ls

clh
−ls
tic

ke
t

c−
pt

l−t
kt

c−
tkt

−t
kt

ah
m

cs
hm

cs

ht
ick

et
−ls

tta
s−

ls

m
alt

h_
stp

m
alt

h_
sp

in
tta

s

sp
inl

oc
k

sp
inl

oc
k−

ls

pt
hr

ea
d

m
cs

_s
tp

pt
hr

ea
da

da
pt

clh
_s

tp

m
ut

ex
ee

m
cs

−ls

m
cs

−t
im

ep
ub

tic
ke

t−
ls

c−
tkt

−t
kt

sp
inl

oc
k−

ls
tta

s

tta
s−

ls

sp
inl

oc
k
tic

ke
t

m
cs

_s
pin

hm
cs

m
cs

_s
tp

ah
m

cs

pt
hr

ea
da

da
pt

m
alt

h_
stp

alo
ck

−ls

m
ut

ex
ee

pt
hr

ea
d

m
alt

h_
sp

in

c−
bo

−m
cs

_s
tp

ba
ck

of
f

c−
bo

−m
cs

_s
pin

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

N
or

m
al

iz
ed

 9
9t

h
la

te
nc

y
w

.r.
t.

pt
hr

ea
d

● Execution time
Legend

Tail latency

Fig. 6. For each server application, the bars represent the normalized 99th tail latency (w.r.t. Pthread) and the
dots execution time (lower is better) normalized (w.r.t. Pthread) of each lock algorithm (A-64 at opt nodes).

40 R. Guerraoui et al.

8 ANALYSIS OF LOCK/APPLICATION BEHAVIOR
In order to understand the performance of a lock algorithm on a given application, we perform
a detailed analysis that explains, for each of the studied applications, which types of locks work
well/poorly and why. We highlight that a lock can have many side-effects on the performance of
an application.

In Section 8.1, we give general insights that we draw from our analysis by presenting, for every
application, the performance bottleneck it suffers from, and which lock(s) to prefer or to avoid
when running it. We found that, beyond the pure performance of a lock algorithm under high
contention, different applications stress different aspects of a lock algorithm (e.g., memory footprint,
scheduler preemption tolerance). In Section 8.2, we present seven properties shared by the studied
lock algorithms, which, when cross-referenced with the performance bottlenecks of an application
and a set of general guidelines that we provide, can help a developer to predict whether a lock
algorithm performs well or poorly on a given application.

Note that the above-mentioned analysis was performed on the A-64 machine, and was performed
with the aim to find the main (lock-related) performance bottlenecks. For each bottleneck, we
explain if it is more common at opt nodes or max nodes. Nonetheless, the observations made in
Sections 5 and 6 are not specific to lock performance on the A-64 machine. Thus, we think that the
conclusions of this Section can be applied to different machines, and not only to throughput but
also to energy efficiency.

8.1 Summary of the lock/application behavior analysis
In this section, we give general insights that we draw from the detailed analysis of the different
lock-sensitive applications. Table 17 lists, for each lock-sensitive application its main performance
bottleneck with respect to locking (in column 2). We also recommend which family of lock algo-
rithms (i.e., lock algorithms sharing a similar property) to prefer or avoid for each of the studied
applications (detailed in Section 8.2.1). For example, we observed that the performance bottleneck
of fluidanimate is due to a high number of uncontended lock acquisitions. As a consequence, it
is better to use a light lock algorithm, i.e., a lock that can be acquired very quickly when there is
no other thread trying to acquire it at the same time (e.g., with only one atomic CPU instruction).
Overall, we identified 9 performance bottlenecks across 22 applications, that can be summarized
into four categories: lock contention, scheduling issues, memory footprint and memory contention.

8.1.1 Lock contention. One of the key performance factors of a lock algorithm is how well it
behaves under contention, i.e., its performance when a set of threads try to acquire the same
lock instance at the same time. Depending on their design, lock algorithms achieve their best
performance at different levels of contention. For example, lock algorithms like Spinlock and TTAS
are simple enough so that acquiring the lock under a low level of contention is only a matter
of a few cycles. However, this simplicity leads to a performance collapse under higher levels of
contention. On the contrary, algorithms like MCS or HMCS are designed to perform best under
high levels of contention, at the expense of a high cost to acquire the lock when there is no other
thread competing to acquire it. We observe four different performance bottlenecks depending on
how many threads concurrently try to acquire a lock instance and how they try to acquire it: high
levels of contention, extreme levels of contention, trylock contention and many uncontended lock
acquisitions. Note that lock contention can be observed both at opt nodes and max nodes.

High levels of contention. A high number of threads (between approx. 10 to 40 threads on A-64)
are waiting to acquire the same lock instance at the same time. To measure the contention level on a
lock, we take regular snapshots of the application state, looking at how many threads are currently

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 41

Table 17. Lock-sensitive application performance bottleneck(s) and lock algorithms choice advice.

Performance Bottleneck(s) Advice

facesim scheduling issue: lock handover avoid FIFO locks

radiosity lock contention: high avoid light or parking locks

radiosity_ll lock contention: extreme prefer hierarchical locks

ferret scheduling issue: lock handover avoid FIFO locks

streamcluster lock contention: extreme (mixing trylocks
and locks)

prefer locks with a contention-hardened
trylock operation

dedup kernel lock contention inside the page
fault handler

prefer locks with small memory footprint

vips scheduling issue: lock handover avoid FIFO locks

fluidanimate page fault memory erase page and lot of
uncontended lock acquisitions

prefer light locks

pca memory contention prefer locks lowering memory traffic

linear_regression lock contention: high avoid light or parking locks

s_raytrace lock contention: high avoid light or parking locks

s_raytrace_ll lock contention: high avoid light or parking locks

ocean_cp/ncp scheduling issue: lock handover and lock
contention: high

avoid light or FIFO locks

water_spatial page fault memory erase page prefer locks with small memory footprint

water_nsquared page fault memory erase page prefer locks with small memory footprint

fmm page fault memory erase page prefer locks with small memory footprint

volrend lock contention: extreme prefer hierarchical locks

mysql lock contention: extreme and memory
contention and scheduling issue: lock
holder preemption

prefer parking locks

ssl_proxy lock contention: extreme prefer hierarchical locks

kyotocabinet lock contention: extreme prefer hierarchical locks

upscaledb lock contention: extreme prefer hierarchical locks

memcached-old lock contention: extreme (with trylocks) prefer locks with a contention-hardened
trylock operation

memcached-new lock contention: high avoid light or parking locks

sqlite scheduling issue: lock holder preemption prefer parking locks

42 R. Guerraoui et al.

waiting for a lock. More precisely, each time a thread requests a lock, it puts the lock address
inside a private cache-aligned memory location, and all such locations are read by a background
thread every second. This provides us with a low-overhead approximation of the real number of
threads waiting for a lock, with respect to a more straightforward approach where a counter is
atomically incremented before waiting for a lock and decreased when the lock is acquired. Radiosity,
linear_regression, s_raytrace, s_raytrace_ll are the four lock-sensitive applications that suffer from
this performance bottleneck.
Radiosity is parallelized using per-core distributed task queues, where each thread can steal

work from another task queue. Radiosity allocates a large number of locks (4k); still only two locks
are highly contended. With HMCS, one of the best locks, on average, 60% of all the total threads
wait on one of the two stressed locks, while there is virtually no contention on the other 4k locks.
For linear_regression, we observe that there is only one lock inside the application that protects a
distributed task queue. This lock suffer from high levels of contention (65% of the threads waiting
on the lock). S_raytrace and s_raytrace_ll render a 3-D scene partitioned among threads and there
is a global task queue protected by a single lock. Still, the contended lock is not the global task
queue lock, but a lock protecting a single counter used to implement a global unique identifier
generator. For the short-lived version (resp. for the long-lived version), on average, 40% (resp. 60%)
of the threads are waiting for the same lock (using HMCS, one of the best lock algorithms). When
using an atomic fetch_and_add, we observe a 1.8× (resp. 3×) performance improvement for the
short-lived version.
For high levels of contention, lock algorithms that rely on local spinning (e.g., MCS) or on a

hierarchical approach (e.g., AHMCS) are well suited (see Section 2.1). Light lock algorithms (e.g.,
Spinlock) and lock algorithms using a parking waiting policy must be avoided when possible.

Extreme levels of contention. A very high number of threads (more than 40 on A-64) are waiting
to acquire the same lock instance. This phenomenon can be observed on seven of the lock-sensitive
applications: radiosity_ll, volrend, MySQL, SSL Proxy, Kyoto Cabinet, upscaledb.
Radiosity_ll, the long lived version of radiosity, also suffers from lock contention. Contrary to

the short lived version, radiosity_ll puts more pressure on the locks25. Volrend suffers from lock
contention on the lock instances protecting different distributed task queues, as well as on a lock
instance used to implement a barrier that separates the computation steps. These task queue locks
(as well as the barrier lock) suffer from extreme levels of contention, especially the barrier lock that
suffers from spikes of contention when all the threads wait for the barrier at the same time. MySQL
suffers from lock contention on a lock that protects the page cache, a data structure that serves as
an in-memory cache for the SQL table data stored on disk. This lock is heavily stressed: we observe
on average 50 threads (on a 64-core machine) competing for the same lock instance, resulting in 40%
of the thread lifetimes spent waiting to acquire this lock. The SSL Proxy application implements a
reverse SSL proxy using OpenSSL via the Boost ASIO library. This application is subject to a huge
performance collapse: the optimized number of nodes is one. In this application, the main bottleneck
is a lock protecting the error queue of OpenSSL, which suffers from extreme levels of contention
(on average 85% of the threads wait on the same lock). Similarly to Zemek [97], we found that the
problem comes from an inefficient usage of the OpenSSL library by the Boost ASIO library. Indeed,
the original lock that the OpenSSL library requests is a reader-writer lock; still Boost ignores it
and uses a classic mutex lock, lowering the potential degree of parallelism. Kyoto Cabinet is a
straightforward implementation of a database. As explained by Afek et al. [1], the most contended

25The short-lived version is launched with a BF [45] refinement epsilon of (1.5𝑒 − 3) and the long-lived version is launched
with a BF refinement epsilon of (1.5𝑒 − 5) . With a lower epsilon, computations are refined more frequently, creating more
tasks.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 43

lock instance is the lock protecting the global hash table storing the data. Indeed, all database
operations (create/insert/update/delete/lookup) need to acquire the same lock, which becomes
highly contended. Upscaledb is an in-memory key/value store tailored for efficiency of analytical
functions. Contrary to popular database engines like InnoDB for MySQL that use fine-grained
locking (generally one lock for a row/set of rows), upscaledb uses only one lock instance to protect
the whole database. Such a poor design choice explains why upscaledb does not scale: indeed we
observe that all of the threads spend 98% of their execution time waiting for the lock.
For these applications, the well-performing lock algorithms are the ones designed to support

extreme levels of contention, such as AHMCS, HMCS and the cohort locks.

Trylock contention. Some of the studied applications (e.g., Memcached-old, streamcluster) use
the (non-blocking) trylock operation to acquire a lock instance. However, most of the existing
papers on lock algorithms focus on the design and evaluation of lock operations with blocking
semantics. Trylock is a non-blocking operation, and we observe that an algorithm that optimizes
the (blocking) lock operation can have a totally different behavior for its trylock operation. In fact,
most algorithms (even the more elaborate ones, e.g., AHMCS) have a trylock operation as simple
as the one of the simplest algorithm (Spinlock), which consists of a simple atomic instruction on a
single memory address. As an example, the MCS trylock operation is a compare-and-set on the tail
pointer of the waiter’s linked list.

Streamcluster, and its long-lived version streamcluster_ll, are examples of applications that stress
trylocks. Streamcluster heavily relies on a custom barrier implementation to synchronize threads
between the different phases of the application. This barrier implementation uses a mix of trylock
and lock operations, as well as condition variables. During Streamcluster execution, 30% of the
threads are on average either inside a trylock or a lock invocation. Because streamcluster mixes
locks and trylocks, we observe that algorithms having a contention-hardened trylock operation,
like HMCS, exhibit better application performance. Such algorithms include rather complex trylock
implementations, with tens of instructions. On the contrary, poor-performing algorithms, like
Spinlock, have extremely simple trylock implementations (i.e., Spinlock simply does one compare-
and-set instruction). As a result, an uncontested trylock costs on average 220 cycles with HMCS
and 170 cycles with C-BOMCS (two well-performing locks in Streamcluster), while it costs 60
cycles with Spinlock and 80 cycles with MCS (two poor performing locks when trylock is heavily
contended). Another example where trylock is important is Memcached-old. Instead of calling
the Pthread mutex lock operation, Memcached-old relies on trylock to improve reactivity for
short critical sections. The most contended lock is a global lock protecting the cache hash-table
(item_global_lock), followed by the lock protecting the in-house memory allocator (cache_lock).
As a results, on average 80% of the threads wait behind one of these locks. These results illustrate
that contention-hardened trylocks can play an important performance role under high levels of
contention.
Among the studied algorithms, only a few algorithms (HMCS, cohort locks, Partitioned and

MCS-TimePub) implement a trylock operation performing well under high levels of contention.
For example, the HMCS and the cohort locks implement a trylock in a hierarchical manner, leading
to better performance on NUMA machines26.

Many uncontended lock acquisitions. One of the applications (fluidanimate) creates a large number
of lock instances (500k locks). These locks are used to protect each cell of the grid, and are only
26The trylock algorithms for HMCS and cohort algorithms acquire the per-socket lock instance, and if successful, try to
acquire the global lock instance. The Partitioned lock first checks non-atomically if there is another thread waiting for the
lock, then does a classic (blocking) mutex lock acquisition. The MCS-TimePub trylock runs an adaptive algorithm that is
long, thus lowering the number of concurrent atomic instructions.

44 R. Guerraoui et al.

used by one or two threads at the same time: most of the time a thread acquires the lock without
any competition. More precisely, fluidanimate calls pthread_mutex_lock 5 billions times and half
of the acquisitions are immediate, while for the other half a thread waits only because there is
another thread inside the critical section, never because there are other waiting threads.
While the main performance bottleneck of facesim is related to memory (see below), we found

that, similarly to the SyncPerf study [5], as lock are rarely contended, an important performance
factor is the best-case critical path, i.e., the time to acquire a lock instance when it is not contended.
We observe that the “lightest” lock algorithms (i.e., the ones with a short code path for acquisition
in the absence of contention) exhibit very good performance (e.g., Backoff, Spinlock, Ticket, TTAS,
which require roughly 40 cycles to acquire a lock under no contention). On the contrary, lock
algorithms like cohort locks or HMCS (that require roughly 190 cycles to acquire an uncontended
lock) perform the worst, because a thread needs to acquire two locks (the NUMA-local lock and
the global one) most of the time, hampering the execution.
For application highly sensitive to the time spent acquiring a lock instance in the absence of

contention, we recommend to use the “lightest” lock algorithms, such as Backoff, Spinlock, Ticket
or TTAS.

8.1.2 Scheduling issues. The performance of some of the studied applications mainly depends
on how well a given lock algorithm behaves with respect to scheduling choices. We observe two
different performance bottlenecks related to scheduling: the lock holder preemption effect and the
lock handover effect.

Lock holder preemption. The lock holder preemption effect is a well-known issue [14] with lock
algorithms using a spinning waiting policy. It happens when a thread 𝐴 waiting for a lock instance
preempts a thread 𝐵 that is the lock holder. Doing so, 𝐴 runs on a core waiting for 𝐵 to release the
lock instance, while the rescheduling of 𝐵 is delayed because of 𝐴, thus delaying 𝐵 to finish the
critical section, and release the lock instance for 𝐴. This pattern is highly inefficient. In the worst
scenario, this can lead to lock convoy: while the lock holder is descheduled, each thread progresses
and eventually tries to acquire the lock instance, spinning, thus delaying the rescheduling of the
lock holder. This issue is usually observed in highly-threaded applications, where the scheduler
has to frequently decide which thread to run on which core. This effect is more likely to be seen
at max nodes; still some applications are already highly-threaded at opt nodes (e.g., MySQL and
SQLite). Note that all kinds of spinning algorithms are affected by this phenomenon: the simplest
ones (e.g., TTAS), FIFO (e.g., MCS_Spin) and hierarchical approaches (e.g., HMCS). In fact, lock
holder preemption is mainly a property of the program concurrency-design, not the lock design.
The lock holder is more likely to be preempted inside critical sections with applications composed
of long critical sections and that over-subscribe threads to cores (e.g., databases).

MySQL and SQLite are two highly-threaded applications suffering from the lock holder preemption
effect. MySQL uses a large thread pool (hundreds of threads) to handle queries from clients. SQLite
creates a server that listens for client requests on a Unix socket and uses a globally shared work
queue protected by a single lock instance; still many other lock instances are used to synchronize
internal data structures. The benchmark used (see Section 3.1) creates hundreds of threads.
In order to mitigate this effect, it is recommended to choose lock algorithms using a parking

waiting policy. Indeed, with this policy, when a thread waits for too long, it deschedules itself, and
the scheduler does not schedule it back until the lock instance has been released. In particular, we
recommend Malth_STP, because, thanks to its concurrency control mechanism, it is able to put
aside some threads and let others progress. The smaller set of running threads allows lowering the
pressure put on the lock instances, and as a consequence the overall performance of the application

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 45

is improved. Another well-performing lock is theMCS-TimePub lock algorithm, which is specifically
designed to mitigate the lock holder preemption effect.

Lock handover. This phenomenon (also known as the lock waiter preemption problem [85]) happens
with algorithms that use a direct handoff succession policy (see Section 2.1.2). When a thread waiting
in line for a lock is preempted, all other waiting threads after this one are delayed. Worse, these
threads spinlock their entire timeslice, postponning the rescheduling of the descheduled thread. In
principle, this problem is unlikely to appear on platforms that do not use more threads than cores.
In practice, lock waiter preemption actually occurs quite often even when there are never more
threads than cores. Indeed, the Linux CFS scheduler sometimes migrates two (or more) threads on
the same core, thus leading to situations where the next-acquiring thread is preempted, and where
other waiting threads spin uselessly. These migrations are mainly observed when there are many
blocking calls inside the application (e.g., condition variables, I/O). This phenomenon is more likely
to happen at max nodes.

There are six of the lock-sensitive applications that suffer from the lock handover effect: facesim,
ferret, vips, ocean_cp and ocean_ncp, streamcluster. Facesim creates one thread per core that
implements a fork-join computation model [13]. The applications uses a barrier to synchronize the
successive fork-join phases, implemented with a mutex lock and a condition variable. When threads
wait on the condition variable, they might be migrated by the scheduler so that when they are
unblocked (i.e., when leaving pthread_cond_wait) they are scheduled on the same core. There are
10× more migrations for a poor performing lock algorithm (MCS, 40k) than for the MCS-TimePub
lock algorithm (4k): with a poor performing lock, threads have more chances to share the same
core. Note that a straightforward solution to “fix” facesim is to pin each thread to a distinct core,
thus avoiding inefficient migrations. For example, with MCS pinning improves performance and
yields roughly the same results as MCS-TimePub, one of the best performing locks.
Ferret is parallelized using a pipeline model with 6 stages, where the four middle stages use a

thread-pool to handle requests. Ferret is subject to the lock handover effect: treads are migrated
because they stress the condition variables propagating work through the stages. To assess the
impact of this effect, we compute the lock handover latency, i.e., the time delta between when a
thread releases the lock and when the next thread that was waiting for the lock acquires it. The
lock handover latency is on average 15× higher with MCS than with Spinlock (30M instead of
2M cycles). As a comparison, on a micro-benchmark that does not suffer from the lock handover
effect (1 thread pinned on each core, all trying to acquire the same lock), the average lock handover
latency is of 460 cycles with MCS, and 46k with Spinlock.
Vips automatically builds a parallel image processing pipeline, each stage being supported by

an independent pool of threads. Threads are migrated inside vips after page faults and calls to
condition variables.

Ocean_cp and ocean_ncp are applications simulating large-scale ocean movements. We observe
that the main bottleneck in the ocean applications is a barrier implemented with condition variables
and used to synchronize the different phases of the simulation.

Streamcluster heavily relies on a barrier to synchronize the threads, and the barrier implementa-
tion uses a mix of trylock and lock operations, as well as condition variables.

For applications suffering from the lock handover effect, FIFO algorithms using a waiting policy
based on pure spinning (e.g., Ticket, MCS) should be avoided in such cases.

8.1.3 Memory footprint. A less known category of locking performance bottlenecks is related to
the memory footprint of a lock instance. Indeed, not all lock algorithms occupy the same space
in memory, and if many lock instances are allocated by the application, it can become a critical

46 R. Guerraoui et al.

performance factor. We observe two different performance bottlenecks related to the memory
footprint of a lock, which depend on the memory allocation pattern.

Erasing new memory pages inside the page fault handler. With applications like fmm, fluidanimate,
water_spatial and water_nsquared, one thread creates and initializes all the lock instances at the
beginning of a run, allowing all other threads to use them. More precisely, water_spatial creates
125k lock instances, water_nsquared 32k, fmm 2k and fluidanimate 500k. The allocating thread
requests memory pages from the kernel, that are erased (i.e., filled with zeros) upon the first access.
For an application with many lock instances, a lock algorithm with a big memory footprint triggers
many memory page requests to the kernel, each of them needing to be erased. For example, with
fmm, a poor performing lock (AHMCS) triggers 17% (400k) more page-faults than a well-performing
lock (Spinlock). Water_spatial is another good example of an application where this effect has a
severe impact on performance: the execution time difference between Spinlock (a well-performing
lock) and AHMCS (a bad performing lock) can be explained by the difference of the time spent
erasing pages (1 vs 19 seconds). This bottleneck is observed both at opt nodes and max nodes, and
happens during the initialization phase of the application. One way to alleviate the bottleneck is to
rewrite the application to allocate locks concurrently (though this might cause other issues, see
the next bottleneck description). Another way is to reduce the ratio of the initialization time over
the steady-state time by increasing the steady-state time. However, this is not always possible.
For example, the number of allocated locks for water_nsquared is proportional to the input size,
upon which the steady-state time depends. In such applications, we thus recommend to use lock
algorithms that have a low memory footprint (e.g., Spinlock, Ticket) to decrease the number of
pages that need to be erased.

Applications that need to control their memory footprint can benefit from dynamically allocating
per-node data structures of hierarchical locks upon first access [55]. It benefits to applications
where locks are in fact rarely acquired by threads from multiple NUMA nodes. However, it leads to
more dynamic allocations to be made, which might introduces kernel lock contention inside the
page fault handler (see below).

Kernel lock contention inside the page fault handler. On some applications, at both opt nodes and
max nodes, all threads are constantly creating new lock instances, putting pressure on the memory
allocator (i.e., malloc). Internally, malloc requests pages of memory to the kernel (via brk and
mmap), which generates page faults when the pages are first accessed. The page fault handler tries to
insert the new page into a process-shared data structure (the virtual address space data structure),
protected by a single reader/writer lock [23]. The contention on this kernel lock becomes more
performance critical than the one on the application-level locks, because all threads need exclusive
write access to the data structure, and the lock is generally kept for a long time.

Dedup is an example of application where there is kernel lock contention inside the page fault
handler. Through its lifetime, dedup creates a very large number of locks (266k), which puts a huge
pressure on the memory allocator. To measure the impact of the lock algorithm memory footprint
on the performance of dedup, we compare CLH-ls, which has a huge memory footprint, with
Pthread, which has a low memory footprint. Using CLH-ls, we observe an increase of the number
of calls to mmap by a factor of 96 and an increase of the number of calls to brk by a factor of 46.
Moreover, we observe that using the Pthread lock algorithm, at opt nodes, dedup spends 3.3 seconds
(30%) of the total execution time inside the kernel page fault handler, whereas with CLH-ls it
spends 80 seconds (80%) of the total execution time. One can argue that the performance bottleneck
has been introduced by the design of our transparent interposition design, which requires one
dynamic memory allocation per lock instance, even if the original POSIX lock instances were not
dynamically allocated (i.e., the instance is on the stack), or allocated in batches. However, dedup

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 47

by itself, i.e. without LiTL, continuously stresses the memory allocator, because it continuously
allocates chunks of data, each containing a lock instance. Indeed, when we modify the source code
of dedup to increase the allocated size of a lock instance that protects a chunk from concurrent
modifications, without LiTL, we still observe a performance decrease of 60%.
As a consequence, the fewer memory pages are used when allocating lock instances, the fewer

insertions of new pages inside the virtual address space are made, and thus the lower contention
on this lock is observed. We thus recommend lock algorithms having a low memory footprint like
Spinlock or Backoff for such applications.

8.1.4 Memory contention. Lock algorithms can have significant side effects on applications that
are primarily affected by other kinds of bottlenecks, like main memory contention.
Pca (and its long-lived version pca_ll) is a good example of such a phenomenon. Validating

the observations on pca from the original paper [78], we found that pca suffers either from lock
contention (for algorithms that do not support high levels of contention, e.g., Spinlock) or memory
controller saturation27 (for the others, e.g., Pthread). For example, with Pthread (pca suffers from
memory controller saturation), we observe a 44% performance increase when we interleave the
memory pages of the application, i.e., when the memory pages of the application are allocated
in a round-robin fashion on all the NUMA nodes of the machine. This is a clear indicator that,
without interleaving, the memory controller of one NUMA node becomes overwhelmed, receiving
too many requests from all the threads. Besides, even with interleaving, the memory bottleneck
does not fully disappear. Indeed, we observe an increase from 0.4 stalled cycles per instruction
(SPI) outside locking primitives with Malth_Spin (one of the best locks) to 2.25 SPI with MCS28 (a
bad performing lock). However, note that the stalled cycles are observed inside the parallel code
sections of pca. By being somewhat “too” fast, MCS allows many threads to run in parallel, thus
increasing the memory contention of the parallel code sections of pca. More precisely, the number
of stalled cycles due to memory accesses, which account for 98% of all stalled cycles, is 20× higher
with MCS than with Malth_Spin. Note that this phenomenon is more likely to appear at max nodes,
because memory contention exists when a large number of threads access memory concurrently.
In such cases, we recommend lock algorithm that reduce the number of concurrently running

threads in the application, thus the number of concurrent memory accesses (e.g., Malth_Spin).

8.2 Guidelines for lock algorithms selection
In Section 8.2.1, we describe the different properties of the studied lock algorithms, and in Sec-
tion 8.2.2 we discuss guidelines to help a developer choosing a lock algorithm for a given application.

8.2.1 Lock properties. Knowing the performance bottleneck of an application, a developer can now
decide which lock algorithms to use in an application. Table 18 summarizes the main properties of
each lock algorithm. Overall, we identified seven properties shared by the studied lock algorithms
that have an impact on performance. We also describe how the different design properties described
in Section 2.1 are related to these “behavioral” properties. We first present properties related to

27While experimentally assessing the performance overhead of LiTL (see Section 4.4), we noticed a corner case with pca.
More precisely, we observe that, most of the time, LiTL improves the performance w.r.t. the manually implemented version.
This performance difference comes from the condition variable algorithm of LiTL that lengthens the critical section. Indeed,
as pca and pca_ll suffer from memory contention, longer critical sections lower the number of threads running in parallel
outside the critical sections, thus improving performance. However, the best locks with LiTL are also among the best
manually implemented locks.
28A careful reader may argue that MCS should not cause heavy cache coherence traffic, because it uses local spinning: MCS
should be mostly spinning on the L1 cache and triggers cache coherence traffic only when the lock holder releases the lock
to the next waiting thread.

48 R. Guerraoui et al.

Table 18. Lock algorithm properties. The algorithms are grouped by categories as defined in Section 2.1.2. For
example, ahmcs does not use a parking waiting policy, nor does it have a low memory footprint. However, it
is a hierarchical lock algorithm. Some lock algorithms do not support the trylock operation and thus cannot
be run with applications that use this operation: we denote these cases by a cross sign.

locks without the property locks with the property x trylock not supported

lig
ht

hi
er
ar
ch
ic
al
lo
ck

co
nt
en
tio

n-
ha
rd
en
ed

tr
yl
oc
k

pa
rk
in
g

FI
FO

lo
w
m
em

or
y
fo
ot
pr
in
t

lo
w
m
em

or
y
(in

te
rc
on

ne
ct
)t
ra
ffi
c

Competitive
backoff
mutexee
pthread
pthreadadapt
spinlock
spinlock-ls
ttas
ttas-ls

Direct handoff
alock-ls
clh-ls x
clh_spin x
clh_stp x
mcs-ls
mcs_spin
mcs_stp
partitioned
ticket
ticket-ls

Hierarchical
c-bo-mcs_spin
c-bo-mcs_stp
c-ptl-tkt
c-tkt-tkt
hmcs
hticket-ls x

Load-control
ahmcs
malth_spin
malth_stp
mcs-timepub

different levels of contention, then properties that can affect scheduling, and finish with properties
related to memory.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 49

(1) Light: lock algorithms having a short code path to acquire the lock when uncontended.
Algorithms such as Spinlock, Backoff or TTAS have this property, where an uncontended
lock acquisition is almost only an atomic instruction. Algorithms using a context such as
MCS or CLH are generally heavier, because they need to setup the context before acquiring
the lock, even if there is no contention. We also observe that there is no hierarchical lock
that is light: cohort lock algorithms acquire both local and global locks, and even AHMCS,
which implements a fast path; still needs to acquire one uncontended MCS lock. Finally, all
existing load-control lock algorithms are heavy, because the load control decision is on the
critical path.
Note that for applications where a single thread acquires a lock, biased locking [33] can
improve performance. This technique can be used to enhance any lock algorithm with an
atomic-free fast path, and switches to the default lock algorithm upon the first lock acquisition
by a second thread.

(2) Hierarchical lock: lock algorithms designed to take into account NUMA architectures, where
the cost of accessing a lock instance from a different socket is higher than the one when the
lock instance is already inside a cache of the local socket. This category is the same category
as described in section 2.1.2.

(3) Contention-hardened trylock: lock algorithms with a trylock operation tolerating moderate to
high levels of contention. We observe that some applications use the trylock operation to do
busy-wait, i.e., the trylock operation is continuously called in a loop until the lock is acquired.
In practice, a large number of atomic instructions are executed concurrently, flooding the
memory interconnect with cache-coherence traffic. Here, lock algorithms that lower the
cache-coherence traffic are the ones that perform the best. We observe that hierarchical locks
have a contention-hardened trylock, because a thread needs to trylock both the local and
the global lock29. We also observe that algorithms like MCS-TimePub and Partitioned have a
contention-hardened trylock because their trylock operation takes time (i.e., the operation
consists of one atomic instruction and a significant number of non-atomic instructions), thus
lowering the cache-coherence traffic.

(4) Parking: lock algorithms using a spin-then-park or a direct parking waiting policy (see
Section 2.1.3).

(5) FIFO: lock algorithms imposing an order on the acquisitions of a lock instance according to
the thread arrival times, i.e., if a thread 𝐴 tries to acquire the same lock instance as 𝐵 before
𝐵, 𝐴 enters the critical section before 𝐵. Note that some lock algorithms leave some degree
of freedom regarding this order, i.e., a thread might enter the critical section before another
thread that had been waiting for a longer amount of time (e.g., with the cohort lock algorithms
that favor threads running on the same socket as the lock holder). This category regroups a
subset the lock algorithms using a direct handoff succession policy (see Section 2.1.2).

(6) Low memory footprint: lock algorithms having a low memory footprint. All locks that need a
context (e.g., MCS, CLH,Malthusian have a highmemory footprint, because each thread needs
its own context. Besides, hierarchical lock algorithms also have a high memory footprint
because one lock instance is composed of one top lock instance, and one instance per NUMA
node, but the footprint can be lowered by dynamically allocating per-node data structures of
hierarchical locks upon first access [55].

(7) Low (memory) interconnect traffic: lock algorithms that only induce a moderate traffic on
the memory interconnect of the machine. Algorithms using a load-control mechanism sen-
sitive to the concurrency level (e.g., Malthusian) reduce the number of threads running

29With the exception of AHMCS, where the trylock can be directly made on the top MCS lock.

50 R. Guerraoui et al.

More threads
than cores?

Stress the scheduler
(e.g., IO, condition variables?)

Many lock instances? (>1k)

Application suffers
from memory contention?

Levels of contention?

Lock operation?

Avoid spinning
algorithms

Avoid FIFO
algorithms

Prefer spinning
algorithms

Prefer low memory
footprint algorithms

Prefer algorithms
that induce a moderate usage
of the memory interconnect

Light
lock algorithms

Local spinning
lock algorithms

Hierarchical lock
algorithms

Hierarchical trylock
algorithms

yes

no

yes

no

yes

no

yes

no

low

moderate

high

lock

trylock

start

Fig. 7. Steps to follow for the application developer to chose a lock algorithm.

concurrently, thus the pressure on the memory interconnect. Surprisingly, lock algorithms
that perform both poorly under contention and which do not flood the interconnect with
cache-coherence messages (e.g., Backoff, TTAS-ls) are good choices to lower the memory
interconnect utilization.

8.2.2 Choice guidelines. Figure 7 shows a series of steps to follow in order to select which lock
algorithm to use with each application. The steps are questions the developer needs to answer
that help select a small subset of lock algorithms. A box with a white background represents a
question and a box with a gray background suggests the developer to select or avoid some locks.

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 51

For example, for upscaledb, the developer starts by asking if the application has more threads
than cores. Upscaledb does not have more threads than cores. Next, the application is profiled to
know if it performs many calls to the scheduler (e.g., with I/O, conditions variables), which might
lead to thread migrations. Upscaledb does not call the scheduler often, so the developer can still
consider FIFO algorithms. Moving forward, upscaledb does not create many lock instances, does
not use the trylock operation and does not suffer from memory contention. We are now at the
last step, where the developer has to chose a lock algorithm regarding the levels of contention
the lock instances inside upscaledb suffer from. Remember that because upscaledb does not have
more threads than cores, and does not call the scheduler often, the developer should choose an
algorithm that uses a spinning waiting policy. We observe that upscaledb suffers from extreme
levels of contention. Therefore the developer should choose a hierarchical spinning lock algorithm,
for example AHMCS.
A word of caution: these guidelines are cursory, because carefully tuning a lock algorithm is

highly dependent on a given workload and machine. They give a hint to the developer for the choice
of a lock, and mostly target applications in which lock access patterns are stable (e.g., the most
contended lock is always the same and it always suffers from a constant level of contention). Many
lock bottlenecks can be suppressed by redesigning the application with smaller critical sections,
or by using more scalable synchronization primitives, such as lock-free data structures. Besides,
some techniques enhancing lock algorithms (e.g., lazy lock allocation [55], biased locking [33]) can
be beneficial to adapt a given lock that is not initially the best for a given workload. Finally, for
applications where the access pattern of a lock varies during the workload, adaptive lock algorithm
such as GLK [9] can be used.
Note also that these guidelines do not cover all the possible configurations. For example, if

an application allocates many lock instances, and these instances suffer from extreme levels of
contention, there is no hierarchical lock algorithm having a low memory footprint. Nonetheless,
we propose these guidelines based on our analysis of the set of studied applications: they cover
each application, and we believe that the set is large enough to be representative.

9 RELATEDWORK
There is a large body of work studying different aspects of lock algorithms. This section is organized
as follows. Section 9.1 presents work studying the implementation of lock algorithms, and previous
approaches to transparently replace lock algorithms inside applications. Section 9.2 discusses the
possibility to dynamically adapt lock synchronization at run-time. Section 9.3 considers previous
studies of multicore lock algorithms. Section 9.4 covers existing works that highlight the importance
of energy efficiency for both applications and lock algorithms. Finally, Section 9.5 discusses lock-
related performance bottlenecks.

9.1 Lock algorithm implementations
The design and implementation of the LiTL lock library borrows code and ideas from previous
open-source toolkits that provide application developers with a set of optimized implementations
for some of the most-established lock algorithms: Concurrency Kit [4], liblock [61–63], libslock [27]
and lockin [9, 36]. All of these toolkits require potentially tedious source code modifications in the
target applications, even in the case of algorithms that have been specifically designed to lower this
burden [10, 83, 93]. Moreover, among the above works, none of them provides a simple and generic
solution for supporting Pthread condition variables. One noticeable exception is lockin [9, 36],
which only requires including a header inside the source code of the application and recompile it
linked against a specific shared library. lockin also proposes a condition variable algorithm; still the
proposed algorithm does not circumvent the “thundering-herd” effect for all lock algorithms (see

52 R. Guerraoui et al.

Section 4.1). The authors of liblock [63] proposed an approach to support condition variables; still
we discovered that it suffers from liveness hazards due to a race condition (see Section 4.1). Indeed,
when a thread T calls pthread_cond_wait, it is not guaranteed that the two steps (releasing the
lock and blocking the thread) are always executed atomically. Thus, a wake-up notification issued
by another thread might get interleaved between the two steps and T might remain indefinitely
blocked.
Several research works have leveraged library interposition to compare different locking algo-

rithms on legacy applications (e.g., Johnson et al. [52] and Dice et al. [32]). However, to the best
of our knowledge, they have not publicly documented the design challenges to support arbitrary
application patterns (e.g., condition variables), nor disclosed the corresponding source code and
the overhead of their interposition library has not been discussed.

9.2 Adaptive algorithms
Previous works discuss the possibility to dynamically adapt lock synchronization at run-time.
One way is to dynamically switch between lock algorithms depending on the contention level.
The work by Lim et al. [60] considers switching among three lock algorithms (TTAS, MCS and
a delegation-based one), depending on the level of contention on the lock instance. SANL [98]
switches between local and remote (i.e., delegation-based) locking schemes. As explained in Section
2, delegation-based algorithms require critical sections to be expressed as a form of closure, which is
incompatible with our transparent approach (i.e., without source code modification). More recently,
Antic et al. [9] proposed GLS, a solution that dynamically switches among three lock algorithms
(Ticket, MCS, Pthread mutex), using Ticket at low contention levels, MCS at high contention levels,
and Pthread when it detects overthreading (i.e., more threads than cores). While these approaches
confirm our observations that there is no one-size-fit-all locking algorithm, their goal is to make
locking easy for a developer, not to choose the best lock algorithm in all cases. Indeed, they only
switch among a few different lock algorithms, whereas, in light of our study, there are more lock
algorithms to consider, making the choice more complex. None of the solutions considers some of
the bottlenecks that we observed, like trylock contention, the lock handover effect and bottlenecks
related to the memory footprint of a lock instance. For example, all solutions embed all the different
lock data structures into a unique one, inflating the memory layout of a lock instance: an application
like dedup (using thousands of lock instances) that is good with a classical low memory footprint
Ticket algorithm might not be good with the Ticket version of GLS, even if GLS never uses lock
algorithms other than Ticket.
A second solution is to monitor the load pattern of the application to detect situations that are

subject to pathological behavior. Load control (LC) [52] is a runtime solution, which dynamically
reduces the number of threads trying to acquire the lock at the same time, to avoid pathological
issues (e.g., lock convoy). LC requires kernel modifications on Linux to measure load accurately
and with high resolution (∼ 100𝜇𝑠). This approach is thus incompatible with our work, where we
focus on lock algorithms that do not require code modifications. Overall, our work highlights the
need for low-memory, complete interface (i.e., lock, trylock, and condition variables), fully adaptive
(i.e., from spinlocks all the way to complex HMCS locks) lock algorithms.

9.3 Studies of synchronization algorithms
Several studies have compared the performance of different multicore lock algorithms, from a
theoretical angle and/or based on experimental results [8, 15, 27, 32, 56, 61, 70, 83]. Our study encom-
passes significantly more lock algorithms and waiting policies. Moreover, the bulk of these studies
is mainly focused on characterization microbenchmarks, while we focus instead on workloads
designed to mimic real applications. Two noticeable exceptions are the work from Boyd-Wickizer

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 53

et al. [15] and Lozi et al. [63]; still they do not consider the same context as our study. The former is
focused on kernel-level locking bottlenecks, and the latter is focused on applications in which only
one or a few heavily contended critical sections have been rewritten/optimized (after a profiling
phase). For all these reasons, we make observations that are significantly different from the ones
based on all the above-mentioned studies.

Some related work discusses the choice of synchronization paradigms and lock algorithms [67–
69]. The proposed guidelines are often a subset of our proposed guidelines in Section 8.2.2: because
these works only study a smaller set of applications and lock algorithms, they generally do not
cover all the cases we observed.
Other synchronization-related studies have a different scope and focus on concurrent data

structures, possibly based on other facilities than locks. Gramoli [42] studies different concurrent
data structures on micro-benchmarks with multiple synchronization techniques. David el al. [26, 28]
evaluate theoretical and practical progress properties of concurrent search data structures. Brown
et al. [17] study the performance of hardware transactional memory with microbenchmarks on
modern NUMA multicore machines. Finally, Calciu et al. [18] study the tradeoff between message
passing and shared memory synchronization on multicore machines. Similarly to us, they advocate
that software should be designed to be largely independent of the choice of low-level communication
mechanism.

9.4 Energy efficiency
Improving energy efficiency in systems and applications has been thoroughly studied in the past.
For example, previous works describe user-level [71, 80, 86, 87, 95, 96] and kernel [75] facilities that
both manage and predict power consumption. Prior works propose trading performance and/or
precision for energy. For example, programming models [11, 82] allow developers to approximate
loops to decrease power consumption. Compiler techniques [94, 95] and hardware mechanisms [57]
trade off performance for energy. To the best of our knowledge, the work by Falsafi et al. [36] is the
only one studying the energy efficiency of lock algorithms. We confirm their findings and validate
their POLY conjecture on significantly more lock algorithms and applications.

9.5 Lock-related performance bottlenecks
Some tools have been proposed to facilitate the identification of locking bottlenecks in applications
[9, 25, 63, 76, 91]. These tools are useful to identify which lock instances suffer from contention;
still they do not help a software developer to choose a lock algorithm for an application. The
proposed tools are orthogonal to our work. We note that, among them, the profilers based on
library interposition could be stacked on top of LiTL.

Finally, lock-related performance bottlenecks have been previously analyzed. For example, many
studies [2, 27, 30, 53] point out scalability problems due to excessive cache-coherence traffic with
traditional spinlocks. Scheduling issues like the lock holder preemption problem have been well
studied [30, 56] and some solutions try to mitigate it [46, 56]. Nonetheless, we discovered lock-
related issues that, to the best of our knowledge, have not been described before. Moreover, we
are the first to analyze the impact of lock algorithms on such a large panel of applications, and to
discuss in depth and summarize the many different bottlenecks they exhibit.
SyncPerf [5] is a recent profiler detecting previously undiscussed lock-related performance

bottlenecks. Similarly to us, the authors of SyncPerf discover that trylocks contention and uncon-
tended lock acquisitions are two bottlenecks affecting application performance. While this tool is a
must-have in the system performance analysis tool belt, it only considers the Pthread mutex lock,
and thus fails at detecting some lock-related performance bottlenecks. Indeed, as we showed in

54 R. Guerraoui et al.

this article, many applications benefit from using other locks than Pthread, and these other locks
suffer from bottlenecks unseen with Pthread (e.g., scheduling issues, memory consumption).

10 CONCLUSION
There are a large number of lock algorithms for multicore machines, leaving developers with the
cumbersome task of choosing which algorithm to use for an application. One of the main reasons for
this complexity is that there were no clear guidelines andmethodologies helping developers to select
the right lock for their workloads. In this paper, we presented a broad study of the performance
and energy efficiency of 28 locks algorithms with 40 applications on Linux/x86 and four different
multicore machines. In our quest to understand lock behavior, when choosing the best lock, for
these 40 applications, we improve application throughput by on average 90% and energy efficiency
by 110% with respect to the default POSIX mutex lock. To perform this study, we have implemented
LiTL, an interposition library allowing the transparent replacement of lock algorithms used for
Pthread mutex locks. The source code of LiTL and the data sets of our experimental results are
available online [44].
From our study, we draw several conclusions, several of which have not been previously dis-

covered: applications not only stress the lock/unlock interface, but also the full locking API (e.g.,
trylocks, condition variables), the memory footprint of a lock can directly affect the application
performance, for many applications, the interaction between locks and scheduling is an important
application performance factor and lock tail latencies may or may not affect application tail latency.
We also confirm previous findings [27, 36, 43] on a larger number of applications, machines, and
lock algorithms: no single lock is systematically the best, choosing the best lock is difficult, and
energy efficiency and throughput go hand in hand in the context of lock algorithms. Finally, from
the insights of our in-depth analysis of lock-related performance bottlenecks, we give guidelines for
the choice of a lock algorithm based on given application characteristics. An immediate implication
of this result is that lock-related research cannot simply focus on one of the many functions of
locking. Lock designers must offer a full suite of lock, unlock, trylock, condition variables, and
maybe even barriers, and reader-writer locks. These observations call for further research on
optimized lock algorithms, as well as tools and dynamic approaches to better understand and
control their behavior.

ACKNOWLEDGMENTS
We thank the anonymous reviewers, the associate editor and the editor-in-chief, Todd C. Mowry,
for their insightful comments on earlier drafts of this paper. We are also grateful to Tim Harris
for his feedback on an earlier version of this work. Dave Dice provided detailed answers for our
questions on Malthusian locks. Baptiste Lepers provided valuable insights for some of the case
studies. Pierre Neyron provided his help to set up experiments on the I-48 machine and Fabien
Salvi on the I-20 machine. Elise Arnaud provided feedback on the statistical tests. Finally, this
work has been partially supported by: LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01), the EmSoc
“Replicanos” and AGIR “CAEC” projects of Université Grenoble-Alpes and GrenobleINP, the FSN
OCCIware project, the “Studio virtuel” project funded by BPI and FEDER grant agreement number
16.010402.01, the “RainbowFS” project of Agence Nationale de la Recherche, number ANR-16-CE25-
0013-01, and the European ERC GRANT 339539 - AOC. Some of the experiments presented in this
paper were carried out using the Digitalis platform (http://digitalis.imag) of the Grid’5000 testbed.
Grid’5000 is supported by a scientific interest group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see https://www.grid5000.fr). Access to the
experimental machine(s) used in this paper was gracefully granted by research teams from LIG
(http://www.liglab.fr) and Inria (http://www.inria.fr). The A-48 machine was funded by a Grenoble

http://digitalis.imag
https://www.grid5000.fr
http://www.liglab.fr
http://www.inria.fr

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 55

INP project, led by the Mescal, Moais and Erods teams of of LIG. The injection machine used with
the A-48 machine is a reused machine of the former Pipol Cluster (continuous integration) of Inria
Grenoble Rhone-Alpes (dismantled).

REFERENCES
[1] Yehuda Afek, Alexander Matveev, Oscar R. Moll, and Nir Shavit. 2015. Amalgamated Lock-Elision. In Distributed

Computing - 29th International Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings (Lecture Notes in
Computer Science), Yoram Moses (Ed.), Vol. 9363. Springer, Berlin, Heidelberg, 309–324. https://doi.org/10.1007/978-3-
662-48653-5_21

[2] Anant Agarwal and Mathews Cherian. 1989. Adaptive Backoff Synchronization Techniques. In Proceedings of the 16th
Annual International Symposium on Computer Architecture. Jerusalem, Israel, June 1989, Jean-Claude Syre (Ed.). ACM,
New York, NY, USA, 396–406. https://doi.org/10.1145/74925.74970

[3] Martin Aigner, Christoph M. Kirsch, Michael Lippautz, and Ana Sokolova. 2015. Fast, multicore-scalable, low-
fragmentation memory allocation through large virtual memory and global data structures. In Proceedings of the
2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, Jonathan Aldrich and Patrick Eugster
(Eds.). ACM, New York, NY, USA, 451–469. https://doi.org/10.1145/2814270.2814294

[4] Samy Al Bahra. 2015. Concurrency Kit. Retrieved November 8, 2018 from http://concurrencykit.org/
[5] Mohammad Mejbah Ul Alam, Tongping Liu, Guangming Zeng, and Abdullah Muzahid. 2017. SyncPerf: Categorizing,

Detecting, and Diagnosing Synchronization Performance Bugs. In Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys 2017, Belgrade, Serbia, April 23-26, 2017, Gustavo Alonso, Ricardo Bianchini, and Marko
Vukolic (Eds.). ACM, New York, NY, USA, 298–313. https://doi.org/10.1145/3064176.3064186

[6] AMD. 2010. BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models 00h-0Fh Processors. Retrieved
November 8, 2018 from http://support.amd.com/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf

[7] Nikos Anastopoulos and Nectarios Koziris. 2008. Facilitating efficient synchronization of asymmetric threads on
hyper-threaded processors. In 22nd IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008,
Miami, Florida USA, April 14-18, 2008. IEEE, Washington, DC, USA, 1–8. https://doi.org/10.1109/IPDPS.2008.4536358

[8] Thomas E. Anderson. 1990. The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors. IEEE
Trans. Parallel Distrib. Syst. 1, 1 (1990), 6–16. https://doi.org/10.1109/71.80120

[9] Jelena Antic, Georgios Chatzopoulos, Rachid Guerraoui, and Vasileios Trigonakis. 2016. Locking Made Easy. In
Proceedings of the 17th International Middleware Conference, Trento, Italy, December 12 - 16, 2016. ACM, New York, NY,
USA, 20. http://dl.acm.org/citation.cfm?id=2988357

[10] Marc Auslander, David Edelsohn, Orran Krieger, Bryan Rosenburg, and Robert Wisniewski. 2003. Enhancement to the
MCS Lock for Increased Functionality and Improved Programmability. U.S. Patent Application Number 20030200457
(abandoned).

[11] Woongki Baek and Trishul M. Chilimbi. 2010. Green: a framework for supporting energy-conscious programming
using controlled approximation. In Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, Benjamin G. Zorn and Alexander Aiken
(Eds.). ACM, New York, NY, USA, 198–209. https://doi.org/10.1145/1806596.1806620

[12] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. 2000. Hoard: A Scalable Memory
Allocator for Multithreaded Applications. In ASPLOS-IX Proceedings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems, Cambridge, MA, USA, November 12-15, 2000., Larry Rudolph
and Anoop Gupta (Eds.). ACM, New York, NY, USA, 117–128. https://doi.org/10.1145/356989.357000

[13] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation. Princeton University.
[14] Mike W. Blasgen, Jim Gray, Michael F. Mitoma, and Thomas G. Price. 1979. The Convoy Phenomenon. Operating

Systems Review 13, 2 (1979), 20–25. https://doi.org/10.1145/850657.850659
[15] Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. 2012. Non-scalable Locks are

Dangerous. In Proceedings of the Linux Symposium. Linux, Ottawa, Canada, 119–130.
[16] Brad Fitzpatrick. 2018. Memcached. Retrieved November 8, 2018 from http://memcached.org
[17] Trevor Brown, Alex Kogan, Yossi Lev, and Victor Luchangco. 2016. Investigating the Performance of Hardware

Transactions on a Multi-Socket Machine. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016, Christian Scheideler and Seth
Gilbert (Eds.). ACM, New York, NY, USA, 121–132. https://doi.org/10.1145/2935764.2935796

[18] Irina Calciu, Dave Dice, Tim Harris, Maurice Herlihy, Alex Kogan, Virendra J. Marathe, and Mark Moir. 2013. Message
Passing or Shared Memory: Evaluating the Delegation Abstraction for Multicores. In Principles of Distributed Systems -
17th International Conference, OPODIS 2013, Nice, France, December 16-18, 2013. Proceedings (Lecture Notes in Computer

https://doi.org/10.1007/978-3-662-48653-5_21
https://doi.org/10.1007/978-3-662-48653-5_21
https://doi.org/10.1145/74925.74970
https://doi.org/10.1145/2814270.2814294
http://concurrencykit.org/
https://doi.org/10.1145/3064176.3064186
http://support.amd.com/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
https://doi.org/10.1109/IPDPS.2008.4536358
https://doi.org/10.1109/71.80120
http://dl.acm.org/citation.cfm?id=2988357
https://doi.org/10.1145/1806596.1806620
https://doi.org/10.1145/356989.357000
https://doi.org/10.1145/850657.850659
http://memcached.org
https://doi.org/10.1145/2935764.2935796

56 R. Guerraoui et al.

Science), Roberto Baldoni, Nicolas Nisse, and Maarten van Steen (Eds.), Vol. 8304. Springer, Berlin, Heidelberg, 83–97.
https://doi.org/10.1007/978-3-319-03850-6_7

[19] Irina Calciu, David Dice, Yossi Lev, Victor Luchangco, Virendra J. Marathe, and Nir Shavit. 2013. NUMA-aware reader-
writer locks. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, Shenzhen,
China, February 23-27, 2013, Alex Nicolau, Xiaowei Shen, Saman P. Amarasinghe, and Richard W. Vuduc (Eds.). ACM,
New York, NY, USA, 157–166. https://doi.org/10.1145/2442516.2442532

[20] Milind Chabbi, Michael W. Fagan, and John M. Mellor-Crummey. 2015. High performance locks for multi-level NUMA
systems. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
2015, San Francisco, CA, USA, February 7-11, 2015, Albert Cohen and David Grove (Eds.). ACM, New York, NY, USA,
215–226. https://doi.org/10.1145/2688500.2688503

[21] Milind Chabbi and John M. Mellor-Crummey. 2016. Contention-conscious, locality-preserving locks. In Proceedings of
the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2016, Barcelona, Spain,
March 12-16, 2016, Rafael Asenjo and Tim Harris (Eds.). ACM, New York, NY, USA, 22:1–22:14. https://doi.org/10.1145/
2851141.2851166

[22] Christoph Rupp. 2018. Upscaledb. Retrieved November 8, 2018 from https://upscaledb.com
[23] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2013. RadixVM: scalable address spaces for mul-

tithreaded applications. In Eighth Eurosys Conference 2013, EuroSys ’13, Prague, Czech Republic, April 14-17, 2013,
Zdenek Hanzálek, Hermann Härtig, Miguel Castro, and M. Frans Kaashoek (Eds.). ACM, New York, NY, USA, 211–224.
https://doi.org/10.1145/2465351.2465373

[24] Travis S. Craig. 1993. Building FIFO and Priority-Queuing Spin Locks from Atomic Swap. Technical Report TR 93-02-02.
University of Washington.

[25] Florian David, Gaël Thomas, Julia Lawall, and Gilles Muller. 2014. Continuously measuring critical section pressure
with the free-lunch profiler. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, Andrew P.
Black and Todd D. Millstein (Eds.). ACM, New York, NY, USA, 291–307. https://doi.org/10.1145/2660193.2660210

[26] Tudor David and Rachid Guerraoui. 2016. Concurrent Search Data Structures Can Be Blocking and Practically Wait-
Free. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar
State Beach/Pacific Grove, CA, USA, July 11-13, 2016, Christian Scheideler and Seth Gilbert (Eds.). ACM, New York, NY,
USA, 337–348. https://doi.org/10.1145/2935764.2935774

[27] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2013. Everything you always wanted to know about
synchronization but were afraid to ask. In ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, USA, November 3-6, 2013, Michael Kaminsky and Mike Dahlin (Eds.). ACM, New York, NY, USA, 33–48.
https://doi.org/10.1145/2517349.2522714

[28] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asynchronized Concurrency: The Secret to Scaling
Concurrent Search Data Structures. In Proceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015, Özcan Özturk, Kemal
Ebcioglu, and Sandhya Dwarkadas (Eds.). ACM, New York, NY, USA, 631–644. https://doi.org/10.1145/2694344.2694359

[29] David Dice. 2011. Brief announcement: a partitioned ticket lock. In SPAA 2011: Proceedings of the 23rd Annual
ACM Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA, June 4-6, 2011 (Co-located with
FCRC 2011), Rajmohan Rajaraman and Friedhelm Meyer auf der Heide (Eds.). ACM, New York, NY, USA, 309–310.
https://doi.org/10.1145/1989493.1989543

[30] Dave Dice. 2017. Malthusian Locks. In Proceedings of the Twelfth European Conference on Computer Systems, EuroSys
2017, Belgrade, Serbia, April 23-26, 2017, Gustavo Alonso, Ricardo Bianchini, and Marko Vukolic (Eds.). ACM, New York,
NY, USA, 314–327. https://doi.org/10.1145/3064176.3064203

[31] David Dice, Virendra J. Marathe, and Nir Shavit. 2011. Flat-combining NUMA locks. In SPAA 2011: Proceedings of
the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA, June 4-6, 2011
(Co-located with FCRC 2011), Rajmohan Rajaraman and Friedhelm Meyer auf der Heide (Eds.). ACM, New York, NY,
USA, 65–74. https://doi.org/10.1145/1989493.1989502

[32] David Dice, Virendra J. Marathe, and Nir Shavit. 2015. Lock Cohorting: A General Technique for Designing NUMA
Locks. TOPC 1, 2 (2015), 13:1–13:42. https://doi.org/10.1145/2686884

[33] Dave Dice, Mark S. Moir, and III William N. Scherer. 2003. Quickly Reacquirable Locks. Patent No. US7814488B1,
Filed September 9th., 2002, Issued September 3rd., 2003.

[34] Open Source Facebook. 2017. Rocksdb. Retrieved November 8, 2018 from http://rocksdb.org
[35] FAL Labs. 2012. Kyoto Cabinet. Retrieved November 8, 2018 from http://fallabs.com/kyotocabinet
[36] Babak Falsafi, Rachid Guerraoui, Javier Picorel, and Vasileios Trigonakis. 2016. Unlocking Energy. In 2016 USENIX

Annual Technical Conference, USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016., Ajay Gulati and Hakim Weath-
erspoon (Eds.). USENIX Association, Denver, CO, 393–406. https://www.usenix.org/conference/atc16/technical-

https://doi.org/10.1007/978-3-319-03850-6_7
https://doi.org/10.1145/2442516.2442532
https://doi.org/10.1145/2688500.2688503
https://doi.org/10.1145/2851141.2851166
https://doi.org/10.1145/2851141.2851166
https://upscaledb.com
https://doi.org/10.1145/2465351.2465373
https://doi.org/10.1145/2660193.2660210
https://doi.org/10.1145/2935764.2935774
https://doi.org/10.1145/2517349.2522714
https://doi.org/10.1145/2694344.2694359
https://doi.org/10.1145/1989493.1989543
https://doi.org/10.1145/3064176.3064203
https://doi.org/10.1145/1989493.1989502
https://doi.org/10.1145/2686884
http://rocksdb.org
http://fallabs.com/kyotocabinet
https://www.usenix.org/conference/atc16/technical-sessions/presentation/falsafi
https://www.usenix.org/conference/atc16/technical-sessions/presentation/falsafi

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 57

sessions/presentation/falsafi
[37] Panagiota Fatourou and Nikolaos D. Kallimanis. 2012. Revisiting the combining synchronization technique. In

Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP 2012, New
Orleans, LA, USA, February 25-29, 2012, J. Ramanujam and P. Sadayappan (Eds.). ACM, New York, NY, USA, 257–266.
https://doi.org/10.1145/2145816.2145849

[38] Rich Felker. 2018. musl libc. Retrieved November 8, 2018 from https://www.musl-libc.org
[39] Free Software Foundation FSF. 2018. The GNU C Library. Retrieved November 8, 2018 from https://www.gnu.org/

software/libc/manual
[40] Free Software Foundation FSF. 2018. pthread_mutex_lock GNU C library implementation. Retrieved November 8,

2018 from https://sourceware.org/git/?p=glibc.git;a=blob;f=nptl/pthread_mutex_lock.c;hb=HEAD
[41] Sanjay Ghemawat and Paul Menage. 2018. TCMalloc: Thread-Caching Malloc. Retrieved November 8, 2018 from

https://github.com/gperftools/gperftools
[42] Vincent Gramoli. 2015. More than you ever wanted to know about synchronization: synchrobench, measuring the

impact of the synchronization on concurrent algorithms. In Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2015, San Francisco, CA, USA, February 7-11, 2015, Albert Cohen
and David Grove (Eds.). ACM, New York, NY, USA, 1–10. https://doi.org/10.1145/2688500.2688501

[43] Hugo Guiroux, Renaud Lachaize, and Vivien Quéma. 2016. Multicore Locks: The Case Is Not Closed Yet. In 2016
USENIX Annual Technical Conference, USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016., Ajay Gulati and Hakim
Weatherspoon (Eds.). USENIX Association, Denver, CO, 649–662. https://www.usenix.org/conference/atc16/technical-
sessions/presentation/guiroux

[44] Hugo Guiroux, Renaud Lachaize, and Vivien Quéma. 2018. LiTL source code and data sets. Retrieved November 8,
2018 from https://github.com/multicore-locks

[45] Pat Hanrahan, David Salzman, and Larry Aupperle. 1991. A rapid hierarchical radiosity algorithm. In Proceedings of
the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1991, Providence, RI, USA,
April 27-30, 1991, James J. Thomas (Ed.). ACM, New York, NY, USA, 197–206. https://doi.org/10.1145/122718.122740

[46] Bijun He, William N. Scherer III, and Michael L. Scott. 2005. Preemption Adaptivity in Time-Published Queue-Based
Spin Locks. In High Performance Computing - HiPC 2005, 12th International Conference, Goa, India, December 18-21, 2005,
Proceedings (Lecture Notes in Computer Science), David A. Bader, Manish Parashar, Sridhar Varadarajan, and Viktor K.
Prasanna (Eds.), Vol. 3769. Springer, Berlin, Heidelberg, 7–18. https://doi.org/10.1007/11602569_6

[47] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat combining and the synchronization-parallelism
tradeoff. In SPAA 2010: Proceedings of the 22nd Annual ACM Symposium on Parallelism in Algorithms and Architectures,
Thira, Santorini, Greece, June 13-15, 2010, Friedhelm Meyer auf der Heide and Cynthia A. Phillips (Eds.). ACM, New
York, NY, USA, 355–364. https://doi.org/10.1145/1810479.1810540

[48] IEEE. 2013. pthread_mutex_lock(3p) man page. Retrieved November 8, 2018 from http://man7.org/linux/man-
pages/man3/pthread_mutex_lock.3p.html

[49] IEEE. 2017. mallopt(3) man page. Retrieved November 8, 2018 from http://man7.org/linux/man-pages/man3/mallopt.
3.html

[50] Intel. 2015. Intel Xeon Processor E7-4800/8800 v3 Product Families. Retrieved November 8, 2018 from http:
//www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e7-v3-datasheet-vol-1.pdf

[51] Intel. 2016. Intel 64 and IA-32 Architectures, Software Developer’sManual, Volume 3B: System Programming Guide, Part
2. Retrieved November 8, 2018 from https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf

[52] Ryan Johnson, Radu Stoica, Anastasia Ailamaki, and Todd C. Mowry. 2010. Decoupling contention management from
scheduling. In Proceedings of the 15th International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2010, Pittsburgh, Pennsylvania, USA, March 13-17, 2010, James C. Hoe and Vikram S. Adve
(Eds.). ACM, New York, NY, USA, 117–128. https://doi.org/10.1145/1736020.1736035

[53] Alain Kägi, Doug Burger, and James R. Goodman. 1997. Efficient Synchronization: Let Them Eat QOLB. In Proceedings of
the 24th International Symposium on Computer Architecture, Denver, Colorado, USA, June 2-4, 1997, Andrew R. Pleszkun
and Trevor N. Mudge (Eds.). ACM, New York, NY, USA, 170–180. https://doi.org/10.1145/264107.264166

[54] Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan S. Owicki. 1991. Empirical Studies of Competitive Spinning for a
Shared-Memory Multiprocessor. In Proceedings of the Thirteenth ACM Symposium on Operating System Principles, SOSP
1991, Asilomar Conference Center, Pacific Grove, California, USA, October 13-16, 1991, Henry M. Levy (Ed.). ACM, New
York, NY, USA, 41–55. https://doi.org/10.1145/121132.286599

[55] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Scalable NUMA-aware Blocking Synchronization Primitives.
In 2017 USENIX Annual Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017. USENIX
Association, Santa Clara, CA, 603–615. https://www.usenix.org/conference/atc17/technical-sessions/presentation/
kashyap

https://www.usenix.org/conference/atc16/technical-sessions/presentation/falsafi
https://www.usenix.org/conference/atc16/technical-sessions/presentation/falsafi
https://doi.org/10.1145/2145816.2145849
https://www.musl-libc.org
https://www.gnu.org/software/libc/manual
https://www.gnu.org/software/libc/manual
https://sourceware.org/git/?p=glibc.git;a=blob;f=nptl/pthread_mutex_lock.c;hb=HEAD
https://github.com/gperftools/gperftools
https://doi.org/10.1145/2688500.2688501
https://www.usenix.org/conference/atc16/technical-sessions/presentation/guiroux
https://www.usenix.org/conference/atc16/technical-sessions/presentation/guiroux
https://github.com/multicore-locks
https://doi.org/10.1145/122718.122740
https://doi.org/10.1007/11602569_6
https://doi.org/10.1145/1810479.1810540
http://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html
http://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e7-v3-datasheet-vol-1.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e7-v3-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://doi.org/10.1145/1736020.1736035
https://doi.org/10.1145/264107.264166
https://doi.org/10.1145/121132.286599
https://www.usenix.org/conference/atc17/technical-sessions/presentation/kashyap
https://www.usenix.org/conference/atc17/technical-sessions/presentation/kashyap

58 R. Guerraoui et al.

[56] Leonidas I. Kontothanassis, Robert W. Wisniewski, and Michael L. Scott. 1997. Scheduler-Conscious Synchronization.
ACM Trans. Comput. Syst. 15, 1 (1997), 3–40. https://doi.org/10.1145/244764.244765

[57] Konstantinos Koukos, David Black-Schaffer, Vasileios Spiliopoulos, and Stefanos Kaxiras. 2013. Towards more efficient
execution: a decoupled access-execute approach. In International Conference on Supercomputing, ICS’13, Eugene, OR,
USA - June 10 - 14, 2013, Allen D. Malony, Mario Nemirovsky, and Samuel P. Midkiff (Eds.). ACM, New York, NY, USA,
253–262. https://doi.org/10.1145/2464996.2465012

[58] Bradley C. Kuszmaul. 2015. SuperMalloc: a super fast multithreaded malloc for 64-bit machines. In Proceedings of the
2015 ACM SIGPLAN International Symposium on Memory Management, ISMM 2015, Portland, OR, USA, June 13-14, 2015,
Antony L. Hosking and Michael D. Bond (Eds.). ACM, New York, NY, USA, 41–55. https://doi.org/10.1145/2754169.
2754178

[59] Kaz Kylheku. 2014. What is PTHREAD_MUTEX_ADAPTIVE_NP? Retrieved November 8, 2018 from http://
stackoverflow.com/a/25168942

[60] Beng-Hong Lim. 1995. Reactive synchronization algorithms for multiprocessors. Ph.D. Dissertation. Massachusetts
Institute of Technology, Cambridge, USA. http://hdl.handle.net/1721.1/36018

[61] Jean-Pierre Lozi. 2014. Towards more scalable mutual exclusion for multicore architectures. (Vers des mécanismes
d’exclusion mutuelle plus efficaces pour les architectures multi-cœur). Ph.D. Dissertation. Pierre and Marie Curie
University, Paris, France. https://tel.archives-ouvertes.fr/tel-01067244

[62] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia L. Lawall, and Gilles Muller. 2012. Remote Core Locking: Migrating
Critical-Section Execution to Improve the Performance of Multithreaded Applications. In 2012 USENIX Annual Technical
Conference, Boston, MA, USA, June 13-15, 2012, Gernot Heiser and Wilson C. Hsieh (Eds.). USENIX Association, Boston,
MA, 65–76. https://www.usenix.org/conference/atc12/technical-sessions/presentation/lozi

[63] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia L. Lawall, and Gilles Muller. 2016. Fast and Portable Locking for
Multicore Architectures. ACM Trans. Comput. Syst. 33, 4 (2016), 13:1–13:62. https://doi.org/10.1145/2845079

[64] Jean-Pierre Lozi, Baptiste Lepers, Justin R. Funston, Fabien Gaud, Vivien Quéma, and Alexandra Fedorova. 2016. The
Linux scheduler: a decade of wasted cores. In Proceedings of the Eleventh European Conference on Computer Systems,
EuroSys 2016, London, United Kingdom, April 18-21, 2016, Cristian Cadar, Peter R. Pietzuch, Kimberly Keeton, and
Rodrigo Rodrigues (Eds.). ACM, New York, NY, USA, 1:1–1:16. https://doi.org/10.1145/2901318.2901326

[65] Victor Luchangco, Daniel Nussbaum, and Nir Shavit. 2006. A Hierarchical CLH Queue Lock. In Euro-Par 2006, Parallel
Processing, 12th International Euro-Par Conference, Dresden, Germany, August 28 - September 1, 2006, Proceedings (Lecture
Notes in Computer Science), Wolfgang E. Nagel, Wolfgang V. Walter, and Wolfgang Lehner (Eds.), Vol. 4128. Springer,
Berlin, Heidelberg, 801–810. https://doi.org/10.1007/11823285_84

[66] Peter S. Magnusson, Anders Landin, and Erik Hagersten. 1994. Queue Locks on Cache Coherent Multiprocessors. In
Proceedings of the 8th International Symposium on Parallel Processing, Cancún, Mexico, April 1994, Howard Jay Siegel
(Ed.). IEEE Computer Society, Washington, DC, USA, 165–171. https://doi.org/10.1109/IPPS.1994.288305

[67] Paul E. McKenney. 1996. Pattern Languages of Program Design 2. In Pattern Languages of Program Design 2, John M.
Vlissides, James O. Coplien, and Norman L. Kerth (Eds.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, Chapter Selecting Locking Designs for Parallel Programs, 501–531. http://dl.acm.org/citation.cfm?id=231958.
232968

[68] Paul E. McKenney. 1996. Selecting Locking Primitives for Parallel Programming. Commun. ACM 39, 10 (1996), 75–82.
https://doi.org/10.1145/236156.236174

[69] Paul E. McKenney. 2017. Is Parallel Programming Hard, And, If So, What Can You Do About It? (v2017.01.02a). CoRR
abs/1701.00854 (2017), 477. arXiv:1701.00854 http://arxiv.org/abs/1701.00854

[70] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for Scalable Synchronization on Shared-Memory
Multiprocessors. ACM Trans. Comput. Syst. 9, 1 (1991), 21–65. https://doi.org/10.1145/103727.103729

[71] Thannirmalai Somu Muthukaruppan, Anuj Pathania, and Tulika Mitra. 2014. Price theory based power management
for heterogeneous multi-cores. In Architectural Support for Programming Languages and Operating Systems, ASPLOS
’14, Salt Lake City, UT, USA, March 1-5, 2014, Rajeev Balasubramonian, Al Davis, and Sarita V. Adve (Eds.). ACM, New
York, NY, USA, 161–176. https://doi.org/10.1145/2541940.2541974

[72] Regina Nuzzo. 2014. Scientific method: Statistical errors. Nature 506, 7487 (2014), 150–152. https://doi.org/10.1038/
506150a

[73] Oracle Corporation. 2017. MySQL. Retrieved November 8, 2018 from https://www.mysql.com
[74] Y. Oyama, K. Taura, and A. Yonezawa. 1999. Executing Parallel Programs with Synchronization Bottlenecks Effi-

ciently. In Proceedings of the International Workshop on Parallel and Distributed Computing For Symbolic And Irregular
Applications (PDSIA’99). World Scientific, Sendai, Japan, 23.

[75] Venkatesh Pallipadi and Alexey Starikovskiy. 2006. The ondemand governor. In Proceedings of the Linux Symposium,
Vol. 2. sn, Linux, Ottawa, Canada, 215–230.

https://doi.org/10.1145/244764.244765
https://doi.org/10.1145/2464996.2465012
https://doi.org/10.1145/2754169.2754178
https://doi.org/10.1145/2754169.2754178
http://stackoverflow.com/a/25168942
http://stackoverflow.com/a/25168942
http://hdl.handle.net/1721.1/36018
https://tel.archives-ouvertes.fr/tel-01067244
https://www.usenix.org/conference/atc12/technical-sessions/presentation/lozi
https://doi.org/10.1145/2845079
https://doi.org/10.1145/2901318.2901326
https://doi.org/10.1007/11823285_84
https://doi.org/10.1109/IPPS.1994.288305
http://dl.acm.org/citation.cfm?id=231958.232968
http://dl.acm.org/citation.cfm?id=231958.232968
https://doi.org/10.1145/236156.236174
https://arxiv.org/abs/1701.00854
http://arxiv.org/abs/1701.00854
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/2541940.2541974
https://doi.org/10.1038/506150a
https://doi.org/10.1038/506150a
https://www.mysql.com

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 59

[76] Lennart Poettering. 2009. Measuring Lock Contention. Retrieved November 8, 2018 from http://0pointer.de/blog/
projects/mutrace.html

[77] Zoran Radovic and Erik Hagersten. 2003. Hierarchical Backoff Locks for Nonuniform Communication Architectures.
In Proceedings of the Ninth International Symposium on High-Performance Computer Architecture (HPCA’03), Anaheim,
California, USA, February 8-12, 2003. IEEE Computer Society, Washington, DC, USA, 241–252. https://doi.org/10.1109/
HPCA.2003.1183542

[78] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary R. Bradski, and Christos Kozyrakis. 2007. Evaluating
MapReduce for Multi-core and Multiprocessor Systems. In 13st International Conference on High-Performance Computer
Architecture (HPCA-13 2007), 10-14 February 2007, Phoenix, Arizona, USA. IEEE Computer Society, Washington, DC,
USA, 13–24. https://doi.org/10.1109/HPCA.2007.346181

[79] David P. Reed and Rajendra K. Kanodia. 1979. Synchronization with Eventcounts and Sequences. Commun. ACM 22, 2
(1979), 115–123. https://doi.org/10.1145/359060.359076

[80] Haris Ribic and Yu David Liu. 2014. Energy-efficient work-stealing language runtimes. In Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’14, Salt Lake City, UT, USA, March 1-5, 2014, Rajeev
Balasubramonian, Al Davis, and Sarita V. Adve (Eds.). ACM, New York, NY, USA, 513–528. https://doi.org/10.1145/
2541940.2541971

[81] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. 2017. ffwd: delegation is (much) faster than you think. In
Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017. ACM, New
York, NY, USA, 342–358. https://doi.org/10.1145/3132747.3132771

[82] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman. 2011.
EnerJ: approximate data types for safe and general low-power computation. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, Mary W.
Hall and David A. Padua (Eds.). ACM, New York, NY, USA, 164–174. https://doi.org/10.1145/1993498.1993518

[83] Michael L. Scott. 2013. Shared-Memory Synchronization. Morgan & Claypool Publishers, San Rafael, CA. https:
//doi.org/10.2200/S00499ED1V01Y201304CAC023

[84] Michael L. Scott and William N. Scherer III. 2001. Scalable queue-based spin locks with timeout. In Proceedings
of the 2001 ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP’01), Snowbird,
Utah, USA, June 18-20, 2001, Michael T. Heath and Andrew Lumsdaine (Eds.). ACM, New York, NY, USA, 44–52.
https://doi.org/10.1145/379539.379566

[85] Jianchen Shan, Xiaoning Ding, and Narain H. Gehani. 2017. APPLES: Efficiently Handling Spin-lock Synchronization
on Virtualized Platforms. IEEE Trans. Parallel Distrib. Syst. 28, 7 (2017), 1811–1824. https://doi.org/10.1109/TPDS.2016.
2625249

[86] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and Zhuan Chen. 2013. Power containers: an OS
facility for fine-grained power and energy management on multicore servers. In Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, Houston, TX, USA - March 16 - 20, 2013, Vivek Sarkar and Rastislav
Bodík (Eds.). ACM, New York, NY, USA, 65–76. https://doi.org/10.1145/2451116.2451124

[87] Karan Singh, Major Bhadauria, and Sally A. McKee. 2009. Real time power estimation and thread scheduling via
performance counters. SIGARCH Computer Architecture News 37, 2 (2009), 46–55. https://doi.org/10.1145/1577129.
1577137

[88] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hubert Wong, Arthur Klepchukov, Shee-
tal Patil, O Fox, and David Patterson. 2008. Cloudstone: Multi-platform, multi-language benchmark and
measurement tools for web 2.0. Retrieved November 8, 2018 from https://pdfs.semanticscholar.org/34dd/
c3da70f5b17ae0a73266ad1e4f9ae155811f.pdf

[89] SQLite Consortium. 2018. SQLite. Retrieved November 8, 2018 from https://www.sqlite.org
[90] Sun Microsystems. 2002. Multithreading in the Solaris Operating Environment. Retrieved November 8, 2018 from http:

//home.mit.bme.hu/~meszaros/edu/oprendszerek/segedlet/unix/2_folyamatok_es_utemezes/solaris_multithread.pdf
[91] Nathan R. Tallent, John M. Mellor-Crummey, and Allan Porterfield. 2010. Analyzing lock contention in multithreaded

applications. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP 2010, Bangalore, India, January 9-14, 2010, R. Govindarajan, David A. Padua, and Mary W. Hall (Eds.). ACM,
New York, NY, USA, 269–280. https://doi.org/10.1145/1693453.1693489

[92] Jons-Tobias Wamhoff, Stephan Diestelhorst, Christof Fetzer, Patrick Marlier, Pascal Felber, and Dave Dice. 2015. The
TURBO Diaries: Application-controlled Frequency Scaling Explained. In Software Engineering & Management 2015,
Multikonferenz der GI-Fachbereiche Softwaretechnik (SWT) und Wirtschaftsinformatik (WI), FA WI-MAW, 17. März - 20.
März 2015, Dresden, Germany (LNI), Uwe Aßmann, Birgit Demuth, Thorsten Spitta, Georg Püschel, and Ronny Kaiser
(Eds.), Vol. 239. GI, Dresden, Germany, 141–142. https://dl.gi.de/20.500.12116/2537

[93] Tianzheng Wang, Milind Chabbi, and Hideaki Kimura. 2016. Be my guest: MCS lock now welcomes guests. In
Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2016,

http://0pointer.de/blog/projects/mutrace.html
http://0pointer.de/blog/projects/mutrace.html
https://doi.org/10.1109/HPCA.2003.1183542
https://doi.org/10.1109/HPCA.2003.1183542
https://doi.org/10.1109/HPCA.2007.346181
https://doi.org/10.1145/359060.359076
https://doi.org/10.1145/2541940.2541971
https://doi.org/10.1145/2541940.2541971
https://doi.org/10.1145/3132747.3132771
https://doi.org/10.1145/1993498.1993518
https://doi.org/10.2200/S00499ED1V01Y201304CAC023
https://doi.org/10.2200/S00499ED1V01Y201304CAC023
https://doi.org/10.1145/379539.379566
https://doi.org/10.1109/TPDS.2016.2625249
https://doi.org/10.1109/TPDS.2016.2625249
https://doi.org/10.1145/2451116.2451124
https://doi.org/10.1145/1577129.1577137
https://doi.org/10.1145/1577129.1577137
https://pdfs.semanticscholar.org/34dd/c3da70f5b17ae0a73266ad1e4f9ae155811f.pdf
https://pdfs.semanticscholar.org/34dd/c3da70f5b17ae0a73266ad1e4f9ae155811f.pdf
https://www.sqlite.org
http://home.mit.bme.hu/~meszaros/edu/oprendszerek/segedlet/unix/2_folyamatok_es_utemezes/solaris_multithread.pdf
http://home.mit.bme.hu/~meszaros/edu/oprendszerek/segedlet/unix/2_folyamatok_es_utemezes/solaris_multithread.pdf
https://doi.org/10.1145/1693453.1693489
https://dl.gi.de/20.500.12116/2537

60 R. Guerraoui et al.

Barcelona, Spain, March 12-16, 2016, Rafael Asenjo and Tim Harris (Eds.). ACM, New York, NY, USA, 21:1–21:12.
https://doi.org/10.1145/2851141.2851160

[94] QiangWu, Margaret Martonosi, DouglasW. Clark, Vijay Janapa Reddi, Dan Connors, YoufengWu, Jin Lee, and David M.
Brooks. 2005. A Dynamic Compilation Framework for Controlling Microprocessor Energy and Performance. In 38th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-38 2005), 12-16 November 2005, Barcelona,
Spain. IEEE Computer Society, Washington, DC, USA, 271–282. https://doi.org/10.1109/MICRO.2005.7

[95] Fen Xie, Margaret Martonosi, and Sharad Malik. 2003. Compile-time dynamic voltage scaling settings: opportunities
and limits. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation
2003, San Diego, California, USA, June 9-11, 2003, Ron Cytron and Rajiv Gupta (Eds.). ACM, New York, NY, USA, 49–62.
https://doi.org/10.1145/781131.781138

[96] Chao Xu, Felix Xiaozhu Lin, Yuyang Wang, and Lin Zhong. 2015. Automated OS-level Device Runtime Power
Management. In Proceedings of the Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015, Özcan Özturk, Kemal Ebcioglu, and
Sandhya Dwarkadas (Eds.). ACM, New York, NY, USA, 239–252. https://doi.org/10.1145/2694344.2694360

[97] Konrad Zemek. 2015. Asio, SSL, and scalability. Retrieved November 8, 2018 from https://konradzemek.com/2015/08/
16/asio-ssl-and-scalability

[98] Mingzhe Zhang, Haibo Chen, Luwei Cheng, Francis C. M. Lau, and Cho-LiWang. 2017. Scalable Adaptive NUMA-Aware
Lock. IEEE Trans. Parallel Distrib. Syst. 28, 6 (2017), 1754–1769. https://doi.org/10.1109/TPDS.2016.2630695

A STUDY OF LOCK PERFORMANCE
A.1 Selection of lock sensitive application

https://doi.org/10.1145/2851141.2851160
https://doi.org/10.1109/MICRO.2005.7
https://doi.org/10.1145/781131.781138
https://doi.org/10.1145/2694344.2694360
https://konradzemek.com/2015/08/16/asio-ssl-and-scalability
https://konradzemek.com/2015/08/16/asio-ssl-and-scalability
https://doi.org/10.1109/TPDS.2016.2630695

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 61

Table 19. For each application, performance gain of the best vs. worst lock and relative standard deviation
(A-48 machine).

Gain
one

node

R.Dev.
one

node

Gain
max
nodes

R.Dev.
max
nodes

Gain
opt

nodes

R.Dev.
opt

nodes

barnes 7% 2% 18% 4% 18% 4%
blackscholes 3% 1% 2% 0% 2% 0%
bodytrack 2% 1% 26% 6% 19% 4%
canneal 7% 1% 8% 1% 5% 1%
dedup 190% 35% 544% 51% 200% 36%
ferret 1% 0% 481% 70% 132% 30%
fmm 21% 5% 53% 13% 50% 12%
freqmine 12% 2% 5% 1% 5% 1%
histogram 21% 4% 54% 10% 46% 8%
kmeans 4% 1% 14% 3% 14% 3%
kyotocabinet 427% 26% 1491% 55% 427% 26%
linear_regression 40% 7% 243% 20% 243% 23%
lu_cb 4% 1% 3% 1% 3% 1%
lu_ncb 12% 3% 37% 7% 37% 7%
matrix_multiply 8% 2% 17% 5% 17% 4%
memcached-new 37% 7% 621% 52% 78% 19%
memcached-old 255% 22% 1112% 47% 255% 22%
mysqld 100% 25% 54% 15% 53% 15%
p_raytrace 3% 0% 3% 0% 3% 0%
pca 13% 3% 257% 32% 74% 14%
pca_ll 3% 1% 569% 39% 177% 20%
radiosity 33% 7% 685% 32% 45% 8%
radiosity_ll 16% 3% 1524% 69% 234% 29%
rocksdb 5% 1% 9% 2% 9% 2%
s_raytrace 6% 1% 1479% 55% 340% 30%
s_raytrace_ll 2% 1% 1015% 58% 686% 53%
sqlite 455% 43% 939% 51% 511% 45%
ssl_proxy 1130% 31% 2595% 67% 2116% 41%
streamcluster 1342% 29% 2011% 48% 955% 28%
streamcluster_ll 18% 3% 1286% 54% 44% 10%
string_match 6% 1% 18% 4% 18% 4%
swaptions 1% 0% 6% 1% 6% 1%
upscaledb 152% 24% 501% 40% 214% 26%
vips 2% 0% 781% 42% 18% 6%
volrend 9% 2% 127% 22% 29% 7%
water_nsquared 11% 2% 79% 11% 79% 11%
water_spatial 18% 4% 70% 12% 70% 12%
word_count 7% 2% 35% 8% 24% 6%
x264 3% 1% 4% 1% 4% 1%

62 R. Guerraoui et al.

Table 20. For each application, performance gain of the best vs. worst lock and relative standard deviation
(I-48 machine in performance mode).

Gain
one

node

R.Dev.
one

node

Gain
max
nodes

R.Dev.
max
nodes

Gain
opt

nodes

R.Dev.
opt

nodes

barnes 8% 2% 26% 6% 26% 6%
blackscholes 0% 0% 1% 0% 1% 0%
bodytrack 2% 1% 39% 6% 5% 2%
canneal 1% 0% 1% 0% 1% 0%
dedup 729% 46% 2316% 83% 729% 46%
ferret 1% 0% 662% 78% 81% 20%
fmm 7% 2% 26% 6% 22% 5%
freqmine 2% 0% 1% 0% 1% 0%
histogram 53% 7% 31% 7% 48% 7%
kmeans 2% 0% 11% 2% 11% 2%
kyotocabinet 462% 29% 579% 37% 413% 28%
linear_regression 18% 3% 84% 16% 80% 14%
lu_cb 0% 0% 3% 1% 3% 1%
lu_ncb 9% 2% 12% 3% 12% 3%
matrix_multiply 3% 1% 7% 2% 7% 2%
memcached-new 139% 20% 297% 25% 69% 14%
memcached-old 85% 19% 195% 38% 85% 19%
mysqld 62% 14% 57% 13% 57% 14%
p_raytrace 3% 1% 3% 1% 1% 0%
pca 278% 20% 315% 30% 308% 21%
pca_ll 90% 9% 981% 47% 403% 31%
radiosity 63% 8% 174% 23% 72% 9%
radiosity_ll 766% 31% 1979% 65% 1531% 48%
rocksdb 2% 1% 11% 3% 11% 3%
s_raytrace 15% 2% 1256% 50% 212% 31%
s_raytrace_ll 3% 1% 1260% 49% 345% 42%
sqlite 618% 41% 3581% 68% 618% 41%
ssl_proxy 1057% 40% 1594% 51% 1308% 45%
streamcluster 43% 11% 489% 70% 43% 11%
streamcluster_ll 66% 15% 569% 77% 162% 33%
string_match 1% 0% 6% 2% 6% 2%
swaptions 1% 0% 3% 1% 3% 1%
upscaledb 277% 27% 303% 33% 275% 28%
vips 1% 0% 707% 52% 24% 10%
volrend 8% 3% 151% 15% 42% 8%
water_nsquared 40% 9% 129% 20% 129% 20%
water_spatial 361% 33% 917% 42% 917% 42%
word_count 9% 2% 14% 4% 9% 2%
x264 1% 0% 2% 0% 2% 0%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 63

Table 21. For each application, performance gain of the best vs. worst lock and relative standard deviation
(I-20 machine in performance mode).

Gain
one

node

R.Dev.
one

node

Gain
max
nodes

R.Dev.
max
nodes

Gain
opt

nodes

R.Dev.
opt

nodes

barnes 6% 2% 12% 3% 12% 3%
blackscholes 0% 0% 1% 0% 1% 0%
bodytrack 1% 0% 1% 0% 1% 0%
canneal 2% 0% 4% 1% 4% 1%
dedup 723% 46% 1063% 61% 723% 46%
ferret 60% 15% 408% 66% 137% 31%
fmm 5% 1% 10% 2% 10% 2%
freqmine 3% 1% 4% 1% 4% 1%
histogram 7% 2% 21% 4% 7% 2%
kmeans 3% 1% 2% 1% 2% 1%
kyotocabinet 256% 26% 254% 28% 256% 26%
linear_regression 6% 1% 28% 6% 28% 6%
lu_cb 0% 0% 3% 1% 3% 1%
lu_ncb 10% 2% 6% 2% 6% 2%
matrix_multiply 1% 0% 2% 0% 2% 0%
memcached-new 38% 8% 38% 8% 38% 8%
memcached-old 316% 28% 316% 28% 316% 28%
p_raytrace 3% 1% 4% 1% 3% 1%
pca 8% 2% 185% 21% 24% 6%
pca_ll 4% 1% 473% 28% 89% 15%
radiosity 25% 5% 77% 13% 23% 5%
radiosity_ll 12% 3% 802% 42% 70% 19%
rocksdb 6% 2% 11% 2% 11% 2%
s_raytrace 2% 0% 338% 25% 92% 15%
s_raytrace_ll 1% 0% 643% 30% 77% 14%
sqlite 394% 36% 8608% 71% 394% 36%
streamcluster 36% 8% 387% 27% 36% 8%
streamcluster_ll 47% 9% 466% 30% 113% 22%
string_match 0% 0% 2% 1% 2% 1%
swaptions 0% 0% 1% 0% 1% 0%
upscaledb 127% 24% 153% 26% 148% 26%
vips 1% 0% 115% 22% 94% 22%
volrend 9% 2% 56% 8% 39% 7%
water_nsquared 24% 6% 48% 10% 48% 10%
water_spatial 170% 24% 326% 31% 326% 31%
word_count 2% 0% 4% 1% 2% 0%
x264 2% 0% 3% 1% 3% 1%

64 R. Guerraoui et al.

Table 22. For each application, performance gain of the best vs. worst lock and relative standard deviation
(A-64 machine with thread-to-node pinning).

Gain
one

node

R.Dev.
one

node

Gain
max
nodes

R.Dev.
max
nodes

Gain
opt

nodes

R.Dev.
opt

nodes

barnes 3% 1% 22% 5% 22% 5%
blackscholes 1% 0% 2% 0% 2% 0%
bodytrack 0% 0% 44% 6% 15% 3%
canneal 2% 0% 4% 1% 3% 1%
dedup 623% 51% 1090% 51% 727% 56%
facesim 1% 0% 297% 25% 21% 5%
ferret 8% 3% 386% 64% 356% 63%
fft 7% 1% 9% 2% 9% 2%
fluidanimate 60% 11% 301% 39% 198% 36%
fmm 5% 1% 12% 3% 12% 3%
freqmine 4% 1% 3% 1% 3% 1%
histogram 5% 1% 20% 5% 16% 4%
kmeans 6% 2% 5% 1% 5% 1%
kyotocabinet 116% 17% 2034% 54% 116% 17%
linear_regression 3% 1% 101% 17% 70% 13%
lu_cb 0% 0% 4% 1% 4% 1%
lu_ncb 6% 1% 5% 1% 5% 1%
matrix_multiply 4% 1% 5% 1% 5% 1%
memcached-new 35% 7% 910% 47% 81% 20%
memcached-old 128% 25% 309% 49% 115% 24%
mysqld 85% 28% 66% 21% 59% 16%
ocean_cp 4% 1% 130% 20% 12% 3%
ocean_ncp 3% 1% 110% 16% 10% 3%
p_raytrace 1% 0% 1% 0% 1% 0%
pca 2% 1% 347% 32% 58% 9%
pca_ll 7% 2% 551% 41% 125% 18%
radiosity 5% 1% 114% 18% 7% 2%
radiosity_ll 9% 2% 2260% 64% 146% 22%
radix 1% 0% 15% 3% 15% 3%
rocksdb 7% 2% 19% 5% 19% 5%
s_raytrace 8% 2% 1192% 58% 222% 29%
s_raytrace_ll 1% 0% 1477% 59% 467% 52%
sqlite 2830% 43% 809% 86% 828% 44%
ssl_proxy 29% 5% 1250% 56% 68% 14%
streamcluster 21% 4% 706% 50% 41% 9%
streamcluster_ll 32% 6% 826% 52% 78% 20%
string_match 7% 2% 8% 2% 8% 2%
swaptions 1% 0% 2% 0% 2% 0%
upscaledb 143% 23% 1555% 56% 191% 25%
vips 81% 21% 238% 28% 294% 33%
volrend 5% 1% 106% 16% 28% 6%
water_nsquared 7% 2% 89% 15% 89% 15%
water_spatial 95% 14% 298% 26% 298% 26%
word_count 2% 0% 5% 1% 4% 1%
x264 0% 0% 1% 0% 1% 0%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 65

Table 23. For each application, performance gain of the best vs. worst lock and relative standard deviation
(I-48 machine in energy-saving mode).

Gain
one

node

R.Dev.
one

node

Gain
max
nodes

R.Dev.
max
nodes

Gain
opt

nodes

R.Dev.
opt

nodes

barnes 8% 2% 26% 6% 26% 6%
blackscholes 0% 0% 1% 0% 1% 0%
bodytrack 2% 1% 39% 6% 5% 2%
canneal 1% 0% 1% 0% 1% 0%
dedup 729% 46% 2316% 83% 729% 46%
ferret 1% 0% 662% 78% 81% 20%
fmm 7% 2% 26% 6% 22% 5%
freqmine 2% 0% 1% 0% 1% 0%
histogram 53% 7% 31% 7% 48% 7%
kmeans 2% 0% 11% 2% 11% 2%
kyotocabinet 462% 29% 579% 37% 413% 28%
linear_regression 18% 3% 84% 16% 80% 14%
lu_cb 0% 0% 3% 1% 3% 1%
lu_ncb 9% 2% 12% 3% 12% 3%
matrix_multiply 3% 1% 7% 2% 7% 2%
memcached-new 139% 20% 297% 25% 69% 14%
memcached-old 85% 19% 195% 38% 85% 19%
mysqld 62% 14% 57% 13% 57% 14%
p_raytrace 3% 1% 3% 1% 1% 0%
pca 278% 20% 315% 30% 308% 21%
pca_ll 90% 9% 981% 47% 403% 31%
radiosity 63% 8% 174% 23% 72% 9%
radiosity_ll 766% 31% 1979% 65% 1531% 48%
rocksdb 2% 1% 11% 3% 11% 3%
s_raytrace 15% 2% 1256% 50% 212% 31%
s_raytrace_ll 3% 1% 1260% 49% 345% 42%
sqlite 618% 41% 3581% 68% 618% 41%
ssl_proxy 1057% 40% 1594% 51% 1308% 45%
streamcluster 43% 11% 489% 70% 43% 11%
streamcluster_ll 66% 15% 569% 77% 162% 33%
string_match 1% 0% 6% 2% 6% 2%
swaptions 1% 0% 3% 1% 3% 1%
upscaledb 277% 27% 303% 33% 275% 28%
vips 1% 0% 707% 52% 24% 10%
volrend 8% 3% 151% 15% 42% 8%
water_nsquared 40% 9% 129% 20% 129% 20%
water_spatial 361% 33% 917% 42% 917% 42%
word_count 9% 2% 14% 4% 9% 2%
x264 1% 0% 2% 0% 2% 0%

66 R. Guerraoui et al.

Table 24. For each application, performance gain of the best vs. worst lock and relative standard deviation
(I-20 machine in energy-saving mode).

Gain
one

node

R.Dev.
one

node

Gain
max
nodes

R.Dev.
max
nodes

Gain
opt

nodes

R.Dev.
opt

nodes

barnes 6% 2% 12% 3% 12% 3%
blackscholes 0% 0% 1% 0% 1% 0%
bodytrack 1% 0% 1% 0% 1% 0%
canneal 2% 0% 4% 1% 4% 1%
dedup 723% 46% 1063% 61% 723% 46%
ferret 60% 15% 408% 66% 137% 31%
fmm 5% 1% 10% 2% 10% 2%
freqmine 3% 1% 4% 1% 4% 1%
histogram 7% 2% 21% 4% 7% 2%
kmeans 3% 1% 2% 1% 2% 1%
kyotocabinet 256% 26% 254% 28% 256% 26%
linear_regression 6% 1% 28% 6% 28% 6%
lu_cb 0% 0% 3% 1% 3% 1%
lu_ncb 10% 2% 6% 2% 6% 2%
matrix_multiply 1% 0% 2% 0% 2% 0%
memcached-new 38% 8% 38% 8% 38% 8%
memcached-old 316% 28% 316% 28% 316% 28%
p_raytrace 3% 1% 4% 1% 3% 1%
pca 8% 2% 185% 21% 24% 6%
pca_ll 4% 1% 473% 28% 89% 15%
radiosity 25% 5% 77% 13% 23% 5%
radiosity_ll 12% 3% 802% 42% 70% 19%
rocksdb 6% 2% 11% 2% 11% 2%
s_raytrace 2% 0% 338% 25% 92% 15%
s_raytrace_ll 1% 0% 643% 30% 77% 14%
sqlite 394% 36% 8608% 71% 394% 36%
streamcluster 36% 8% 387% 27% 36% 8%
streamcluster_ll 47% 9% 466% 30% 113% 22%
string_match 0% 0% 2% 1% 2% 1%
swaptions 0% 0% 1% 0% 1% 0%
upscaledb 127% 24% 153% 26% 148% 26%
vips 1% 0% 115% 22% 94% 22%
volrend 9% 2% 56% 8% 39% 7%
water_nsquared 24% 6% 48% 10% 48% 10%
water_spatial 170% 24% 326% 31% 326% 31%
word_count 2% 0% 4% 1% 2% 0%
x264 2% 0% 3% 1% 3% 1%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 67

A.2 Selection of the number of nodes

Table 25. For each (lock-sensitive application, lock) pair, performance gain (in %) of opt nodes over max nodes.
The background color of a cell indicates the number of nodes for opt nodes: 1 2 4 6 8 . Dashes correspond to
untested cases (A-48 machine).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-

-
33

80
78

61
45

-
-

-
72

82
67

62
83

84
86

86
45

70
3

48
45

69
49

72
1

59
50

-
fe
rr
et

15
0
19
0

25
0

15
4
14
1
19
7

18
6
14
2
14
7
20
1

18
8

20
7

20
3

7
19
1
14
6

fm
m

ky
ot
oc
ab
in
et

8
24

51
13

32
1

18
16

24
24

13
9

27
51

26
10

20
30

22
2

36
22
3
21
3

1k
84
9
14
0

80
50
4
19
2

lin
ea
r_
re
gr
es
si
on

13
10

9
18
1

13
11

14
18

10
10

11
18

44
6

15
24

13
3

14
13

35
13

15
7

10
13

m
em

ca
ch
ed
-n
ew

6
26
7

-
-

-
-

-
93

13
2

27
16
6

5
-

15
87

52
4
31
7
10
1

48
17
1
15
1

m
em

ca
ch
ed
-o
ld

65
81

15
23
0

-
79

-
-

-
67

-
28

70
88

27
79

46
25

-
27

50
1k

63
8
20
2
14
2
16
5
32
7

m
ys
ql
d

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
pc
a

26
32

10
12

17
6

19
30

31
80

34
12

14
12

42
21

13
3

24
62

26
54

27
16
9

89
75

29
10
1

92
pc
a_
ll

15
39

33
7

23
33

22
25

32
38

27
14
4

32
26

23
11

92
20

10
0

27
29
1
14
3

80
17

11
0
14
2

ra
di
os
ity

9
85

9
53
8

6
36

18
55
7

13
52

8
56

17
14
3

52
39

14
49

51
ra
di
os
ity

_l
l

6
47
1

8
26
9

6
11
4

10
28
1

19
7
30
0

33
26
1

87
84
1
37
3
22
7

68
34
2
31
6

s_
ra
yt
ra
ce

22
26

27
59
0

21
23

12
1

16
26

10
34

12
6

16
20
2

30
94

28
70

23
22
6
12
0
19
3

53
16
1
20
4

s_
ra
yt
ra
ce
_l
l

10
6

41
44

7
74

12
7

19
40

sq
lit
e

-
-

-
-2

61
-

-
-

-
-

-
-

-
-

6
-
2k

15
3

-1
34

82
-

-
-

-
-

-
ss
l_
pr
ox
y

39
49

15
25

97
3

52
40

85
10
4

47
42

38
48

78
46

45
52

21
3

85
24
7
11
4
81
3
32
8

40
19
1
41
2
42
3

st
re
am

cl
us
te
r

71
5
67
4

1k
93
7

1k
49
0
54
6

-
-

-4
88

-
2k

7k
1k

12
k

2k
1k

85
0
79
2

48
59

2k
1k

2k
1k

1k
92
8

st
re
am

cl
us
te
r_
ll

11
7
11
6
27
8

88
39
2

68
12
0

-
-

-
98

-3
35

2k
38
9

2k
35
4
21
2
14
5
14
4
26
9
38
4
51
0
28
2
36
0
29
3
20
1
17
2

up
sc
al
ed
b

6
6

7
6

7
11

7
7

8
7

9
7

5
7

58
30

36
4
17
2

52
25

67
17
3

vi
ps

10
8

80
27
8

13
19
3
14
8

-
-

-1
69

-6
67

47
44

58
45

5
vo
lre

nd
45

52
37

45
91

38
35

38
10
2

49
32

31
28

13
7

50
10
9

49
49

85
40

10
2
10
7
11
8

72
44

41
47

50
w
at
er
_n

sq
ua
re
d

w
at
er
_s
pa
tia

l

68 R. Guerraoui et al.

Table 26. For each (lock-sensitive application, lock) pair, performance gain (in %) of opt nodes over max nodes.
The background color of a cell indicates the number of nodes for opt nodes: 1 2 3 4 . Dashes correspond to
untested cases (I-48 machine in performance mode).

A
pp

lic
at
io
ns

ahmcs

alock-ls

backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs

hticket-ls

malth_spin

malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread

pthreadadapt

spinlock

spinlock-ls

ticket

ticket-ls

ttas
ttas-ls

de
du

p
-
14
6

62
12
8

66
3k

3k
24
0

54
38
5

96
25
5
49
1

78
24
3

69
47
1

54
71

3k
84

99
82

64
3k

2k
64

77
fe
rr
et

40
7
35
5

8
38
2

39
0
35
9
33
9

35
0
40
2
31
9
36
5

34
9

28
8

32
2

6
33
3
24
7

7
5

ky
ot
oc
ab
in
et

8
11

37
13
6

12
12

16
26

12
7

7
24

17
10

6
10

15
18

19
13

16
20
8
13
0

21
13

31
35

lin
ea
r_
re
gr
es
si
on

20
11

6
14

34
5

m
em

ca
ch
ed
-n
ew

24
25

36
-

43
-

-
-

-
29

21
13
5

12
37

-
46

38
11
5

73
18

18
19

m
em

ca
ch
ed
-o
ld

55
20

13
1

57
58

-
20

-
-

-
63

-
12
6
11
8

97
10
0
13
2
12
6
11
0

-
13
5
12
1

97
90

10
9
12
2
13
4

86
m
ys
ql
d

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
pc
a

10
20

10
74

11
16

15
21

14
7

12
15

10
13

13
13

29
14

18
23
6
17
8

41
36

46
45

pc
a_
ll

29
10
4

19
27
8

6
8

7
47

18
0
28
4

28
7

77
67

ra
di
os
ity

38
59

97
9

5
5

97
79

10
7

15
15

ra
di
os
ity

_l
l

47
5

31
46

27
7

6
18

38
5

47
2
36
4

38
29

10
4
10
5

s_
ra
yt
ra
ce

6
19
1

9
38
0

5
6

33
5

27
5

12
22
6
19
0

35
26

71
86

s_
ra
yt
ra
ce
_l
l

20
7

20
7

11
3
10
6

sq
lit
e

-
-

-
-
36
8

-
-

-
-

-
-

-
-

11
-

33
-

4k
34

-
22

17
-

-
-

-
-

-
ss
l_
pr
ox
y

51
45

39
31

42
1

60
62

35
15

39
49

49
25

16
49

19
48

44
43

76
34

18
33
5
27
6

46
40

72
78

st
re
am

cl
us
te
r

30
6
18
7

1k
64
1

1k
42
2
23
3

-
-

-
30
7

-
86
5

1k
89
6

1k
75
0
87
7

1k
22
8

1k
1k

1k
84
7

1k
1k

72
5
72
9

st
re
am

cl
us
te
r_
ll

39
14

18
5
12
0
32
7
11
6

-
-

-
49

-
10
8
14
9
16
5
17
2
13
4
11
8
15
2

6
25
3
19
2
16
8
16
5
17
0
16
2
12
7
15
8

up
sc
al
ed
b

8
8

6
6

75
72

7
7

8
vi
ps

15
2

83
55
6

21
31
6
24
6

-
-

-
26
1

-
31
3

94
92

11
8

62
vo
lre

nd
10

89
5

23
8

6
9

9
8

12
14

6
5

11
6

18
15

7
9

9
w
at
er
_n

sq
ua
re
d

w
at
er
_s
pa
tia

l

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 69

Table 27. For each (lock-sensitive application, lock) pair, performance gain (in %) of opt nodes over max nodes.
The background color of a cell indicates the number of nodes for opt nodes: 1 2 . Dashes correspond to untested
cases (I-20 machine in performance mode).

A
pp

lic
at
io
ns

ahmcs

alock-ls
backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs

hticket-ls

malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread

pthreadadapt

spinlock
spinlock-ls

ticket

ticket-ls
ttas

ttas-ls

de
du

p
-
20
7
69

18
2

23
24
4
24
4

38
5

52
26
6
15
8
22
9
28

16
6

28
22
6

48
39

20
5

38
45

66
67

17
7
33
1
68

21
fe
rr
et

13
0
13
1

13
1

13
1
13
0
12
7

13
2
12
5
12
3
11
5

13
0

13
1

13
2

8
9
13
4
10
8

9
10

ky
ot
oc
ab
in
et

6
8

7
5

5
7

9
7

9
44

34
8

8
7

m
em

ca
ch
ed
-o
ld

-
-

-
-

-
-

pc
a

13
0

12
3

11
9

14
18

pc
a_
ll

20
5

17
8

18
9

ra
di
os
ity

45
47

7
52

6
10

15
41

13
6

8
ra
di
os
ity

_l
l

32
0

44
5

48
5

57
23
4
73

21
16

s_
ra
yt
ra
ce

13
1

11
5

72
s_
ra
yt
ra
ce
_l
l

28
6

31
9

32
0

sq
lit
e

-
-

-
-
33
3

-
-

-
-

-
-

-
-
29

-
27

-
10
k

6
-

10
43

-
-

-
-

-
-

st
re
am

cl
us
te
r

42
25

57
22

30
38

18
-

-
-

20
-

56
66

58
54

60
71

37
2

15
22
3
13
2

84
46

67
68

37
42

st
re
am

cl
us
te
r_
ll

-
-

-
-

16
6

10
0

28
up

sc
al
ed
b

17
vi
ps

11
-

-
-

-
w
at
er
_n

sq
ua
re
d

w
at
er
_s
pa
tia

l

70 R. Guerraoui et al.

Table 28. For each (lock-sensitive application, lock) pair, performance gain (in %) of opt nodes over max nodes.
The background color of a cell indicates the number of nodes for opt nodes: 1 2 4 6 8 . Dashes correspond to
untested cases (A-64 machine with thread-to-node pinning).

A
pp

lic
at
io
ns

ahmcs

alock-ls

backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs
hticket-ls

malth_spin

malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread

pthreadadapt

spinlock

spinlock-ls

ticket

ticket-ls

ttas
ttas-ls

de
du

p
-
17
3

53
40

48
47

48
16
5

90
16
3

15
48

8
49

48
52

83
59

92
90

76
54

65
50

54
13
8

fa
ce
si
m

18
19

53
48

13
4

19
18

20
59

20
18

18
14

56
20

60
19

22
42

19
42

58
27
6
12
7

45
17

55
61

fe
rr
et

6
9
11

9
flu

id
an
im

at
e

-
41

-
-

-
-

6
6

35
ky

ot
oc
ab
in
et

23
43

50
5

47
27

23
42

40
7

40
23

25
37

36
43

50
1

42
53

22
2

61
26
0
20
0

1k
1k

24
0

97
66
9
36
5

lin
ea
r_
re
gr
es
si
on

21
24

18
7

9
m
em

ca
ch
ed
-n
ew

17
14

78
-

10
-

-
-

14
-

7
21

17
13
4

29
17

12
-

31
97

58
8
46
5
16
7

90
31
7

42
m
em

ca
ch
ed
-o
ld

34
4
27
8
41
2

77
78

-
11
0

-
-

-
52

-
62
0
63
5
43
5
48
0
61
1
42
9
37
2

-
51
2
56
1
68
7
36
0
65
6
70
9
39
4
46
7

m
ys
ql
d

-
-

-
-

26
-

-
-

-
-

-
-

-
-

-
6

7
-

-
-

-
-

-
-

oc
ea
n_

cp
20

18
52

68
95

18
19

19
61

18
18

25
21

58
17

58
22

32
44

19
38

56
14
7

97
30

19
51

48
oc
ea
n_

nc
p

15
9

33
22

74
11

14
14

44
9

14
15

13
37

11
42

11
17

24
12

27
36

11
1

67
23

13
36

35
pc
a

28
22

20
21

27
27

23
15
7

23
26

26
24

26
14
4

20
21

89
27

88
25

28
2
10
2

66
6
18
9
12
6

pc
a_
ll

23
17

15
24

12
33

11
8

9
30

21
8

23
11
4

74
17

64
35
5
26
9

57
19
5
12
0

ra
di
os
ity

7
5

65
68

29
25

16
10
3

47
28

10
48

49
ra
di
os
ity

_l
l

6
19

24
6
80
7

6
75
0

7
13

24
3

34
15
3

83
1k

65
4
29
1

80
66
4
44
0

s_
ra
yt
ra
ce

43
30
2

30
7

10
7

81
31

37
1
16
2
19
4

26
41
2
28
4

s_
ra
yt
ra
ce
_l
l

17
9

17
6

15
0

67
24

12
7

81
sq
lit
e

-
-

-
-

-
-

-
-

-
-

-
-

-
37
5

-
18
5

-
16
0

86
-

-
-

-
-

-
ss
l_
pr
ox
y

65
66

11
2

48
16
5

47
42

78
1k

70
55

55
52

55
73

1k
81

71
34
9

96
28
7
19
9

1k
48
2
34
0
16
7
76
5
68
4

st
re
am

cl
us
te
r

1k
96
8

2k
1k

1k
91
5
97
3

-
-

-
86
3

-
3k

6k
2k

3k
2k

1k
1k

1k
2k

3k
5k

3k
3k

2k
2k

2k
st
re
am

cl
us
te
r_
ll

23
3
17
8
44
8
26
7
37
0
21
1
26
8

-
-

-
19
8

-
47
9

2k
28
5
58
8
37
3
24
6
26
5
23
1
42
3
43
7
97
9
89
1
88
8
58
3
64
1
56
5

up
sc
al
ed
b

71
6
36
0

38
37

40
1

16
32

35
3
27
9

1k
15

12
5

75
vi
ps

27
20

15
9

-
-

-
-

19
16

20
6

20
23

21
21

18
26

18
24

27
vo
lre

nd
14

11
29

20
38

7
7

11
21

14
8

9
14

20
13

19
12

15
30

13
28

35
72

58
30

17
35

35
w
at
er
_n

sq
ua
re
d

w
at
er
_s
pa
tia

l

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 71

Table 29. For each (lock-sensitive application, lock) pair, performance gain (in %) of opt nodes over max nodes.
The background color of a cell indicates the number of nodes for opt nodes: 1 2 3 4 . Dashes correspond to
untested cases. (I-48 machine in energy-saving mode).

A
pp

lic
at
io
ns

ahmcs

alock-ls

backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs

hticket-ls

malth_spin

malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread

pthreadadapt

spinlock

spinlock-ls

ticket

ticket-ls

ttas
ttas-ls

de
du

p
-
14
6

62
12
8

66
3k

3k
24
0

54
38
5

96
25
5
49
1

78
24
3

69
47
1

54
71

3k
84

99
82

64
3k

2k
64

77
fe
rr
et

40
7
35
5

8
38
2

39
0
35
9
33
9

35
0
40
2
31
9
36
5

34
9

28
8

32
2

6
33
3
24
7

7
5

ky
ot
oc
ab
in
et

8
11

37
13
6

12
12

16
26

12
7

7
24

17
10

6
10

15
18

19
13

16
20
8
13
0

21
13

31
35

lin
ea
r_
re
gr
es
si
on

20
11

6
14

34
5

m
em

ca
ch
ed
-n
ew

24
25

36
-

43
-

-
-

-
29

21
13
5

12
37

-
46

38
11
5

73
18

18
19

m
em

ca
ch
ed
-o
ld

55
20

13
1

57
58

-
20

-
-

-
63

-
12
6
11
8

97
10
0
13
2
12
6
11
0

-
13
5
12
1

97
90

10
9
12
2
13
4

86
m
ys
ql
d

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
pc
a

10
20

10
74

11
16

15
21

14
7

12
15

10
13

13
13

29
14

18
23
6
17
8

41
36

46
45

pc
a_
ll

29
10
4

19
27
8

6
8

7
47

18
0
28
4

28
7

77
67

ra
di
os
ity

38
59

97
9

5
5

97
79

10
7

15
15

ra
di
os
ity

_l
l

47
5

31
46

27
7

6
18

38
5

47
2
36
4

38
29

10
4
10
5

s_
ra
yt
ra
ce

6
19
1

9
38
0

5
6

33
5

27
5

12
22
6
19
0

35
26

71
86

s_
ra
yt
ra
ce
_l
l

20
7

20
7

11
3
10
6

sq
lit
e

-
-

-
-
36
8

-
-

-
-

-
-

-
-

11
-

33
-

4k
34

-
22

17
-

-
-

-
-

-
ss
l_
pr
ox
y

51
45

39
31

42
1

60
62

35
15

39
49

49
25

16
49

19
48

44
43

76
34

18
33
5
27
6

46
40

72
78

st
re
am

cl
us
te
r

30
6
18
7

1k
64
1

1k
42
2
23
3

-
-

-
30
7

-
86
5

1k
89
6

1k
75
0
87
7

1k
22
8

1k
1k

1k
84
7

1k
1k

72
5
72
9

st
re
am

cl
us
te
r_
ll

39
14

18
5
12
0
32
7
11
6

-
-

-
49

-
10
8
14
9
16
5
17
2
13
4
11
8
15
2

6
25
3
19
2
16
8
16
5
17
0
16
2
12
7
15
8

up
sc
al
ed
b

8
8

6
6

75
72

7
7

8
vi
ps

15
2

83
55
6

21
31
6
24
6

-
-

-
26
1

-
31
3

94
92

11
8

62
vo
lre

nd
10

89
5

23
8

6
9

9
8

12
14

6
5

11
6

18
15

7
9

9
w
at
er
_n

sq
ua
re
d

w
at
er
_s
pa
tia

l

72 R. Guerraoui et al.

Table 30. For each (lock-sensitive application, lock) pair, performance gain (in %) of opt nodes over max nodes.
The background color of a cell indicates the number of nodes for opt nodes: 1 2 . Dashes correspond to untested
cases (I-20 machine in energy-saving mode).

A
pp

lic
at
io
ns

ahmcs

alock-ls
backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs

hticket-ls

malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread

pthreadadapt

spinlock
spinlock-ls

ticket

ticket-ls
ttas

ttas-ls

de
du

p
-
20
7
69

18
2

23
24
4
24
4

38
5

52
26
6
15
8
22
9
28

16
6

28
22
6

48
39

20
5

38
45

66
67

17
7
33
1
68

21
fe
rr
et

13
0
13
1

13
1

13
1
13
0
12
7

13
2
12
5
12
3
11
5

13
0

13
1

13
2

8
9
13
4
10
8

9
10

ky
ot
oc
ab
in
et

6
8

7
5

5
7

9
7

9
44

34
8

8
7

m
em

ca
ch
ed
-o
ld

-
-

-
-

-
-

pc
a

13
0

12
3

11
9

14
18

pc
a_
ll

20
5

17
8

18
9

ra
di
os
ity

45
47

7
52

6
10

15
41

13
6

8
ra
di
os
ity

_l
l

32
0

44
5

48
5

57
23
4
73

21
16

s_
ra
yt
ra
ce

13
1

11
5

72
s_
ra
yt
ra
ce
_l
l

28
6

31
9

32
0

sq
lit
e

-
-

-
-
33
3

-
-

-
-

-
-

-
-
29

-
27

-
10
k

6
-

10
43

-
-

-
-

-
-

st
re
am

cl
us
te
r

42
25

57
22

30
38

18
-

-
-

20
-

56
66

58
54

60
71

37
2

15
22
3
13
2

84
46

67
68

37
42

st
re
am

cl
us
te
r_
ll

-
-

-
-

16
6

10
0

28
up

sc
al
ed
b

17
vi
ps

11
-

-
-

-
w
at
er
_n

sq
ua
re
d

w
at
er
_s
pa
tia

l

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 73

A.3 Are some locks always among the best?

Table 31. For each lock, fraction of the lock-sensitive applications for which the lock yields the best perfor-
mance for three configurations: one node, max nodes and opt nodes (A-64 machine).

Number of nodes

Locks one node max nodes opt nodes

ahmcs 54% 21% 50%
alock-ls 50% 0% 23%
backoff 62% 23% 31%
c-bo-mcs_spin 50% 12% 27%
c-bo-mcs_stp 46% 11% 18%
c-ptl-tkt 62% 17% 42%
c-tkt-tkt 73% 8% 38%
clh_spin 65% 5% 30%
clh_stp 60% 15% 20%
clh-ls 55% 5% 35%
hmcs 50% 15% 42%
hticket-ls 70% 15% 40%
malth_spin 58% 8% 27%
malth_stp 43% 25% 29%
mcs_spin 65% 19% 38%
mcs_stp 61% 18% 21%
mcs-ls 58% 4% 31%
mcs-timepub 57% 29% 36%
mutexee 57% 14% 21%
partitioned 71% 12% 42%
pthread 43% 21% 21%
pthreadadapt 39% 25% 21%
spinlock 73% 23% 23%
spinlock-ls 62% 15% 31%
ticket 69% 15% 35%
ticket-ls 65% 12% 31%
ttas 73% 12% 31%
ttas-ls 54% 0% 15%

74 R. Guerraoui et al.

Table 32. For each lock, fraction of the lock-sensitive applications for which the lock yields the best perfor-
mance for three configurations: one node, max nodes and opt nodes (A-48 machine).

Number of nodes

Locks one node max nodes opt nodes

ahmcs 60% 15% 40%
alock-ls 55% 10% 35%
backoff 71% 33% 33%
c-bo-mcs_spin 57% 24% 19%
c-bo-mcs_stp 52% 9% 9%
c-ptl-tkt 58% 16% 21%
c-tkt-tkt 62% 14% 29%
clh_spin 47% 13% 20%
clh_stp 33% 7% 7%
clh-ls 53% 0% 27%
hmcs 71% 29% 48%
hticket-ls 69% 31% 31%
malth_spin 67% 19% 10%
malth_stp 35% 4% 4%
mcs_spin 67% 14% 43%
mcs_stp 39% 9% 9%
mcs-ls 67% 5% 29%
mcs-timepub 52% 22% 35%
mutexee 61% 22% 30%
partitioned 58% 5% 21%
pthread 43% 17% 17%
pthreadadapt 57% 26% 17%
spinlock 67% 14% 24%
spinlock-ls 67% 10% 29%
ticket 71% 5% 14%
ticket-ls 71% 10% 29%
ttas 67% 10% 24%
ttas-ls 65% 0% 20%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 75

Table 33. For each lock, fraction of the lock-sensitive applications for which the lock yields the best per-
formance for three configurations: one node, max nodes and opt nodes (I-48 machine in performance
mode).

Number of nodes

Locks one node max nodes opt nodes

ahmcs 47% 26% 37%
alock-ls 55% 15% 10%
backoff 60% 30% 20%
c-bo-mcs_spin 65% 35% 35%
c-bo-mcs_stp 55% 14% 18%
c-ptl-tkt 72% 44% 50%
c-tkt-tkt 70% 40% 50%
clh_spin 47% 7% 7%
clh_stp 20% 7% 7%
clh-ls 27% 0% 0%
hmcs 75% 45% 50%
hticket-ls 73% 33% 33%
malth_spin 55% 10% 15%
malth_stp 41% 18% 18%
mcs_spin 60% 10% 20%
mcs_stp 27% 5% 5%
mcs-ls 55% 15% 15%
mcs-timepub 45% 9% 5%
mutexee 41% 27% 27%
partitioned 56% 17% 11%
pthread 41% 23% 27%
pthreadadapt 41% 14% 23%
spinlock 40% 15% 20%
spinlock-ls 40% 15% 15%
ticket 45% 10% 15%
ticket-ls 55% 10% 15%
ttas 55% 20% 20%
ttas-ls 30% 5% 5%

76 R. Guerraoui et al.

Table 34. For each lock, fraction of the lock-sensitive applications for which the lock yields the best per-
formance for three configurations: one node, max nodes and opt nodes (I-20 machine in performance
mode).

Number of nodes

Locks one node max nodes opt nodes

ahmcs 60% 53% 53%
alock-ls 50% 38% 38%
backoff 56% 38% 44%
c-bo-mcs_spin 75% 62% 62%
c-bo-mcs_stp 47% 24% 24%
c-ptl-tkt 67% 60% 60%
c-tkt-tkt 75% 62% 62%
clh_spin 42% 25% 25%
clh_stp 42% 8% 8%
clh-ls 42% 25% 25%
hmcs 69% 62% 62%
hticket-ls 75% 75% 75%
malth_spin 56% 44% 44%
malth_stp 59% 47% 47%
mcs_spin 62% 50% 50%
mcs_stp 59% 24% 24%
mcs-ls 62% 50% 50%
mcs-timepub 53% 53% 53%
mutexee 59% 41% 47%
partitioned 60% 47% 47%
pthread 71% 35% 47%
pthreadadapt 59% 47% 47%
spinlock 75% 44% 50%
spinlock-ls 62% 44% 44%
ticket 56% 38% 38%
ticket-ls 62% 44% 44%
ttas 69% 50% 50%
ttas-ls 50% 31% 31%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 77

Table 35. For each lock, fraction of the lock-sensitive applications for which the lock yields the best perfor-
mance for three configurations: one node, max nodes and opt nodes (A-64 machine with thread-to-node
pinning).

Number of nodes

Locks one node max nodes opt nodes

ahmcs 50% 32% 41%
alock-ls 62% 21% 25%
backoff 75% 21% 42%
c-bo-mcs_spin 54% 17% 29%
c-bo-mcs_stp 54% 19% 19%
c-ptl-tkt 59% 32% 36%
c-tkt-tkt 54% 29% 38%
clh_spin 67% 28% 44%
clh_stp 56% 6% 11%
clh-ls 67% 11% 28%
hmcs 54% 50% 46%
hticket-ls 78% 39% 44%
malth_spin 54% 33% 38%
malth_stp 58% 38% 38%
mcs_spin 62% 38% 46%
mcs_stp 62% 19% 19%
mcs-ls 54% 29% 33%
mcs-timepub 54% 8% 27%
mutexee 65% 19% 31%
partitioned 73% 23% 36%
pthread 62% 19% 27%
pthreadadapt 65% 19% 27%
spinlock 62% 12% 12%
spinlock-ls 75% 17% 33%
ticket 75% 8% 25%
ticket-ls 79% 25% 38%
ttas 92% 17% 50%
ttas-ls 79% 4% 21%

78 R. Guerraoui et al.

Table 36. For each lock, fraction of the lock-sensitive applications for which the lock yields the best per-
formance for three configurations: one node, max nodes and opt nodes (I-48 machine in energy-saving
mode).

Number of nodes

Locks one node max nodes opt nodes

ahmcs 47% 26% 37%
alock-ls 55% 15% 10%
backoff 60% 30% 20%
c-bo-mcs_spin 65% 35% 35%
c-bo-mcs_stp 55% 14% 18%
c-ptl-tkt 72% 44% 50%
c-tkt-tkt 70% 40% 50%
clh_spin 47% 7% 7%
clh_stp 20% 7% 7%
clh-ls 27% 0% 0%
hmcs 75% 45% 50%
hticket-ls 73% 33% 33%
malth_spin 55% 10% 15%
malth_stp 41% 18% 18%
mcs_spin 60% 10% 20%
mcs_stp 27% 5% 5%
mcs-ls 55% 15% 15%
mcs-timepub 45% 9% 5%
mutexee 41% 27% 27%
partitioned 56% 17% 11%
pthread 41% 23% 27%
pthreadadapt 41% 14% 23%
spinlock 40% 15% 20%
spinlock-ls 40% 15% 15%
ticket 45% 10% 15%
ticket-ls 55% 10% 15%
ttas 55% 20% 20%
ttas-ls 30% 5% 5%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 79

Table 37. For each lock, fraction of the lock-sensitive applications for which the lock yields the best per-
formance for three configurations: one node, max nodes and opt nodes (I-20 machine in energy-saving
mode).

Number of nodes

Locks one node max nodes opt nodes

ahmcs 60% 53% 53%
alock-ls 50% 38% 38%
backoff 56% 38% 44%
c-bo-mcs_spin 75% 62% 62%
c-bo-mcs_stp 47% 24% 24%
c-ptl-tkt 67% 60% 60%
c-tkt-tkt 75% 62% 62%
clh_spin 42% 25% 25%
clh_stp 42% 8% 8%
clh-ls 42% 25% 25%
hmcs 69% 62% 62%
hticket-ls 75% 75% 75%
malth_spin 56% 44% 44%
malth_stp 59% 47% 47%
mcs_spin 62% 50% 50%
mcs_stp 59% 24% 24%
mcs-ls 62% 50% 50%
mcs-timepub 53% 53% 53%
mutexee 59% 41% 47%
partitioned 60% 47% 47%
pthread 71% 35% 47%
pthreadadapt 59% 47% 47%
spinlock 75% 44% 50%
spinlock-ls 62% 44% 44%
ticket 56% 38% 38%
ticket-ls 62% 44% 44%
ttas 69% 50% 50%
ttas-ls 50% 31% 31%

80 R. Guerraoui et al.

A.4 Is there a clear hierarchy between locks?
A.4.1 At opt nodes.

Table 38. For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive
applications for which lock A performs at least 5% better than B (A-64 machine).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 38 46 42 54 23 33 16 63 21 21 26 29 54 42 54 42 46 58 27 50 58 50 50 42 42 38 42 41
alock-ls 12 42 27 38 4 12 5 60 20 8 10 27 27 12 50 19 27 54 4 42 50 46 42 35 27 31 38 29
backoff 33 35 35 58 25 23 30 70 40 35 30 35 38 27 58 35 23 54 25 46 50 38 35 27 19 23 50 37
c-bo-mcs_spin 29 46 23 42 17 23 30 70 40 35 20 23 35 19 46 27 19 62 21 54 46 35 42 35 35 35 58 36
c-bo-mcs_stp 17 35 15 12 12 15 25 65 35 23 15 12 14 19 43 19 21 36 17 32 32 38 23 23 19 23 38 25
c-ptl-tkt 18 42 46 46 54 17 30 75 40 29 25 25 50 29 67 33 42 54 21 54 50 50 46 42 29 38 62 41
c-tkt-tkt 17 42 42 35 50 12 25 80 35 27 20 38 54 27 65 46 38 58 12 54 54 50 54 42 31 42 65 41
clh_spin 26 40 40 45 45 20 35 55 40 20 30 30 30 20 55 30 35 50 20 50 55 55 60 45 30 45 50 39
clh_stp 32 35 5 15 10 15 20 15 35 25 25 15 10 15 10 20 5 25 10 10 10 20 20 10 15 15 25 17
clh-ls 21 15 40 35 45 20 25 0 55 20 25 30 30 15 55 10 25 55 15 50 55 55 60 40 35 40 50 34
hmcs 12 38 42 35 38 4 23 35 75 40 15 23 38 23 58 35 35 58 21 46 46 46 42 38 35 35 50 37
hticket-ls 16 40 55 40 55 0 10 35 75 30 15 20 45 15 65 25 35 55 20 60 55 55 50 45 30 45 60 39
malth_spin 12 38 19 27 50 12 15 25 65 35 23 15 31 15 46 27 31 50 12 46 46 38 38 31 19 19 46 31
malth_stp 21 38 23 35 39 21 15 30 65 35 31 20 8 15 39 23 25 54 12 54 46 38 35 31 23 23 46 31
mcs_spin 29 54 46 38 65 29 23 40 70 40 42 40 38 46 50 46 31 65 21 54 54 42 54 46 35 42 69 45
mcs_stp 25 35 12 27 29 25 15 30 35 30 31 25 15 14 8 27 14 39 17 29 29 12 12 12 15 12 31 22
mcs-ls 21 27 38 38 50 8 15 15 70 15 23 20 31 27 8 46 12 62 8 50 54 46 46 38 15 35 54 32
mcs-timepub 29 38 27 35 50 17 12 35 70 35 35 20 38 36 8 43 19 61 17 46 50 42 54 42 27 35 62 36
mutexee 17 31 8 19 21 12 12 20 60 30 27 20 8 4 19 36 15 14 12 29 21 31 27 19 12 15 27 21
partitioned 23 38 38 33 62 25 21 35 70 35 33 35 38 42 25 67 38 38 62 46 50 46 54 33 38 38 62 42
pthread 25 38 4 23 29 21 15 30 60 35 35 25 23 18 23 46 31 18 21 12 18 27 19 15 12 19 42 25
pthreadadapt 25 38 8 23 32 29 19 30 55 35 31 25 19 18 23 43 31 18 36 12 36 19 19 15 19 19 42 27
spinlock 25 38 15 38 38 33 23 30 55 35 38 30 38 38 23 42 35 19 50 21 38 38 27 12 27 19 31 32
spinlock-ls 25 35 15 31 31 12 19 20 50 25 35 10 23 23 27 54 23 23 42 17 38 31 35 19 12 8 23 26
ticket 25 31 12 31 38 25 23 30 60 30 35 30 31 31 27 54 31 23 50 12 35 50 23 31 15 8 27 30
ticket-ls 17 35 31 31 54 17 19 25 70 30 27 10 31 42 27 58 27 31 58 12 46 58 46 38 35 27 46 35
ttas 21 31 15 38 35 21 19 20 55 30 31 25 27 35 31 50 27 23 50 17 42 46 35 27 15 15 31 30
ttas-ls 17 23 15 23 23 4 12 5 35 20 12 5 15 23 19 38 15 15 42 4 35 46 27 15 12 8 0 19

average 22 36 27 32 42 17 19 25 63 32 28 22 26 32 21 50 28 25 50 16 43 44 39 38 30 24 27 46 22

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 81

Table 39. For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive
applications for which lock A performs at least 5% better than B (A-48 machine).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 20 25 35 60 28 25 33 73 20 5 20 30 70 30 60 20 45 60 28 65 65 50 50 55 20 40 45 40
alock-ls 20 25 30 65 28 30 20 73 20 10 33 30 65 15 60 10 35 65 22 70 70 50 50 50 20 35 35 38
backoff 35 35 52 71 32 33 40 87 40 29 31 48 71 33 67 29 33 52 26 62 62 48 38 52 33 38 50 45
c-bo-mcs_spin 30 30 14 57 11 14 33 87 40 19 19 33 67 38 71 19 48 57 26 71 62 52 43 52 33 38 60 42
c-bo-mcs_stp 25 25 10 10 5 10 33 80 27 10 6 14 43 24 61 10 22 13 11 30 13 29 5 14 10 14 25 21
c-ptl-tkt 28 17 26 32 63 16 33 87 33 11 19 37 68 37 74 26 53 53 32 68 63 58 58 53 32 47 72 44
c-tkt-tkt 20 25 14 29 57 5 27 87 27 14 12 38 76 24 71 24 52 57 16 71 67 57 52 52 24 33 50 40
clh_spin 27 13 33 13 67 13 33 73 27 13 27 33 73 13 67 7 40 53 33 73 73 60 53 53 40 40 60 41
clh_stp 27 13 7 7 0 7 7 13 27 7 7 7 7 7 27 7 0 0 7 0 0 7 0 7 7 7 7 8
clh-ls 20 0 27 20 67 20 27 13 73 13 33 40 73 27 67 13 47 53 27 73 60 60 60 53 27 53 53 41
hmcs 25 35 33 43 67 32 33 47 87 40 19 38 71 33 71 24 57 62 32 71 62 62 48 52 29 38 55 47
hticket-ls 20 27 19 25 62 6 12 33 87 27 12 38 69 38 75 12 50 56 19 69 69 62 56 56 25 50 73 43
malth_spin 20 35 10 19 71 11 14 33 87 40 14 12 62 24 67 19 29 57 11 67 67 43 38 38 24 24 50 36
malth_stp 25 25 5 29 22 16 14 27 60 27 14 19 10 19 48 19 13 13 11 13 9 14 0 14 10 5 20 18
mcs_spin 30 35 33 43 67 42 38 40 93 40 19 44 43 76 62 29 33 62 21 67 67 52 52 52 33 43 50 47
mcs_stp 25 30 5 24 22 26 19 27 33 27 19 19 14 13 14 19 4 13 16 9 13 5 5 19 19 10 15 17
mcs-ls 25 25 24 38 67 21 29 33 87 33 14 25 48 71 24 67 48 62 21 67 67 57 43 52 24 29 50 43
mcs-timepub 30 30 19 43 70 32 33 33 93 33 19 31 43 61 10 61 29 57 21 61 57 52 43 48 33 29 50 41
mutexee 35 35 14 24 48 26 24 40 87 40 24 25 29 65 29 70 29 22 26 39 17 33 19 29 24 24 35 34
partitioned 33 22 11 26 68 16 21 20 87 27 21 25 37 68 21 74 16 32 58 68 63 58 47 47 32 42 61 41
pthread 25 25 10 24 48 16 14 27 93 27 24 25 19 74 19 70 19 17 9 16 4 19 10 19 10 24 30 26
pthreadadapt 25 25 5 24 57 16 14 27 93 27 24 25 19 74 24 74 19 22 30 11 43 29 10 24 14 19 30 30
spinlock 30 40 14 43 57 37 33 33 87 33 29 31 29 71 19 71 29 14 48 26 57 43 14 33 24 14 25 37
spinlock-ls 35 40 10 29 57 21 19 27 87 27 19 12 29 76 29 76 19 24 43 16 48 29 33 29 19 5 20 32
ticket 20 15 5 24 52 11 14 13 87 13 10 12 19 67 14 67 10 19 38 5 57 33 29 5 5 10 10 25
ticket-ls 20 25 10 24 62 16 19 33 87 33 19 12 29 71 29 67 24 38 57 11 67 57 52 43 48 38 45 38
ttas 30 30 5 24 67 26 24 27 87 33 19 19 33 71 29 67 19 24 48 21 52 52 38 14 38 14 25 35
ttas-ls 20 30 5 20 55 11 10 13 73 27 5 7 10 65 10 60 5 15 45 6 55 40 30 15 35 5 10 25

average 26 26 15 28 56 20 22 29 82 30 16 21 29 65 23 66 19 31 45 19 55 48 42 32 40 22 28 41 26

82 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 8. For each pair of locks (rowA, colB) at opt nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive
applications for which lock 𝐴 performs at least 5% better than 𝐵 (A-48 machine).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 83

Table 40. For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive
applications for which lock A performs at least 5% better than B (I-48 machine in performance mode).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 42 53 37 58 18 26 50 79 57 11 36 58 53 53 74 58 53 58 47 58 63 68 63 63 53 58 53 52
alock-ls 32 30 15 50 6 10 60 93 60 10 20 50 50 15 75 25 50 60 50 70 60 65 70 70 50 50 65 47
backoff 32 40 30 60 22 15 47 87 60 35 27 65 55 40 75 45 45 65 39 60 60 50 55 75 65 45 65 50
c-bo-mcs_spin 37 50 55 60 17 15 73 93 73 25 33 60 70 45 80 50 65 70 56 70 70 70 75 75 70 70 85 60
c-bo-mcs_stp 26 30 25 10 6 10 47 87 47 15 7 35 36 25 68 25 41 36 17 41 36 55 50 45 35 40 60 35
c-ptl-tkt 29 72 56 33 72 11 87 93 93 11 40 78 78 61 83 67 78 67 61 67 67 72 72 72 67 72 83 65
c-tkt-tkt 42 55 50 35 75 17 87 93 93 15 40 80 85 60 85 65 80 75 67 75 75 75 75 75 70 65 90 67
clh_spin 21 0 27 13 47 7 0 73 7 0 7 47 40 0 67 13 20 60 33 67 67 60 60 67 53 53 60 36
clh_stp 21 7 13 7 0 7 7 7 7 7 7 7 0 7 27 7 7 0 7 0 0 7 7 7 7 7 7 7
clh-ls 14 0 27 7 47 0 0 7 73 0 7 40 40 0 67 7 13 53 47 60 60 60 60 60 40 40 53 33
hmcs 37 65 55 40 60 22 25 80 93 87 40 65 65 50 70 60 65 70 72 70 70 70 70 70 65 60 85 62
hticket-ls 29 67 40 20 67 7 0 67 93 73 13 47 60 33 73 33 47 67 60 73 67 67 73 73 67 67 87 54
malth_spin 32 25 20 5 45 0 0 47 93 53 15 13 40 10 60 10 20 45 11 50 45 55 55 60 35 50 60 35
malth_stp 32 30 20 15 41 11 10 33 93 40 25 7 10 10 59 15 23 27 17 32 27 55 50 50 25 25 40 30
mcs_spin 32 25 30 20 45 0 0 67 93 60 10 20 50 55 60 30 60 70 44 65 70 55 50 70 65 50 70 47
mcs_stp 21 25 20 15 14 11 10 27 40 27 15 7 25 14 10 20 23 14 11 9 18 15 10 25 20 5 25 18
mcs-ls 26 15 25 15 45 0 0 67 93 67 10 20 40 45 5 60 45 55 39 55 60 55 55 65 55 50 60 42
mcs-timepub 37 30 30 15 41 11 10 33 93 47 15 13 45 45 10 55 20 59 28 55 59 55 50 75 50 35 55 40
mutexee 26 30 15 20 41 17 15 27 93 33 25 20 35 27 20 68 25 23 17 32 27 50 35 55 30 15 35 32
partitioned 24 17 22 17 56 6 0 27 93 33 17 20 50 61 22 89 28 28 56 67 67 67 72 72 50 61 72 44
pthread 26 25 20 20 36 17 10 27 87 33 25 20 35 27 25 73 35 23 9 17 18 45 30 40 20 10 30 29
pthreadadapt 26 30 10 20 41 17 10 33 87 40 25 20 25 18 20 68 25 18 9 17 27 45 40 35 20 15 30 29
spinlock 26 30 10 20 25 17 10 27 73 27 25 20 35 30 25 50 35 20 25 17 20 30 5 30 20 0 20 25
spinlock-ls 26 30 15 20 30 17 10 27 73 27 25 20 35 25 25 65 40 25 25 11 35 35 35 30 20 5 20 28
ticket 16 20 10 10 35 6 0 20 87 20 15 20 15 15 10 65 20 10 20 6 20 20 45 35 0 5 20 21
ticket-ls 26 25 10 15 55 11 5 20 93 27 20 20 25 45 20 65 25 15 30 11 40 35 55 55 55 20 45 32
ttas 26 30 20 20 50 17 15 27 93 27 30 20 35 40 25 85 40 30 35 17 35 50 60 55 50 25 35 37
ttas-ls 26 25 20 10 30 11 10 27 87 33 15 7 25 25 15 60 30 10 35 11 40 40 50 40 45 20 5 28

average 28 31 27 19 45 11 9 42 86 46 17 20 41 42 24 68 32 35 44 31 48 48 54 51 56 41 36 52 28

84 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 9. For each pair of locks (rowA, colB) at opt nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive
applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-48 machine in performance mode).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 85

Table 41. For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive
applications for which lock A performs at least 5% better than B (I-20 machine in performance mode).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 20 33 7 67 0 7 27 64 27 7 0 33 47 33 67 33 27 53 29 47 47 40 27 40 33 33 33 33
alock-ls 40 25 19 62 20 19 42 92 42 25 8 31 38 12 62 12 12 50 33 44 44 38 31 19 19 19 25 33
backoff 33 44 19 56 20 12 50 92 50 19 17 25 25 25 56 25 12 31 27 31 31 31 25 38 31 19 38 33
c-bo-mcs_spin 27 50 38 62 20 6 58 92 58 19 8 25 38 25 56 25 25 50 27 44 38 31 25 31 31 25 56 37
c-bo-mcs_stp 33 38 12 12 13 12 42 33 42 19 8 19 6 19 12 19 12 12 13 18 12 12 12 25 25 6 38 19
c-ptl-tkt 29 53 40 13 60 13 67 92 67 13 8 53 47 47 67 33 33 47 27 40 40 47 40 47 33 33 60 43
c-tkt-tkt 33 44 38 19 69 13 58 92 58 12 8 38 44 25 62 38 31 50 27 44 38 38 31 44 31 19 56 39
clh_spin 18 0 25 8 58 8 8 58 8 8 8 25 17 0 58 0 0 42 25 42 33 33 25 8 8 8 8 20
clh_stp 27 8 8 8 0 8 8 8 8 8 8 8 0 8 0 8 8 0 8 0 0 8 8 8 8 8 8 7
clh-ls 27 0 25 8 58 8 8 0 58 8 8 17 17 0 58 0 0 42 17 42 33 33 25 8 8 8 17 20
hmcs 27 44 38 12 62 7 6 58 92 58 0 31 38 19 56 25 25 50 20 44 44 38 31 38 25 31 56 36
hticket-ls 27 58 33 8 67 0 0 58 92 58 8 33 33 25 58 25 33 42 25 42 33 33 33 33 25 25 67 36
malth_spin 27 31 12 6 50 7 0 42 92 42 12 0 25 0 50 0 6 44 20 38 38 31 19 31 31 12 44 26
malth_stp 33 31 19 12 59 13 12 42 92 42 19 8 19 12 53 19 12 47 27 35 41 38 25 31 25 12 38 30
mcs_spin 33 31 38 12 56 13 6 42 92 42 19 8 31 31 50 12 12 50 27 44 38 38 19 31 25 6 44 31
mcs_stp 33 38 19 19 18 13 12 42 42 42 19 8 25 6 12 25 6 12 13 12 12 19 6 25 25 6 31 20
mcs-ls 33 31 31 19 56 13 6 42 92 50 19 8 31 31 0 56 6 44 33 38 44 38 25 38 31 19 50 33
mcs-timepub 33 38 44 19 59 13 19 42 92 50 19 8 25 24 19 59 25 53 27 47 47 44 25 31 31 19 50 36
mutexee 33 38 6 19 47 20 19 42 83 42 19 17 19 6 19 47 19 12 13 18 0 6 6 19 12 6 31 23
partitioned 43 27 27 20 60 20 13 33 92 33 20 17 27 20 13 53 20 13 40 40 33 33 20 13 13 7 40 29
pthread 33 38 12 25 53 27 25 42 75 42 25 17 25 12 25 53 25 18 18 27 12 19 19 38 25 12 38 29
pthreadadapt 33 38 12 19 47 20 19 42 75 42 19 17 19 6 19 47 19 12 24 20 18 12 12 25 25 12 31 25
spinlock 33 31 6 19 50 20 12 42 75 42 19 17 19 12 19 44 19 6 31 13 31 12 0 19 19 0 25 24
spinlock-ls 33 31 25 25 56 20 19 42 92 42 19 17 31 31 31 62 31 12 44 20 44 38 25 25 25 6 25 32
ticket 33 25 12 12 50 20 6 33 92 33 19 17 12 12 6 50 6 6 38 13 38 31 31 12 6 0 31 24
ticket-ls 33 31 19 12 56 20 6 33 92 33 19 17 19 25 6 56 6 12 44 27 38 38 25 19 12 6 50 28
ttas 33 38 31 19 56 20 12 42 92 42 19 17 25 25 25 56 25 12 44 20 44 38 25 12 25 25 38 32
ttas-ls 33 19 19 19 56 13 12 33 92 33 12 8 25 12 19 50 25 6 38 13 38 38 25 12 25 25 6 26

average 32 32 24 15 54 15 11 41 82 42 16 10 26 23 17 52 19 14 38 22 35 31 29 20 27 23 14 38 32

86 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 10. For each pair of locks (rowA, colB) at opt nodes, scores of lock𝐴 vs lock 𝐵: percentage of lock-sensitive
applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-20 machine in performance mode).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 87

Table 42. For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive
applications for which lock A performs at least 5% better than B (A-64 machine with thread-to-node
pinning).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 27 41 41 77 25 45 18 76 29 14 35 41 59 23 68 41 41 59 25 64 59 68 45 36 27 36 45 43
alock-ls 23 38 33 67 23 29 17 89 22 21 11 38 50 12 67 17 33 54 9 62 58 67 46 29 17 33 42 37
backoff 32 38 38 58 27 29 33 78 33 38 22 38 38 33 58 33 33 58 32 62 54 71 42 46 29 21 42 41
c-bo-mcs_spin 18 38 25 62 14 17 33 83 50 17 11 29 29 21 54 25 21 54 32 67 54 67 42 33 25 29 46 37
c-bo-mcs_stp 18 25 0 12 9 8 22 39 22 17 6 17 8 12 23 17 12 23 23 23 27 33 12 17 12 8 25 17
c-ptl-tkt 25 32 41 36 73 14 17 89 28 14 22 36 55 27 73 27 36 59 32 68 59 73 50 45 27 36 59 43
c-tkt-tkt 18 29 38 42 79 18 17 89 28 25 17 38 54 17 71 25 29 54 32 71 58 67 54 46 25 33 62 42
clh_spin 29 22 39 17 72 28 28 72 33 6 17 22 39 0 67 22 33 56 22 61 56 67 56 39 33 33 44 38
clh_stp 18 6 0 6 6 6 6 6 6 6 6 6 0 6 11 6 0 17 6 17 17 33 6 6 6 6 0 8
clh-ls 18 0 28 17 56 11 17 6 72 0 11 22 33 0 61 6 17 56 11 56 56 67 50 33 22 33 44 30
hmcs 27 42 42 42 67 32 29 33 94 44 33 33 46 17 62 33 38 54 32 58 54 67 46 42 29 38 58 44
hticket-ls 18 28 44 17 78 11 22 17 89 33 6 17 39 0 67 11 17 61 22 67 61 72 61 39 28 39 61 38
malth_spin 23 29 29 21 67 14 21 28 83 39 17 17 25 8 54 12 12 50 18 50 46 54 46 33 17 25 54 33
malth_stp 27 42 25 25 58 23 25 39 61 44 29 28 25 25 35 25 31 50 32 46 42 50 38 38 25 25 38 35
mcs_spin 27 42 33 33 71 32 38 22 89 44 25 22 33 50 58 42 38 50 23 58 58 62 42 42 25 33 54 42
mcs_stp 18 29 4 17 31 9 17 22 28 28 21 11 21 8 12 21 19 15 14 23 19 42 17 12 8 4 12 18
mcs-ls 23 29 29 25 71 14 21 22 89 28 21 17 29 33 4 50 12 50 27 58 46 54 46 42 21 29 50 35
mcs-timepub 27 25 21 29 65 9 21 22 83 28 25 17 38 38 21 46 21 50 27 54 50 67 46 42 25 25 46 36
mutexee 23 25 8 21 38 14 17 22 61 22 25 11 25 15 21 42 25 23 14 23 31 50 25 17 12 12 25 24
partitioned 25 32 41 23 64 18 23 17 89 28 18 11 27 41 14 68 27 36 64 64 59 68 45 36 32 27 68 39
pthread 18 25 8 17 38 14 17 22 56 22 29 11 25 15 21 35 25 19 12 18 8 38 21 17 12 12 25 21
pthreadadapt 18 25 8 17 38 14 17 22 61 22 29 11 21 12 17 38 21 23 31 18 35 46 17 21 17 12 25 24
spinlock 18 25 4 17 38 14 12 22 39 22 29 11 17 8 17 25 17 12 17 14 25 4 4 12 12 4 17 17
spinlock-ls 32 38 8 29 50 23 25 22 50 22 29 11 29 21 29 50 29 25 38 18 38 33 50 33 21 4 29 29
ticket 18 25 8 29 54 14 21 22 78 28 25 11 21 33 21 58 21 25 50 14 54 46 67 29 0 8 38 30
ticket-ls 27 38 17 38 71 32 38 33 89 33 42 22 38 46 29 71 38 33 62 23 67 58 71 42 42 25 54 44
ttas 32 42 8 42 67 27 29 28 72 28 29 17 29 42 29 67 33 33 50 18 58 54 67 25 29 21 33 37
ttas-ls 23 25 12 25 50 9 21 22 56 28 17 6 25 17 21 46 25 17 42 9 50 42 58 21 21 17 4 26

average 23 29 22 26 58 18 22 22 72 29 21 16 27 32 17 53 24 25 46 21 51 45 59 36 31 20 22 41 23

88 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 11. For each pair of locks (rowA, colB) at opt nodes, scores of lock𝐴 vs lock 𝐵: percentage of lock-sensitive
applications for which lock 𝐴 performs at least 5% better than 𝐵 (A-64-node machine).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 89

Table 43. For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive
applications for which lock A performs at least 5% better than B (I-48 machine in energy-saving mode).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 42 53 37 58 18 26 50 79 57 11 36 58 53 53 74 58 53 58 47 58 63 68 63 63 53 58 53 52
alock-ls 32 30 15 50 6 10 60 93 60 10 20 50 50 15 75 25 50 60 50 70 60 65 70 70 50 50 65 47
backoff 32 40 30 60 22 15 47 87 60 35 27 65 55 40 75 45 45 65 39 60 60 50 55 75 65 45 65 50
c-bo-mcs_spin 37 50 55 60 17 15 73 93 73 25 33 60 70 45 80 50 65 70 56 70 70 70 75 75 70 70 85 60
c-bo-mcs_stp 26 30 25 10 6 10 47 87 47 15 7 35 36 25 68 25 41 36 17 41 36 55 50 45 35 40 60 35
c-ptl-tkt 29 72 56 33 72 11 87 93 93 11 40 78 78 61 83 67 78 67 61 67 67 72 72 72 67 72 83 65
c-tkt-tkt 42 55 50 35 75 17 87 93 93 15 40 80 85 60 85 65 80 75 67 75 75 75 75 75 70 65 90 67
clh_spin 21 0 27 13 47 7 0 73 7 0 7 47 40 0 67 13 20 60 33 67 67 60 60 67 53 53 60 36
clh_stp 21 7 13 7 0 7 7 7 7 7 7 7 0 7 27 7 7 0 7 0 0 7 7 7 7 7 7 7
clh-ls 14 0 27 7 47 0 0 7 73 0 7 40 40 0 67 7 13 53 47 60 60 60 60 60 40 40 53 33
hmcs 37 65 55 40 60 22 25 80 93 87 40 65 65 50 70 60 65 70 72 70 70 70 70 70 65 60 85 62
hticket-ls 29 67 40 20 67 7 0 67 93 73 13 47 60 33 73 33 47 67 60 73 67 67 73 73 67 67 87 54
malth_spin 32 25 20 5 45 0 0 47 93 53 15 13 40 10 60 10 20 45 11 50 45 55 55 60 35 50 60 35
malth_stp 32 30 20 15 41 11 10 33 93 40 25 7 10 10 59 15 23 27 17 32 27 55 50 50 25 25 40 30
mcs_spin 32 25 30 20 45 0 0 67 93 60 10 20 50 55 60 30 60 70 44 65 70 55 50 70 65 50 70 47
mcs_stp 21 25 20 15 14 11 10 27 40 27 15 7 25 14 10 20 23 14 11 9 18 15 10 25 20 5 25 18
mcs-ls 26 15 25 15 45 0 0 67 93 67 10 20 40 45 5 60 45 55 39 55 60 55 55 65 55 50 60 42
mcs-timepub 37 30 30 15 41 11 10 33 93 47 15 13 45 45 10 55 20 59 28 55 59 55 50 75 50 35 55 40
mutexee 26 30 15 20 41 17 15 27 93 33 25 20 35 27 20 68 25 23 17 32 27 50 35 55 30 15 35 32
partitioned 24 17 22 17 56 6 0 27 93 33 17 20 50 61 22 89 28 28 56 67 67 67 72 72 50 61 72 44
pthread 26 25 20 20 36 17 10 27 87 33 25 20 35 27 25 73 35 23 9 17 18 45 30 40 20 10 30 29
pthreadadapt 26 30 10 20 41 17 10 33 87 40 25 20 25 18 20 68 25 18 9 17 27 45 40 35 20 15 30 29
spinlock 26 30 10 20 25 17 10 27 73 27 25 20 35 30 25 50 35 20 25 17 20 30 5 30 20 0 20 25
spinlock-ls 26 30 15 20 30 17 10 27 73 27 25 20 35 25 25 65 40 25 25 11 35 35 35 30 20 5 20 28
ticket 16 20 10 10 35 6 0 20 87 20 15 20 15 15 10 65 20 10 20 6 20 20 45 35 0 5 20 21
ticket-ls 26 25 10 15 55 11 5 20 93 27 20 20 25 45 20 65 25 15 30 11 40 35 55 55 55 20 45 32
ttas 26 30 20 20 50 17 15 27 93 27 30 20 35 40 25 85 40 30 35 17 35 50 60 55 50 25 35 37
ttas-ls 26 25 20 10 30 11 10 27 87 33 15 7 25 25 15 60 30 10 35 11 40 40 50 40 45 20 5 28

average 28 31 27 19 45 11 9 42 86 46 17 20 41 42 24 68 32 35 44 31 48 48 54 51 56 41 36 52 28

90 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 12. For each pair of locks (rowA, colB) at opt nodes, scores of lock𝐴 vs lock 𝐵: percentage of lock-sensitive
applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-48 machine in energy-saving move).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 91

Table 44. For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive
applications for which lock A performs at least 5% better than B (I-20 machine in energy-saving mode).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 20 33 7 67 0 7 27 64 27 7 0 33 47 33 67 33 27 53 29 47 47 40 27 40 33 33 33 33
alock-ls 40 25 19 62 20 19 42 92 42 25 8 31 38 12 62 12 12 50 33 44 44 38 31 19 19 19 25 33
backoff 33 44 19 56 20 12 50 92 50 19 17 25 25 25 56 25 12 31 27 31 31 31 25 38 31 19 38 33
c-bo-mcs_spin 27 50 38 62 20 6 58 92 58 19 8 25 38 25 56 25 25 50 27 44 38 31 25 31 31 25 56 37
c-bo-mcs_stp 33 38 12 12 13 12 42 33 42 19 8 19 6 19 12 19 12 12 13 18 12 12 12 25 25 6 38 19
c-ptl-tkt 29 53 40 13 60 13 67 92 67 13 8 53 47 47 67 33 33 47 27 40 40 47 40 47 33 33 60 43
c-tkt-tkt 33 44 38 19 69 13 58 92 58 12 8 38 44 25 62 38 31 50 27 44 38 38 31 44 31 19 56 39
clh_spin 18 0 25 8 58 8 8 58 8 8 8 25 17 0 58 0 0 42 25 42 33 33 25 8 8 8 8 20
clh_stp 27 8 8 8 0 8 8 8 8 8 8 8 0 8 0 8 8 0 8 0 0 8 8 8 8 8 8 7
clh-ls 27 0 25 8 58 8 8 0 58 8 8 17 17 0 58 0 0 42 17 42 33 33 25 8 8 8 17 20
hmcs 27 44 38 12 62 7 6 58 92 58 0 31 38 19 56 25 25 50 20 44 44 38 31 38 25 31 56 36
hticket-ls 27 58 33 8 67 0 0 58 92 58 8 33 33 25 58 25 33 42 25 42 33 33 33 33 25 25 67 36
malth_spin 27 31 12 6 50 7 0 42 92 42 12 0 25 0 50 0 6 44 20 38 38 31 19 31 31 12 44 26
malth_stp 33 31 19 12 59 13 12 42 92 42 19 8 19 12 53 19 12 47 27 35 41 38 25 31 25 12 38 30
mcs_spin 33 31 38 12 56 13 6 42 92 42 19 8 31 31 50 12 12 50 27 44 38 38 19 31 25 6 44 31
mcs_stp 33 38 19 19 18 13 12 42 42 42 19 8 25 6 12 25 6 12 13 12 12 19 6 25 25 6 31 20
mcs-ls 33 31 31 19 56 13 6 42 92 50 19 8 31 31 0 56 6 44 33 38 44 38 25 38 31 19 50 33
mcs-timepub 33 38 44 19 59 13 19 42 92 50 19 8 25 24 19 59 25 53 27 47 47 44 25 31 31 19 50 36
mutexee 33 38 6 19 47 20 19 42 83 42 19 17 19 6 19 47 19 12 13 18 0 6 6 19 12 6 31 23
partitioned 43 27 27 20 60 20 13 33 92 33 20 17 27 20 13 53 20 13 40 40 33 33 20 13 13 7 40 29
pthread 33 38 12 25 53 27 25 42 75 42 25 17 25 12 25 53 25 18 18 27 12 19 19 38 25 12 38 29
pthreadadapt 33 38 12 19 47 20 19 42 75 42 19 17 19 6 19 47 19 12 24 20 18 12 12 25 25 12 31 25
spinlock 33 31 6 19 50 20 12 42 75 42 19 17 19 12 19 44 19 6 31 13 31 12 0 19 19 0 25 24
spinlock-ls 33 31 25 25 56 20 19 42 92 42 19 17 31 31 31 62 31 12 44 20 44 38 25 25 25 6 25 32
ticket 33 25 12 12 50 20 6 33 92 33 19 17 12 12 6 50 6 6 38 13 38 31 31 12 6 0 31 24
ticket-ls 33 31 19 12 56 20 6 33 92 33 19 17 19 25 6 56 6 12 44 27 38 38 25 19 12 6 50 28
ttas 33 38 31 19 56 20 12 42 92 42 19 17 25 25 25 56 25 12 44 20 44 38 25 12 25 25 38 32
ttas-ls 33 19 19 19 56 13 12 33 92 33 12 8 25 12 19 50 25 6 38 13 38 38 25 12 25 25 6 26

average 32 32 24 15 54 15 11 41 82 42 16 10 26 23 17 52 19 14 38 22 35 31 29 20 27 23 14 38 32

92 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 13. For each pair of locks (rowA, colB) at opt nodes, scores of lock𝐴 vs lock 𝐵: percentage of lock-sensitive
applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-20 machine in energy-saving move).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 93

Table 45. For each pair of locks (rowA, colB) atmax nodes, scores of lock A vs lock B: percentage of lock-sensitive
applications for which lock A performs at least 5% better than B (A-64 machine).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 46 50 33 67 32 29 42 58 42 21 42 50 42 58 67 58 33 46 45 54 46 71 71 67 54 58 67 50
alock-ls 42 38 27 62 8 8 25 55 25 23 0 31 35 31 62 38 19 54 38 54 46 58 58 54 38 50 62 38
backoff 46 54 35 81 33 31 55 70 60 42 40 42 38 46 73 65 27 54 50 46 46 69 58 69 54 50 85 53
c-bo-mcs_spin 42 69 42 69 42 35 70 70 70 42 40 35 42 54 65 58 23 50 46 54 54 65 69 58 62 62 85 54
c-bo-mcs_stp 29 38 12 15 17 19 30 40 35 23 15 19 14 19 39 19 11 11 17 14 14 54 35 27 15 31 46 24
c-ptl-tkt 45 71 42 50 71 29 65 75 65 46 25 38 42 50 75 50 42 54 62 50 42 62 67 67 50 54 83 54
c-tkt-tkt 46 69 50 46 77 21 50 80 55 38 25 46 54 54 77 69 38 62 50 58 50 69 69 69 54 62 85 56
clh_spin 16 40 30 10 55 15 20 50 40 15 15 10 25 15 60 35 25 50 40 45 35 60 70 50 40 55 60 36
clh_stp 37 35 10 15 40 20 20 20 35 20 20 15 5 20 10 20 0 10 15 5 5 60 40 15 20 20 25 21
clh-ls 32 35 30 15 65 15 15 30 60 30 15 10 30 35 60 35 25 50 50 50 45 60 65 55 40 50 65 40
hmcs 38 54 46 35 62 25 31 60 75 55 25 38 35 50 65 42 31 58 50 54 42 65 65 69 46 58 77 50
hticket-ls 47 60 50 25 65 25 40 70 75 55 45 30 30 50 65 55 35 50 60 50 45 65 60 65 45 60 85 52
malth_spin 38 58 27 31 58 29 31 75 80 70 42 35 31 42 65 46 23 50 54 46 42 62 58 65 42 46 77 49
malth_stp 42 54 38 27 68 38 31 70 80 60 46 40 23 38 54 42 21 50 54 57 43 58 69 54 58 54 85 50
mcs_spin 25 50 35 27 65 25 23 30 70 45 38 35 38 42 62 65 27 50 33 46 42 62 62 58 50 58 77 46
mcs_stp 29 38 15 19 43 25 19 40 30 35 27 25 19 14 19 27 7 11 21 14 14 54 31 23 23 19 38 25
mcs-ls 29 46 27 27 65 12 15 45 75 30 31 15 27 38 15 58 8 46 21 42 38 62 50 50 31 46 65 38
mcs-timepub 62 69 46 58 79 46 38 70 85 65 58 55 62 50 50 71 58 68 54 64 61 73 73 73 69 65 92 64
mutexee 42 42 27 46 61 25 27 40 80 50 38 30 35 32 46 75 46 18 33 36 32 69 58 54 31 69 85 45
partitioned 41 50 17 25 79 29 21 40 75 35 46 30 29 25 33 71 46 17 54 46 46 62 67 46 46 50 75 44
pthread 38 46 23 35 64 33 23 45 70 50 42 35 42 25 42 64 50 18 21 33 25 73 62 42 31 62 77 43
pthreadadapt 46 46 19 35 68 38 31 55 75 50 50 35 42 29 50 71 54 18 39 29 39 73 62 54 38 62 88 48
spinlock 25 38 4 31 38 33 19 35 30 40 35 30 31 27 27 31 35 15 15 25 8 8 15 15 23 12 31 25
spinlock-ls 29 42 8 19 46 21 19 30 55 35 35 15 35 19 27 54 38 15 15 25 8 15 73 31 19 31 46 30
ticket 25 35 4 19 62 25 15 30 70 35 31 25 23 27 23 69 42 12 27 17 23 8 65 46 12 42 65 32
ticket-ls 38 58 12 27 77 33 27 55 75 55 50 30 42 31 46 73 50 19 50 38 42 38 69 58 65 62 73 48
ttas 33 46 15 31 54 29 23 40 75 45 38 30 31 27 38 73 38 15 15 33 12 12 65 38 35 15 54 36
ttas-ls 29 31 4 8 42 12 8 10 45 30 12 5 19 15 19 50 27 4 12 17 12 12 65 27 27 12 35 22

average 37 49 27 28 62 26 24 45 66 47 36 27 32 31 37 61 45 20 40 37 38 34 65 56 50 38 49 69 37

A.4.2 At max nodes.

94 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 14. For each pair of locks (rowA, colB) atmax nodes, scores of lock𝐴 vs lock 𝐵: percentage of lock-sensitive
applications for which lock 𝐴 performs at least 5% better than 𝐵 (A-64 machine).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 95

Table 46. For each pair of locks (rowA, colB) atmax nodes, scores of lock A vs lock B: percentage of lock-sensitive
applications for which lock A performs at least 5% better than B (A-48 machine).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 40 35 30 75 28 40 40 73 33 10 33 45 75 60 75 50 45 75 33 75 70 75 75 75 55 75 75 54
alock-ls 25 30 30 75 28 30 27 73 20 10 20 45 75 35 75 35 50 75 33 75 60 75 75 70 55 70 70 50
backoff 55 60 48 81 42 48 53 87 67 43 38 67 81 67 81 62 43 62 58 71 71 81 71 86 71 67 80 64
c-bo-mcs_spin 45 45 19 71 32 38 60 87 47 29 25 57 71 52 81 43 52 67 47 71 67 76 71 76 62 67 80 57
c-bo-mcs_stp 25 25 5 10 11 10 27 53 27 14 6 14 17 24 57 14 22 0 16 4 4 57 19 24 5 5 25 19
c-ptl-tkt 39 44 32 42 74 37 67 87 60 16 25 53 74 47 79 47 53 68 58 68 63 74 68 74 58 68 83 58
c-tkt-tkt 25 40 24 38 76 11 47 87 40 14 12 52 81 48 81 33 48 71 42 71 62 76 71 76 52 71 85 53
clh_spin 27 27 27 13 73 20 27 73 27 20 20 27 73 27 73 20 33 67 47 73 60 73 73 67 47 73 73 47
clh_stp 27 13 7 7 33 7 7 13 27 7 7 7 27 7 33 7 7 0 7 7 0 53 20 7 7 13 13 14
clh-ls 27 13 20 20 73 27 27 13 73 13 20 33 73 20 73 13 33 73 33 73 60 73 73 67 47 67 73 45
hmcs 30 50 38 38 71 37 33 60 87 53 19 48 71 62 81 43 57 71 53 71 67 76 71 76 57 71 85 58
hticket-ls 40 53 19 19 69 31 25 53 87 40 25 31 69 44 81 31 50 69 56 69 62 75 69 75 56 69 87 54
malth_spin 35 35 10 14 71 11 19 53 87 53 19 12 71 43 81 33 38 52 37 57 62 76 62 67 52 62 75 48
malth_stp 25 25 5 24 65 11 10 27 60 27 14 19 10 19 65 19 22 17 16 22 9 48 29 29 14 19 35 25
mcs_spin 35 45 24 33 76 37 38 33 93 40 29 38 43 76 71 29 19 62 47 67 62 71 76 67 52 67 75 52
mcs_stp 25 25 10 19 39 21 14 27 27 27 19 19 14 17 14 19 9 4 21 9 4 33 29 19 19 19 25 20
mcs-ls 25 25 14 24 67 21 19 27 87 33 19 12 43 71 38 81 38 62 32 62 57 76 62 67 43 57 75 46
mcs-timepub 40 50 24 38 78 32 43 53 93 53 38 38 48 70 48 65 52 52 53 65 65 76 76 81 76 62 75 57
mutexee 25 25 19 19 83 16 14 33 80 27 14 12 38 61 33 78 29 30 21 43 30 86 71 52 33 57 60 40
partitioned 28 39 11 26 74 11 16 27 87 33 21 25 32 68 32 74 16 21 63 68 63 74 68 63 53 74 78 46
pthread 25 25 10 24 78 16 14 27 87 27 24 25 33 65 24 83 29 22 9 21 13 86 57 52 14 48 60 37
pthreadadapt 30 35 5 29 74 21 19 27 93 33 29 25 29 78 24 87 24 26 43 21 52 86 62 62 29 71 75 44
spinlock 25 25 10 24 38 26 19 27 40 27 24 25 24 38 19 48 24 10 10 26 10 10 10 24 19 10 20 23
spinlock-ls 25 25 5 14 67 16 14 27 73 27 19 12 29 52 24 62 24 10 5 16 14 14 81 33 14 10 30 27
ticket 25 15 0 10 62 11 10 27 87 13 10 6 14 57 10 76 5 10 24 16 33 24 76 48 5 38 55 28
ticket-ls 25 30 0 14 81 16 19 27 87 40 24 12 33 76 38 81 24 19 48 21 57 48 81 62 81 62 75 44
ttas 25 20 5 14 76 16 14 27 80 27 14 12 29 48 29 76 24 24 10 16 33 14 81 43 33 19 50 32
ttas-ls 25 20 10 15 70 11 10 13 67 27 10 7 20 45 20 65 20 10 15 11 30 20 75 40 25 20 30 27

average 30 32 15 24 69 21 23 35 78 35 20 19 34 62 34 73 28 30 43 32 50 42 73 58 57 38 52 63 30

96 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 15. For each pair of locks (rowA, colB) atmax nodes, scores of lock𝐴 vs lock 𝐵: percentage of lock-sensitive
applications for which lock 𝐴 performs at least 5% better than 𝐵 (A-48 machine).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 97

Table 47. For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of lock-
sensitive applications for which lock A performs at least 5% better than B (I-48 machine in performance
mode).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 42 58 42 74 47 26 57 79 64 11 36 58 58 53 74 58 58 63 47 63 63 79 74 68 58 74 68 57
alock-ls 47 35 40 75 33 25 60 87 53 30 27 55 55 30 70 25 55 60 67 75 65 75 75 75 70 70 75 56
backoff 37 45 35 70 28 25 53 87 60 30 40 55 50 35 70 45 50 55 61 65 65 60 55 80 65 55 70 54
c-bo-mcs_spin 42 50 50 70 28 30 73 93 73 25 47 70 70 55 80 55 50 70 56 70 70 75 75 75 75 70 85 62
c-bo-mcs_stp 21 25 25 15 17 15 27 87 27 20 13 20 14 20 59 20 23 9 17 9 23 60 55 35 25 15 30 27
c-ptl-tkt 24 56 50 39 78 11 80 87 87 6 33 61 67 56 78 56 61 67 50 67 67 72 72 67 67 67 78 59
c-tkt-tkt 53 55 45 45 80 33 73 87 87 35 33 75 70 50 80 50 60 75 61 75 75 75 75 70 70 70 80 64
clh_spin 29 0 27 13 73 20 13 73 13 7 13 40 47 0 67 7 27 60 60 67 67 73 73 73 53 67 73 42
clh_stp 21 13 13 7 7 13 13 13 13 7 7 7 0 7 20 7 7 0 13 0 0 33 7 13 13 7 7 10
clh-ls 21 0 27 7 73 7 0 0 73 7 7 40 47 0 67 7 27 60 53 60 60 73 73 60 47 67 67 38
hmcs 37 70 65 45 70 44 30 87 93 93 47 70 65 70 75 70 65 70 61 75 70 75 75 75 75 70 85 68
hticket-ls 29 73 40 13 73 20 13 67 93 73 7 60 60 40 73 47 33 67 67 67 67 73 73 73 73 67 87 57
malth_spin 26 30 20 10 70 11 10 40 93 47 5 7 50 10 60 15 15 60 44 60 60 70 60 75 55 55 65 42
malth_stp 32 30 20 15 64 22 20 40 87 47 25 27 20 20 59 25 32 36 33 45 45 65 65 65 55 50 60 41
mcs_spin 37 25 35 25 70 22 15 67 93 53 15 33 50 60 65 20 35 70 61 75 75 70 60 70 70 55 70 52
mcs_stp 21 25 20 15 18 17 15 27 47 27 15 13 20 18 15 20 23 14 17 18 18 30 10 30 25 10 25 20
mcs-ls 37 25 35 20 70 17 15 73 93 53 15 20 55 50 15 70 30 65 61 70 70 70 55 65 65 50 60 49
mcs-timepub 37 35 30 20 68 22 20 47 93 53 20 33 50 45 30 64 25 59 56 64 64 70 60 85 65 55 65 49
mutexee 26 25 15 20 68 22 15 27 93 33 25 27 30 23 20 73 30 27 22 32 41 70 65 65 45 45 55 38
partitioned 41 17 22 28 78 33 11 20 87 33 33 20 33 50 22 83 22 22 44 61 50 72 72 78 61 72 78 46
pthread 26 25 15 20 73 22 15 27 87 33 20 27 25 23 20 68 25 23 5 17 23 65 60 55 30 40 55 34
pthreadadapt 26 25 10 20 68 22 15 27 87 33 25 27 25 18 20 68 25 23 23 22 32 65 60 50 35 40 50 35
spinlock 21 25 15 20 20 17 15 27 67 27 20 20 25 20 20 45 25 15 10 17 10 20 0 30 25 0 15 21
spinlock-ls 21 25 20 20 35 17 15 27 87 27 20 20 35 25 35 80 25 15 15 17 20 20 65 30 25 5 20 28
ticket 26 20 5 15 55 11 15 13 87 27 20 13 15 15 10 60 20 5 15 6 25 30 60 60 0 20 35 25
ticket-ls 26 25 10 20 70 22 20 27 87 33 20 20 25 30 20 60 25 15 25 22 30 35 60 60 70 50 65 36
ttas 26 25 15 20 75 17 20 27 93 33 30 20 35 35 30 85 45 30 30 17 40 50 75 75 35 30 40 39
ttas-ls 26 20 15 10 65 22 20 27 87 33 15 13 30 20 20 70 40 10 30 17 30 35 70 65 30 25 5 31

average 30 31 27 22 63 22 17 42 85 46 19 24 40 40 27 67 31 31 43 39 48 49 67 60 59 48 46 58 30

98 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 16. For each pair of locks (rowA, colB) atmax nodes, scores of lock𝐴 vs lock 𝐵: percentage of lock-sensitive
applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-48 machine in performance mode).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 99

Table 48. For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of lock-
sensitive applications for which lock A performs at least 5% better than B (I-20 machine in performance
mode).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 20 33 0 73 0 0 27 73 27 7 0 33 47 33 73 33 33 53 21 53 47 47 27 40 33 33 33 33
alock-ls 40 25 19 69 20 19 33 83 33 19 8 31 38 12 69 12 12 50 33 50 50 44 38 25 19 25 31 34
backoff 33 38 19 62 20 19 50 92 50 19 17 25 31 19 62 19 12 38 40 50 50 50 31 50 38 25 44 37
c-bo-mcs_spin 33 50 44 69 27 6 58 92 58 19 8 38 50 31 69 38 31 50 33 56 50 44 38 38 31 38 62 43
c-bo-mcs_stp 27 31 19 19 20 19 33 50 33 19 17 31 12 31 35 31 29 12 20 12 12 19 12 31 31 6 31 24
c-ptl-tkt 29 47 40 7 60 7 67 92 67 13 8 53 47 40 67 33 33 53 33 53 47 47 40 47 40 40 60 43
c-tkt-tkt 40 44 38 19 69 20 58 92 58 19 8 44 50 31 69 38 31 50 33 56 50 44 38 44 38 31 62 43
clh_spin 27 8 25 8 67 8 8 67 17 0 8 25 8 0 67 0 0 42 25 42 33 42 25 17 8 17 17 23
clh_stp 27 17 8 8 25 8 8 17 17 8 8 8 0 8 0 8 8 0 8 0 0 8 8 8 8 8 8 9
clh-ls 18 8 25 8 67 8 8 0 67 0 8 25 17 0 67 0 0 42 17 42 33 42 25 8 8 8 17 21
hmcs 40 38 38 12 69 13 6 50 92 58 0 31 50 25 69 25 31 50 27 56 50 44 38 38 31 38 56 40
hticket-ls 27 58 33 8 67 0 0 58 92 58 8 33 42 17 67 25 25 50 33 50 42 42 33 33 42 33 67 39
malth_spin 27 31 12 6 56 7 0 42 92 42 12 0 31 0 56 0 6 50 27 50 50 44 25 38 31 19 38 29
malth_stp 33 31 12 19 59 20 19 33 92 33 19 17 25 19 59 19 18 47 33 47 53 50 31 38 31 12 38 34
mcs_spin 33 31 38 19 56 13 6 42 92 50 12 8 38 38 56 19 12 50 33 56 50 44 25 38 25 19 44 35
mcs_stp 27 31 19 19 24 20 19 33 42 33 19 17 31 12 19 31 18 12 20 12 12 19 6 31 31 6 25 22
mcs-ls 33 31 31 19 56 13 6 42 92 50 12 8 31 31 0 56 6 56 33 56 50 44 25 38 31 19 44 34
mcs-timepub 33 38 44 19 53 20 19 42 92 50 19 17 31 24 19 53 31 47 40 53 47 50 31 44 38 19 50 38
mutexee 33 31 12 19 65 20 19 42 92 42 19 17 19 12 19 65 19 18 20 18 24 38 25 31 19 25 31 29
partitioned 50 20 27 27 67 27 27 33 92 25 13 17 27 20 20 67 20 13 40 47 47 47 40 20 20 20 40 34
pthread 33 31 12 19 65 20 19 42 92 42 19 17 19 6 19 65 19 18 18 20 24 38 31 25 19 12 25 28
pthreadadapt 27 31 12 19 65 20 19 33 92 33 19 17 19 6 19 65 19 18 29 20 29 31 19 19 19 12 25 27
spinlock 27 31 6 19 56 20 19 33 92 33 19 17 19 12 19 62 19 6 31 20 38 25 0 19 19 0 19 25
spinlock-ls 27 31 25 19 62 20 19 33 92 33 19 17 31 31 31 75 31 19 38 20 38 31 44 31 31 0 19 32
ticket 33 25 12 12 56 20 12 25 92 25 12 17 12 6 6 56 6 0 44 20 44 50 44 25 12 0 25 26
ticket-ls 33 31 19 12 56 13 6 42 92 42 19 8 19 25 6 56 12 0 50 33 50 50 31 25 25 19 50 31
ttas 33 31 31 19 62 20 19 33 92 33 19 17 38 31 31 75 31 19 44 27 44 50 44 25 38 31 31 36
ttas-ls 33 19 19 12 56 13 12 33 92 33 19 8 31 19 25 69 25 12 38 13 44 44 44 19 31 25 6 29

average 32 31 24 15 60 16 13 38 85 40 15 11 28 26 19 61 21 16 40 26 42 40 40 26 31 26 18 37 32

100 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 17. For each pair of locks (rowA, colB) atmax nodes, scores of lock𝐴 vs lock 𝐵: percentage of lock-sensitive
applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-20 machine in performance mode).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 101

Table 49. For each pair of locks (rowA, colB) atmax nodes, scores of lock A vs lock B: percentage of lock-sensitive
applications for which lock A performs at least 5% better than B (A-64 machine with thread-to-node
pinning).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 27 64 50 73 30 32 29 82 35 9 35 45 59 32 82 41 50 77 30 82 73 82 77 82 50 77 77 55
alock-ls 41 46 42 62 27 33 22 94 22 17 17 42 50 17 75 25 50 75 32 75 71 75 71 75 50 71 75 50
backoff 32 33 29 58 32 29 28 89 33 33 22 38 42 33 79 42 33 58 45 58 67 79 71 75 46 54 75 49
c-bo-mcs_spin 32 50 58 67 32 33 50 94 61 21 22 46 42 42 71 46 33 62 45 71 75 79 75 71 54 67 88 55
c-bo-mcs_stp 23 29 12 8 14 17 22 72 22 12 6 25 15 21 62 25 15 46 27 46 38 83 67 62 33 58 67 34
c-ptl-tkt 25 32 55 50 77 9 33 89 33 18 17 41 55 23 77 36 55 73 45 73 64 73 68 82 41 68 86 52
c-tkt-tkt 27 29 54 50 75 18 22 89 28 25 17 46 58 25 79 42 50 75 45 75 67 79 75 83 46 71 88 53
clh_spin 24 17 56 33 72 28 28 78 28 11 17 17 44 0 78 22 44 78 33 78 72 78 78 78 50 78 78 48
clh_stp 18 6 6 6 22 11 11 11 11 6 6 6 0 6 0 6 0 6 11 6 6 72 33 11 6 11 6 11
clh-ls 29 6 44 33 67 17 22 11 83 11 22 17 44 6 78 11 39 78 33 78 72 78 78 78 33 78 78 45
hmcs 36 58 67 62 75 36 38 50 94 61 39 42 58 33 75 42 50 75 50 75 67 75 75 79 54 75 88 60
hticket-ls 18 33 67 33 83 11 22 39 94 44 6 22 44 11 78 22 33 78 33 78 67 78 78 83 50 78 94 51
malth_spin 23 38 42 29 58 14 12 39 94 39 21 22 42 12 71 21 33 62 36 62 58 71 67 75 38 62 79 45
malth_stp 27 42 33 21 65 23 21 39 83 44 25 28 21 21 50 29 27 50 41 50 54 67 67 62 50 54 71 43
mcs_spin 27 38 54 38 71 32 29 28 94 44 25 28 33 58 79 46 50 62 32 71 67 75 71 79 54 67 83 53
mcs_stp 18 25 4 12 23 14 12 22 17 22 17 11 12 12 8 17 12 4 18 8 8 71 33 29 12 12 25 18
mcs-ls 27 33 46 38 62 23 21 28 94 33 21 33 33 46 12 71 25 62 45 62 71 75 71 75 42 62 79 48
mcs-timepub 27 29 50 42 65 18 21 28 94 33 17 22 38 38 21 69 25 65 41 69 69 79 71 79 58 71 92 49
mutexee 23 25 21 17 35 18 17 22 89 22 21 11 29 31 29 77 29 23 18 27 31 83 71 46 29 62 75 36
partitioned 35 18 41 32 59 14 14 22 89 22 23 11 18 36 14 73 14 27 73 68 59 73 68 73 41 68 86 43
pthread 18 25 12 17 27 18 17 22 89 22 25 11 29 31 21 73 25 19 15 23 31 83 71 46 21 54 67 34
pthreadadapt 23 25 0 12 35 18 21 28 83 22 29 11 25 23 17 65 21 23 42 23 38 83 71 54 12 46 62 34
spinlock 18 25 0 12 4 18 12 22 28 22 25 11 17 17 17 17 17 12 4 14 0 0 4 17 8 0 21 13
spinlock-ls 23 29 4 17 12 23 17 22 56 22 25 11 21 21 21 42 21 17 8 23 8 8 79 38 8 21 38 23
ticket 18 21 12 8 21 9 8 22 83 22 21 6 17 29 12 58 8 8 33 14 29 21 75 54 0 54 71 27
ticket-ls 27 33 21 29 50 32 29 33 94 33 33 22 38 38 25 79 25 25 62 32 62 67 79 71 88 62 75 47
ttas 23 29 0 25 25 23 21 22 83 22 25 11 29 33 21 71 25 21 8 23 8 29 75 42 33 17 25 29
ttas-ls 23 21 4 12 21 14 12 22 83 22 8 6 21 21 17 67 17 4 4 14 17 25 75 46 29 17 42 25

average 25 29 32 28 51 21 21 27 82 31 20 18 28 37 19 66 26 29 50 31 51 49 77 64 62 34 56 68 25

102 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 18. For each pair of locks (rowA, colB) atmax nodes, scores of lock𝐴 vs lock 𝐵: percentage of lock-sensitive
applications for which lock 𝐴 performs at least 5% better than 𝐵 (A-64-node machine).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 103

Table 50. For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of lock-
sensitive applications for which lock A performs at least 5% better than B (I-48 machine in energy-saving
mode).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 42 58 42 74 47 26 57 79 64 11 36 58 58 53 74 58 58 63 47 63 63 79 74 68 58 74 68 57
alock-ls 47 35 40 75 33 25 60 87 53 30 27 55 55 30 70 25 55 60 67 75 65 75 75 75 70 70 75 56
backoff 37 45 35 70 28 25 53 87 60 30 40 55 50 35 70 45 50 55 61 65 65 60 55 80 65 55 70 54
c-bo-mcs_spin 42 50 50 70 28 30 73 93 73 25 47 70 70 55 80 55 50 70 56 70 70 75 75 75 75 70 85 62
c-bo-mcs_stp 21 25 25 15 17 15 27 87 27 20 13 20 14 20 59 20 23 9 17 9 23 60 55 35 25 15 30 27
c-ptl-tkt 24 56 50 39 78 11 80 87 87 6 33 61 67 56 78 56 61 67 50 67 67 72 72 67 67 67 78 59
c-tkt-tkt 53 55 45 45 80 33 73 87 87 35 33 75 70 50 80 50 60 75 61 75 75 75 75 70 70 70 80 64
clh_spin 29 0 27 13 73 20 13 73 13 7 13 40 47 0 67 7 27 60 60 67 67 73 73 73 53 67 73 42
clh_stp 21 13 13 7 7 13 13 13 13 7 7 7 0 7 20 7 7 0 13 0 0 33 7 13 13 7 7 10
clh-ls 21 0 27 7 73 7 0 0 73 7 7 40 47 0 67 7 27 60 53 60 60 73 73 60 47 67 67 38
hmcs 37 70 65 45 70 44 30 87 93 93 47 70 65 70 75 70 65 70 61 75 70 75 75 75 75 70 85 68
hticket-ls 29 73 40 13 73 20 13 67 93 73 7 60 60 40 73 47 33 67 67 67 67 73 73 73 73 67 87 57
malth_spin 26 30 20 10 70 11 10 40 93 47 5 7 50 10 60 15 15 60 44 60 60 70 60 75 55 55 65 42
malth_stp 32 30 20 15 64 22 20 40 87 47 25 27 20 20 59 25 32 36 33 45 45 65 65 65 55 50 60 41
mcs_spin 37 25 35 25 70 22 15 67 93 53 15 33 50 60 65 20 35 70 61 75 75 70 60 70 70 55 70 52
mcs_stp 21 25 20 15 18 17 15 27 47 27 15 13 20 18 15 20 23 14 17 18 18 30 10 30 25 10 25 20
mcs-ls 37 25 35 20 70 17 15 73 93 53 15 20 55 50 15 70 30 65 61 70 70 70 55 65 65 50 60 49
mcs-timepub 37 35 30 20 68 22 20 47 93 53 20 33 50 45 30 64 25 59 56 64 64 70 60 85 65 55 65 49
mutexee 26 25 15 20 68 22 15 27 93 33 25 27 30 23 20 73 30 27 22 32 41 70 65 65 45 45 55 38
partitioned 41 17 22 28 78 33 11 20 87 33 33 20 33 50 22 83 22 22 44 61 50 72 72 78 61 72 78 46
pthread 26 25 15 20 73 22 15 27 87 33 20 27 25 23 20 68 25 23 5 17 23 65 60 55 30 40 55 34
pthreadadapt 26 25 10 20 68 22 15 27 87 33 25 27 25 18 20 68 25 23 23 22 32 65 60 50 35 40 50 35
spinlock 21 25 15 20 20 17 15 27 67 27 20 20 25 20 20 45 25 15 10 17 10 20 0 30 25 0 15 21
spinlock-ls 21 25 20 20 35 17 15 27 87 27 20 20 35 25 35 80 25 15 15 17 20 20 65 30 25 5 20 28
ticket 26 20 5 15 55 11 15 13 87 27 20 13 15 15 10 60 20 5 15 6 25 30 60 60 0 20 35 25
ticket-ls 26 25 10 20 70 22 20 27 87 33 20 20 25 30 20 60 25 15 25 22 30 35 60 60 70 50 65 36
ttas 26 25 15 20 75 17 20 27 93 33 30 20 35 35 30 85 45 30 30 17 40 50 75 75 35 30 40 39
ttas-ls 26 20 15 10 65 22 20 27 87 33 15 13 30 20 20 70 40 10 30 17 30 35 70 65 30 25 5 31

average 30 31 27 22 63 22 17 42 85 46 19 24 40 40 27 67 31 31 43 39 48 49 67 60 59 48 46 58 30

104 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 19. For each pair of locks (rowA, colB) atmax nodes, scores of lock𝐴 vs lock 𝐵: percentage of lock-sensitive
applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-48 machine in energy-saving move).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 105

Table 51. For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of lock-
sensitive applications for which lock A performs at least 5% better than B (I-20 machine in energy-saving
mode).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 20 33 0 73 0 0 27 73 27 7 0 33 47 33 73 33 33 53 21 53 47 47 27 40 33 33 33 33
alock-ls 40 25 19 69 20 19 33 83 33 19 8 31 38 12 69 12 12 50 33 50 50 44 38 25 19 25 31 34
backoff 33 38 19 62 20 19 50 92 50 19 17 25 31 19 62 19 12 38 40 50 50 50 31 50 38 25 44 37
c-bo-mcs_spin 33 50 44 69 27 6 58 92 58 19 8 38 50 31 69 38 31 50 33 56 50 44 38 38 31 38 62 43
c-bo-mcs_stp 27 31 19 19 20 19 33 50 33 19 17 31 12 31 35 31 29 12 20 12 12 19 12 31 31 6 31 24
c-ptl-tkt 29 47 40 7 60 7 67 92 67 13 8 53 47 40 67 33 33 53 33 53 47 47 40 47 40 40 60 43
c-tkt-tkt 40 44 38 19 69 20 58 92 58 19 8 44 50 31 69 38 31 50 33 56 50 44 38 44 38 31 62 43
clh_spin 27 8 25 8 67 8 8 67 17 0 8 25 8 0 67 0 0 42 25 42 33 42 25 17 8 17 17 23
clh_stp 27 17 8 8 25 8 8 17 17 8 8 8 0 8 0 8 8 0 8 0 0 8 8 8 8 8 8 9
clh-ls 18 8 25 8 67 8 8 0 67 0 8 25 17 0 67 0 0 42 17 42 33 42 25 8 8 8 17 21
hmcs 40 38 38 12 69 13 6 50 92 58 0 31 50 25 69 25 31 50 27 56 50 44 38 38 31 38 56 40
hticket-ls 27 58 33 8 67 0 0 58 92 58 8 33 42 17 67 25 25 50 33 50 42 42 33 33 42 33 67 39
malth_spin 27 31 12 6 56 7 0 42 92 42 12 0 31 0 56 0 6 50 27 50 50 44 25 38 31 19 38 29
malth_stp 33 31 12 19 59 20 19 33 92 33 19 17 25 19 59 19 18 47 33 47 53 50 31 38 31 12 38 34
mcs_spin 33 31 38 19 56 13 6 42 92 50 12 8 38 38 56 19 12 50 33 56 50 44 25 38 25 19 44 35
mcs_stp 27 31 19 19 24 20 19 33 42 33 19 17 31 12 19 31 18 12 20 12 12 19 6 31 31 6 25 22
mcs-ls 33 31 31 19 56 13 6 42 92 50 12 8 31 31 0 56 6 56 33 56 50 44 25 38 31 19 44 34
mcs-timepub 33 38 44 19 53 20 19 42 92 50 19 17 31 24 19 53 31 47 40 53 47 50 31 44 38 19 50 38
mutexee 33 31 12 19 65 20 19 42 92 42 19 17 19 12 19 65 19 18 20 18 24 38 25 31 19 25 31 29
partitioned 50 20 27 27 67 27 27 33 92 25 13 17 27 20 20 67 20 13 40 47 47 47 40 20 20 20 40 34
pthread 33 31 12 19 65 20 19 42 92 42 19 17 19 6 19 65 19 18 18 20 24 38 31 25 19 12 25 28
pthreadadapt 27 31 12 19 65 20 19 33 92 33 19 17 19 6 19 65 19 18 29 20 29 31 19 19 19 12 25 27
spinlock 27 31 6 19 56 20 19 33 92 33 19 17 19 12 19 62 19 6 31 20 38 25 0 19 19 0 19 25
spinlock-ls 27 31 25 19 62 20 19 33 92 33 19 17 31 31 31 75 31 19 38 20 38 31 44 31 31 0 19 32
ticket 33 25 12 12 56 20 12 25 92 25 12 17 12 6 6 56 6 0 44 20 44 50 44 25 12 0 25 26
ticket-ls 33 31 19 12 56 13 6 42 92 42 19 8 19 25 6 56 12 0 50 33 50 50 31 25 25 19 50 31
ttas 33 31 31 19 62 20 19 33 92 33 19 17 38 31 31 75 31 19 44 27 44 50 44 25 38 31 31 36
ttas-ls 33 19 19 12 56 13 12 33 92 33 19 8 31 19 25 69 25 12 38 13 44 44 44 19 31 25 6 29

average 32 31 24 15 60 16 13 38 85 40 15 11 28 26 19 61 21 16 40 26 42 40 40 26 31 26 18 37 32

106 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 20. For each pair of locks (rowA, colB) atmax nodes, scores of lock𝐴 vs lock 𝐵: percentage of lock-sensitive
applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-20 machine in energy-saving move).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 107

A.5 Are all locks potentially harmful?

108 R. Guerraoui et al.

Table 52. For each lock-sensitive application, at max nodes, performance gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to
an application whose performance is hurt by many locks. A column with many gray cells corresponds to a
lock that is outperformed by many other locks. Dashes correspond to untested cases. For example, the table
shows that for the dedup application, the best lock (0%, here mutexee) is 609% better than the alock-ls lock.
The gray cells highlight configurations where a given lock hurts the application, i.e., the performance gain
brought by the best lock with respect to the given lock is greater than 15%. Thus, for each lock in a column,
the number of gray cells corresponds to the number of applications for which the lock is defeated by a gap of
15% or more by the best lock(s) for this application. (A-64 machine).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp
mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-6
09

51
42

14
1

29
13

58
85

90
98
81

50
13
41

35
13
31

31
13
31

27
84

0
16

8
4

4
3

6
4

55
91

fa
ce
si
m

29
86

94
33
81

15
85

25
82

31
68
7

52
70
02

19
19
65

31
40

71
0

52
77
1

0
23

68
5

56
44

57
21

17
71
93

37
14
72

24
fe
rr
et

31
02

70
8

50
02

39
22
93

12
02

52
27
42

77
20
9

03
17

03
49

4
13

14
0

1
10

43
08

93
8

8
flu

id
an
im

at
e

-2
84

0
53

71
30

12
-

-
-
65

-
31

87
35

86
44

44
76

9
1

7
21

2
13

10
41

87
fm

m
41

37
22

16
27

29
15

39
33

38
35

32
21

18
2

0
32

0
25

20
25

23
2

27
19

28
22

32
ky

ot
oc
ab
in
et

9
91

29
01

71
24

28
33

48
4

43
12

19
22

22
28

47
4

38
52

39
7

45
40
92

76
2k

2k
21
4

89
58
93

34
lin

ea
r_
re
gr
es
si
on

17
89

10
34

19
8

14
17

17
64

56
13

29
8

0
22

58
54

4
16

47
16

2
85

31
33

12
34

38
m
at
rix

_m
ul
tip

ly
9

78
3

14
5

27
54

9
3

12
60
8

59
5

3
28

21
68

0
6

44
3

3
5

59
3

59
4

55
m
em

ca
ch
ed
-n
ew

0
20

38
70

87
1

-
10

-
-

-
0

-
35

81
20

58
2

31
17

53
-1
03

19
3

1k
76
42

21
80

33
11

10
m
em

ca
ch
ed
-o
ld

11
7

54
63

0
1

-
14

-
-

-
6

-2
89

30
71

49
19
22

64
17
51

08
-2
09

22
53

05
45

21
62

23
33

74
m
ys
ql
d

-
-

-
-
53

-
-

-
-

-
-

-
-

0
-

7
-1
73

10
-
97

10
2

-
-

-
-

-
-

oc
ea
n_

cp
28

17
38

32
47

24
21

41
38

19
31

14
23

27
43

32
30

0
13

31
11

19
12
9

54
55

7
23

34
oc
ea
n_

nc
p

24
17

23
24

31
8

12
27

25
18

13
3

16
19

33
34

11
8

5
26

28
24

11
3

34
22

0
11

31
pc
a

51
57

26
27

34
6

43
47

49
22
1

53
51

41
30

0
57

22
9

39
25

12
4

31
12
1

45
26
61

07
10
4

26
20
01

28
pc
a_
ll

64
52

0
87

13
56

58
66

37
9

31
60

35
14

10
61

36
9

27
26

16
5

41
16
6

51
52
23

31
11
6

23
27
31

93
ra
di
os
ity

13
12

4
4

38
8

5
9

0
13

7
8

8
12

0
90

9
0

42
0

0
0

1
54

0
19

34
61

ra
di
os
ity

_l
l

0
41

43
26

1k
37

47
31

1k
49

0
17

68
67

26
2k

57
60

53
5

76
56
92

62
2k

1k
58
52

00
1k

80
2

s_
ra
yt
ra
ce

0
33

65
37

2k
29

39
46

1k
37

16
31

26
64

0
1k

16
13

28
21

03
23
01

22
71
42

52
41
21

45
66
15

14
s_
ra
yt
ra
ce
_l
l

10
20

42
39

64
5

11
13

0
2k

5
41

19
37

21
0

2k
10

14
28
4

56
20
1

67
1k

74
45

54
17
2

1k
91
6

sq
lit
e

-
-

-
-4
05

-
-

-
-

-
-

-
-

0
-5
91

-
2k

37
5

-3
36

18
1

-
-

-
-

-
-

ss
l_
pr
ox
y

0
17

48
57

90
11

26
16

87
9

27
15
9

15
16

35
41

90
0

48
29

31
9

36
29
31

53
1k

44
72

71
89

59
44

99
st
re
am

cl
us
te
r

49
21

13
7

43
19
5

0
15

-
-

-
0

-2
19

1k
12
1

1k
18
8

13
32

8
95

14
25

27
12
93

02
18
12

15
20
6

st
re
am

cl
us
te
r_
ll

65
20

18
8

58
27
7

0
21

-
-

-
15

-2
62

1k
14
4

1k
22
8

28
44

27
80

12
05

49
19
63

21
17
72

32
18
9

up
sc
al
ed
b

8
18

30
91

10
16

12
16

28
1

19
8

14
0

5
17

26
7

21
34

10
7

25
21
51

09
74
74

96
10
6

49
22
63

18
vi
ps

48
38

61
84

21
95

73
-

-
-
84

-1
96

0
28

1
28

3
2

33
0

2
3

6
16

10
8

14
vo
lre

nd
2

27
36

19
72

0
7

26
58

17
0

2
18

63
27

47
22

25
80

25
78

10
51

62
87

25
15

40
48

w
at
er
_n

sq
ua
re
d

94
48

4
6

10
8

2
35

35
58

14
11

7
6

3
2

9
7

7
4

6
7

0
6

4
6

5
37

w
at
er
_s
pa
tia

l
97

48
1

9
6

3
3

40
39

63
8

4
8

5
9

9
5

10
3

1
0

0
2

1
1

0
0

40

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 109

Table 53. For each lock-sensitive application, at opt nodes, performance gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an
application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock
that is outperformed by many other locks. Dashes correspond to untested cases. (A-64 machine).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-4

62
29

25
5
25
2
64

45
53
8
53
1
81
9
29
6
23
3
19
7
19
7
20
6
20
3
20
7
22
2

0
36

36
28

17
29

22
28

24
54
4

fa
ce
si
m

2
3

6
4

7
1

0
3

12
3

3
1

2
7

1
6

2
3

4
3

7
13

6
9

5
2

3
7

fe
rr
et

88
49

6
32

0
89

10
0

54
0

51
82

91
84

0
51

0
56

3
0
55

0
0

7
3

54
40

5
6

flu
id
an
im

at
e

- 1
26

0
46

46
31

13
-

-
-

59
-

24
23

21
22

34
36

69
10

2
8

5
0

0
0

0
76

fm
m

41
36

22
16

27
29

15
27

25
38

33
31

21
18

2
0

32
0

25
20

25
23

1
27

19
28

22
32

ky
ot
oc
ab
in
et

13
37

0
12

9
20

25
29

41
4

40
19

21
22

31
23

34
7

35
34

77
22

82
59

65
88

47
26

40
48

lin
ea
r_
re
gr
es
si
on

2
12

16
9

19
9

15
1

30
7

0
6

4
4

11
29

10
11

18
4

16
4

48
29

22
13

26
24

m
at
rix

_m
ul
tip

ly
9

78
3

14
5
24

23
9

3
12

83
59

5
3

23
2
16
8

0
6
24

3
3

5
59

3
59

4
55

m
em

ca
ch
ed
-n
ew

0
18

53
69

11
9

-
12

-
-

-
5

-
29

53
7

48
20

10
66

-
90

55
36

34
36

34
34

35
m
em

ca
ch
ed
-o
ld

14
72

2
30

29
-

43
-

-
-

54
-

19
23

21
19

32
43

44
-

50
50

15
5

13
14

0
9

m
ys
ql
d

-
-

-
-

55
-

-
-

-
-

-
-

-
0

-
8

-1
21

8
-

96
96

-
-

-
-

-
-

oc
ea
n_

cp
7

8
6

11
13

7
9

3
2

1
9

8
8

20
10

19
0

14
18

7
6

14
11

11
8

7
8

10
oc
ea
n_

nc
p

4
2

8
12

2
1

0
4

13
4

1
1

3
4

12
11

4
9

3
3

6
11

13
2

4
2

6
4

pc
a

4
3
10

11
22

6
8

6
38

3
3

3
6

4
7

39
3

7
11

3
16

7
6

3
4

0
3

2
pc
a_
ll

4
3
12

19
54

3
0

5
16
0

3
2

0
2

18
0
15
7

2
2

32
0

43
42

41
20

42
1

2
3

ra
di
os
ity

9
9

4
4

9
6

5
8

0
10

6
8

6
9

0
13

8
0

10
0

0
0

1
11

0
8

10
10

ra
di
os
ity

_l
l

0
25

36
26

79
5

25
19

17
5

32
0

17
55

67
15

16
1

32
34

69
26

13
4
11
3
13
1

85
90

38
56

62
s_
ra
yt
ra
ce

0
6
65

23
87

6
11

5
12
3

10
5

17
26

53
0
11
7

14
12

23
2
10

75
94

12
0
10
3
11
9

30
12
3
12
4

s_
ra
yt
ra
ce
_l
l

10
20

42
39

18
5
11

13
0
40
1

5
41

19
37

21
0
39
0

10
14

24
4
56

20
0

67
39
4
38
8
39
6
17
2
38
8
39
0

sq
lit
e

-
-

-
-

3
-

-
-

-
-

-
-

-
5

-
16

-
0

68
-

80
60

-
-

-
-

-
-

ss
l_
pr
ox
y

3
3
16

16
25

0
2

7
31

5
0

0
27

32
10

23
9

11
38

7
58

27
20

28
19

11
15

18
st
re
am

cl
us
te
r

9
7

6
2

5
6

1
-

-
-

5
-

8
8

0
0

7
3

14
5

10
5

0
4

6
6

5
6

st
re
am

cl
us
te
r_
ll

12
12

19
5

12
0

16
-

-
-

11
-

33
27

23
20

26
22

35
10

18
34

26
3

15
19

12
12

up
sc
al
ed
b

0
11

30
4

8
4

3
8
19
6

12
0

2
1

10
11

19
4

15
19

11
7
15

10
8

58
32

33
27

21
33

30
vi
ps

3
5

2
2

2
3

2
-

-
-

5
-

1
2

2
2

5
2

2
3

0
1

3
1

1
1

2
4

vo
lre

nd
2

4
10

5
11

2
2

4
8

3
0

1
5

8
3

7
4

4
15

3
17

18
23

14
8

4
10

11
w
at
er
_n

sq
ua
re
d

94
48

4
6

10
8

2
35

35
58

14
11

7
6

3
2

9
7

7
4

6
7

0
6

4
6

5
37

w
at
er
_s
pa
tia

l
95

48
1

9
6

3
3

40
39

63
8

4
8

5
9

9
5

10
3

1
0

0
2

1
1

0
0

40

110 R. Guerraoui et al.

Table 54. For each lock-sensitive application, at max nodes, performance gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an
application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock
that is outperformed by many other locks. Dashes correspond to untested cases. (A-48 machine).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-

-
10

22
6
22
3

67
32

-
-

-2
43

20
8

75
71

27
5
26
9
20
4
28
5

0
54
4

23
18

35
21

51
1

25
25

-
fe
rr
et

45
3
38
9

10
39
1

0
48
0
45
5
40
2

0
38
3
43
8
46
6
47
2

0
38
7

2
39
5

7
0
39
7

0
0

14
10

39
5
27
1

10
10

fm
m

50
45

40
41

36
39

39
53

40
48

40
41

39
34

5
0

39
3

36
38

33
33

3
36

41
39

41
40

ky
ot
oc
ab
in
et

8
33

21
0
47
0

21
16

31
32
7

37
12

14
27

19
1

26
32
8

30
43

32
7

42
36
4
25
9

1k
1k

17
6

83
47
4
23
4

lin
ea
r_
re
gr
es
si
on

8
9

0
5
24
2

9
9

4
59

7
6

4
9

73
8
10
2

8
17

20
12

20
0

74
26

26
4

25
16

m
em

ca
ch
ed
-n
ew

2
0

19
40

55
0

-
5

-
-

-
1

-1
16

30
2

26
35
0

5
6

51
-

88
14
3
62
0
39
0
15
2

49
17
0
15
4

m
em

ca
ch
ed
-o
ld

65
10
3

0
24

29
8

-
79

-
-

-
69

-
34

17
5

84
34
3

84
59

12
1

-1
26

87
1k

64
6
20
2
13
7
17
4
33
2

m
ys
ql
d

-
-

-
-

33
-

-
-

-
-

-
-

-
13

-
9

-
54

0
-

1
0

-
-

-
-

-
-

pc
a

13
20

0
1
19
9

7
16

19
16
0

20
9

0
3
10
4

27
25
6

16
2

71
14

75
23

21
3

87
71

14
96

86
pc
a_
ll

15
40

0
8
56
9

20
30

23
24
0

31
36

25
4
28
2

32
24
2

24
12

11
7

19
13
6

48
29
8
14
8

83
19

11
3
14
6

ra
di
os
ity

10
10

13
16

10
8

6
10

14
68
4

8
11

14
10

64
0
62
2

10
0

72
12

78
33

13
8

67
51

25
60

68
ra
di
os
ity

_l
l

0
7

33
11

87
1

18
24

24
1k

25
0

29
62

56
0

14
1k

30
39

61
1

66
66
2
22
3

2k
68
9
48
4
17
1
60
4
58
4

s_
ra
yt
ra
ce

27
28

8
46

1k
27

34
1
76
7

19
31

19
62

54
4

15
1k

36
0
20
0

32
16
9

89
38
8
23
5
34
0
10
1
30
1
35
4

s_
ra
yt
ra
ce
_l
l

5
0

22
48

77
1

24
35

7
1k

7
4

44
64

41
4

12
1k

14
24

21
3

30
14
3

76
66
0
34
4
39
2
12
4
40
7
43
5

sq
lit
e

-
-

-
-

92
-

-
-

-
-

-
-

-
11

-1
61

-9
39

58
-

60
0

-
-

-
-

-
-

ss
l_
pr
ox
y

94
10
4

0
10
0

1k
12
7
11
7
19
1

2k
10
1
10
1
10
4
17
5

2k
19
3

3k
11
0
16
5
16
0
21
6
66
0
33
0

2k
75
2
17
3
31
7
72
5
93
8

st
re
am

cl
us
te
r

47
43

10
4
10
6
19
0

15
29

-
-

-
0

-2
14

1k
15
4

2k
19
5
12
9

94
61

15
3
18
5
28
5
16
7
21
1
16
3
11
1

81
st
re
am

cl
us
te
r_
ll

56
64

18
0

21
21
4

0
38

-
-

-
10

-2
26

1k
25
6

1k
23
5
13
2

97
63

16
9
28
7
33
9
15
5
25
1
19
2
11
8

96
up

sc
al
ed
b

0
7

21
1
15
0

5
5

10
22
2

10
1

1
0

34
12

22
1

14
16

80
17

17
2
10
5
50
0
25
5

89
42

12
0
24
9

vi
ps

14
0
11
2

3
33
8

33
24
0
19
1

-
-

-2
14

-7
81

6
70

7
66

4
3

82
0

0
3

3
67

23
5

12
vo
lre

nd
9

16
9

10
76

3
4

10
87

11
0

0
2
12
6

19
10
1

13
24

55
10

70
74

91
42

17
9

17
20

w
at
er
_n

sq
ua
re
d

78
42

8
15

14
11

11
29

29
48

13
14

8
9

5
6

16
8

10
6

8
8

0
10

9
12

12
32

w
at
er
_s
pa
tia

l
69

35
2

4
4

1
0

34
33

45
6

4
9

8
19

21
4

19
2

5
0

1
15

1
3

1
2

28

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 111

Table 55. For each lock-sensitive application, at opt nodes, performance gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an
application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock
that is outperformed by many other locks. Dashes correspond to untested cases. (A-48 machine).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-

-1
9
16
3
16
2

49
33

-
-

-1
89

14
4

51
53

19
6
19
1
13
6
19
9

0
16

20
19

15
17

7
14

20
-

fe
rr
et

12
2
69

6
41

0
13
0
13
1
69

0
69

12
3
12
9

90
0

69
1

62
4

0
65

0
0

9
3

70
51

5
6

fm
m

50
45

40
41

36
39

39
47

40
48

40
41

38
34

5
0

39
3

36
38

33
33

3
36

41
39

41
40

ky
ot
oc
ab
in
et

25
34

0
10

69
28

24
33

42
6
38

24
30

25
14
1

25
38
5

36
37

65
30

79
43

53
46

43
27

18
42

lin
ea
r_
re
gr
es
si
on

85
92

93
87

13
6

87
91

78
16
1
89

86
81

78
13
3
10
0
24
2

69
12
7

0
91

10
5

93
15
1
11
7
11
4

90
12
0

99
m
em

ca
ch
ed
-n
ew

3
0
16

33
78

-
1

-
-

-
2

-
12

74
0

70
0

4
50

-
65

30
16

18
26

1
0

1
m
em

ca
ch
ed
-o
ld

2
14

1
10

22
-

2
-

-
-

3
-

6
64

0
25
4

5
10

80
-

82
26

2
2

1
0

5
2

m
ys
ql
d

-
-

-
-

33
-

-
-

-
-

-
-

-
13

-
9

-
52

0
-

0
0

-
-

-
-

-
-

pc
a

2
3

3
2

23
2

1
4

64
2

11
0

5
63

19
74

7
17

20
3

29
9

32
12

11
1

11
10

pc
a_
ll

2
3

1
5

56
0

0
2
17
7

1
0

0
4

59
2
17
6

3
2

15
1

20
20

3
4

4
4

3
3

ra
di
os
ity

30
26

29
25

33
22

27
23

44
27

26
27

25
43

0
29

24
4

33
22

34
34

15
29

28
30

26
31

ra
di
os
ity

_l
l

0
4
25

11
70

15
24

14
23
4
21

0
29

53
20
8

4
21
8

9
30

78
25

11
1

72
72

66
78

61
59

64
s_
ra
yt
ra
ce

5
2

9
16

13
0

5
10

1
29
4

3
4

9
21

18
6

0
34
0

5
0

55
4

59
55

50
53

51
32

54
50

s_
ra
yt
ra
ce
_l
l

5
0
22

48
32
3

24
35

7
68
6

7
4

44
64

41
4

12
67
2

14
24

19
2

30
14
3

76
33
6
33
3
33
9
11
0
32
7
28
2

sq
lit
e

-
-

-
-

31
-

-
-

-
-

-
-

-1
75

-5
11

-
0

55
-

68
35

-
-

-
-

-
-

ss
l_
pr
ox
y

69
64

4
92

74
79

86
89

87
3
64

70
77

12
4

2k
98

2k
74

10
9

0
10
4
16
3
14
1
13
0
13
9
13
4

72
93

13
8

st
re
am

cl
us
te
r

6
8

6
16

20
14

17
-

-
-

0
-

8
8

3
6

1
8

20
6
90
7
95
4

7
0

10
6

4
3

st
re
am

cl
us
te
r_
ll

29
35

32
15

14
6

12
-

-
-

0
-

34
39

30
28

32
33

44
19

30
43

28
19

36
33

30
29

up
sc
al
ed
b

1
8
21

2
16
4

7
7
10

20
8
10

0
0

2
43

11
21
3

13
17

92
16

84
69

37
38

33
21

40
36

vi
ps

15
18

3
15

17
16

17
-

-
-

17
-

14
6

16
7

15
4

3
15

0
0

3
3

15
17

5
12

vo
lre

nd
0

2
6

1
23

0
3

6
23

0
1

1
6

27
6

28
1

10
11

5
12

12
17

9
8

3
6

7
w
at
er
_n

sq
ua
re
d

78
42

8
15

14
11

11
29

29
48

13
14

8
9

5
6

16
8

10
6

8
8

0
10

9
12

12
32

w
at
er
_s
pa
tia

l
69

35
2

4
4

1
0
34

33
45

6
4

9
8

19
21

4
19

2
5

0
1

15
1

3
1

2
28

112 R. Guerraoui et al.

Table 56. For each lock-sensitive application, at max nodes, performance gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to
an application whose performance is hurt by many locks. A column with many gray cells corresponds to
a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-48 machine in
performance mode).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-7

16
2
15
5

67
2k

2k
2k

65
5

2k
12
8
25
2
46
9

70
22
7

62
44
8

80
2

2k
11

20
10

5
2k

1k
0
41
1

fe
rr
et

64
0
56
0

16
61
4

1
60
9
58
9
55
6

1
55
8
62
9
66
0
66
2

0
55
2

0
53
7

11
0
55
7

1
0

14
14

52
7
40
1

14
14

ky
ot
oc
ab
in
et

14
33

39
0
16
1

21
18

37
48
7

34
17

19
58

78
30

42
3

28
50

12
1

53
12
5

91
57
8
32
2

66
41

64
72

lin
ea
r_
re
gr
es
si
on

11
6

6
12

74
21

1
3

83
28

0
21

8
7

4
79

47
11

10
8

12
10

68
53

17
13

18
13

m
em

ca
ch
ed
-n
ew

90
24

2
25

87
-

42
-

-
-

64
-

13
45

36
29
6

41
31

50
-

72
56

12
6

89
34

0
30

33
m
em

ca
ch
ed
-o
ld

14
0

93
26

29
-

8
-

-
-

38
-1

86
17
1

91
93

17
0
16
6
15
0

-1
95

18
9

96
80

18
3
18
3

99
94

m
ys
ql
d

-
-

-
-

0
-

-
-

-
-

-
-

-
6

-
9

-
56

3
-

4
8

-
-

-
-

-
-

pc
a

8
17

3
0
10
8

3
10

15
31
5

14
3

11
6

5
9
28
6

12
14

29
27

36
29

24
3
19
0

51
36

42
48

pc
a_
ll

3
10

52
9
28
0

0
1

16
92
5

14
1

1
19

72
9
98
0

9
23

85
30

10
3
19
0
69
1
55
0

80
46

14
6
13
2

ra
di
os
ity

18
13

7
2

48
4

3
19

17
3

22
0

2
8

11
5
14
7

5
7

17
16

22
17

14
2
10
6

28
20

30
38

ra
di
os
ity

_l
l

1
65

10
6

8
77
9

54
22

92
2k

91
0

25
12
9
14
9

58
2k

71
90

21
1
17
4
26
7
15
9

2k
1k

37
9
24
7
43
6
44
0

s_
ra
yt
ra
ce

0
13

9
28

45
3

0
7

23
1k

24
0

20
42

96
8

1k
11

12
58

66
62

10
1
78
7
68
9
16
1
10
1
17
7
24
3

s_
ra
yt
ra
ce
_l
l

2
14

45
29

15
1

13
15

31
1k

30
0

35
10
4
13
5

11
1k

13
26

63
58

68
74

84
5
81
7
17
6

98
21
3
24
5

sq
lit
e

-
-

-
-1

96
-

-
-

-
-

-
-

-
0

-5
05

-
4k

37
-

35
15

-
-

-
-

-
-

ss
l_
pr
ox
y

7
47

22
0
47
3

45
26

55
1k

51
6

19
61

10
9

57
1k

45
62

12
9

98
13
4

94
2k

73
0
18
9
12
5
18
9
18
1

st
re
am

cl
us
te
r

47
0
48
6
16
2
42
4

81
13

-
-

-
36

-3
56

41
8
29
8
34
2
28
8
27
4
43
2

18
38
6
48
5
39
3
27
4
48
8
45
7
22
5
21
7

st
re
am

cl
us
te
r_
ll

49
0
46
6
17
7
43
3
12
1

2
-

-
-

52
-3

59
46
7
34
6
37
9
31
9
30
3
44
4

13
45
6
56
9
42
4
30
8
52
2
50
2
26
8
29
8

up
sc
al
ed
b

3
23

27
0

63
4

4
26

28
1

26
4

0
26

21
27

30
3

22
36

13
8

36
13
8
10
6
19
5
18
7

58
39

57
58

vi
ps

21
3
12
7

2
70
6

48
41
0
32
4

-
-

-3
47

-4
08

1
13
9

6
13
5

2
0
16
7

2
0

3
3
10
0

5
0

1
vo
lre

nd
9

10
15
0

2
42

1
0

14
26

10
0

1
2

21
10

11
2

3
15

1
25

25
40

30
15

10
17

21
w
at
er
_n

sq
ua
re
d

12
8

52
0

0
4

2
4

97
89

90
5

2
2

0
3

6
2

6
2

0
1

5
2

3
2

5
0

44
w
at
er
_s
pa
tia

l
91
7
32
0

2
11

9
2

1
61
4
61
8
62
0

13
8

9
9

9
9

9
8

0
1

2
0

0
0

0
1

0
32
1

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 113

Table 57. For each lock-sensitive application, at opt nodes, performance gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to
an application whose performance is hurt by many locks. A column with many gray cells corresponds to
a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-48 machine in
performance mode).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp
mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-4

51
5
86

68
18

5
72
6
71
5
72
8
93

65
60

59
59

59
59

94
0

7
0

0
1

7
5

2
1
38
1

fe
rr
et

46
45

8
48

1
44

50
49

0
46

45
81

63
0
45

0
64

7
0
55

1
0

8
9

45
44

7
8

ky
ot
oc
ab
in
et

10
25

6
0

14
12

9
22

38
4

24
13

15
31

58
23

41
3

20
35

94
33

10
6

71
12
8

90
42

30
29

32
lin

ea
r_
re
gr
es
si
on

10
6

6
11

45
9

1
3

79
21

0
6

8
7

4
79

10
11

10
8

12
10

68
45

17
13

16
13

m
em

ca
ch
ed
-n
ew

53
24

2
0

37
-

0
-

-
-6

2
-

9
13

12
68

37
17

9
-

18
13

5
9

14
0

10
11

m
em

ca
ch
ed
-o
ld

0
13

13
9

11
-2

3
-

-
-1

5
-

72
70

32
31

59
60

62
-

71
78

35
29

85
74

15
42

m
ys
ql
d

-
-

-
-

0
-

-
-

-
-

-
-

-
5

-
7

-
56

3
-

4
4

-
-

-
-

-
-

pc
a

8
7

10
0

31
2

4
10

27
7

10
6

8
1

11
10

30
8

9
11

26
8

32
21

12
14

17
10

7
12

pc
a_
ll

3
10

52
9
19
5

0
1

16
40
3

14
1

1
18

45
9
18
6

9
19

75
20

89
97

18
2

69
40

37
39

39
ra
di
os
ity

16
9

6
0

7
0

0
17

71
17

0
1

5
9

4
25

4
6

12
7

16
11

22
15

16
12

13
20

ra
di
os
ity

_l
l

1
61

10
2

8
52

18
21

87
1k

88
0
24

12
9
14
9
57

2k
59

80
16
3
99

24
9
15
9
26
3
21
8
24
8
16
9
16
2
16
3

s_
ra
yt
ra
ce

0
7

9
24

90
0

7
13

17
9

18
0
13

38
88

5
21
1

6
12

57
31

54
80

17
2
17
2

94
60

62
84

s_
ra
yt
ra
ce
_l
l

2
14

44
29

15
1

8
15

31
34
2

30
0
35

10
4
13
5
11

34
3

13
26

63
58

68
74

34
3
34
5
17
6

98
21
3
24
5

sq
lit
e

-
-

-
-

0
-

-
-

-
-

-
-

-
41

-6
18

-
35

61
-

74
55

-
-

-
-

-
-

ss
l_
pr
ox
y

0
42

23
6

54
27

9
61

1k
53

0
12

80
15
3
48

1k
37

58
12
4
57

14
4
13
0
44
5
20
9
17
8
12
5
13
5
12
1

st
re
am

cl
us
te
r

8
3

25
5

6
3

1
-

-
-

0
-

41
38

19
15

36
14

32
7

15
35

19
17

41
42

17
14

st
re
am

cl
us
te
r_
ll

21
0
12
5
43

41
16

15
-

-
-1

5
-1

51
15
8
91

99
10
3
10
9
14
5
21

78
16
0
12
2

75
16
1
16
1

84
75

up
sc
al
ed
b

1
23

27
0

63
2

1
26

26
4

26
1

0
17

21
26

27
4

22
36

12
4
35

12
4
10
6

68
67

48
37

46
47

vi
ps

24
24

2
22

22
22

22
-

-
-2

4
-

23
1
23

6
22

2
0
22

2
0

3
3

23
5

0
1

vo
lre

nd
17

7
41

3
23

0
0

12
24

11
1

0
5

15
3

13
2

9
17

7
20

27
26

20
18

9
15

18
w
at
er
_n

sq
ua
re
d

12
8

52
0

0
4

2
4

97
89

90
5

2
2

0
3

6
2

6
2

0
1

5
2

3
2

5
0

44
w
at
er
_s
pa
tia

l
91
7
32
0

2
11

9
2

1
61
4
61
8
62
0
13

8
9

9
9

9
9

8
0

1
2

0
0

0
0

1
0
32
1

114 R. Guerraoui et al.

Table 58. For each lock-sensitive application, at max nodes, performance gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to
an application whose performance is hurt by many locks. A column with many gray cells corresponds to
a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-20 machine in
performance mode).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-
1k

25
26
1

56
17
8
16
5
69
5
50
1
75
8
42
8
20
2
31
6
56

23
3

54
30
5
83

1
13
2

0
1

22
24

11
0
22
2
25

30
7

fe
rr
et

36
3
34
3
46

36
9

2
36
7
36
6
33
7

0
34
2
35
4
36
7
40
7

0
33
8

0
33
8
29

0
33
9

0
0

66
67

34
0
29
6
68

69
ky

ot
oc
ab
in
et

4
12

6
0
25
1

8
3

14
25
3

17
10

6
27

19
10

24
9

10
16

70
21

61
38

11
2

71
22

12
21

20
m
em

ca
ch
ed
-o
ld

2
3

3
2
31
5

-
2

-
-

-
3

-
1
20

1
25
4

2
3

81
-

97
36

5
2

0
1

2
4

pc
a

1
5
10

4
18
4

0
4

6
16
7

5
3

3
4
11

5
16
3

3
2

14
3

15
31

36
5

7
2

3
10

pc
a_
ll

2
3

7
1
47
3

2
0

0
42
3

2
1

0
3

3
1
43
7

1
1

9
0

16
3

1
0

0
0

0
1

ra
di
os
ity

23
11

5
5

52
1

3
19

77
17

2
1

6
13

3
60

0
4

7
12

11
21

50
22

14
7
14

16
ra
di
os
ity

_l
l

2
9
33

0
57
7

2
0

16
79
9

22
1

4
29

46
8
80
2

10
15

56
59

76
15
6
42
7
16
7

89
40

78
59

s_
ra
yt
ra
ce

0
0

1
2
33
7

0
0

0
31
2

1
1

1
1

3
0
22
4

0
0

2
0

3
3

2
0

1
0

0
0

s_
ra
yt
ra
ce
_l
l

2
2

4
3
58
2

1
1

2
64
1

2
2

2
2

1
1
64
3

1
2

3
1

5
1

0
1

1
1

1
1

sq
lit
e

-
-

-
-3

21
-

-
-

-
-

-
-

-
0

-3
88

-9
k

22
-

27
58

-
-

-
-

-
-

st
re
am

cl
us
te
r

23
0
61

17
33

24
12

-
-

-
9

-
55

55
49

45
61

51
38
7

6
16
8
12
9

85
27

82
80

31
29

st
re
am

cl
us
te
r_
ll

20
0
67

17
29

26
9

-
-

-
9

-
59

60
50

50
67

57
46
6

0
23
3
15
8

91
39

80
90

34
36

up
sc
al
ed
b

3
11

21
1
14
3

0
7

14
15
2

13
1

3
5
13

10
15
0

10
14

12
9

21
12
5
12
3

56
35

13
11

12
20

vi
ps

11
5

62
3

50
0

62
21

-
-

-
85

-
39

0
25

0
29

1
1

80
2

1
3

2
49

52
2

1
w
at
er
_n

sq
ua
re
d

47
17

0
0

1
0

0
32

31
33

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
16

w
at
er
_s
pa
tia

l
32
5
11
0

0
3

3
0

0
21
9
21
2
21
1

4
3

2
3

3
2

3
2

0
0

0
0

0
0

0
1

0
10
7

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 115

Table 59. For each lock-sensitive application, at opt nodes, performance gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to
an application whose performance is hurt by many locks. A column with many gray cells corresponds to
a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-20 machine in
performance mode).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp
mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-4

37
5

82
81

15
9
72
2
71
1
70
3
10
5

66
80

74
78

71
76

77
3

8
2

0
4

6
8

6
6
37
8

fe
rr
et

10
1

92
46

10
3

2
10
2
10
3

92
0

91
10
2
10
9
13
6

0
90

0
89

29
0
89

0
0
54

54
87

90
54

53
ky

ot
oc
ab
in
et

3
13

3
0
24
9

6
3

14
25
5

16
8

6
22

21
12

25
0
10

18
74

21
58

32
53

33
19

12
17

18
m
em

ca
ch
ed
-o
ld

2
3

3
2
31
5

-
2

-
-

-
3

-
1
20

1
25
4

2
3

81
-

97
36

5
2

0
1

2
4

pc
a

1
5
10

4
23

0
4

6
19

5
3

3
4
11

5
20

3
2

14
3

15
14

15
5

7
2

3
10

pc
a_
ll

2
3

7
1

87
2

0
0

88
2

1
0

3
3

1
86

1
1

9
0

16
3

1
0

0
0

0
1

ra
di
os
ity

23
11

5
5

5
1

2
19

20
17

2
1

6
6

3
5

0
4

4
6

2
5

6
7

7
5

5
13

ra
di
os
ity

_l
l

2
9
33

0
61

2
0

16
65

22
1

4
29

46
8

54
10

15
56

56
69

63
57

54
56

40
53

53
s_
ra
yt
ra
ce

0
0

1
2

89
0

0
0

91
1

1
1

1
3

0
88

0
0

2
0

3
3

2
0

1
0

0
0

s_
ra
yt
ra
ce
_l
l

2
2

4
3

76
1

1
2

77
2

2
2

2
1

1
77

1
2

3
1

5
1

0
1

1
1

1
1

sq
lit
e

-
-

-
-

25
-

-
-

-
-

-
-

-
0

-3
94

-1
6

47
-

49
42

-
-

-
-

-
-

st
re
am

cl
us
te
r

8
0
28

19
27

12
18

-
-

-
13

-
24

16
18

17
25

10
28

15
3

23
25

8
36

34
19

13
st
re
am

cl
us
te
r_
ll

20
0
67

17
29

26
9

-
-

-
9

-
59

60
50

50
67

57
11
2

0
67

10
0
91

39
80

90
34

36
up

sc
al
ed
b

3
11

21
1
14
3

0
7

14
14
5

13
1

3
5
13

10
14
7
10

14
12
9
21

12
5
12
3
34

29
13

11
12

20
vi
ps

93
62

3
50

0
62

21
-

-
-

85
-

39
0
25

0
29

1
1
80

2
1

3
2
49

52
2

1
w
at
er
_n

sq
ua
re
d

47
17

0
0

1
0

0
32

31
33

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
16

w
at
er
_s
pa
tia

l
32
5
11
0

0
3

3
0

0
21
9
21
2
21
1

4
3

2
3

3
2

3
2

0
0

0
0

0
0

0
1

0
10
7

116 R. Guerraoui et al.

Table 60. For each lock-sensitive application, at max nodes, performance gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to
an application whose performance is hurt by many locks. A column with many gray cells corresponds to a
lock that is outperformed by many other locks. Dashes correspond to untested cases. (A-64 machine with
thread-to-node pinning).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-6

52
14

15
9
16
0

37
24

1k
72
0

1k
78

14
1

59
59

61
59

71
80

0
21
5

11
12

13
13

18
7

13
14

63
5

fa
ce
si
m

3
5

39
34

13
1

5
4

6
56

6
4

3
0

47
5

55
4

6
29

5
30

56
29
7
13
1

29
2

38
51

fe
rr
et

36
6
31
0

3
21
5

0
35
6
37
0
32
6

0
32
8
38
5
36
8
33
8

0
32
2

0
27
7

1
0
32
0

0
0

7
2
28
7
17
3

3
4

flu
id
an
im

at
e

-3
01

0
49

53
27

12
-

-
-1

98
-1

38
15
8
13
3
15
6
14
6
15
6
10
1

69
57

61
71

3
57

3
0
20
2

ky
ot
oc
ab
in
et

9
42

26
0

60
24

27
31

49
3

42
12

18
21

27
27

46
8

38
52

33
8

45
40
0
27
7

2k
2k

20
7

72
57
7
34
4

lin
ea
r_
re
gr
es
si
on

6
10

14
5

15
6

6
3

71
11

0
2

3
7

1
68

4
5

38
5

33
16

10
0

50
33

11
56

53
m
em

ca
ch
ed
-n
ew

1
9

33
46

17
5

-
6

-
-

-
15

-
16

38
0
21
7

23
10

45
-

94
17
1
90
9
70
1
18
2

73
43
5

79
m
em

ca
ch
ed
-o
ld

12
3

61
56

6
2

-
14

-
-

-
0

-2
90

30
0
15
5
18
1
28
4
14
8
10
8

-2
06

23
5
30
8

40
22
4
23
4

51
79

m
ys
ql
d

-
-

-
-

66
-

-
-

-
-

-
-

-
0

-
4

-
60

1
-

1
2

-
-

-
-

-
-

oc
ea
n_

cp
2

0
34

44
78

0
0

3
52

3
3

5
2

44
0

48
3

13
27

0
25

38
13
0

76
13

1
29

30
oc
ea
n_

nc
p

4
0

23
12

67
2

2
3

39
2

4
4

3
35

1
37

1
9

23
2

20
28

10
9

59
11

2
24

28
pc
a

48
40

38
17

82
47

47
43

28
5

41
46

46
43

0
46

28
5

39
40

12
3

47
13
2

50
34
7
13
8

91
19

23
4
16
0

pc
a_
ll

62
48

0
8
15
5

56
61

67
38
0

38
64

53
31

4
57

38
0

24
23

14
6

52
15
7

52
55
1
37
2
10
8

19
27
3
18
4

ra
di
os
ity

6
5

8
3

7
1

1
4

71
6

0
1

2
3

1
70

2
3

32
3

32
19

11
4

49
29

11
49

52
ra
di
os
ity

_l
l

0
41

44
25

93
37

47
27

1k
47

0
21

67
65

26
1k

57
64

53
1

77
52
1
28
0

2k
1k

58
5
18
8

1k
79
2

s_
ra
yt
ra
ce

2
9

53
35

22
5

16
18

9
1k

17
0

30
30

68
0

1k
14

17
33
2

31
26
4
14
4
77
8
34
0
39
8
10
4
76
4
56
4

s_
ra
yt
ra
ce
_l
l

6
3

44
28

38
10

12
0

1k
6

7
19

45
23

0
1k

8
16

30
4

54
18
7

66
1k

74
6
56
1
18
7

1k
91
4

sq
lit
e

-
-

-
-

31
-

-
-

-
-

-
-

-
0

-6
76

-8
09

36
7

-3
42

17
9

-
-

-
-

-
-

ss
l_
pr
ox
y

1
11

72
5
14
3

11
14

13
93
3

13
0

7
14

32
14

94
5

26
27

31
7

28
29
9
15
5

1k
40
7
25
9

80
60
0
54
5

st
re
am

cl
us
te
r

44
19

14
5

87
11
9

11
11

-
-

-
0

-2
41

70
6
15
9
25
6
19
5

65
81

30
13
2
25
5
52
3
25
3
27
2
18
1
15
8
11
1

st
re
am

cl
us
te
r_
ll

32
11

14
0

69
14
6

4
18

-
-

-
0

-2
30

82
6
10
1
24
7
17
1

63
85

20
16
0
20
4
49
1
25
0
30
9
18
0
16
1
15
9

up
sc
al
ed
b

6
17

29
8
19
0
80
8
41
5

14
28
5

18
5

12
0

4
17

28
5

21
34

98
50
8
11
2
10
7
68
7
46
3

2k
49

19
3
12
8

vi
ps

71
33

8
23
8

0
13
6

83
-

-
-

95
-2

23
2

39
3

25
5

5
35

4
3

4
10

30
13

8
13

vo
lre

nd
7

4
31

17
41

0
0

6
24

8
1

2
10

19
6

19
6

11
41

7
37

49
10
5

66
28

12
34

37
w
at
er
_n

sq
ua
re
d

89
42

0
5

4
1

1
55

55
53

6
3

3
3

3
3

3
8

1
0

0
0

1
0

1
0

0
31

w
at
er
_s
pa
tia

l
29
7

42
0

4
3

2
1
21
7
21
8

57
6

2
4

4
4

4
4

5
2

1
1

0
1

0
1

0
0

35

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 117

Table 61. For each lock-sensitive application, at opt nodes, performance gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to
an application whose performance is hurt by many locks. A column with many gray cells corresponds to a
lock that is outperformed by many other locks. Dashes correspond to untested cases. (A-64 machine with
thread-to-node pinning).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-4

02
36

23
7
22
1

70
53

71
6
68
9
72
7
18
3
19
8
17
0

96
18
1

96
20
1
11
8

0
26
3

6
7

18
34

21
8

37
36

46
4

fa
ce
si
m

0
1

3
4

13
1

0
1

12
1

1
0

0
8

1
10

0
0

4
1

4
12

20
16

2
0

2
7

fe
rr
et

35
5
31
0

3
21
5

0
34
9
34
6
32
6

0
32
7
34
6
32
2
30
2

0
32
2

0
27
7

1
0
32
0

0
0

7
2
28
7
17
3

3
4

flu
id
an
im

at
e

-1
83

0
49

53
27

12
-

-
-1

98
-1

38
14
4
13
3
14
1
14
6
15
6
10
1

69
57

61
71

3
57

3
0
12
4

ky
ot
oc
ab
in
et

6
19

0
13

30
16

23
10

39
21

9
13

5
11

6
12

16
18

62
7

65
49

11
5

85
7

4
4

13
lin

ea
r_
re
gr
es
si
on

6
10

14
5

14
6

6
3

42
11

0
2

3
7

1
36

4
5

33
5

33
16

69
45

25
11

49
41

m
em

ca
ch
ed
-n
ew

1
12

55
64

81
-

13
-

-
-

18
-

27
33

0
58

11
10

51
-

73
60

71
65

23
6

49
47

m
em

ca
ch
ed
-o
ld

64
39

0
96

88
-

77
-

-
-1

15
-

77
78

56
58

77
53

44
-

63
65

69
0

40
35

0
3

m
ys
ql
d

-
-

-
-

37
-

-
-

-
-

-
-

-
4

-
8

-
58

0
-

2
5

-
-

-
-

-
-

oc
ea
n_

cp
1

1
5

2
9

1
0

2
12

4
4

0
0

8
1

12
1

2
5

0
8

5
11

6
4

1
2

4
oc
ea
n_

nc
p

0
1

3
2

6
2

0
0

7
3

1
0

1
9

1
7

1
3

9
1

5
4

9
5

0
0

0
5

pc
a

15
15

15
15

50
15

16
15

50
15

16
16

15
0

15
58

15
16

18
15

23
20

17
17

15
13

15
15

pc
a_
ll

32
27

0
8
12
2

26
43

25
12
0

26
26

27
21

4
28

12
4

24
21

42
30

57
52

43
28

32
19

26
29

ra
di
os
ity

4
2

2
0

3
0

0
3

5
3

0
1

2
2

0
2

1
2

3
1

6
3

6
2

2
1

2
3

ra
di
os
ity

_l
l

0
33

44
25

93
14

19
19

70
39

0
21

62
65

22
82

46
45

83
32

14
5
10
7
11
0

69
75

59
68

65
s_
ra
yt
ra
ce

2
9
53

35
12
6

16
18

9
22
1

17
0

25
30

68
0
21
7

14
17

10
9

29
10
1

86
86

68
69

62
69

72
s_
ra
yt
ra
ce
_l
l

6
3
44

28
38

10
12

0
46
4

6
7

19
45

23
0
46
6

8
16

30
4

54
18
7

66
45
9
40
7
43
3
18
6
43
7
46
1

sq
lit
e

-
-

-
-

32
-

-
-

-
-

-
-

-
0

-
66

-8
27

67
-

73
53

-
-

-
-

-
-

ss
l_
pr
ox
y

0
8
32

15
49

22
30

3
48

8
4

12
22

39
7

37
13

21
51

6
67

38
41

41
32

9
31

33
st
re
am

cl
us
te
r

16
11

20
21

40
9

3
-

-
-

3
-

26
25

22
21

24
24

33
4

30
29

28
0

15
17

1
13

st
re
am

cl
us
te
r_
ll

23
23

36
43

62
3

0
-

-
-

3
-

77
78

61
56

78
46

57
13

53
75

69
9

28
27

9
21

up
sc
al
ed
b

6
17

29
8
19
0

11
12

14
17
9

18
5

12
0

4
16

18
1

21
32

98
21

83
57

73
48

28
29

30
30

vi
ps

57
49

6
29
4

1
15
2
10
8

-
-

-1
27

-2
76

0
40

0
38

2
0

55
0

0
2

2
51

12
2

4
vo
lre

nd
0

1
8

4
10

0
0

2
9

2
0

1
3

6
0

7
2

3
15

1
14

18
28

12
5

2
6

8
w
at
er
_n

sq
ua
re
d

89
42

0
5

4
1

1
55

55
53

6
3

3
3

3
3

3
8

1
0

0
0

1
0

1
0

0
31

w
at
er
_s
pa
tia

l
29
7

42
0

4
3

2
1
21
7
21
8

57
6

2
4

4
4

4
4

5
2

1
1

0
1

0
1

0
0

35

118 R. Guerraoui et al.

Table 62. For each lock-sensitive application, at max nodes, performance gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to
an application whose performance is hurt by many locks. A column with many gray cells corresponds to
a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-48 machine in
energy-saving mode).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-7

16
2
15
5

67
2k

2k
2k

65
5

2k
12
8
25
2
46
9

70
22
7

62
44
8

80
2

2k
11

20
10

5
2k

1k
0
41
1

fe
rr
et

64
0
56
0

16
61
4

1
60
9
58
9
55
6

1
55
8
62
9
66
0
66
2

0
55
2

0
53
7

11
0
55
7

1
0

14
14

52
7
40
1

14
14

ky
ot
oc
ab
in
et

14
33

39
0
16
1

21
18

37
48
7

34
17

19
58

78
30

42
3

28
50

12
1

53
12
5

91
57
8
32
2

66
41

64
72

lin
ea
r_
re
gr
es
si
on

11
6

6
12

74
21

1
3

83
28

0
21

8
7

4
79

47
11

10
8

12
10

68
53

17
13

18
13

m
em

ca
ch
ed
-n
ew

90
24

2
25

87
-

42
-

-
-

64
-

13
45

36
29
6

41
31

50
-

72
56

12
6

89
34

0
30

33
m
em

ca
ch
ed
-o
ld

14
0

93
26

29
-

8
-

-
-

38
-1

86
17
1

91
93

17
0
16
6
15
0

-1
95

18
9

96
80

18
3
18
3

99
94

m
ys
ql
d

-
-

-
-

0
-

-
-

-
-

-
-

-
6

-
9

-
56

3
-

4
8

-
-

-
-

-
-

pc
a

8
17

3
0
10
8

3
10

15
31
5

14
3

11
6

5
9
28
6

12
14

29
27

36
29

24
3
19
0

51
36

42
48

pc
a_
ll

3
10

52
9
28
0

0
1

16
92
5

14
1

1
19

72
9
98
0

9
23

85
30

10
3
19
0
69
1
55
0

80
46

14
6
13
2

ra
di
os
ity

18
13

7
2

48
4

3
19

17
3

22
0

2
8

11
5
14
7

5
7

17
16

22
17

14
2
10
6

28
20

30
38

ra
di
os
ity

_l
l

1
65

10
6

8
77
9

54
22

92
2k

91
0

25
12
9
14
9

58
2k

71
90

21
1
17
4
26
7
15
9

2k
1k

37
9
24
7
43
6
44
0

s_
ra
yt
ra
ce

0
13

9
28

45
3

0
7

23
1k

24
0

20
42

96
8

1k
11

12
58

66
62

10
1
78
7
68
9
16
1
10
1
17
7
24
3

s_
ra
yt
ra
ce
_l
l

2
14

45
29

15
1

13
15

31
1k

30
0

35
10
4
13
5

11
1k

13
26

63
58

68
74

84
5
81
7
17
6

98
21
3
24
5

sq
lit
e

-
-

-
-1

96
-

-
-

-
-

-
-

-
0

-5
05

-
4k

37
-

35
15

-
-

-
-

-
-

ss
l_
pr
ox
y

7
47

22
0
47
3

45
26

55
1k

51
6

19
61

10
9

57
1k

45
62

12
9

98
13
4

94
2k

73
0
18
9
12
5
18
9
18
1

st
re
am

cl
us
te
r

47
0
48
6
16
2
42
4

81
13

-
-

-
36

-3
56

41
8
29
8
34
2
28
8
27
4
43
2

18
38
6
48
5
39
3
27
4
48
8
45
7
22
5
21
7

st
re
am

cl
us
te
r_
ll

49
0
46
6
17
7
43
3
12
1

2
-

-
-

52
-3

59
46
7
34
6
37
9
31
9
30
3
44
4

13
45
6
56
9
42
4
30
8
52
2
50
2
26
8
29
8

up
sc
al
ed
b

3
23

27
0

63
4

4
26

28
1

26
4

0
26

21
27

30
3

22
36

13
8

36
13
8
10
6
19
5
18
7

58
39

57
58

vi
ps

21
3
12
7

2
70
6

48
41
0
32
4

-
-

-3
47

-4
08

1
13
9

6
13
5

2
0
16
7

2
0

3
3
10
0

5
0

1
vo
lre

nd
9

10
15
0

2
42

1
0

14
26

10
0

1
2

21
10

11
2

3
15

1
25

25
40

30
15

10
17

21
w
at
er
_n

sq
ua
re
d

12
8

52
0

0
4

2
4

97
89

90
5

2
2

0
3

6
2

6
2

0
1

5
2

3
2

5
0

44
w
at
er
_s
pa
tia

l
91
7
32
0

2
11

9
2

1
61
4
61
8
62
0

13
8

9
9

9
9

9
8

0
1

2
0

0
0

0
1

0
32
1

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 119

Table 63. For each lock-sensitive application, at opt nodes, performance gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to
an application whose performance is hurt by many locks. A column with many gray cells corresponds to
a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-48 machine in
energy-efficiency mode).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp
mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-4

51
5
86

68
18

5
72
6
71
5
72
8
93

65
60

59
59

59
59

94
0

7
0

0
1

7
5

2
1
38
1

fe
rr
et

46
45

8
48

1
44

50
49

0
46

45
81

63
0
45

0
64

7
0
55

1
0

8
9

45
44

7
8

ky
ot
oc
ab
in
et

10
25

6
0

14
12

9
22

38
4

24
13

15
31

58
23

41
3

20
35

94
33

10
6

71
12
8

90
42

30
29

32
lin

ea
r_
re
gr
es
si
on

10
6

6
11

45
9

1
3

79
21

0
6

8
7

4
79

10
11

10
8

12
10

68
45

17
13

16
13

m
em

ca
ch
ed
-n
ew

53
24

2
0

37
-

0
-

-
-6

2
-

9
13

12
68

37
17

9
-

18
13

5
9

14
0

10
11

m
em

ca
ch
ed
-o
ld

0
13

13
9

11
-2

3
-

-
-1

5
-

72
70

32
31

59
60

62
-

71
78

35
29

85
74

15
42

m
ys
ql
d

-
-

-
-

0
-

-
-

-
-

-
-

-
5

-
7

-
56

3
-

4
4

-
-

-
-

-
-

pc
a

8
7

10
0

31
2

4
10

27
7

10
6

8
1

11
10

30
8

9
11

26
8

32
21

12
14

17
10

7
12

pc
a_
ll

3
10

52
9
19
5

0
1

16
40
3

14
1

1
18

45
9
18
6

9
19

75
20

89
97

18
2

69
40

37
39

39
ra
di
os
ity

16
9

6
0

7
0

0
17

71
17

0
1

5
9

4
25

4
6

12
7

16
11

22
15

16
12

13
20

ra
di
os
ity

_l
l

1
61

10
2

8
52

18
21

87
1k

88
0
24

12
9
14
9
57

2k
59

80
16
3
99

24
9
15
9
26
3
21
8
24
8
16
9
16
2
16
3

s_
ra
yt
ra
ce

0
7

9
24

90
0

7
13

17
9

18
0
13

38
88

5
21
1

6
12

57
31

54
80

17
2
17
2

94
60

62
84

s_
ra
yt
ra
ce
_l
l

2
14

44
29

15
1

8
15

31
34
2

30
0
35

10
4
13
5
11

34
3

13
26

63
58

68
74

34
3
34
5
17
6

98
21
3
24
5

sq
lit
e

-
-

-
-

0
-

-
-

-
-

-
-

-
41

-6
18

-
35

61
-

74
55

-
-

-
-

-
-

ss
l_
pr
ox
y

0
42

23
6

54
27

9
61

1k
53

0
12

80
15
3
48

1k
37

58
12
4
57

14
4
13
0
44
5
20
9
17
8
12
5
13
5
12
1

st
re
am

cl
us
te
r

8
3

25
5

6
3

1
-

-
-

0
-

41
38

19
15

36
14

32
7

15
35

19
17

41
42

17
14

st
re
am

cl
us
te
r_
ll

21
0
12
5
43

41
16

15
-

-
-1

5
-1

51
15
8
91

99
10
3
10
9
14
5
21

78
16
0
12
2

75
16
1
16
1

84
75

up
sc
al
ed
b

1
23

27
0

63
2

1
26

26
4

26
1

0
17

21
26

27
4

22
36

12
4
35

12
4
10
6

68
67

48
37

46
47

vi
ps

24
24

2
22

22
22

22
-

-
-2

4
-

23
1
23

6
22

2
0
22

2
0

3
3

23
5

0
1

vo
lre

nd
17

7
41

3
23

0
0

12
24

11
1

0
5

15
3

13
2

9
17

7
20

27
26

20
18

9
15

18
w
at
er
_n

sq
ua
re
d

12
8

52
0

0
4

2
4

97
89

90
5

2
2

0
3

6
2

6
2

0
1

5
2

3
2

5
0

44
w
at
er
_s
pa
tia

l
91
7
32
0

2
11

9
2

1
61
4
61
8
62
0
13

8
9

9
9

9
9

8
0

1
2

0
0

0
0

1
0
32
1

120 R. Guerraoui et al.

Table 64. For each lock-sensitive application, at max nodes, performance gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to
an application whose performance is hurt by many locks. A column with many gray cells corresponds to
a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-20 machine in
energy-saving mode).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-
1k

25
26
1

56
17
8
16
5
69
5
50
1
75
8
42
8
20
2
31
6
56

23
3

54
30
5
83

1
13
2

0
1

22
24

11
0
22
2
25

30
7

fe
rr
et

36
3
34
3
46

36
9

2
36
7
36
6
33
7

0
34
2
35
4
36
7
40
7

0
33
8

0
33
8
29

0
33
9

0
0

66
67

34
0
29
6
68

69
ky

ot
oc
ab
in
et

4
12

6
0
25
1

8
3

14
25
3

17
10

6
27

19
10

24
9

10
16

70
21

61
38

11
2

71
22

12
21

20
m
em

ca
ch
ed
-o
ld

2
3

3
2
31
5

-
2

-
-

-
3

-
1
20

1
25
4

2
3

81
-

97
36

5
2

0
1

2
4

pc
a

1
5
10

4
18
4

0
4

6
16
7

5
3

3
4
11

5
16
3

3
2

14
3

15
31

36
5

7
2

3
10

pc
a_
ll

2
3

7
1
47
3

2
0

0
42
3

2
1

0
3

3
1
43
7

1
1

9
0

16
3

1
0

0
0

0
1

ra
di
os
ity

23
11

5
5

52
1

3
19

77
17

2
1

6
13

3
60

0
4

7
12

11
21

50
22

14
7
14

16
ra
di
os
ity

_l
l

2
9
33

0
57
7

2
0

16
79
9

22
1

4
29

46
8
80
2

10
15

56
59

76
15
6
42
7
16
7

89
40

78
59

s_
ra
yt
ra
ce

0
0

1
2
33
7

0
0

0
31
2

1
1

1
1

3
0
22
4

0
0

2
0

3
3

2
0

1
0

0
0

s_
ra
yt
ra
ce
_l
l

2
2

4
3
58
2

1
1

2
64
1

2
2

2
2

1
1
64
3

1
2

3
1

5
1

0
1

1
1

1
1

sq
lit
e

-
-

-
-3

21
-

-
-

-
-

-
-

-
0

-3
88

-9
k

22
-

27
58

-
-

-
-

-
-

st
re
am

cl
us
te
r

23
0
61

17
33

24
12

-
-

-
9

-
55

55
49

45
61

51
38
7

6
16
8
12
9

85
27

82
80

31
29

st
re
am

cl
us
te
r_
ll

20
0
67

17
29

26
9

-
-

-
9

-
59

60
50

50
67

57
46
6

0
23
3
15
8

91
39

80
90

34
36

up
sc
al
ed
b

3
11

21
1
14
3

0
7

14
15
2

13
1

3
5
13

10
15
0

10
14

12
9

21
12
5
12
3

56
35

13
11

12
20

vi
ps

11
5

62
3

50
0

62
21

-
-

-
85

-
39

0
25

0
29

1
1

80
2

1
3

2
49

52
2

1
w
at
er
_n

sq
ua
re
d

47
17

0
0

1
0

0
32

31
33

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
16

w
at
er
_s
pa
tia

l
32
5
11
0

0
3

3
0

0
21
9
21
2
21
1

4
3

2
3

3
2

3
2

0
0

0
0

0
0

0
1

0
10
7

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 121

Table 65. For each lock-sensitive application, at opt nodes, performance gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to
an application whose performance is hurt by many locks. A column with many gray cells corresponds to
a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-20 machine in
energy-efficiency mode).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp
mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-4

37
5

82
81

15
9
72
2
71
1
70
3
10
5

66
80

74
78

71
76

77
3

8
2

0
4

6
8

6
6
37
8

fe
rr
et

10
1

92
46

10
3

2
10
2
10
3

92
0

91
10
2
10
9
13
6

0
90

0
89

29
0
89

0
0
54

54
87

90
54

53
ky

ot
oc
ab
in
et

3
13

3
0
24
9

6
3

14
25
5

16
8

6
22

21
12

25
0
10

18
74

21
58

32
53

33
19

12
17

18
m
em

ca
ch
ed
-o
ld

2
3

3
2
31
5

-
2

-
-

-
3

-
1
20

1
25
4

2
3

81
-

97
36

5
2

0
1

2
4

pc
a

1
5
10

4
23

0
4

6
19

5
3

3
4
11

5
20

3
2

14
3

15
14

15
5

7
2

3
10

pc
a_
ll

2
3

7
1

87
2

0
0

88
2

1
0

3
3

1
86

1
1

9
0

16
3

1
0

0
0

0
1

ra
di
os
ity

23
11

5
5

5
1

2
19

20
17

2
1

6
6

3
5

0
4

4
6

2
5

6
7

7
5

5
13

ra
di
os
ity

_l
l

2
9
33

0
61

2
0

16
65

22
1

4
29

46
8

54
10

15
56

56
69

63
57

54
56

40
53

53
s_
ra
yt
ra
ce

0
0

1
2

89
0

0
0

91
1

1
1

1
3

0
88

0
0

2
0

3
3

2
0

1
0

0
0

s_
ra
yt
ra
ce
_l
l

2
2

4
3

76
1

1
2

77
2

2
2

2
1

1
77

1
2

3
1

5
1

0
1

1
1

1
1

sq
lit
e

-
-

-
-

25
-

-
-

-
-

-
-

-
0

-3
94

-1
6

47
-

49
42

-
-

-
-

-
-

st
re
am

cl
us
te
r

8
0
28

19
27

12
18

-
-

-
13

-
24

16
18

17
25

10
28

15
3

23
25

8
36

34
19

13
st
re
am

cl
us
te
r_
ll

20
0
67

17
29

26
9

-
-

-
9

-
59

60
50

50
67

57
11
2

0
67

10
0
91

39
80

90
34

36
up

sc
al
ed
b

3
11

21
1
14
3

0
7

14
14
5

13
1

3
5
13

10
14
7
10

14
12
9
21

12
5
12
3
34

29
13

11
12

20
vi
ps

93
62

3
50

0
62

21
-

-
-

85
-

39
0
25

0
29

1
1
80

2
1

3
2
49

52
2

1
w
at
er
_n

sq
ua
re
d

47
17

0
0

1
0

0
32

31
33

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
16

w
at
er
_s
pa
tia

l
32
5
11
0

0
3

3
0

0
21
9
21
2
21
1

4
3

2
3

3
2

3
2

0
0

0
0

0
0

0
1

0
10
7

122 R. Guerraoui et al.

A.6 Impact of the number of nodes.

Table 66. For each lock-sensitive application, percentage of pairwise changes in the lock performance hierarchy
when changing the number of nodes (A-48 machine).

% of pairwise changes between configurations

Applications 1/2 2/4 4/8 1/2/4/8

dedup 14% 10% 22% 32%
ferret 0% 72% 15% 83%
fmm 23% 23% 18% 36%
kyotocabinet 25% 8% 14% 38%
linear_regression 18% 36% 32% 61%
memcached-new 58% 39% 0% 76%
memcached-old 37% 29% 0% 55%
mysqld 29% 0% 5% 33%
pca 31% 33% 29% 76%
pca_ll 20% 25% 53% 91%
radiosity 31% 45% 15% 76%
radiosity_ll 30% 53% 18% 84%
s_raytrace 21% 43% 33% 94%
s_raytrace_ll 24% 51% 27% 96%
sqlite 5% 14% 52% 67%
ssl_proxy 35% 26% 14% 56%
streamcluster 15% 59% 35% 85%
streamcluster_ll 32% 49% 38% 95%
upscaledb 23% 16% 11% 44%
vips 0% 5% 84% 84%
volrend 19% 21% 39% 77%
water_nsquared 29% 28% 22% 60%
water_spatial 15% 15% 6% 31%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 123

Table 67. For each lock-sensitive application, percentage of pairwise changes in the lock performance hierarchy
when changing the number of nodes (I-48 machine in performance mode).

% of pairwise changes between configurations

Applications 1/2 2/3 3/4 1/2/3/4

dedup 13% 28% 22% 48%
ferret 26% 65% 15% 87%
kyotocabinet 12% 7% 4% 19%
linear_regression 34% 38% 39% 78%
memcached-new 47% 29% 0% 56%
memcached-old 14% 15% 0% 25%
mysqld 7% 29% 24% 38%
pca 47% 12% 15% 59%
pca_ll 41% 30% 14% 76%
radiosity 25% 15% 10% 42%
radiosity_ll 23% 10% 7% 31%
s_raytrace 65% 19% 9% 89%
s_raytrace_ll 86% 15% 10% 98%
sqlite 29% 33% 19% 57%
ssl_proxy 14% 4% 6% 20%
streamcluster 24% 22% 23% 44%
streamcluster_ll 20% 19% 25% 43%
upscaledb 7% 8% 6% 15%
vips 0% 0% 76% 76%
volrend 31% 34% 21% 71%
water_nsquared 0% 0% 4% 4%
water_spatial 13% 13% 5% 29%

124 R. Guerraoui et al.

Table 68. For each lock-sensitive application, percentage of pairwise changes in the lock performance hierarchy
when changing the number of nodes (I-20 machine in performance mode).

% of pairwise changes between configurations

Applications 1/2

dedup 27%
ferret 18%
kyotocabinet 9%
memcached-old 0%
pca 52%
pca_ll 37%
radiosity 56%
radiosity_ll 75%
s_raytrace 21%
s_raytrace_ll 21%
sqlite 48%
streamcluster 46%
streamcluster_ll 46%
upscaledb 13%
vips 74%
water_nsquared 0%
water_spatial 0%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 125

Table 69. For each lock-sensitive application, percentage of pairwise changes in the lock performance hierarchy
when changing the number of nodes (A-64 machine with thread-to-node pinning).

% of pairwise changes between configurations

Applications 1/2 2/4 4/8 1/2/4/8

dedup 10% 11% 13% 19%
facesim 0% 43% 30% 73%
ferret 23% 13% 15% 41%
fluidanimate 28% 9% 10% 36%
kyotocabinet 30% 16% 10% 47%
linear_regression 27% 50% 25% 80%
memcached-new 52% 23% 0% 68%
memcached-old 36% 20% 0% 51%
mysqld 26% 14% 38% 57%
ocean_cp 0% 30% 46% 76%
ocean_ncp 0% 25% 48% 74%
pca 25% 48% 16% 81%
pca_ll 8% 53% 58% 95%
radiosity 0% 54% 12% 66%
radiosity_ll 53% 52% 14% 96%
s_raytrace 5% 46% 44% 88%
s_raytrace_ll 0% 87% 23% 96%
sqlite 45% 10% 5% 45%
ssl_proxy 62% 15% 13% 74%
streamcluster 62% 24% 23% 84%
streamcluster_ll 56% 23% 26% 81%
upscaledb 47% 20% 20% 58%
vips 13% 6% 15% 26%
volrend 23% 22% 36% 80%
water_nsquared 20% 10% 7% 38%
water_spatial 3% 0% 3% 6%

126 R. Guerraoui et al.

Table 70. For each lock-sensitive application, percentage of pairwise changes in the lock performance hierarchy
when changing the number of nodes (I-48 machine in energy-saving mode).

% of pairwise changes between configurations

Applications 1/2 2/3 3/4 1/2/3/4

dedup 13% 28% 22% 48%
ferret 26% 65% 15% 87%
kyotocabinet 12% 7% 4% 19%
linear_regression 34% 38% 39% 78%
memcached-new 47% 29% 0% 56%
memcached-old 14% 15% 0% 25%
mysqld 7% 29% 24% 38%
pca 47% 12% 15% 59%
pca_ll 41% 30% 14% 76%
radiosity 25% 15% 10% 42%
radiosity_ll 23% 10% 7% 31%
s_raytrace 65% 19% 9% 89%
s_raytrace_ll 86% 15% 10% 98%
sqlite 29% 33% 19% 57%
ssl_proxy 14% 4% 6% 20%
streamcluster 24% 22% 23% 44%
streamcluster_ll 20% 19% 25% 43%
upscaledb 7% 8% 6% 15%
vips 0% 0% 76% 76%
volrend 31% 34% 21% 71%
water_nsquared 0% 0% 4% 4%
water_spatial 13% 13% 5% 29%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 127

Table 71. For each lock-sensitive application, percentage of pairwise changes in the lock performance hierarchy
when changing the number of nodes (I-20 machine in energy-saving mode).

% of pairwise changes between configurations

Applications 1/2

dedup 27%
ferret 18%
kyotocabinet 9%
memcached-old 0%
pca 52%
pca_ll 37%
radiosity 56%
radiosity_ll 75%
s_raytrace 21%
s_raytrace_ll 21%
sqlite 48%
streamcluster 46%
streamcluster_ll 46%
upscaledb 13%
vips 74%
water_nsquared 0%
water_spatial 0%

128 R. Guerraoui et al.

A.7 Impact of the machine.

Table 72. For each pair of machines, at max nodes and opt nodes, percentage of pairwise changes in the lock
performance hierarchy (all machines).

A-64 A-48 A-64 I-48
vs. vs. vs. vs.

nodes A-48 I-48 I-48 I-20

Max 25% 26% 28% 33%
Opt 31% 36% 34% 36%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 129

B STUDY OF LOCK ENERGY EFFICIENCY
B.1 Selection of lock sensitive application

130 R. Guerraoui et al.

Table 73. For each application, energy-efficiency gain of the best vs. worst lock and relative standard deviation
(I-48 machine in energy-saving mode).

Gain
one

node

R.Dev.
one

node

Gain
max
nodes

R.Dev.
max
nodes

Gain
opt

nodes

R.Dev.
opt

nodes

barnes 7% 2% 17% 4% 17% 4%
blackscholes 1% 0% 1% 0% 1% 0%
bodytrack 1% 0% 80% 9% 11% 3%
canneal 1% 0% 2% 0% 2% 0%
dedup 619% 44% 2789% 68% 619% 44%
ferret 1% 0% 569% 75% 28% 8%
fmm 6% 2% 22% 6% 18% 4%
freqmine 2% 0% 1% 0% 1% 0%
histogram 17% 3% 30% 6% 17% 3%
kmeans 2% 0% 7% 2% 4% 1%
kyotocabinet 293% 26% 967% 37% 293% 26%
linear_regression 8% 2% 192% 22% 86% 14%
lu_cb 3% 1% 2% 1% 2% 1%
lu_ncb 7% 2% 4% 1% 4% 1%
matrix_multiply 2% 1% 7% 2% 7% 2%
memcached-new 107% 21% 629% 27% 88% 17%
memcached-old 69% 18% 191% 37% 69% 18%
mysqld 103% 19% 87% 18% 87% 18%
p_raytrace 2% 1% 3% 1% 1% 0%
pca 204% 19% 778% 35% 204% 19%
pca_ll 16% 3% 1139% 44% 52% 14%
radiosity 36% 7% 577% 31% 39% 8%
radiosity_ll 169% 22% 4028% 62% 223% 28%
rocksdb 3% 1% 7% 2% 7% 2%
s_raytrace 3% 1% 2308% 49% 81% 20%
s_raytrace_ll 2% 1% 1941% 45% 189% 33%
sqlite 359% 35% 5657% 75% 395% 37%
ssl_proxy 793% 37% 2306% 51% 804% 38%
streamcluster 43% 11% 520% 65% 43% 11%
streamcluster_ll 60% 15% 613% 74% 98% 22%
string_match 1% 0% 8% 2% 8% 2%
swaptions 1% 0% 2% 0% 2% 0%
upscaledb 586% 30% 768% 39% 586% 30%
vips 2% 0% 636% 46% 9% 3%
volrend 11% 2% 44% 9% 19% 4%
water_nsquared 31% 7% 67% 13% 67% 13%
water_spatial 303% 31% 589% 38% 589% 38%
word_count 4% 1% 5% 1% 4% 1%
x264 1% 0% 1% 0% 1% 0%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 131

Table 74. For each application, energy-efficiency gain of the best vs. worst lock and relative standard deviation
(I-20 machine in energy-saving mode).

Gain
one

node

R.Dev.
one

node

Gain
max
nodes

R.Dev.
max
nodes

Gain
opt

nodes

R.Dev.
opt

nodes

barnes 5% 1% 7% 2% 7% 2%
blackscholes 1% 0% 1% 0% 1% 0%
bodytrack 7% 2% 2% 1% 2% 1%
canneal 1% 0% 2% 1% 2% 1%
dedup 489% 41% 1171% 46% 489% 41%
ferret 40% 9% 325% 61% 75% 18%
fmm 5% 1% 8% 2% 8% 2%
freqmine 8% 1% 1% 0% 1% 0%
histogram 8% 2% 30% 6% 8% 2%
kmeans 2% 0% 3% 1% 2% 0%
kyotocabinet 747% 32% 1684% 34% 747% 32%
linear_regression 10% 2% 102% 13% 24% 5%
lu_cb 1% 0% 1% 0% 1% 0%
lu_ncb 7% 2% 8% 1% 8% 1%
matrix_multiply 2% 0% 5% 1% 5% 1%
memcached-new 47% 9% 47% 9% 47% 9%
memcached-old 204% 25% 204% 25% 204% 25%
p_raytrace 4% 1% 3% 1% 2% 1%
pca 8% 2% 1314% 28% 18% 5%
pca_ll 6% 1% 1020% 29% 37% 8%
radiosity 19% 4% 406% 24% 20% 5%
radiosity_ll 16% 3% 4327% 42% 32% 8%
rocksdb 7% 1% 7% 2% 7% 2%
s_raytrace 4% 1% 2043% 28% 47% 10%
s_raytrace_ll 2% 0% 2581% 29% 32% 7%
sqlite 364% 34% 5444% 78% 364% 34%
streamcluster 25% 6% 118% 20% 25% 6%
streamcluster_ll 23% 7% 153% 24% 79% 19%
string_match 1% 0% 3% 1% 3% 1%
swaptions 1% 0% 1% 0% 1% 0%
upscaledb 661% 36% 1027% 37% 661% 36%
vips 1% 0% 66% 18% 49% 17%
volrend 15% 4% 39% 6% 15% 4%
water_nsquared 20% 5% 27% 7% 27% 7%
water_spatial 207% 26% 296% 30% 296% 30%
word_count 3% 1% 9% 2% 3% 1%
x264 3% 1% 2% 1% 2% 1%

132 R. Guerraoui et al.

Table 75. Number of tested applications and number of lock energy efficiency sensitive applications (all
machines).

I-48 I-20

tested applications 38 36
lock-sensitive applications 20 17
ratio 53% 47%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 133

B.2 Selection of the number of nodes

Table 76. For each (lock-sensitive application, lock) pair, energy-efficiency gain (in %) of opt nodes over max
nodes. The background color of a cell indicates the number of nodes for opt nodes: 1 2 3 4 . Dashes correspond
to untested cases. (I-48 machine in energy-saving mode).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-2

21
95

15
1
10
5

1k
90
0
32
3

86
66
5
10
1
22
6
11
9
10
4
11
3
11
5
15
4
10
7
10
3
36
8

83
11
0
10
8
10
2

4k
3k

90
11
3

fe
rr
et

44
1
39
7

6
40
0

39
6
40
6
37
8

39
5
42
8
46
1
41
5

39
3

39
9

39
5

36
2
27
1

6
5

ky
ot
oc
ab
in
et

68
70

10
5

60
20
0

84
73

73
33
5

67
65

69
87

34
73

34
5

74
94

65
88

83
75

25
5
23
2

88
77

96
10
2

lin
ea
r_
re
gr
es
si
on

16
70

46
6

9
58

44
15

5
11

11
6

m
em

ca
ch
ed
-n
ew

40
14

26
44

62
-

58
-

-
-

7
-

8
12

48
4

6
17

52
-

91
64

21
1
14
0

64
30

23
26

m
em

ca
ch
ed
-o
ld

78
50

15
2

97
96

-
69

-
-

-1
02

-1
83

18
5
14
7
13
9
21
3
16
7
17
6

-1
95

18
7
13
8
18
4
16
6
15
8
14
8
12
9

m
ys
ql
d

-
-

-
-

-
-

-
-

-
-

-
-

-
8

-
-

5
-

-
-

-
-

-
pc
a

31
40

19
18

94
37

27
46

24
7

40
28

37
35

30
40

23
2

39
36

47
54

49
57

36
7
30
6

89
76

88
86

pc
a_
ll

9
12

13
5

9
70
1

10
10

98
8
74
4

8
19

30
19

30
59

30
4
26
2

55
30

76
71

ra
di
os
ity

9
9

43
10

6
11

38
9

9
7

5
7
36
6

9
11

20
26

19
17

17
4
12
5

27
25

37
38

ra
di
os
ity

_l
l

32
47

47
3

45
13

41
1k

40
14

50
9

29
2k

37
49

70
10
4

58
38

72
8
59
5

98
99

19
6
19
9

s_
ra
yt
ra
ce

15
9
18
8

7
6

17
1k

20
15

15
23

16
1k

9
9

19
37

21
35

31
7
30
1

65
59

10
0
13
0

s_
ra
yt
ra
ce
_l
l

8
14

7
13

13
66
5

9
11

5
67
1

17
8
17
7

20
sq
lit
e

-
-

-
-2

56
-

-
-

-
-

-
-

-
-3

81
-
6k

75
-

63
47

-
-

-
-

-
-

ss
l_
pr
ox
y

86
12
1
10
1

71
47
4
12
2

99
96

35
1
10
7

82
93

89
50

12
3
36
6
12
1
12
5
12
4
16
2
10
7

76
55
2
47
8
11
0
12
5
16
9
17
7

st
re
am

cl
us
te
r

1k
57
3

2k
2k

2k
1k

59
5

-
-

-7
93

-
2k

2k
2k

2k
1k

2k
2k

42
7

2k
2k

2k
2k

2k
2k

1k
2k

st
re
am

cl
us
te
r_
ll

31
5

72
33
0
47
2
55
5
23
4

60
-

-
-1

26
-3

02
50
4
30
2
49
5
22
6
30
7
35
3

48
35
0
29
9
39
7
47
4
36
7
35
9
32
4
31
9

up
sc
al
ed
b

45
49

50
36

58
50

44
46

84
46

44
42

41
48

54
46

63
51

54
61

68
23
6
16
3

55
50

40
61

vi
ps

75
11
8

58
1

36
25
5
16
3

-
-

-1
65

-3
38

91
12
4

13
2

11
4

6
w
at
er
_n

sq
ua
re
d

w
at
er
_s
pa
tia

l

134 R. Guerraoui et al.

Table 77. For each (lock-sensitive application, lock) pair, energy-efficiency gain (in %) of opt nodes over max
nodes. The background color of a cell indicates the number of nodes for opt nodes: 1 2 . Dashes correspond to
untested cases. (I-20 machine in energy-saving mode).

A
pp

lic
at
io
ns

ahmcs

alock-ls

backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs

hticket-ls

malth_spin

malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread

pthreadadapt

spinlock

spinlock-ls

ticket

ticket-ls
ttas

ttas-ls

de
du

p
-
32
1

49
83

52
17
0
10
9

85
29

78
72

54
82

50
48

53
87

49
48

14
8

46
43

44
44

14
1
20
8
48

35
fe
rr
et

16
9
16
7

18
2

17
9
17
4
16
8

17
0
17
7
17
7
14
2

17
0

16
9

17
3

17
4
14
3

ky
ot
oc
ab
in
et

36
33

39
34

39
46

36
16
4

37
37

37
42

8
35

16
2

36
34

6
41

20
42

79
67

45
35

43
37

lin
ea
r_
re
gr
es
si
on

61
64

m
em

ca
ch
ed
-o
ld

-
-

-
-

-
-

pc
a

49
1k

1k
14

27
24

pc
a_
ll

15
4

49
0

73
0

ra
di
os
ity

18
32
3

6
28
4

12
10

16
23

74
27

12
14

11
ra
di
os
ity

_l
l

8
15
7

7
3k

8
10

4k
27

32
44

68
34
5
11
6

58
21

44
32

s_
ra
yt
ra
ce

28
1k

1k
s_
ra
yt
ra
ce
_l
l

63
2k

2k
sq
lit
e

-
-

-
-
40
9

-
-

-
-

-
-

-
-

21
-
45
2

-
7k

7
-

43
50

-
-

-
-

-
-

st
re
am

cl
us
te
r

82
46

13
0

46
60

54
64

-
-

-
53

-
10
3
11
3

98
10
4

95
10
6
13
0

58
12
7
17
8
12
4

86
11
3
13
2
93

87
st
re
am

cl
us
te
r_
ll

-
-

-
-

25
19

45
13

13
9

up
sc
al
ed
b

20
21

19
25

26
19

24
23

72
20

17
19

17
19

51
18

25
23

45
35

19
15

17
25

vi
ps

11
7

-
-

-
5

-
w
at
er
_s
pa
tia

l

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 135

B.3 Are some locks always among the best?

Table 78. For each lock, fraction of the lock-sensitive applications for which the lock yields the best energy-
efficiency for three configurations: one node, max nodes and opt nodes (I-48 machine in energy-saving
mode).

Number of nodes

Locks one node max nodes opt nodes

ahmcs 56% 17% 50%
alock-ls 53% 16% 32%
backoff 68% 21% 37%
c-bo-mcs_spin 68% 37% 53%
c-bo-mcs_stp 57% 14% 24%
c-ptl-tkt 76% 24% 59%
c-tkt-tkt 79% 21% 53%
clh_spin 43% 7% 14%
clh_stp 29% 7% 7%
clh-ls 43% 0% 21%
hmcs 74% 37% 58%
hticket-ls 71% 21% 43%
malth_spin 53% 11% 16%
malth_stp 43% 33% 24%
mcs_spin 58% 11% 37%
mcs_stp 33% 19% 19%
mcs-ls 58% 11% 37%
mcs-timepub 43% 10% 24%
mutexee 38% 19% 24%
partitioned 65% 24% 29%
pthread 38% 24% 24%
pthreadadapt 43% 19% 29%
spinlock 42% 16% 21%
spinlock-ls 53% 16% 32%
ticket 53% 11% 21%
ticket-ls 53% 11% 21%
ttas 53% 21% 26%
ttas-ls 37% 5% 11%

136 R. Guerraoui et al.

Table 79. For each lock, fraction of the lock-sensitive applications for which the lock yields the best energy-
efficiency for three configurations: one node, max nodes and opt nodes (I-20 machine in energy-saving
mode).

Number of nodes

Locks one node max nodes opt nodes

ahmcs 60% 40% 53%
alock-ls 50% 44% 38%
backoff 69% 44% 50%
c-bo-mcs_spin 75% 50% 62%
c-bo-mcs_stp 53% 18% 24%
c-ptl-tkt 73% 53% 67%
c-tkt-tkt 81% 56% 69%
clh_spin 50% 33% 33%
clh_stp 33% 8% 8%
clh-ls 50% 33% 33%
hmcs 69% 50% 56%
hticket-ls 83% 58% 75%
malth_spin 56% 38% 38%
malth_stp 53% 53% 47%
mcs_spin 62% 44% 44%
mcs_stp 53% 18% 18%
mcs-ls 56% 44% 44%
mcs-timepub 59% 47% 53%
mutexee 59% 47% 47%
partitioned 80% 47% 60%
pthread 59% 24% 24%
pthreadadapt 59% 47% 53%
spinlock 62% 38% 38%
spinlock-ls 69% 44% 50%
ticket 69% 31% 38%
ticket-ls 69% 44% 56%
ttas 81% 44% 56%
ttas-ls 56% 31% 31%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 137

B.4 Is there a clear hierarchy between locks?

Table 80. For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive
applications for which lock A is more energy-efficient by at least 5% than B (I-48 machine in energy-saving
mode).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 33 44 17 61 25 28 46 77 38 22 23 61 61 50 72 50 50 67 50 67 61 67 61 67 61 61 61 51
alock-ls 28 37 11 42 12 5 57 93 57 11 7 47 47 21 68 21 47 63 41 63 58 63 58 68 47 47 58 44
backoff 33 42 26 58 29 16 50 93 50 32 29 63 58 32 68 42 47 47 41 63 58 58 42 63 63 47 68 49
c-bo-mcs_spin 28 47 42 53 24 11 64 93 64 21 21 63 63 42 74 42 58 74 41 68 63 63 58 58 58 63 79 53
c-bo-mcs_stp 28 37 26 5 6 5 43 86 50 21 7 47 43 37 67 32 43 43 18 48 43 53 47 47 42 53 68 39
c-ptl-tkt 19 53 53 18 59 6 79 93 71 12 29 65 71 47 76 41 59 71 47 71 65 65 65 65 65 65 82 56
c-tkt-tkt 28 53 47 16 63 18 71 93 71 26 14 74 68 47 79 53 58 74 53 68 63 63 58 68 63 68 84 57
clh_spin 15 0 14 7 43 7 0 71 0 0 0 43 43 0 71 0 21 57 21 57 57 64 57 50 36 43 50 31
clh_stp 23 7 7 7 0 7 7 7 7 7 7 7 0 7 7 7 7 0 7 0 0 7 7 7 7 7 7 6
clh-ls 15 0 14 7 43 7 0 7 71 0 0 36 43 0 71 0 29 57 14 57 57 64 57 57 29 36 36 30
hmcs 17 47 53 21 47 18 16 79 93 71 29 63 58 42 68 42 53 68 41 63 63 68 58 68 63 58 79 54
hticket-ls 23 57 29 14 57 7 0 57 93 57 7 57 71 29 71 21 43 71 57 71 64 64 64 71 64 64 86 51
malth_spin 22 21 11 5 32 0 0 29 93 29 11 0 21 5 58 5 26 37 6 42 37 53 47 53 21 21 53 27
malth_stp 28 32 16 11 33 12 11 29 93 29 21 7 16 16 62 16 29 29 12 29 38 53 53 37 21 21 37 29
mcs_spin 17 21 37 16 42 6 0 57 93 50 11 14 47 53 53 16 53 68 41 58 63 53 47 63 53 47 58 42
mcs_stp 17 21 16 11 5 6 5 29 29 29 16 7 21 14 11 26 24 14 6 5 14 11 5 21 21 5 21 15
mcs-ls 17 16 21 11 42 6 0 57 93 57 11 7 47 47 5 53 42 53 35 53 53 53 47 74 47 42 63 39
mcs-timepub 22 21 16 11 33 6 5 36 93 36 16 7 32 33 11 52 16 48 24 48 52 53 47 53 42 26 47 33
mutexee 33 32 5 21 33 18 11 29 93 29 26 21 42 33 21 67 26 33 12 29 29 47 37 53 32 16 37 32
partitioned 19 18 29 6 47 18 0 29 93 29 18 7 41 47 18 76 18 24 59 59 65 65 65 59 35 41 65 39
pthread 28 32 16 16 29 18 11 29 93 29 26 14 37 24 21 67 32 33 14 12 19 53 26 42 26 21 32 30
pthreadadapt 28 32 11 16 29 18 11 29 86 29 26 14 32 19 21 62 21 29 14 12 19 42 37 47 21 16 32 28
spinlock 22 26 11 16 26 12 5 29 71 29 21 14 37 21 16 47 32 26 26 6 16 26 0 21 21 5 21 22
spinlock-ls 22 32 21 26 37 12 11 29 79 29 32 21 37 32 21 63 32 26 32 12 32 37 53 26 26 16 26 30
ticket 17 21 11 11 37 6 5 21 93 21 16 7 11 16 11 63 11 11 26 0 26 21 47 32 5 5 32 22
ticket-ls 22 21 11 5 37 12 0 21 93 21 16 7 16 21 11 63 11 32 26 0 42 37 47 47 42 16 37 26
ttas 28 32 16 21 42 18 11 29 93 29 26 21 37 32 26 74 37 42 32 12 37 47 58 42 53 26 37 35
ttas-ls 28 21 16 11 32 12 11 29 86 29 16 7 26 26 16 58 32 21 32 12 37 47 47 37 53 26 0 28

average 23 29 23 13 39 12 7 40 86 38 17 13 41 39 22 63 25 36 45 23 45 46 53 45 51 38 34 50 23

138 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 21. For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-
sensitive applications for which lock A is more energy-efficient at least 5% better than B (I-48 machine in
energy-saving move).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 139

Table 81. For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive
applications for which lock A is more energy-efficient by at least 5% than B (I-20 machine in energy-saving
mode).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 27 33 13 67 14 7 27 73 27 13 0 40 27 20 67 33 33 53 29 47 47 53 27 33 33 20 33 33
alock-ls 20 31 12 69 13 6 25 92 33 12 0 31 19 6 56 6 12 50 13 44 44 50 19 25 12 12 19 27
backoff 33 38 31 56 27 19 50 83 42 31 17 31 19 31 50 31 19 31 20 38 25 25 19 31 25 12 25 32
c-bo-mcs_spin 20 38 31 62 13 6 58 92 50 19 8 31 31 31 62 25 25 44 20 50 44 50 38 44 25 25 50 37
c-bo-mcs_stp 27 25 12 12 20 12 33 58 33 19 8 19 12 19 29 19 12 24 13 18 18 19 12 25 19 12 25 21
c-ptl-tkt 14 40 40 7 67 0 50 92 58 7 8 47 40 27 73 33 33 40 20 53 33 47 40 40 27 33 53 38
c-tkt-tkt 20 38 31 12 75 13 58 92 50 12 8 44 38 25 69 25 31 50 20 56 44 50 44 44 31 25 50 39
clh_spin 9 0 25 0 58 0 0 67 0 0 0 17 0 0 58 0 8 42 8 42 33 33 17 8 0 8 17 17
clh_stp 18 8 8 8 0 8 8 8 8 8 8 8 0 8 8 8 8 0 8 0 0 8 8 8 8 8 8 7
clh-ls 9 0 25 0 58 0 0 0 67 0 0 8 0 0 58 0 0 42 8 42 33 33 17 8 0 8 17 16
hmcs 20 31 31 6 62 13 0 58 92 50 0 31 31 19 62 19 25 44 20 50 44 50 38 44 31 25 50 35
hticket-ls 18 50 33 8 75 0 0 50 92 50 8 33 25 17 67 17 33 42 25 42 33 42 25 33 25 25 58 34
malth_spin 20 25 19 6 50 13 6 25 92 25 19 0 6 6 50 6 6 50 7 38 44 38 12 12 12 0 25 23
malth_stp 27 31 19 12 47 20 12 42 92 42 19 8 19 19 53 19 18 35 27 29 29 31 19 31 31 19 25 29
mcs_spin 13 31 31 6 56 13 6 33 92 33 19 0 25 25 56 0 25 50 20 38 44 50 25 25 25 12 44 30
mcs_stp 27 25 12 12 6 20 12 33 33 33 19 8 19 6 12 12 12 24 13 12 18 19 6 25 25 6 19 17
mcs-ls 13 25 31 6 56 13 6 33 92 42 19 0 19 25 0 56 19 50 20 38 44 50 25 31 25 12 44 29
mcs-timepub 27 31 31 12 47 20 12 33 92 33 25 8 12 12 12 53 12 53 13 41 47 50 12 25 25 6 31 29
mutexee 27 31 6 19 47 20 12 33 75 33 19 17 19 12 19 47 19 12 13 12 0 12 6 12 12 6 25 21
partitioned 29 27 33 20 67 13 13 25 92 25 20 8 27 27 20 67 20 20 47 47 40 40 27 20 13 7 40 31
pthread 27 25 12 25 59 27 12 33 75 33 19 17 31 12 25 53 31 18 18 13 12 25 6 25 25 6 19 25
pthreadadapt 27 31 6 19 53 20 12 33 75 33 19 17 19 12 19 53 19 12 12 13 18 19 6 12 12 6 25 22
spinlock 27 25 6 19 50 13 12 33 83 33 19 17 19 12 19 50 19 6 38 13 38 19 0 12 12 0 12 22
spinlock-ls 27 31 25 25 62 27 12 33 92 33 25 17 31 19 25 62 25 12 44 13 38 31 31 25 25 0 12 30
ticket 13 19 19 12 56 13 6 25 92 25 19 8 12 12 6 56 6 12 31 7 38 19 25 12 0 0 12 21
ticket-ls 13 25 19 12 56 7 6 25 92 25 19 8 12 19 6 56 6 12 44 13 44 31 38 25 12 6 31 25
ttas 27 31 25 25 62 27 12 33 92 33 25 17 31 19 25 69 31 19 50 13 50 44 44 6 25 25 25 33
ttas-ls 27 19 19 12 50 20 12 33 83 33 19 8 19 12 19 50 19 6 44 13 31 38 31 6 31 25 0 25

average 21 27 23 13 55 15 8 34 83 34 17 8 24 17 16 55 17 17 39 16 37 32 36 18 25 20 11 29 21

140 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 22. For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-
sensitive applications for which lock A is more energy-efficient at least 5% better than B (I-20 machine in
energy-saving move).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 141

Table 82. For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of lock-
sensitive applications for which lock A is more energy-efficient by at least 5% than B (I-48 machine in
energy-saving mode).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 50 56 39 72 38 22 69 77 69 11 38 61 44 67 78 67 61 67 69 67 67 78 78 72 67 67 67 60
alock-ls 44 32 32 74 24 26 57 86 57 32 14 58 47 26 74 21 53 74 65 74 74 74 74 74 68 63 68 54
backoff 33 42 26 79 24 21 57 93 57 26 21 58 47 37 74 37 42 74 71 63 68 74 68 89 79 53 74 55
c-bo-mcs_spin 50 47 58 68 47 32 71 93 79 32 50 68 63 42 74 47 63 68 65 74 74 74 74 74 74 53 79 63
c-bo-mcs_stp 28 26 11 16 18 16 29 93 29 21 14 21 24 16 76 21 19 14 18 19 14 63 74 37 32 16 37 30
c-ptl-tkt 31 47 35 29 71 6 79 86 79 6 21 59 53 41 71 35 65 71 59 71 71 71 71 76 76 71 82 57
c-tkt-tkt 44 58 53 26 74 53 86 93 93 26 29 74 53 58 74 58 68 68 59 74 74 74 74 74 74 68 79 64
clh_spin 31 0 21 7 71 7 7 71 14 7 14 43 36 7 71 7 43 57 57 71 57 71 71 79 64 57 71 41
clh_stp 23 14 7 7 0 14 7 14 14 7 7 7 0 7 7 7 7 0 7 0 0 7 7 14 14 7 7 8
clh-ls 23 0 21 0 71 7 0 0 71 7 14 43 29 0 71 7 36 64 71 64 57 71 71 64 57 57 64 39
hmcs 44 63 63 37 63 65 32 86 93 93 57 68 53 68 74 68 68 63 65 74 68 74 74 74 74 68 84 67
hticket-ls 31 64 36 0 71 36 7 71 93 79 0 57 50 43 71 50 50 71 71 71 71 71 71 79 79 71 93 58
malth_spin 22 26 11 16 53 6 11 43 93 50 11 7 26 16 68 21 42 47 53 58 58 58 68 74 58 47 74 41
malth_stp 33 47 26 26 62 35 26 57 93 57 26 29 32 32 62 37 48 38 59 43 43 63 63 63 53 53 68 47
mcs_spin 28 26 26 21 74 18 21 64 93 50 21 21 53 42 68 32 53 68 71 68 68 68 68 74 63 42 68 51
mcs_stp 22 26 5 16 10 18 16 29 29 29 16 14 16 14 11 21 24 5 18 5 5 5 5 21 21 5 21 16
mcs-ls 22 21 26 26 68 18 16 57 93 50 16 29 53 37 21 68 42 58 59 68 63 68 63 63 58 53 74 48
mcs-timepub 28 26 21 21 67 18 16 43 93 43 16 21 42 29 11 62 26 57 59 57 62 68 68 63 63 37 58 43
mutexee 33 26 5 21 67 18 16 29 93 29 26 21 26 33 16 76 21 29 24 29 14 63 68 63 53 42 58 37
partitioned 31 24 18 18 71 29 24 21 93 21 29 7 29 29 12 71 18 24 47 47 47 71 71 65 53 53 76 41
pthread 28 26 21 16 57 18 16 29 93 29 21 14 32 29 16 76 21 24 14 24 19 79 79 58 37 37 47 35
pthreadadapt 33 26 11 16 62 18 16 29 93 29 21 14 32 19 16 76 21 24 29 35 33 74 74 58 58 37 53 37
spinlock 22 26 0 21 21 18 16 29 93 29 21 14 26 21 16 74 21 16 5 18 5 5 11 32 32 0 16 22
spinlock-ls 22 26 5 21 21 18 16 29 93 29 21 21 26 26 21 74 21 16 5 18 5 5 53 26 21 0 16 24
ticket 22 11 0 5 47 12 11 14 86 21 21 7 11 16 0 58 16 5 16 12 26 26 58 58 0 11 47 23
ticket-ls 28 26 0 16 58 12 16 21 86 29 21 7 16 16 16 63 26 21 21 29 26 26 58 58 74 42 58 32
ttas 33 26 11 21 74 18 21 29 93 29 26 21 37 26 16 74 26 32 37 29 32 42 74 74 53 37 32 38
ttas-ls 28 16 11 11 63 18 16 29 93 29 16 7 26 21 11 68 21 11 32 18 32 37 68 68 37 32 0 30

average 30 30 22 19 59 23 17 43 87 45 19 20 40 33 24 69 29 36 43 44 47 45 64 63 60 52 41 58 30

142 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 23. For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of lock-
sensitive applications for which lock A is more energy-efficient at least 5% better than B (I-48 machine in
energy-saving move).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 143

Table 83. For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of lock-
sensitive applications for which lock A is more energy-efficient by at least 5% than B (I-20 machine in
energy-saving mode).

ah
m
cs

al
oc
k-
ls

ba
ck
off

c-
bo

-m
cs
_s
pi
n

c-
bo

-m
cs
_s
tp

c-
pt
l-t
kt

c-
tk
t-
tk
t

cl
h_

sp
in

cl
h_

st
p

cl
h-
ls

hm
cs

ht
ic
ke
t-
ls

m
al
th
_s
pi
n

m
al
th
_s
tp

m
cs
_s
pi
n

m
cs
_s
tp

m
cs
-ls

m
cs
-t
im

ep
ub

m
ut
ex
ee

pa
rt
iti
on

ed
pt
hr
ea
d

pt
hr
ea
da
da
pt

sp
in
lo
ck

sp
in
lo
ck
-ls

tic
ke
t

tic
ke
t-
ls

tta
s

tta
s-
ls

av
er
ag
e

ahmcs 27 40 7 67 7 13 27 82 27 20 0 27 27 27 80 33 33 53 29 53 53 60 33 33 27 20 40 35
alock-ls 27 38 25 75 20 12 25 83 33 25 0 31 25 12 75 12 25 50 27 56 50 56 38 31 19 31 44 35
backoff 33 38 25 69 20 25 50 92 42 25 17 31 12 31 69 31 19 44 40 50 50 56 38 56 44 25 38 40
c-bo-mcs_spin 27 38 50 75 20 12 58 92 50 12 17 31 38 38 75 31 31 50 27 62 50 56 50 50 38 38 56 43
c-bo-mcs_stp 27 25 19 19 20 12 25 92 25 19 8 31 12 25 71 31 24 12 20 12 12 31 25 25 31 19 31 26
c-ptl-tkt 14 33 47 0 60 13 50 92 58 0 0 47 33 20 73 27 33 53 27 60 47 53 47 47 40 47 60 40
c-tkt-tkt 27 25 44 12 75 27 50 92 33 19 0 38 38 19 75 25 31 56 33 69 50 56 56 56 31 31 50 41
clh_spin 9 8 25 0 75 0 0 75 0 0 0 17 8 0 75 0 8 42 17 42 42 50 33 17 8 17 25 22
clh_stp 18 17 8 8 0 8 8 17 17 8 8 8 0 8 17 8 8 0 8 0 0 8 8 8 8 8 8 8
clh-ls 9 8 33 8 67 0 0 0 75 0 0 17 8 0 75 0 8 42 25 42 42 50 33 17 8 17 25 23
hmcs 27 31 44 6 75 13 19 50 92 50 0 44 38 25 75 25 31 50 27 62 50 50 50 50 44 38 56 42
hticket-ls 18 50 42 8 75 8 8 50 92 50 8 50 25 8 75 25 33 50 42 50 42 50 33 50 33 33 58 40
malth_spin 20 19 25 6 62 13 6 33 92 25 19 0 6 6 62 6 6 56 27 44 50 56 25 38 31 12 38 29
malth_stp 40 38 31 31 71 33 25 50 92 50 31 25 31 25 65 31 29 41 40 47 53 56 31 56 50 31 44 43
mcs_spin 13 31 44 12 62 13 6 33 92 42 19 0 44 31 62 6 38 56 40 56 50 56 31 38 38 19 44 36
mcs_stp 20 25 19 19 6 20 12 25 25 25 19 8 25 6 12 19 12 18 20 18 12 19 6 31 31 6 19 18
mcs-ls 13 25 38 6 62 13 6 33 92 42 19 0 31 38 0 62 19 56 33 56 50 56 31 38 25 19 44 34
mcs-timepub 27 31 38 19 59 20 12 42 92 33 25 8 38 24 12 59 19 53 40 53 47 62 31 44 38 25 38 37
mutexee 20 25 6 19 71 20 19 25 92 25 19 17 19 12 19 65 19 18 20 29 41 38 25 25 19 6 25 27
partitioned 21 13 33 33 73 27 13 17 92 17 20 0 20 20 13 73 20 13 40 53 47 53 47 33 20 20 47 33
pthread 20 25 6 19 65 20 19 25 92 25 19 17 19 6 19 65 19 18 12 20 29 50 19 31 31 6 19 26
pthreadadapt 20 25 6 19 65 20 19 25 92 25 19 17 19 6 19 71 19 18 12 20 18 31 19 19 19 6 19 25
spinlock 20 25 6 19 50 20 19 25 92 25 19 17 19 12 19 69 19 6 31 20 25 25 0 19 19 0 12 23
spinlock-ls 20 25 25 19 62 20 19 25 92 25 25 17 31 25 31 81 31 19 38 20 44 31 56 31 31 0 12 32
ticket 7 19 19 12 56 13 6 17 92 17 19 0 12 6 0 62 6 12 44 13 38 44 50 31 6 0 19 23
ticket-ls 20 25 19 12 62 13 12 42 92 33 19 8 12 12 6 62 6 12 50 40 50 50 44 38 38 25 38 31
ttas 20 25 31 19 62 20 19 25 92 25 25 17 31 25 31 81 31 25 44 27 56 50 56 25 44 31 25 36
ttas-ls 20 19 25 12 56 13 12 25 92 25 19 8 31 19 25 75 25 12 50 20 50 44 56 25 38 25 12 31

average 21 26 28 15 61 16 13 32 87 31 17 8 28 19 17 69 19 20 41 27 44 41 49 31 36 28 19 35 21

144 R. Guerraoui et al.

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

25%

50%

75%

Score

Fig. 24. For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of lock-
sensitive applications for which lock A is more energy-efficient at least 5% better than B (I-20 machine in
energy-saving move).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 145

B.5 Are all locks potentially harmful?

146 R. Guerraoui et al.

Table 84. For each lock-sensitive application, at max nodes, energy efficiency gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the energy efficiency gain is greater than 15%. A line with many gray cells corresponds to
an application whose energy efficiency is hurt by many locks. A column with many gray cells corresponds to
a lock that has lower energy-efficiency than many other locks. Dashes correspond to untested cases. (I-48
machine in energy-saving mode).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-7

33
5
12
0

87
66
6
45
2

2k
60
3

3k
10
3
16
1

81
74

77
75

10
9

95
8
15
6

0
11

12
9

2k
2k

1
38
9

fe
rr
et

53
9
48
6

13
50
1

0
53
1
49
9
46
5

0
48
5
52
1
56
9
55
7

0
48
0

0
49
0

10
0
48
2

0
0

12
11

47
9
33
9

11
12

ky
ot
oc
ab
in
et

14
36

33
0
11
9

32
17

33
96
7

33
18

17
52

14
35

95
2

33
68

98
56

11
4

86
36
3
28
5

66
43

58
64

lin
ea
r_
re
gr
es
si
on

15
2

0
3
11
6

2
1

4
17
1

10
3

0
3

11
10

19
2

49
14

7
23

10
9

64
50

15
15

8
10

m
em

ca
ch
ed
-n
ew

73
39

8
32

63
-

46
-

-
-

64
-

22
0

33
62
9

43
39

49
-

73
57

18
3

98
33

23
39

40
m
em

ca
ch
ed
-o
ld

6
0

87
30

27
-

10
-

-
-

38
-1

70
16
9

92
88

17
3
15
1
16
1

-1
90

18
6

88
78

16
3
15
9

85
85

m
ys
ql
d

-
-

-
-

0
-

-
-

-
-

-
-

-
25

-
46

-
87

28
-

28
30

-
-

-
-

-
-

pc
a

11
18

14
0

97
16

7
24

77
7

19
7

17
12

11
17

74
1

16
18

43
30

53
42

31
2
24
8

66
51

58
58

pc
a_
ll

2
9

42
4
25
4

0
1

14
1k

13
1

1
17

12
3

8
1k

8
23

68
28

79
12
4
48
7
34
9

70
39

90
84

ra
di
os
ity

15
17

14
3

50
9

6
27

57
6

24
0

6
13

16
9
54
2

12
16

31
31

37
28

23
3
16
2

46
36

52
59

ra
di
os
ity

_l
l

0
58

94
7
52
7

48
20

80
4k

80
0

24
11
7

75
53

4k
64

94
18
1
15
8
23
7
14
4

2k
1k

32
7
22
3
38
7
37
9

s_
ra
yt
ra
ce

5
17

11
23

38
7

6
8

25
2k

28
0

21
43

10
0

16
2k

10
15

57
63

60
91

63
8
60
7
14
6

97
15
7
22
1

s_
ra
yt
ra
ce
_l
l

1
8

35
18

54
9

15
23

2k
22

0
33

78
70

7
2k

8
24

46
42

48
53

63
4
62
7
13
9

73
13
8
21
5

sq
lit
e

-
-

-
-1

47
-

-
-

-
-

-
-

-
0

-
2k

-
6k

87
-

94
61

-
-

-
-

-
-

ss
l_
pr
ox
y

8
51

22
0
33
6

44
24

54
2k

54
5

24
62

66
60

2k
49

78
12
7
10
1
13
4

90
1k

69
2
18
3
13
0
18
5
18
0

st
re
am

cl
us
te
r

14
6

20
32
5
24
5
34
8
14
3

25
-

-
-

63
-3

40
52
0
25
1
40
3
22
4
27
4
35
1

0
28
8
30
0
35
7
39
8
41
7
38
5
24
5
24
4

st
re
am

cl
us
te
r_
ll

16
7

4
34
9
28
4
38
8
14
1

10
-

-
-

66
-3

73
61
3
27
7
46
5
24
9
28
1
39
4

0
30
9
33
4
39
0
41
7
46
1
43
7
27
3
27
7

up
sc
al
ed
b

19
43

48
13

12
7

24
18

45
76
7

44
19

18
34

0
47

76
6

42
73

15
8

57
16
3
17
0
37
1
24
6

59
48

48
83

vi
ps

89
13
6

0
63
6

48
28
3
18
4

-
-

-1
88

-3
73

1
10
7

4
14
2

3
0
15
3

0
0

3
3
13
1

14
0

1
w
at
er
_n

sq
ua
re
d

66
24

2
1

1
1

1
45

44
46

1
2

1
1

1
0

1
4

0
0

1
1

0
0

2
0

0
23

w
at
er
_s
pa
tia

l
58
8
20
9

0
5

5
1

2
40
0
39
9
39
6

7
5

5
5

4
4

4
6

0
1

0
0

0
0

1
0

0
20
4

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 147

Table 85. For each lock-sensitive application, at opt nodes, energy efficiency gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the energy efficiency gain is greater than 15%. A line with many gray cells corresponds to
an application whose energy efficiency is hurt by many locks. A column with many gray cells corresponds to
a lock that has lower energy-efficiency than many other locks. Dashes correspond to untested cases. (I-48
machine in energy-efficiency mode).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp
mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-3

86
1
64

71
12

3
61
8
60
9
60
7
89

50
55

59
56

53
54

77
0

2
2

0
1

1
2

4
0
33
1

fe
rr
et

18
17

6
20

0
27

18
18

0
18

17
19

27
0
17

0
18

6
0
17

0
0

7
7

25
18

5
6

ky
ot
oc
ab
in
et

8
27

4
0
17

15
9

22
29
2

27
15

11
30

36
24

27
7
22

39
92

33
87

70
10
9

85
41

29
29

30
lin

ea
r_
re
gr
es
si
on

0
3

0
1
27

1
1

3
86

4
2

0
4

7
2

85
4
14

8
7

7
4

48
35

15
8

7
9

m
em

ca
ch
ed
-n
ew

52
49

4
12

22
-1

3
-

-
-8

7
-3

8
9
62

52
65

46
20

-
10

17
11

1
0
15

38
36

m
em

ca
ch
ed
-o
ld

0
11

25
11

9
-1

0
-

-
-1

5
-6

0
58

30
32

46
58

58
-

65
67

33
5

66
68

25
36

m
ys
ql
d

-
-

-
-

0
-

-
-

-
-

-
-

-2
3

-
35

-8
7

24
-

23
23

-
-

-
-

-
-

pc
a

1
1
15

1
21

2
1

1
20
3

2
0

2
0

2
1
20
4

0
4

16
1

22
8

5
2

5
2

1
2

pc
a_
ll

1
1
27

5
51

0
0

5
48

3
0

0
7
13

1
47

1
4

30
8

38
42

46
24

10
8

8
8

ra
di
os
ity

15
8

5
0

5
0

0
15

39
15

0
1

6
10

2
38

3
4

10
3

15
10

22
16

15
10

11
15

ra
di
os
ity

_l
l

0
21

33
5
10

3
7

29
22
3

29
0
10

46
61

20
15
5
21

31
66

27
11
4
78

12
5

85
11
7
63

66
61

s_
ra
yt
ra
ce

2
2

6
14

69
0

2
8

81
7

0
6
25

63
0

77
1

6
32

19
33

42
77

76
50

25
29

39
s_
ra
yt
ra
ce
_l
l

2
18

29
21

69
5
11

34
18
6

34
0
30

85
86

14
18
9
18

36
60

55
62

67
18
8
18
7
16
1
90

15
9
18
6

sq
lit
e

-
-

-
-

0
-

-
-

-
-

-
-

-4
3

-3
95

-3
7

53
-

71
58

-
-

-
-

-
-

ss
l_
pr
ox
y

0
18

5
1
31

12
9

36
80
3

29
0
11

48
91

24
79
4
17

37
76

33
96

87
32
2
13
7
13
4
77

83
75

st
re
am

cl
us
te
r

5
0
22

1
4

1
0

-
-

-
1

-3
0
34

12
15

33
28

21
5

12
32

21
14

42
39

20
17

st
re
am

cl
us
te
r_
ll

6
0
72

10
22

19
13

-
-

-2
1

-9
3
94

54
56

76
54

79
11

49
79

62
48

97
92

45
48

up
sc
al
ed
b

0
17

20
1
75

1
0

20
47
3

21
0

1
15

21
21

58
6
18

29
10
8
24

99
95

70
60

25
20

28
38

vi
ps

8
8

0
8

9
7

7
-

-
-

8
-

7
1

8
4

8
3

0
9

0
0

3
3

8
8

0
1

w
at
er
_n

sq
ua
re
d

66
24

2
1

1
1

1
45

44
46

1
2

1
1

1
0

1
4

0
0

1
1

0
0

2
0

0
23

w
at
er
_s
pa
tia

l
58
8
20
9

0
5

5
1

2
40
0
39
9
39
6

7
5

5
5

4
4

4
6

0
1

0
0

0
0

1
0

0
20
4

148 R. Guerraoui et al.

Table 86. For each lock-sensitive application, at max nodes, energy efficiency gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the energy efficiency gain is greater than 15%. A line with many gray cells corresponds to
an application whose energy efficiency is hurt by many locks. A column with many gray cells corresponds to
a lock that has lower energy-efficiency than many other locks. Dashes correspond to untested cases (I-20
machine in energy-saving mode).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls

de
du

p
-
1k

3
92

59
10
1

50
63
6
41
5
61
7

99
53

85
51

52
55

89
62

1
78

0
0

2
1

66
11
8

2
25
2

fe
rr
et

30
5
29
2
22

31
3

0
30
3
30
7
29
6

0
29
1
30
2
30
0
32
4

0
29
4

0
29
3
11

0
29
2

0
0

18
18

29
5
25
4
18

17
ky

ot
oc
ab
in
et

11
19

12
6
27
4

14
24

22
2k

27
17

13
36

0
19

2k
19

29
64

38
76

47
11
8

77
46

25
39

27
lin

ea
r_
re
gr
es
si
on

3
2

0
0

13
2

0
6
10
0

4
0

2
4

2
5
10
1

3
3

3
3

6
3

12
5

5
4

2
3

m
em

ca
ch
ed
-o
ld

5
7

0
7
20
4

-
4

-
-

-
16

-
6
30

4
92

7
9
13
4

-1
31

47
22

10
4

3
5

7
pc
a

3
3
16

2
75

0
0

3
1k

5
0

2
4

8
3

1k
2

4
17

2
25

41
37

7
8

2
5

11
pc
a_
ll

1
2

8
2
24
6

0
1

1
70
9

1
2

1
2

3
2

1k
2

2
7

1
14

3
0

0
0

0
1

1
ra
di
os
ity

18
11

8
1

24
0

1
18

40
6

21
1

1
10

12
2
30
6

4
4

16
15

22
28

86
33

19
8
19

22
ra
di
os
ity

_l
l

4
13

31
0
21
2

3
3

26
4k

23
2

6
29

34
7

4k
11

18
63

57
89

11
4
43
8
15
4

88
41

69
54

s_
ra
yt
ra
ce

1
1

1
3

84
0

0
2

2k
1

1
1

2
4

1
2k

1
1

3
1

6
4

1
0

0
0

0
1

s_
ra
yt
ra
ce
_l
l

2
2

4
4
11
4

3
2

2
3k

2
2

2
3

2
2

3k
2

3
5

2
5

1
0

1
2

2
1

2
sq
lit
e

-
-

-
-3

12
-

-
-

-
-

-
-

-2
4

-
2k

-5
k

0
-

41
43

-
-

-
-

-
-

st
re
am

cl
us
te
r

22
0
58

6
16

18
12

-
-

-
5

-
46

47
39

43
39

46
83

1
53

11
8

78
27

67
75

28
29

st
re
am

cl
us
te
r_
ll

33
0
71

11
27

28
11

-
-

-
12

-
64

70
53

54
58

58
11
8

5
72

15
2

95
43

93
95

36
41

up
sc
al
ed
b

21
30

46
22

39
9

19
26

34
1k

30
18

20
26

0
30

1k
29

40
17
6

38
18
3
19
2

73
56

32
25

31
45

vi
ps

34
47

2
65

0
58

48
-

-
-

56
-

22
0

36
0

35
1

0
43

0
0

2
1

31
32

1
1

w
at
er
_s
pa
tia

l
29
6
10
4

0
3

2
0

0
19
8
19
7
19
7

3
2

2
2

2
2

2
2

0
0

0
0

0
0

0
0

0
10
1

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 149

Table 87. For each lock-sensitive application, at opt nodes, energy efficiency gain, (in %) obtained by the best
lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts
the application, i.e., the energy efficiency gain is greater than 15%. A line with many gray cells corresponds to
an application whose energy efficiency is hurt by many locks. A column with many gray cells corresponds to
a lock that has lower energy-efficiency than many other locks. Dashes correspond to untested cases. (I-20
machine in energy-efficiency mode).

A
pp

lic
at
io
ns

ahmcs
alock-ls
backoff

c-bo-mcs_spin
c-bo-mcs_stp

c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs

hticket-ls
malth_spin
malth_stp
mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread
pthreadadapt

spinlock
spinlock-ls

ticket
ticket-ls

ttas
ttas-ls
de
du

p
-3

40
1
53

53
8

4
48
0
48
1
48
8
69

45
48

47
50

48
48

59
0

4
0

2
3

2
0

3
1
28
2

fe
rr
et

50
46

22
46

0
44

48
48

0
44

45
44

75
0
46

0
46

11
0
44

0
0
18

18
44

45
18

17
ky

ot
oc
ab
in
et

3
13

1
0
37
0

4
6

13
74
7

16
7

3
21

16
10

74
5
10

21
93

23
84

29
53

33
26

16
22

17
lin

ea
r_
re
gr
es
si
on

3
2

0
0

13
2

0
6

24
4

0
2

4
2

5
23

3
3

3
3

6
3
12

5
5

4
2

3
m
em

ca
ch
ed
-o
ld

5
7

0
7
20
4

-
4

-
-

-1
6

-
6
30

4
92

7
9
13
4

-1
31

47
22

10
4

3
5

7
pc
a

3
3
16

2
17

0
0

3
16

5
0

2
4

8
3

14
2

4
12

2
10

11
11

7
8

2
5

11
pc
a_
ll

1
2

8
2

36
0

1
1

37
1

2
1

2
3

2
34

2
2

7
1

14
3

0
0

0
0

1
1

ra
di
os
ity

18
10

6
1

5
0

1
16

19
16

1
1

5
6

2
5

4
4

3
4

5
4

6
5

6
4

4
10

ra
di
os
ity

_l
l

4
13

21
0

21
3

3
18

29
19

2
6
19

22
7

18
11

18
28

19
31

27
20

17
19

17
17

17
s_
ra
yt
ra
ce

1
1

1
3

44
0

0
2

47
1

1
1

2
4

1
43

1
1

3
1

6
4

1
0

0
0

0
1

s_
ra
yt
ra
ce
_l
l

2
2

4
4

31
3

2
2

32
2

2
2

3
2

2
31

2
3

5
2

5
1

0
1

2
2

1
2

sq
lit
e

-
-

-
-

3
-

-
-

-
-

-
-

-3
0

-3
63

-
0

19
-

26
21

-
-

-
-

-
-

st
re
am

cl
us
te
r

5
7

8
14

13
20

7
-

-
-

8
-1

3
8

9
10

11
11

24
0

6
23

24
8
23

18
4

8
st
re
am

cl
us
te
r_
ll

33
0
70

11
27

28
11

-
-

-1
2

-6
4
64

53
54

58
58

74
5

44
74

72
43

71
78

36
41

up
sc
al
ed
b

3
10

25
0
30
5

3
3

11
56
7

10
3

3
10

2
12

66
0
11

14
18
2
14

18
9
19
5
22

18
13

10
14

19
vi
ps

34
47

2
48

0
48

48
-

-
-4

8
-2

2
0
36

0
35

1
0
43

0
0

2
1
31

32
1

1
w
at
er
_s
pa
tia

l
29
6
10
4

0
3

2
0

0
19
8
19
7
19
7

3
2

2
2

2
2

2
2

0
0

0
0

0
0

0
0

0
10
1

150 R. Guerraoui et al.

B.6 Impact of the number of nodes.

Table 88. For each lock-sensitive application, percentage of pairwise changes in the lock energy-efficiency
hierarchy when changing the number of nodes (I-48 machine in energy-saving mode).

% of pairwise changes between configurations

Applications 1/2 2/3 3/4 1/2/3/4

dedup 7% 21% 19% 41%
ferret 19% 66% 8% 84%
kyotocabinet 16% 5% 5% 22%
linear_regression 26% 24% 38% 72%
memcached-new 59% 29% 0% 70%
memcached-old 14% 14% 0% 23%
mysqld 5% 0% 0% 5%
pca 49% 13% 13% 62%
pca_ll 47% 31% 15% 85%
radiosity 24% 14% 10% 43%
radiosity_ll 25% 7% 10% 33%
s_raytrace 69% 19% 12% 95%
s_raytrace_ll 84% 17% 10% 97%
sqlite 19% 33% 19% 57%
ssl_proxy 15% 6% 6% 21%
streamcluster 22% 22% 28% 48%
streamcluster_ll 20% 21% 25% 42%
upscaledb 12% 7% 3% 17%
vips 0% 0% 78% 78%
water_nsquared 0% 0% 0% 0%
water_spatial 3% 4% 8% 12%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 151

Table 89. For each lock-sensitive application, percentage of pairwise changes in the lock energy-efficiency
hierarchy when changing the number of nodes (I-20 machine in energy-saving mode).

% of pairwise changes between configurations

Applications 1/2

dedup 29%
ferret 17%
kyotocabinet 15%
linear_regression 17%
memcached-old 0%
pca 55%
pca_ll 32%
radiosity 63%
radiosity_ll 69%
s_raytrace 22%
s_raytrace_ll 21%
sqlite 62%
streamcluster 50%
streamcluster_ll 39%
upscaledb 17%
vips 70%
water_spatial 0%

152 R. Guerraoui et al.

B.7 Impact of the machine.

Table 90. Considering energy efficiency and performance, at max nodes and opt nodes, percentage of pairwise
changes in the lock performance hierarchy.

I-48 I-20
energy efficiency energy efficiency

vs. vs.
nodes performance performance

Max 12% 10%
Opt 14% 12%

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 153

C POLY

■▰◀◐

◠

◰□▱◁◑
◡◱▢▲◂◒◢◲▣△◃◓

◣◳
▤▴◄◔

■
▰

◀
◐

◠
□◡

▢
▲

◂

◒

◢◲▣
◃
◓

◣
◳

▤ ▴
◄◔

■▰◀
◐

◠

◰□
▱

◁

◑

◡
◱▢▲ ◂

◒

◢◲
▣△◃◓

◣
◳

▤▴◄◔

■

▰
◀

◐

◠

◰
□

▱

◁

◑

◡
◱

▢▲ ◂

◒

◢
◲

▣△◃
◓

◣◳

▤
▴

◄◔

■▰
◀

◐

◠

◰□
▱

◁

◑
◡◱▢

▲
◂

◒
◢◲

▣
△

◃◓
◣◳▤
▴◄◔

■

▰

◀◐◠◰□

▱◁◑

◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄

◔

▰

◀

◐◠

◰□▱
◁

◑

◡
◱

▢▲◂◒
◢◲

▣

△

◃
◓◣◳

▤▴

◄

◔

■▰

◀

◐◠
□

◡

▢▲
◂◒

◢◲▣◃◓

◣◳

▤▴
◄◔

■

▰
◀

◐

◠

◰
□

▱

◁

◑

◡

◱

▢
▲

◂

◒

◢
◲

▣△
◃
◓

◣◳
▤
▴

◄◔

■

▰

◀◐◠

◰

□
◡

▢
▲
◂

◒
◢◲▣

△

◃◓◣◳▤▴
◄◔

■

▰

◀◐◠◰□

▱◁◑

◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄

◔

■▰

◀

◐

◠

◰□▱

◁

◑◡◱▢

▲

◂

◒

◢

◲
▣

△

◃◓
◣◳

▤▴

◄◔

◠

▲
◒

◲

▣◃◓

■
▰◀◐

◠

◰□
▱

◁

◑

◡

◱
▢

▲

◂

◒

◢◲

▣△◃
◓

◣◳

▤
▴

◄
◔

■

▰

◀◐◠

◰

□

◡

▢
▲
◂
◒
◢◲▣

△

◃◓◣◳▤▴
◄◔

■
▰◀

◐

◠

◰
□

▱

◁

◑
◡◱

▢

▲
◂

◒

◢
◲

▣
△

◃
◓

◣◳

▤
▴

◄◔

■▰◀
◐

◠

◰
□

▱

◁

◑
◡
◱▢▲ ◂

◒

◢◲
▣
△

◃◓

◣◳

▤▴◄◔

■▰

◀
◐

◠

◰□▱

◁

◑

◡

◱

▢▲

◂

◒

◢
◲

▣△◃◓

◣◳

▤
▴

◄
◔

■
▰◀

◐

◠

◰□
▱

◁

◑
◡◱

▢

▲

◂

◒

◢
◲

▣

△

◃◓
◣
◳

▤ ▴◄
◔

■
▰◀◐

◠

◰□▱

◁

◑
◡◱▢

▲ ◂

◒

◢

◲▣△
◃◓

◣◳

▤▴◄◔

■
▰

◀

◐

◠

◰□
▱

◁

◑
◡◱

▢

▲

◂

◒

◢
◲

▣

△

◃
◓

◣◳

▤
▴

◄◔

◠

▲

◒◲

▣◃
◓

■
▰

◀

◐

◠

◰
□◡

▢

▲

◂

◒

◢

◲▣

△

◃◓◣◳

▤

▴
◄◔

water_spatial

volrend water_nsquared

ssl_proxy streamcluster streamcluster_ll upscaledb vips

radiosity radiosity_ll s_raytrace s_raytrace_ll sqlite

memcached-new memcached-old mysqld pca pca_ll

bodytrack dedup ferret kyotocabinet linear_regression

50% 100%

50% 100%

50% 100% 50% 100% 50% 100%

50%

100%

50%

100%

50%

100%

50%

100%

50%

100%

50%

100%

Normalized Throughput

N
or

m
al

iz
ed

 T
P

P

L o c k a lg o rith m

■

▰

◀

◐

◠

◰

□

▱

◁

◑

◡

◱

▢

▲

◂

◒

◢

◲

▣

△

◃

◓

◣

◳

▤

▴

◄

◔

ahmcs

alock-ls

backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs

hticket-ls

malth_spin

malth_stp

mcs_spin

mcs_stp

mcs-ls

mcs-timepub

mutexee

partitioned

pthread

pthreadadapt

spinlock

spinlock-ls

ticket

ticket-ls

ttas

ttas-ls

Fig. 25. Correlation of throughput with energy efficiency (TPP) on various lock-sensitive applications at max
nodes for the different lock algorithms (I-48 machine).

154 R. Guerraoui et al.

▰

◀

◐◠

◰□

▱◁◑

◡
◱▢▲◂◒◢◲

▣△◃◓◣◳▤▴◄

◔

■▰
◀

◐

◠

□
◡

▢

▲

◂

◒

◢◲

▣◃

◓

◣
◳
▤▴◄◔

■▰◀◐◠◰□▱◁◑◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■
▰

◀

◐

◠

◰□
▱

◁

◑
◡◱

▢▲ ◂

◒

◢◲

▣

△

◃◓

◣◳
▤▴◄◔

■
▰
◀◐◠◰□

▱◁◑

◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄
◔

■▰

◀

◐

◠
◰□▱

◁

◑◡◱

▢

▲

◂

◒

◢

◲▣

△

◃◓◣◳
▤▴

◄◔

■▰◀◐◠
◰□▱◁◑
◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■▰◀◐◠◰□▱◁◑◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■▰◀◐◠◰□◡▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■

▰

◀◐◠◰□

▱◁◑

◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄

◔

■
▰
◀◐

◠

◰□
▱

◁

◑
◡◱

▢▲
◂

◒

◢
◲

▣

△

◃

◓
◣

◳▤
▴◄◔

■▰◀◐◠◰□▱◁◑◡◱▢▲◂◒◢◲▣△◃
◓◣◳▤▴◄◔

◠

▲

◒

◲

▣
◃◓

■▰◀◐◠
◰□▱

◁
◑◡◱▢▲◂

◒
◢◲▣△◃◓◣◳▤▴◄◔

■
▰◀
◐◠◰□

▱◁◑
◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■▰◀
◐◠◰
□◡

▢▲◂◒◢◲
▣

△
◃

◓◣

◳
▤▴

◄◔

■
▰
◀

◐◠
□

◡

▢
▲

◂◒◢◲
▣◃◓

◣◳
▤▴◄◔

■▰◀◐◠◰
□▱

◁
◑◡◱▢▲
◂◒◢◲

▣
△

◃◓
◣◳▤▴◄◔

■
▰

◀

◐
◠◰
□◡

▢▲◂◒◢◲▣

△◃

◓◣
◳

▤▴

◄◔

water_nsquared water_spatial

upscaledb vips

s_raytrace s_raytrace_ll sqlite streamcluster streamcluster_ll

memcached-old pca pca_ll radiosity radiosity_ll

dedup ferret kyotocabinet linear_regression memcached-new

50% 100% 50% 100%

50% 100% 50% 100% 50% 100%

50%

100%

50%

100%

50%

100%

50%

100%

50%

100%

Normalized Throughput

N
or

m
al

iz
ed

 T
P

P

L o c k a lg o rith m

■

▰

◀

◐

◠

◰

□

▱

◁

◑

◡

◱

▢

▲

◂

◒

◢

◲

▣

△

◃

◓

◣

◳

▤

▴

◄

◔

ahmcs

alock-ls

backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs

hticket-ls

malth_spin

malth_stp

mcs_spin

mcs_stp

mcs-ls

mcs-timepub

mutexee

partitioned

pthread

pthreadadapt

spinlock

spinlock-ls

ticket

ticket-ls

ttas

ttas-ls

Fig. 26. Correlation of performance (throughput) with energy efficiency (TPP) on various lock-sensitive
applications at one node for the different lock algorithms (I-20 machine).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 155

▰

◀

◐
◠

◰

□

▱
◁
◑

◡
◱

▢
▲◂◒

◢
◲

▣

△

◃◓◣◳

▤

▴

◄

◔

■▰
◀

◐

◠

□
◡
▢

▲

◂

◒

◢◲

▣◃

◓

◣
◳
▤▴◄◔

■▰◀◐

◠

◰□▱

◁

◑◡◱▢▲◂

◒

◢◲▣△◃◓◣◳▤
▴◄◔

■
▰

◀
◐

◠

◰□▱

◁

◑
◡◱▢

▲

◂

◒

◢
◲

▣

△

◃◓

◣
◳

▤▴◄
◔

■
▰

◀◐◠◰□

▱◁◑

◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄
◔

■▰

◀

◐

◠

◰□▱

◁

◑◡◱▢

▲

◂

◒

◢

◲
▣

△

◃◓

◣◳

▤▴

◄◔

■▰
◀
◐

◠

◰□▱

◁

◑
◡◱▢▲◂

◒

◢◲
▣

△

◃
◓◣

◳▤
▴◄◔

■▰◀◐

◠

◰□▱

◁

◑◡◱▢▲◂

◒

◢◲▣△◃◓◣◳▤▴◄◔

■
▰

◀

◐

◠

◰□◡

▢

▲

◂

◒

◢

◲▣

△

◃◓◣◳

▤▴

◄◔

■

▰

◀◐◠◰□

▱◁◑

◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄

◔

■
▰
◀◐

◠

◰
□▱

◁

◑
◡◱

▢

▲

◂

◒

◢
◲

▣
△

◃
◓

◣
◳

▤
▴

◄
◔

■▰
◀◐

◠

◰□▱

◁

◑◡◱▢▲◂

◒

◢◲▣
△

◃
◓◣◳▤▴◄◔

◠

▲

◒◲

▣

◃◓

■▰◀◐

◠
◰□▱

◁

◑
◡◱▢▲◂

◒

◢◲▣△◃◓◣
◳▤▴◄◔

■
▰◀
◐

◠

◰□

▱

◁

◑

◡◱
▢▲
◂

◒

◢◲
▣△◃◓

◣

◳
▤
▴

◄◔

■

▰

◀

◐
◠◰□
◡

▢▲◂◒◢◲

▣

△

◃

◓
◣

◳

▤▴

◄◔

■
▰
◀

◐◠
□

◡

▢
▲

◂◒◢◲
▣◃◓

◣◳
▤▴◄◔

■
▰

◀

◐

◠

◰□

▱

◁

◑

◡◱

▢▲

◂

◒

◢◲

▣△
◃

◓

◣

◳
▤

▴
◄
◔

■

▰

◀

◐

◠◰
□◡

▢▲
◂◒◢◲

▣

△

◃

◓
◣

◳

▤▴

◄◔

water_nsquared water_spatial

upscaledb vips

s_raytrace s_raytrace_ll sqlite streamcluster streamcluster_ll

memcached-old pca pca_ll radiosity radiosity_ll

dedup ferret kyotocabinet linear_regression memcached-new

50% 100% 50% 100%

50% 100% 50% 100% 50% 100%

50%

100%

50%

100%

50%

100%

50%

100%

50%

100%

Normalized Throughput

N
or

m
al

iz
ed

 T
P

P

L o c k a lg o rith m

■

▰

◀

◐

◠

◰

□

▱

◁

◑

◡

◱

▢

▲

◂

◒

◢

◲

▣

△

◃

◓

◣

◳

▤

▴

◄

◔

ahmcs

alock-ls

backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs

hticket-ls

malth_spin

malth_stp

mcs_spin

mcs_stp

mcs-ls

mcs-timepub

mutexee

partitioned

pthread

pthreadadapt

spinlock

spinlock-ls

ticket

ticket-ls

ttas

ttas-ls

Fig. 27. Correlation of performance (throughput) with energy efficiency (TPP) on various lock-sensitive
applications at max nodes for the different lock algorithms (I-20 machine).

156 R. Guerraoui et al.

D STUDY OF LOCK TAIL LATENCY

ex
e=

30
3%

ex
e=

29
0%

0.
17

m
s

●
●

●●
● ● ●●

●

● ●
●●

●
●●

●

●

●

●
● ●

●
●

●
●

1.
59

m
s

●

●

●

●● ●
●

●●
●

●● ●●
●●

●

●●●● ●

18
0.

81
m

s

●●
●

●

●
●

●

1.
86

m
s

●●
●●●

● ●●

●

● ●●
● ●●

●

● ●

●

●

●●

●●●●
● ●

3.
94

m
s

●
●

●
●

●

● ●● ●
●

● ●●

●
●

●
●● ●●● ●

20
8.

8m
s

●

●●

●

● ●●

95
6.

93
m

s

●●
●

● ●●● ●
●

● ●● ● ●
● ●● ●

●
●

●

●●● ●● ● ●

upscaledb

sqlite ssl_proxy

memcached−old mysqld

kyotocabinet memcached−new

clh
_s

pin

pa
rti

tio
ne

d

alo
ck

−ls

clh
−ls

m
cs

−ls

m
cs

−t
im

ep
ub

m
cs

_s
pin

tic
ke

t−
ls
tic

ke
t

c−
bo

−m
cs

_s
tp

c−
bo

−m
cs

_s
pin

clh
_s

tp

m
cs

_s
tp

c−
pt

l−t
kt

tta
s

m
alt

h_
sp

in

tta
s−

ls

sp
inl

oc
k−

ls

sp
inl

oc
k

ba
ck

of
f

m
alt

h_
stp

ht
ick

et
−ls

c−
tkt

−t
kt

hm
cs

ah
m

cs

pt
hr

ea
da

da
pt

pt
hr

ea
d

m
ut

ex
ee

m
cs

−t
im

ep
ub

m
cs

_s
tp

m
alt

h_
stp

c−
bo

−m
cs

_s
tp

pt
hr

ea
da

da
pt

m
ut

ex
ee

pt
hr

ea
d

ba
ck

of
f

tic
ke

t−
ls

sp
inl

oc
k−

ls
tic

ke
t

c−
tkt

−t
kt

ht
ick

et
−ls

m
cs

_s
pin

pa
rti

tio
ne

d
tta

s

m
cs

−ls

m
cs

_s
tp

tta
s−

ls

clh
−ls

alo
ck

−ls
hm

cs

c−
pt

l−t
kt

clh
_s

pin

sp
inl

oc
k

c−
bo

−m
cs

_s
pin

pt
hr

ea
da

da
pt

m
cs

−t
im

ep
ub

m
alt

h_
sp

in

m
alt

h_
stp

c−
bo

−m
cs

_s
tp

m
ut

ex
ee

clh
_s

tp

pt
hr

ea
d

ah
m

cs

tta
s

tic
ke

t−
ls

tta
s−

ls

m
cs

−ls
tic

ke
t

c−
bo

−m
cs

_s
tp

m
alt

h_
stp

alo
ck

−ls

c−
bo

−m
cs

_s
pin

m
cs

_s
tp

c−
tkt

−t
kt

hm
cs

m
ut

ex
ee

pt
hr

ea
da

da
pt

m
cs

−t
im

ep
ub

sp
inl

oc
k−

ls

pt
hr

ea
d

ba
ck

of
f

m
cs

_s
pin

sp
inl

oc
k

ah
m

cs

m
alt

h_
sp

in

m
ut

ex
ee

pt
hr

ea
da

da
pt

c−
bo

−m
cs

_s
tp

m
cs

_s
tp

m
alt

h_
stp

m
cs

−t
im

ep
ub

pt
hr

ea
d

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

ba
ck

of
f

pa
rti

tio
ne

d

m
cs

_s
pin

tic
ke

t−
ls

clh
_s

pin

m
cs

−t
im

ep
ub

m
cs

−ls

alo
ck

−ls

clh
−ls
tic

ke
t

c−
pt

l−t
kt

c−
tkt

−t
kt

ah
m

cs
hm

cs

ht
ick

et
−ls

tta
s−

ls

m
alt

h_
stp

m
alt

h_
sp

in
tta

s

sp
inl

oc
k

sp
inl

oc
k−

ls

pt
hr

ea
d

m
cs

_s
tp

pt
hr

ea
da

da
pt

clh
_s

tp

m
ut

ex
ee

sp
inl

oc
k−

ls
tta

s

tic
ke

t−
ls

tta
s−

ls

m
cs

_s
pin

sp
inl

oc
k
tic

ke
t

c−
tkt

−t
kt

ah
m

cs

m
alt

h_
sp

in

m
cs

−t
im

ep
ub

m
cs

_s
tp
hm

cs

pt
hr

ea
da

da
pt

m
cs

−ls

m
alt

h_
stp

alo
ck

−ls

m
ut

ex
ee

pt
hr

ea
d

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

N
or

m
al

iz
ed

 9
9t

h
la

te
nc

y
w

.r.
t.

pt
hr

ea
d

● Execution time
Legend

Tail latency

Fig. 28. For each server application, the bars represent the normalized 99th tail latency (w.r.t. Pthread) and
the dots the execution time (lower is better) normalized (w.r.t. Pthread) of each lock algorithm (A-64 at one
node).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 157

la
t=

45
8%

la

t=
42

8%

la
t=

36
5%

ex
e=

39
5%

ex
e=

31
9%

5.
43

m
s

●
● ●

●

●

● ●●

●

●
● ●

●● ●

●

● ●

●

●

●

●

●

●

●

●

16
.6

3m
s

●

●●

● ● ●●

●●

●
●

●

●

●

●●

●

●

● ●

●
●

la
t=

36
6%

ex

e=
55

7%

69
7.

6m
s

●

●

●

●

●●

●

la
t=

32
2%

la

t=
35

5%

la
t=

49
0%

la
t=

26
2%

ex

e=
25

7%

4.
88

m
s

●● ●
●

●

● ●●

●

● ● ●●● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

la
t=

34
6%

la
t=

40
1%

la
t=

45
9%

la
t=

58
3%

la
t=

60
9%

la
t=

50
9%

la
t=

30
4%

la
t=

22
1%

la
t=

70
2%

la
t=

71
6%

la
t=

75
9%

ex
e=

45
0%

ex
e=

32
5%

ex
e=

52
6%

ex
e=

41
5%

6.
92

m
s●

●
●

●

●●

●

●

●●●

●

●

●
●

●

●

●

la
t=

26
2%

la
t=

47
4%

la
t=

38
6%

20
.2

2m
s

●

●●

●

●●●

ex
e=

35
2%

ex
e=

23
7%

83
07

3.
43

m
s

●●● ●

●

● ● ●

●

●● ● ● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

upscaledb

sqlite ssl_proxy

memcached−old mysqld

kyotocabinet memcached−new

c−
bo

−m
cs

_s
pin

m
alt

h_
stp

m
alt

h_
sp

in

clh
_s

pin

alo
ck

−ls

clh
−ls

m
cs

_s
pin

m
cs

−ls

pa
rti

tio
ne

d

m
cs

−t
im

ep
ub

c−
bo

−m
cs

_s
tp

tic
ke

t−
ls
tic

ke
t

clh
_s

tp

m
cs

_s
tp
hm

cs

ah
m

cs

c−
pt

l−t
kt

c−
tkt

−t
kt

pt
hr

ea
d

ht
ick

et
−ls

ba
ck

of
f

pt
hr

ea
da

da
pt

m
ut

ex
ee

tta
s−

ls

sp
inl

oc
k

sp
inl

oc
k−

ls
tta

s

m
alt

h_
stp

pt
hr

ea
da

da
pt

pt
hr

ea
d

m
ut

ex
ee

m
cs

_s
tp

c−
bo

−m
cs

_s
tp

m
cs

−t
im

ep
ub

m
cs

_s
pin
hm

cs

c−
pt

l−t
kt

m
cs

−t
im

ep
ub

ba
ck

of
f

alo
ck

−ls

clh
−ls

c−
tkt

−t
kt

m
cs

−ls

ht
ick

et
−ls

clh
_s

pin

m
alt

h_
sp

in

m
alt

h_
stp

ah
m

cs

pa
rti

tio
ne

d

c−
bo

−m
cs

_s
pin

tic
ke

t−
ls

pt
hr

ea
da

da
pt
tic

ke
t

pt
hr

ea
d

tta
s−

ls

m
ut

ex
ee

sp
inl

oc
k−

ls

c−
bo

−m
cs

_s
tp tta

s

clh
_s

tp

m
cs

_s
tp

sp
inl

oc
k

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp
hm

cs

c−
tkt

−t
kt

sp
inl

oc
k−

ls

ba
ck

of
f

m
ut

ex
ee

m
cs

−t
im

ep
ub

m
cs

_s
pin

m
cs

_s
tp

alo
ck

−ls tta
s

tta
s−

ls

pt
hr

ea
da

da
pt

pt
hr

ea
d

m
alt

h_
stp

m
alt

h_
sp

in

m
cs

−ls

ah
m

cs
tic

ke
t

tic
ke

t−
ls

sp
inl

oc
k

pt
hr

ea
da

da
pt

pt
hr

ea
d

m
ut

ex
ee

m
cs

_s
tp

c−
bo

−m
cs

_s
tp

m
cs

−t
im

ep
ub

m
alt

h_
stp

c−
bo

−m
cs

_s
pin

m
alt

h_
stp

m
alt

h_
sp

in

c−
bo

−m
cs

_s
tp

m
cs

_s
pin

clh
_s

pin

m
cs

−ls

alo
ck

−ls

clh
−ls

pa
rti

tio
ne

d

m
cs

−t
im

ep
ub

tic
ke

t−
ls

ba
ck

of
f
tic

ke
t

ah
m

cs
hm

cs

c−
pt

l−t
kt

c−
tkt

−t
kt

ht
ick

et
−ls

m
cs

_s
tp

clh
_s

tp

tta
s−

ls

pt
hr

ea
d

m
ut

ex
ee

pt
hr

ea
da

da
pt tta

s

sp
inl

oc
k−

ls

sp
inl

oc
k

ah
m

cs

alo
ck

−ls

m
cs

−t
im

ep
ub

hm
cs

m
ut

ex
ee

pt
hr

ea
d

m
cs

−ls

tta
s−

ls

c−
tkt

−t
kt

tic
ke

t−
ls
tic

ke
t

pt
hr

ea
da

da
pt

m
cs

_s
tp

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

m
cs

_s
pin

m
alt

h_
sp

in

m
alt

h_
stp

sp
inl

oc
k

sp
inl

oc
k−

ls
tta

s

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

N
or

m
al

iz
ed

 9
9t

h
la

te
nc

y
w

.r.
t.

pt
hr

ea
d

● Execution time
Legend

Tail latency

Fig. 29. For each server application, the bars represent the normalized 99th tail latency (w.r.t. Pthread) and
the dots the execution time (lower is better) normalized (w.r.t. Pthread) of each lock algorithm (A-64 at max
nodes).

158 R. Guerraoui et al.

0.
00

81
m

s

● ●
●

●●
● ● ●

●

●
● ●

● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ●

1.
99

44
m

s

● ●

●

●
●

●
●●●

●
●● ● ●●

●●● ●● ●
●

0.
02

32
m

s

● ●●● ●● ● ●
●

●●● ● ●● ● ● ●
● ●●● ●● ●●● ●

10
.8

66
2m

s

● ●
●

●●
●

●
●●● ● ● ●●● ●●●● ●● ●

56
0.

63
9m

s

●●● ●● ● ●●
●

● ●●● ●●●● ●●●●● ●●●● ● ●

upscaledb

memcached−old ssl_proxy

kyotocabinet memcached−new

m
ut

ex
ee

sp
inl

oc
k−

ls

m
cs

_s
pin

pt
hr

ea
da

da
pt tta

s

ht
ick

et
−ls

tic
ke

t−
ls

c−
pt

l−t
kt

c−
tkt

−t
kt

m
cs

_s
tp

pt
hr

ea
d

tta
s−

ls

pa
rti

tio
ne

d
hm

cs

clh
−ls
tic

ke
t

ah
m

cs

m
cs

−ls

sp
inl

oc
k

m
alt

h_
sp

in

c−
bo

−m
cs

_s
pin

ba
ck

of
f

alo
ck

−ls

c−
bo

−m
cs

_s
tp

clh
_s

pin

m
cs

−t
im

ep
ub

m
alt

h_
stp

clh
_s

tp

tic
ke

t−
ls

ba
ck

of
f

pt
hr

ea
d

sp
inl

oc
k−

ls
tta

s
tic

ke
t

tta
s−

ls

m
cs

_s
pin

m
alt

h_
stp

sp
inl

oc
k

m
alt

h_
sp

in

m
cs

−ls

m
cs

−t
im

ep
ub

ah
m

cs
hm

cs

m
cs

_s
tp

m
ut

ex
ee

c−
bo

−m
cs

_s
pin

alo
ck

−ls

c−
bo

−m
cs

_s
tp

pt
hr

ea
da

da
pt

c−
tkt

−t
kt

ba
ck

of
f

tic
ke

t−
ls

pt
hr

ea
da

da
pt
tic

ke
t

c−
bo

−m
cs

_s
tp

pt
hr

ea
d

sp
inl

oc
k−

ls
tta

s

m
cs

−ls

m
alt

h_
sp

in

sp
inl

oc
k

pa
rti

tio
ne

d

m
cs

_s
tp

alo
ck

−ls

ht
ick

et
−ls

tta
s−

ls

m
ut

ex
ee

ah
m

cs

clh
_s

pin

m
cs

_s
pin

c−
bo

−m
cs

_s
pin

m
alt

h_
stp

c−
pt

l−t
kt

clh
−ls
hm

cs

c−
tkt

−t
kt

clh
_s

tp

m
cs

−t
im

ep
ub

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin
clh

−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

c−
bo

−m
cs

_s
tp

c−
bo

−m
cs

_s
pin
hm

cs

ht
ick

et
−ls

clh
_s

tp
tic

ke
t

sp
inl

oc
k−

ls
tta

s

tic
ke

t−
ls

ba
ck

of
f

tta
s−

ls

m
cs

_s
pin

pt
hr

ea
d

sp
inl

oc
k

m
cs

_s
tp

m
alt

h_
stp

pt
hr

ea
da

da
pt

c−
tkt

−t
kt

m
cs

−ls

m
ut

ex
ee

m
alt

h_
sp

in

ah
m

cs

m
cs

−t
im

ep
ub

alo
ck

−ls

c−
bo

−m
cs

_s
tp

c−
bo

−m
cs

_s
pin

hm
cs

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

N
or

m
al

iz
ed

 9
9t

h
la

te
nc

y
w

.r.
t.

pt
hr

ea
d

● Execution time
Legend

Tail latency

Fig. 30. For each server application, the bars represent the normalized 99th tail latency (w.r.t. Pthread) and
the dots the execution time (lower is better) normalized (w.r.t. Pthread) of each lock algorithm (A-64 single
threaded).

Lock – Unlock: Is That All? A Pragmatic Analysis of Locking In Software Systems 159

Received July 2017; revised March 2018; accepted October 2018

	Abstract
	1 Introduction
	2 Lock algorithms
	2.1 Background
	2.2 Studied algorithms

	3 Methodology
	3.1 Testbed and studied applications
	3.2 Tuning and experimental methodology

	4 LiTL: A Library for Transparent Lock interposition
	4.1 Design
	4.2 Implementation
	4.3 Lookup overhead
	4.4 Experimental validation

	5 Study of lock throughput
	5.1 Preliminary observations
	5.2 Main questions
	5.3 Additional observations
	5.4 Effects of the lock choice on application performance

	6 Study of lock energy efficiency
	6.1 Energy-efficiency lock behavior
	6.2 POLY

	7 Study of lock tail latency
	7.1 How does tail latency behave when locks suffer from high levels of contention?
	7.2 Do fair lock algorithms improve the application tail latency?
	7.3 Do lock tail latencies affect application throughput?
	7.4 Implications

	8 Analysis of lock/application behavior
	8.1 Summary of the lock/application behavior analysis
	8.2 Guidelines for lock algorithms selection

	9 Related work
	9.1 Lock algorithm implementations
	9.2 Adaptive algorithms
	9.3 Studies of synchronization algorithms
	9.4 Energy efficiency
	9.5 Lock-related performance bottlenecks

	10 Conclusion
	Acknowledgments
	References
	A Study of lock performance
	A.1 Selection of lock sensitive application
	A.2 Selection of the number of nodes
	A.3 Are some locks always among the best?
	A.4 Is there a clear hierarchy between locks?
	A.5 Are all locks potentially harmful?
	A.6 Impact of the number of nodes.
	A.7 Impact of the machine.

	B Study of lock energy efficiency
	B.1 Selection of lock sensitive application
	B.2 Selection of the number of nodes
	B.3 Are some locks always among the best?
	B.4 Is there a clear hierarchy between locks?
	B.5 Are all locks potentially harmful?
	B.6 Impact of the number of nodes.
	B.7 Impact of the machine.

	C POLY
	D Study of lock tail latency

