Rachid Guerraoui
email: rachid.guerraoui@epfl.ch

Renaud Lachaize
email: renaud.lachaize@univ-grenoble-alpes.fr

Lock -Unlock: Is That All? A Pragmatic Analysis of Locking in Software Systems

Keywords: CCS Concepts:, Software and its engineering → Mutual exclusion Multicore, synchronization, locks, performance bottleneck, lock interface

A plethora of optimized mutex lock algorithms have been designed over the past 25 years to mitigate performance bottlenecks related to critical sections and locks. Unfortunately, there is currently no broad study of the behavior of these optimized lock algorithms on realistic applications that consider different performance metrics, such as energy efficiency and tail latency. In this paper, we perform a thorough and practical analysis of synchronization, with the goal of providing software developers with enough information to design fast, scalable and energy-efficient synchronization in their systems. First, we perform a performance study of 28 state-of-the-art mutex lock algorithms, on 40 applications, on four different multicore machines. We not only consider throughput (traditionally the main performance metric), but also energy efficiency and tail latency, which are becoming increasingly important. Second, we present an in-depth analysis in which we summarize our findings for all the studied applications. In particular, we describe nine different lock-related performance bottlenecks, and propose six guidelines helping software developers with their choice of a lock algorithm according to the different lock properties and the application characteristics.

From our detailed analysis, we make a number of observations regarding locking algorithms and application behaviors, several of which have not been previously discovered: (i) applications not only stress the lock/unlock interface, but also the full locking API (e.g., trylocks, condition variables), (ii) the memory footprint of a lock can directly affect the application performance, (iii) for many applications, the interaction between locks and scheduling is an important application performance factor, (iv) lock tail latencies may or may not affect application tail latency, (v) no single lock is systematically the best, (vi) choosing the best lock is difficult, and (vii) energy efficiency and throughput go hand in hand in the context of lock algorithms. These findings highlight that locking involves more considerations than the simple "lock -unlock" interface and call for further research on designing low-memory footprint adaptive locks that fully and efficiently support the full lock interface, and consider all performance metrics.

INTRODUCTION

Multicore machines are pervasive today but it is not always easy to leverage them. Many multithreaded applications suffer from bottlenecks related to critical sections and their corresponding locks [5, 8, 9, 15, 25, 27, 32, 42, 52, 56, 60, 63, 67-70, 76, 83, 91]. Over the past 25 years, a plethora of optimized mutual exclusion (mutex) lock algorithms have been designed to mitigate these issues [8, 20, 21, 24, 27, 29-32, 36, 37, 39, 46, 47, 55, 59, 65, 66, 70, 74, 77, 79, 81, 98]. Application and library developers can choose from this large set of algorithms for implementing efficient synchronization in their software. However, there is currently no complete study to guide this puzzling choice for realistic applications.

In particular, the most recent and comprehensive empirical performance evaluation on multicore synchronization [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF], due to its breadth (from hardware protocols to high-level data structures), only provides a partial coverage of locking algorithms. Indeed, the aforementioned study only considers nine algorithms, does not consider hybrid spinning/blocking waiting policies, omits emerging approaches (e.g., load-control mechanisms described in Section 2.1) and provides a modest coverage of hierarchical locks [START_REF] Chabbi | High performance locks for multi-level NUMA systems[END_REF][START_REF] Chabbi | Contention-conscious, locality-preserving locks[END_REF][START_REF] Dice | Lock Cohorting: A General Technique for Designing NUMA Locks[END_REF], a recent and efficient approach for NUMA architectures. Generally, most of the observations highlighted in the existing literature are based on microbenchmarks and only consider the lock/unlock interface, ignoring other lock-related operations such as condition variables and trylocks. Besides, in the case of papers that present a new lock algorithm, the empirical observations are often focused on the specific workload characteristics for which the actual lock was designed [START_REF] Johnson | Decoupling contention management from scheduling[END_REF][START_REF] Lozi | Fast and Portable Locking for Multicore Architectures[END_REF], or mostly based on microbenchmarks [START_REF] Dice | Malthusian Locks[END_REF][START_REF] Dice | Lock Cohorting: A General Technique for Designing NUMA Locks[END_REF]. Finally, existing analyses focus on traditional performance metrics (mainly throughput) and do not cover other metrics, such as energy efficiency and tail latency, which are becoming increasingly important. In this paper, we perform a thorough and practical analysis of synchronization, with the goal of providing software developers with enough information to design fast, scalable and energy-efficient synchronization in their systems.

The first contribution of this paper is a broad performance study (Sections 5, 6 and 7) on Linux/x86 (i.e., the Linux operating system running on AMD/Intel x86 64-bit processors) of 28 state-of-the-art mutual exclusion lock algorithms on a set of 40 realistic and diverse applications: PARSEC, Phoenix, SPLASH2 benchmark suites, MySQL, Kyoto Cabinet, Memcached, RocksDB, SQLite, upscaledb and an SSL proxy. Among these 40 applications, we determine that performance varies according to the choice of a lock for roughly 60% of them, and perform our in-depth study on this subset of applications. We believe this set of applications to be representative of real-world applications: we consider applications that not only stress the classic lock/unlock interface to different extents, but also exhibit different usage patterns of condition variables, trylocks, barriers and that use different number of locks (i.e., from one global lock to thousands of locks). We consider four different multicore machines and three different metrics: throughput, tail latency and energy efficiency. In our quest to understand the behavior of locking, when choosing the per-configuration best lock, we improve on average application throughput by 90%, energy efficiency by 110% and tail latency 12× with respect to the default POSIX mutex lock (note that, in many cases, different locks optimize different metrics). As we show in this paper, choosing a well performing lock is difficult, as this choice depends on many different parameters: the workload, the underlying hardware, the degree of parallelism, the number of locks, how they are used, the lock-related interfaces that the application stresses (e.g., lock/unlock, trylock, condition variables), the interaction between the application and the scheduler, and the performance metric(s) considered.

Our second contribution aims at simplifying the life of software developers: we perform an in-depth analysis of the different types of lock-related performance bottlenecks that manifest in the studied applications. In particular, we describe nine different lock-related performance bottlenecks. Based on the insights of this analysis, we propose six guidelines for helping software developers with their choice of lock algorithms according to the different lock properties and the application characteristics. More precisely, by answering to a few questions about her application (e.g., more threads than cores? blocking syscalls?) and by looking at a few lock-related metrics (e.g., the number of allocated locks, the number of threads concurrently trying to acquire a lock), the developer is able to understand easily and quickly which lock algorithm(s) to choose or to avoid for her specific use case.

Our third contribution is LiTL 1 , an open-source, POSIX compliant [48], low-overhead library that allows transparent interposition of Pthread mutex lock operations and support for mainstream features like condition variables. Indeed, to conduct our study, manually modifying all the applications in order to retrofit the studied lock algorithms would have been a daunting task. Moreover, using a meta-library that allows plugging different lock algorithms under a common API (such as liblock [START_REF] Lozi | Fast and Portable Locking for Multicore Architectures[END_REF] or libslock [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF]) would not have solved the problem, as this still requires a substantial re-engineering effort for each application. In addition, such meta-libraries provide no or limited support for important features like Pthread condition variables, used within many applications. Our approach is a pragmatic one: similarly to what is done by previous works on memory allocators [START_REF] Aigner | Fast, multicore-scalable, lowfragmentation memory allocation through large virtual memory and global data structures[END_REF][START_REF] Emery | Hoard: A Scalable Memory Allocator for Multithreaded Applications[END_REF][START_REF] Ghemawat | TCMalloc: Thread-Caching Malloc[END_REF][START_REF] Bradley | SuperMalloc: a super fast multithreaded malloc for 64-bit machines[END_REF], we argue that transparently switching (i.e., without modifying the application) lock algorithms (resp. memory allocators) is an efficient and pragmatic solution.

From our exhaustive study and our in-depth analysis, we make a number of observations regarding locking algorithms and applications behaviors, several of which have never been previously highlighted (to the best of our knowledge).

Applications not only stress the lock/unlock interface, but also the full locking API (e.g., trylocks, condition variables). Most of previous works focused on the lock/unlock interface performance of locks. We observe that many performance bottlenecks are related to other, lessconsidered lock operations. For example, applications use trylocks to implement busy-waiting as the traditional Pthread mutex implementation forces a thread to be descheduled while waiting for a lock. However, many lock algorithms that optimize for the lock/unlock interface perform poorly for trylock operations. Applications also heavily use condition variables, which directly interact with the lock instance in a way that was mostly ignored by lock algorithm designers. Pragmatically, locks should optimize not only the lock/unlock interface, but also all the other locking interfaces proposed by the Pthread mutex API.

The memory footprint of a lock may directly affect the application performance. Many lock algorithms improve performance by using more complex data structures. As an example, some algorithms use a per-thread context to store thread lock acquisition status. Other algorithms store statistics inside the lock instance, using these statistics to adapt the lock acquisition policy at runtime. However, all this complexity has a cost, as it increases the memory footprint of each lock instance. Indeed, we observe that some applications allocate thousands of lock instances, sometimes concurrently, which stresses the memory allocator, as well as hurts the processor cache locality, and as a consequence affects the application performance. Thus, lock designers should keep in mind that the memory footprint of their algorithm is an important factor, and they should try to design algorithms with a low memory footprint.

For many applications, the interaction between locks and scheduling is an important application performance factor. It is well known [START_REF] Blasgen | The Convoy Phenomenon[END_REF] that some lock algorithms exhibit poor performance in the context of over-threading (i.e., when there are more threads than available cores). Interestingly, we further observe that the interaction between locks and the scheduler affects the performance of many applications. Indeed, because applications use lock interfaces other than lock/unlock (e.g., condition variables) as well as other blocking functions (e.g., synchronization barriers, I/O syscalls), the Linux scheduler can take scheduling decisions that lead to poor application performance with some lock algorithms. In particular, we see that the lock holder preemption [START_REF] Blasgen | The Convoy Phenomenon[END_REF] and the lock waiter preemption [START_REF] Shan | APPLES: Efficiently Handling Spin-lock Synchronization on Virtualized Platforms[END_REF] problems, both well known in the literature, frequently manifest in practice. A direct consequence of our observation is that lock designers should be aware that the scheduler decisions can impede application performance, and thus design locks that adapt themselves to a suboptimal scheduling.

Lock tail latencies may or may not affect application tail latency. Some locks are specifically designed to ensure perfect fairness for thread acquisitions, while others trade fairness for higher lock acquisition throughput. These properties directly affect the lock tail latency. Still, we observe that the effect of lock tail latency on the application tail latency is not straightforward. More precisely, if a high-level application operation is mostly implemented as a single critical section, then the performance (throughput and tail latency) of this operation highly depends on the properties of the lock. Hence, if low tail latency is desired, it is possible to choose a lock algorithm designed for fairness. Alternatively, if the developer is willing to trade application tail latency for throughput, lock algorithms trading fairness for throughput are a good choice. In contrast, we observe that for applications with limited concurrency (i.e. where an operation/request consists of many critical sections and/or sequential parts), the tail latency of locks does not strongly affect the tail latency of the application. In this case, we observe that lower application tail latency generally means higher application throughput, and as a consequence, a developer should choose a lock that brings the best throughput.

We also confirm previous findings [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF][START_REF] Falsafi | Unlocking Energy[END_REF][START_REF] Guiroux | Multicore Locks: The Case Is Not Closed Yet[END_REF] on a larger number of applications, machines, and lock algorithms.

No single lock is systematically the best. We observe that for the three metrics that we consider, approximately 60% of the studied applications are significantly affected by lock performance, hereafter called lock-sensitive applications. For lock-sensitive applications, at their optimized contention level (individually tuned), the best locks never dominate in more than 53% of the cases. A direct implication is that providing only a single lock algorithm (i.e., the Pthread lock) to software developers certainly results in suboptimal performance for most applications.

Choosing the best lock is difficult. For a given application, the best lock varies depending on the number of contending cores, the machine and the workload. Even worse, making the wrong choice affects the application, as all locks are harmful (i.e., significantly inefficient compared to the best one) for at least several workloads. Accordingly, developers should not hardwire the choice of a lock algorithm into the code of applications.

Energy efficiency and throughput go hand in hand in the context of lock algorithms. Previous work [START_REF] Falsafi | Unlocking Energy[END_REF] introduced the POLY2 conjecture. The POLY conjecture states that "energy efficiency and throughput go hand in hand in the context of lock algorithms". More precisely, POLY suggests that "locks can be optimized to improve energy efficiency without degrading throughput", and that "[the insights from] prior throughput-oriented research on lock algorithms can be applied almost as-is in the design of energy-efficient locks". We verify POLY on a large number of lock algorithms and applications (the initial paper about POLY considered three lock algorithms and six applications).

A high-level ramification of many of these observations is that the research community must focus its efforts on designing low-memory footprint adaptive locks that fully and efficiently support the full lock interface, and consider all performance metrics.

The remainder of the paper is organized as follows: Section 2 presents a taxonomy of existing lock designs and the list of algorithms covered by our study. Section 3 describes our experimental setup and the studied applications. Section 4 describes the LiTL library. Sections 5, 6 and 7 respectively describe the main throughput, energy efficiency and tail latency experimental results. Section 8 presents the detailed analysis of lock-related performance bottlenecks and gives guidelines regarding the choice of a lock algorithm. Section 9 discusses related works and Section 10 concludes the paper.

LOCK ALGORITHMS

In this section, we present the 28 multicore lock algorithms that we consider in this study and organize them into five different categories based on their design properties. We then discuss an important lock-algorithm design-dimension, which is the choice of a waiting policy, i.e., what a thread does when it cannot immediately obtain a requested lock. Finally, we describe the list of the chosen lock algorithms for our empirical study.

Background

All modern lock algorithms rely on hardware atomic instructions to ensure that a critical section is executed in mutual exclusion. To provide atomicity, the processor relies on the cache-coherence protocol of the machine to implement an atomic read-modify-write operation on a memory address. Previous work [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF] demonstrated that lock algorithm performance is mainly a property of the hardware, i.e., a lock algorithm must take into account the characteristics of the underlying machine. The design of a lock algorithm is thus a careful choice of data structures, lock acquisition/release policies and (potential) load-control mechanisms.

Section 2.1.2 introduces the locking API. Section 2.1.2 proposes a classification of the lock algorithms into five categories. Section 2.1.3 discusses the various waiting policies.

Synchronization primitives.

Locking is by far the most commonly-used approach to synchronization. Practically all modern software systems employ locks in their design and implementation. The main reason behind the popularity of locking is that it offers an intuitive abstraction. Locks ensure mutual exclusion; only the lock holder can proceed with its execution. Executions that are protected by locks are known as critical sections. Mutual exclusion is a way to synchronize concurrent accesses to the critical section, i.e., threads synchronize/coordinate to avoid one thread entering the critical section before the other left it. In addition, condition variables allow threads to cooperate within a critical section by introducing a happened-before relationship between them.

Mutual exclusion.

Lock/unlock. Upon entering the critical section, a thread must acquire the lock via the lock operation. This operation is blocking, i.e., a thread trying to acquire a lock instance already held waits until the instance becomes available. When the lock holder exits the critical section, it must call the unlock operation, to explicitly release the lock. How to acquire a lock, what to do while waiting for the lock, and how to release the lock are choices made by a lock algorithm.

Trylock. If a lock is busy, a thread may do other work instead of blocking. In this case, it can use the non-blocking trylock operation. This operation has a return code to indicate if the lock is acquired. What a thread does when the trylock does not acquire the lock is up to the software developer, not the lock algorithm. We observe that developers frequently use trylock to implement busy-waiting, in order to avoid being descheduled (the policy that the Pthread lock algorithm uses while waiting for a lock) if the lock is already held. This action is useful when the application developer knows that the critical section protected by the lock is short, and thus that there is a high chance for a thread to obtain the lock quickly. If the trylock acquires the lock, the lock holder must call unlock to release the lock.

Conditions variables.

Threads often rely on condition variables to receive notifications when an event happens (e.g., when data is put inside a queue). A thread that wants to wait on a condition variable calls wait while holding a lock. As a consequence, the thread releases the lock and blocks 3 . When the condition is fulfilled, another thread calls signal or broadcast to wake any or all blocked threads, respectively. Upon wake-up (and before exiting from wait), threads compete to acquire the lock in order to reenter the critical section. Efficiently implementing condition variables on top of locks is non-trivial (see Section 4.1).

Categorizing lock algorithms.

The body of existing work on optimized lock algorithms for multicore architectures is rich and diverse and can be split into the following five categories. The first two categories (competitive and direct handoff succession) are based on the succession policy [START_REF] Dice | Malthusian Locks[END_REF] of the lock algorithm, i.e., how lock ownership is transferred at unlock-time. These two categories are mutually exclusive. The three other categories regroup algorithms that either compose algorithms from the first two categories (hierarchical approaches), change how critical sections are executed (delegation-based approaches), or improve existing locks with load-control mechanisms. Note that overall these categories overlap: a given algorithm can fall into several categories.

1) Competitive succession. Some algorithms rely on a competitive succession policy, where the lock holder sets the lock to an available state, and all competing threads might try to acquire it concurrently, all executing an atomic instruction on the same memory address. Such algorithms generally stress the cache-coherence protocol as they trigger cache-line invalidations at unlock-time to all cores waiting for the lock, while ultimately only one core succeeds in acquiring it. Competitive succession algorithms might allow barging, i.e., "arriving threads can barge in front of other waiting threads" [START_REF] Dice | Malthusian Locks[END_REF], leading to unfairness and starvation. Examples of algorithms using a competitive succession policy are simple spinlock [START_REF] Michael | Shared-Memory Synchronization[END_REF], Backoff spinlock [START_REF] Anderson | The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors[END_REF][START_REF] John | Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors[END_REF], test and test-and-set (ttas) lock [START_REF] Anderson | The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors[END_REF], Mutexee lock [START_REF] Falsafi | Unlocking Energy[END_REF] and standard Pthread mutex locks [48,[START_REF] Kylheku | What is PTHREAD_MUTEX_ADAPTIVE_NP?[END_REF].

2) Direct handoff succession. Direct handoff locks (also known as queue-based locks) are lock algorithms in which the unlock operation identifies a waiting successor and then passes ownership to that thread [START_REF] Dice | Malthusian Locks[END_REF]. As the successor of the current lock holder is known, it allows each waiting thread to wait on a non-globally shared memory address (one per waiting thread). Then, the lock holder passes ownership with the help of this private memory address, thus avoiding cache-line invalidations to all the other competing cores (contrary to the competitive succession policy). This approach is known to yield better fairness. Also, this approach generally gives better throughput under contention compared to simpler locks like spinlock. With direct handoff locks, each thread spins on its own local variable, avoiding to send cache lines invalidations to all other spinning cores when the lock is acquired/released (contrary to locks based on a global variable). Examples of direct handoff lock algorithms are: MCS [START_REF] John | Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors[END_REF][START_REF] Michael | Shared-Memory Synchronization[END_REF], CLH [START_REF] Craig | Building FIFO and Priority-Queuing Spin Locks from Atomic Swap[END_REF][START_REF] Magnusson | Queue Locks on Cache Coherent Multiprocessors[END_REF][START_REF] Michael | Shared-Memory Synchronization[END_REF].

Some algorithms do use a globally shared memory address but still use a direct handoff succession policy. For example, Ticket lock [START_REF] Reed | Synchronization with Eventcounts and Sequences[END_REF] repeatedly reads a single memory address in a non-atomic fashion, waiting for its turn to come. The Partitioned Ticket lock [START_REF] Dice | Brief announcement: a partitioned ticket lock[END_REF] uses an hybrid solution, where the same memory address can be observed by a subset of the competing threads.

3) Hierarchical approaches. These approaches aim at providing scalable performance on NUMA machines, by attempting to reduce the rate of lock migrations (i.e., cache-line transfers), which are known to be costly between NUMA nodes. This category includes HBO [START_REF] Radovic | Hierarchical Backoff Locks for Nonuniform Communication Architectures[END_REF], HCLH [START_REF] Luchangco | A Hierarchical CLH Queue Lock[END_REF], FC-MCS [START_REF] Dice | Flat-combining NUMA locks[END_REF], HMCS [START_REF] Chabbi | High performance locks for multi-level NUMA systems[END_REF] and the algorithms that stem from the lock cohorting framework [START_REF] Dice | Lock Cohorting: A General Technique for Designing NUMA Locks[END_REF]. A cohort lock is based on a combination of two lock algorithms (similar or different): one used for the global lock and one used for the local locks (there is one local lock per NUMA node); in the usual 𝐶-𝐿 𝐴 -𝐿 𝐵 notation, 𝐿 𝐴 and 𝐿 𝐵 respectively correspond to the global and the node-level lock algorithms. The list notably includes C-BO-MCS, C-PTL-TKT and C-TKT-TKT (also known as HTicket [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF]). The BO, PTL and TKT acronyms respectively correspond to Backoff lock, Partitioned Ticket lock, and standard Ticket lock. 4) Delegation-based approaches. Delegation-based lock algorithms are locks in which it is (sometimes or always) necessary for a thread to delegate the execution of a critical section to another thread. The typical benefits expected from such approaches are improved cache locality and better resilience under very high lock contention. This category includes Oyama [START_REF] Oyama | Executing Parallel Programs with Synchronization Bottlenecks Efficiently[END_REF], Flat Combining [START_REF] Hendler | Flat combining and the synchronization-parallelism tradeoff[END_REF], RCL [START_REF] Lozi | Fast and Portable Locking for Multicore Architectures[END_REF], FFWD [START_REF] Roghanchi | ffwd: delegation is (much) faster than you think[END_REF], CC-Synch [START_REF] Fatourou | Revisiting the combining synchronization technique[END_REF] and DSM-Synch [START_REF] Fatourou | Revisiting the combining synchronization technique[END_REF].

5) Load-control mechanisms. This category includes lock algorithms implementing mechanisms that detect situations in which a lock needs to adapt itself, for example to cope with changing levels of contention (i.e., how many threads concurrently attempt to acquire a lock), or to avoid lock-related pathological behaviors (e.g., preemption of the lock holder to execute a thread waiting for the lock). This category includes MCS-TimePub4 [START_REF] He | Preemption Adaptivity in Time-Published Queue-Based Spin Locks[END_REF], GLS [START_REF] Antic | Locking Made Easy[END_REF], SANL [START_REF] Zhang | Scalable Adaptive NUMA-Aware Lock[END_REF], LC [START_REF] Johnson | Decoupling contention management from scheduling[END_REF], AHMCS 5[21] and so-called Malthusian algorithms like Malth_Spin and Malth_STP6 [START_REF] Dice | Malthusian Locks[END_REF].

2.1.3 Waiting policy. An important design dimension of lock algorithms is the waiting policy used when a thread cannot immediately obtain a requested lock [START_REF] Dice | Malthusian Locks[END_REF]. There are three main approaches.

Spinning. The most straightforward solution for waiting is to continuously check the status of the lock until it becomes available. However, such a policy might waste energy, and the time spent waiting on a core might prevent other descheduled threads from progressing. Processors provide special instructions to inform the CPU microarchitecture when a thread is spinning. For example, x86 CPUs offer the PAUSE instruction 7 that is specifically designed to avoid branch-misprediction, and which informs the core that it can release shared pipeline resources to sibling hyperthreads [START_REF] Dice | Malthusian Locks[END_REF].

In case of a failed lock acquisition attempt, different lock algorithms can use different (and possibly combine several) techniques to lower the number of simultaneous acquisitions attempts and the energy consumption while waiting. Using a fixed or randomized backoff (i.e., a thread avoids attempting to acquire the lock for some time) lowers the number of concurrent atomic instructions, thus the cache-coherence traffic. Hardware facilities can also be used to lower the frequency of the waiting thread's core (DVFS [START_REF] Wamhoff | The TURBO Diaries: Application-controlled Frequency Scaling Explained[END_REF]), or to notify the core that it can enter in an idle state to save power (via the privilegied MONITOR/MWAIT instructions [START_REF] Falsafi | Unlocking Energy[END_REF], accessible for locks running in privilegied mode, or via a kernel module [START_REF] Anastopoulos | Facilitating efficient synchronization of asymmetric threads on hyper-threaded processors[END_REF]). Finally, a thread can voluntarily surrender its core in a polite fashion by calling sched_yield or sleep.

Immediate parking. With immediate parking 8 , a thread waiting for an already held lock immediately blocks until the thread gets a chance to obtain the lock 9 . This waiting policy requires kernel support (via the futex syscall on Linux) to inform the scheduler that the thread is waiting for a lock, so that it does not try to schedule the thread until the lock is made available. At unlock-time, the lock holder is then responsible to inform the scheduler that the lock is available.

Hybrid approaches. The motivation behind hybrid approaches is that different waiting policies have different costs. For example, the spin-then-park policy is a hybrid approach using a fixed or adaptive spinning threshold [START_REF] Karlin | Empirical Studies of Competitive Spinning for a Shared-Memory Multiprocessor[END_REF]. It tries to mitigate the cost of parking as the block and unblock operations are expensive (both in terms of energy and performance). The spinning threshold is generally equal to the time of a round-trip context switch. Other techniques mix different spinning policies, such as backoff and sched_yield [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF]. Finally, more complex combinations can be implemented: some algorithms [START_REF] Falsafi | Unlocking Energy[END_REF][START_REF]Multithreading in the Solaris Operating Environment[END_REF] trade fairness for throughput by avoiding to unpark a thread at unlock-time if there is another one currently spinning (also known as adaptive unlock).

The choice of the waiting policy is mostly orthogonal to the lock design but, in practice, policies other than pure spinning are only considered for certain types of locks: the direct handoff locks (from categories 2, 3 and 5 above), Mutexee and the standard Pthread mutex locks. However, this choice directly affects both the energy efficiency and the performance of a lock: Falsafi et al. [START_REF] Falsafi | Unlocking Energy[END_REF] found that pure spinning inherently hurts power consumption, and that there is no practical way to reduce the power consumption of pure spinning. They found that blocking can indeed save power, because when a thread blocks, the kernel can then put the core(s) in one of the low-power idle states [START_REF] Amd | BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h Models 00h-0Fh Processors[END_REF][START_REF]Intel Xeon Processor E7-4800/8800 v3 Product Families[END_REF]. However, the process of blocking is costly, because the cost of the blocking and unblocking operations is high on Linux. Switching continuously between blocking and unblocking can hurt energy efficiency, sometimes even more than using pure spinning policies. Thus, there is an energy-efficiency tradeoff between spinning and parking. Note that we use hereafter the expression parking policy to encompass both immediate parking and hybrid spin-then-park waiting policies.

Studied algorithms

We now describe the 28 mutex lock algorithms that are representative of both well-established and state-of-the-art approaches. Our choice of studied locks is guided by the decision to focus on portable lock algorithms. We therefore exclude the following locks that require strong assumptions on the application/OS behavior, code modifications, or fragile performance tuning: HCLH, HBO, FC-MCS (see Dice et al. [START_REF] Dice | Lock Cohorting: A General Technique for Designing NUMA Locks[END_REF] for detailed arguments). We also do not study delegation-based algorithms, because they require critical sections to be expressed as a form of closure (i.e., functions) [START_REF] Dice | Lock Cohorting: A General Technique for Designing NUMA Locks[END_REF], which is incompatible with our transparent approach (i.e., without source code modification). Finally, we do not consider runtime approaches like LC and GLS, which require special kernel support and/or monitoring threads.

We use the _Spin and _STP suffixes to differentiate variants of the same algorithm that only differ in their waiting policy (pure spinning vs spin-then-park). Unless explicitly specified by the lock algorithm implementation, we use the PAUSE instruction to pause between spinning loop iterations. The -ls tag corresponds to algorithms borrowed from libslock [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF]. As well, note that the GNU C library for Linux provides two versions of Pthread mutex locks [START_REF]pthread_mutex_lock GNU C library implementation[END_REF]: the default one uses immediate parking (via the futex syscall) and the second one uses an adaptive spin-then-park strategy. The latter version can be enabled with the PTHREAD_MUTEX_ADAPTIVE_NP option [START_REF] Kylheku | What is PTHREAD_MUTEX_ADAPTIVE_NP?[END_REF].

Our set of algorithms is summarized in Table 1 and includes eight competitive succession locks (Backoff, Mutexee, Pthread, PthreadAdapt, Spinlock, Spinlock-ls, TTAS, TTAS-ls), ten direct handoff locks (ALock-ls, CLH-ls, CLH_Spin, CLH_STP, MCS-ls, MCS_Spin, MCS_STP, Ticket, Ticket-ls, Partitioned), six hierarchical locks (C-BO-MCS_Spin, C-BO-MCS_STP, C-PTL-TKT, C-TKT-TKT, HTicket-ls, HMCS), and four load-control locks (AHMCS, Malth_Spin, Malth_STP, MCS-TimePub).

Table 1. A short description of the 28 multicore lock algorithms that we consider.

Name

Reference Short description Competitive Backoff [START_REF] John | Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors[END_REF] Test-and-set (TAS) with exponential bounded backoff if the lock is already held. Mutexee [START_REF] Falsafi | Unlocking Energy[END_REF] A spin-then-park (STP) lock designed with energy efficiency in mind. Pthread [START_REF]The GNU C Library[END_REF] TAS with direct parking. PthreadAdapt [START_REF] Kylheku | What is PTHREAD_MUTEX_ADAPTIVE_NP?[END_REF] An adaptive STP algorithm, performing a number of trylocks (before blocking) that depends on the number of trylocks performed by the lock holder when it acquired the lock. Spinlock [START_REF] Anderson | The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors[END_REF] Compare-and-set algorithm with busy waiting. Spinlock-ls [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF] TAS algorithm with busy waiting. TTAS [START_REF] Anderson | The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors[END_REF] Performs non-atomic loads on the lock memory address before trying to acquire it atomically with a TAS instruction. TTAS-ls [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF] Similar to TTAS but uses an exponential bounded backoff if the TAS fails.

Direct handoff

ALock-ls [START_REF] Anderson | The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors[END_REF] The waiting threads are organized inside a fixed-sized array, i.e., there is a fixed bound N on the number of waiting threads. A thread waits on one of the private cachealigned array slot. At unlock-time, the lock holder wakes the next thread by changing the content of the slot on which the next thread is waiting. CLH_Spin [START_REF] Craig | Building FIFO and Priority-Queuing Spin Locks from Atomic Swap[END_REF][START_REF] Magnusson | Queue Locks on Cache Coherent Multiprocessors[END_REF] Waiting threads are organized as an inverse linked-list, where a thread spins on the context (i.e., linked-list node) of its predecessor. At unlock-time, the lock holder wakes up the thread at the head of the waiting list. CLH_STP [START_REF] Craig | Building FIFO and Priority-Queuing Spin Locks from Atomic Swap[END_REF][START_REF] Magnusson | Queue Locks on Cache Coherent Multiprocessors[END_REF] Similar to CLH_Spin but uses a STP waiting policy. CLH-ls [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF] Similar to CLH_Spin but uses the PREFETCHW x86 CPU instruction while spinning. MCS_Spin [START_REF] John | Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors[END_REF] Waiting threads are organized as a linked-list, where a thread spins on its private context. At unlock-time, the lock holder wakes up its successor. MCS_STP [START_REF] John | Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors[END_REF] Similar to MCS_Spin but uses a STP waiting policy. MCS-ls [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF] Similar to MCS_Spin but uses the PREFETCHW x86 CPU instruction while spinning. Ticket [START_REF] Reed | Synchronization with Eventcounts and Sequences[END_REF] A thread trying to acquire the lock atomically takes a "ticket" (implemented as an incrementing counter) and spins while its ticket is not equal to the "next-ticket" number. At unlock-time, the lock holder increments the "next-ticket" number. Ticket-ls [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF] Similar to Ticket but a thread waits proportionally to the number of threads waiting before him. Partitioned [START_REF] Dice | Brief announcement: a partitioned ticket lock[END_REF] Similar to Ticket but the "next-ticket" number is implemented inside an array, where a thread waits on its "ticket" slot (𝑠𝑙𝑜𝑡 = 𝑡𝑖𝑐𝑘𝑒𝑡 % 𝑠𝑖𝑧𝑒 (𝑎𝑟𝑟𝑎𝑦)).

Hierarchical

C-BO-MCS_Spin [32]

A thread first tries to acquire a MCS_Spin local lock shared by all threads on the same NUMA node (the local lock), then competes on the Backoff top lock with other threads holding their respective local locks. C-BO-MCS_STP [START_REF] Dice | Lock Cohorting: A General Technique for Designing NUMA Locks[END_REF] Similar to C-BO-MCS_Spin but uses a STP waiting policy for te MCS locks. C-PTL-TKT [START_REF] Dice | Lock Cohorting: A General Technique for Designing NUMA Locks[END_REF] Similar to C-BO-MCS_Spin but the local locks are Ticket locks and the top lock is a Partitioned lock. C-TKT-TKT [START_REF] Dice | Lock Cohorting: A General Technique for Designing NUMA Locks[END_REF] Similar to C-BO-MCS_Spin but the top and local locks are Ticket locks. HTicket-ls [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF] Similar to C-TKT-TKT but a thread waits proportionally to the number of threads waiting before him. HMCS [START_REF] Chabbi | High performance locks for multi-level NUMA systems[END_REF] Similar to C-BO-MCS_Spin but the top and local locks are MCS_Spin locks.

Load-control AHMCS [START_REF] Chabbi | Contention-conscious, locality-preserving locks[END_REF] Similar to HMCS, but when a thread tries to acquire the lock, it remembers if the last time it released the lock there was a thread waiting. If not, it only locks the top lock because it assumes low contention the lock. The AHMCS version without hardware transactional memory is considered. Malth_Spin [START_REF] Dice | Malthusian Locks[END_REF] A variant of the MCS_Spin lock where, when there is contention on a lock, a subset of the spinning competing threads are put aside temporarily to let the others progress more easily. Malth_STP [START_REF] Dice | Malthusian Locks[END_REF] Similar to Malth_Spin but threads use a STP waiting policy. MCS-TimePub [START_REF] He | Preemption Adaptivity in Time-Published Queue-Based Spin Locks[END_REF] A variant of the MCS_Spin lock, in which a waiting thread relinquishes its core if it detects (heuristically, using timers and thresholds) that the lock holder has been preempted. At unlock-time, the lock holder might bypass some waiting threads if it detects they have been preempted.

METHODOLOGY

In this section we describe our study's methodology. We first describe the different testbed platforms we use and the applications we study (Section 3.1). Then, in Section 3.2, we present our tuning choices and our experimental methodology.). We configured the BIOS of the A-64 and the A-48 machines in performance mode (processor throttling is turned off so that all cores run at maximum speed, e.g., no C-state, no turbo mode). The BIOS of the I-48 and I-20 machines in performance mode for the throughput experiments, and in energy-saving mode for the energy-efficiency experiments. For all configurations, hyper-threading is disabled. Table 3 lists the applications we chose for our comparative study of lock performance and lock energy efficiency. More precisely, we consider (i) the applications from the PARSEC benchmark suite version 3.0 (emerging workloads) [START_REF] Bienia | Benchmarking Modern Multiprocessors[END_REF], (ii) the applications from the Phoenix 2.0 MapReduce benchmark suite [START_REF] Ranger | Evaluating MapReduce for Multi-core and Multiprocessor Systems[END_REF], (iii) the applications from the SPLASH2x high-performance computing benchmark suite [START_REF] Bienia | Benchmarking Modern Multiprocessors[END_REF] 10 , (iv) the MySQL database version 5.7.7 [START_REF]MySQL[END_REF] running the Cloudstone workload [START_REF] Sobel | Cloudstone: Multi-platform, multi-language benchmark and measurement tools for web 2.0[END_REF], (v) SSL proxy, an event-driven SSL endpoint that processes small messages, (vi) upscaledb 2.2.0 [START_REF] Rupp | Upscaledb[END_REF], an embedded key/value running the ham_bench benchmark, (vii) the Kyoto Cabinet database version 1.2.76 [START_REF]Kyoto Cabinet[END_REF], a standard relational database management system running the included benchmark, (viii) Memcached, versions 1.4.15 and 1.4.36 11 [16], an in-memory cache system, (ix) RocksDB 4.8 [START_REF]Rocksdb[END_REF], a persistent key/value store running the included benchmark, and (x) SQLite 3.13 [START_REF]SQLite[END_REF], an embedded SQL database using the dbt2 TPC-C workload generator 12 . We use remote network injection for the MySQL and the SSL proxy applications. For Memcached, similarly to other setups used in the literature [START_REF] Falsafi | Unlocking Energy[END_REF][START_REF] Lozi | Fast and Portable Locking for Multicore Architectures[END_REF], the workload runs on a single machine: we dedicate one socket of the machine where we run memaslap to inject network traffic to the Memcached instance, the two running on two distinct sets of cores. For the Kyoto Cabinet application, like in previous work [START_REF] Dice | Malthusian Locks[END_REF], we redirect calls to rw_lock to classic mutex_lock calls. This might change the synchronization pattern of the application, yet this aplication is still interesting to consider because its performance is known to vary according to lock algorithms [START_REF] Calciu | NUMA-aware readerwriter locks[END_REF]. By default, phoenix launches one thread per available core, and pins each thread to one core. However, to have the same baseline for all our benchmarks, we decided to disable pinning in phoenix, leaving to the scheduler the thread placement decisions. Note that when benchmarks are evaluated in a thread-to-node pinning configuration (see Section 5.3), phoenix is also evaluated on a thread-to-node pinning configuration.

In order to evaluate the impact of workload changes on locking performance and energy efficiency, we also consider "long-lived" variants of four of the above workloads (pca, s_raytrace, radiosity and streamcluster) denoted with a "_ll" suffix. The motivation behind these versions is to stress the application's steady-state phase, where the locks are mostly acquired/released. By contrast, the short-lived versions allow us to benchmark the performance of the initialization and cleanup operations of a lock algorithm. For each application, we modified it to report throughput (in operations per seconds, e.g., number of rays traced for an application that renders a 3-D phase) and use larger input size. We capture the throughput of the "steady-state" phase exclusively, ignoring the impact of the start/shutdown phases. Note that six of the applications only accept, by design, a number of threads that corresponds to a power of two: facesim, fluidanimate (from PARSEC), fft, ocean cp, ocean ncp, radix (from SPLASH2). We decide to not include experiments for these six applications on the two 48-core machines and the 20-core machine, in order to keep the presentation of results uniform and easy. Besides, we were not able to evaluate the applications using network injection on the I-20 machine due to a lack of high-throughput network connectivity. Some (application,lock algorithm,machine) configurations cannot be evaluated, for the following reasons. First, due to a lack of memory (especially on the A-48, which only has 64 GB of memory), and because some applications allocate too many lock instances and the memory footprint of some lock algorithms is high: (i) AHMCS with dedup and fluidanimate on all machines, and (ii) CLH, ALock-ls, TTAS-ls with dedup on A-48 results are not reported. Second, fluidanimate, Memcached-old, Memcached-new, streamcluster, streamcluster_ll, vips rely on trylock operations. CLH algorithms and HTicket-ls do not support trylock, and Partitioned and C-PTL-TKT trylock implementations might block threads for a short time (which can cause deadlocks with Memcached-*). Those configurations are not evaluated. Finally, most of the studied applications use a number of threads equal to the number of cores, except the four following ones: dedup (3× threads), ferret (4× threads), MySQL (hundreds of threads) and SQLite (hundreds of threads). For applications with significantly more threads than cores (SQLite and MySQL), we exclude results for algorithms using a spinning waiting policy: these applications suffer from the lock holder preemption issue (see Section 8.1.2 for more details) up to a point where performance drops close to zero.

Tuning and experimental methodology

For the lock algorithms that rely on static thresholds, we use the recommended values from the original papers and implementations. The algorithms based on a spin-then-park waiting policy (e.g., Malth_STP [START_REF] Dice | Malthusian Locks[END_REF]) rely on a fixed threshold for the spinning time that corresponds to the duration of a round-trip context switch [START_REF] Karlin | Empirical Studies of Competitive Spinning for a Shared-Memory Multiprocessor[END_REF]-in this case, we calibrate the duration using a microbenchmark on the testbed platform. All the applications are run with memory interleaving (via the numactl utility) in order to avoid NUMA memory bottlenecks 13 . Datasets are copied inside a temporary file-storage facility (tmpfs) before running experiments, to avoid disk I/O. For most of the experiments detailed in the paper, the application threads are not pinned to specific cores. Note that for hierarchical locks, which are composed of one top lock and one per-NUMA node bottom lock, a thread always tries to acquire the bottom lock where it is currently running. Doing so, cache coherence traffic is limited, which is one of the main reason behind the design of hierarchical locks. The effect of pinning is nonetheless discussed in Section 5.3.

Generally, in the experiments presented in this paper, we study both the throughput, the energyefficiency impact and the tail latency of a lock algorithm for a given level of contention, i.e., the number of threads of the application. We vary the level of contention at the granularity of a NUMA node (i.e., 8 cores for the A-64 machine, 6 cores for the A-48 machine, 12 cores for the I-48 machine and 10 cores for the I-20 machine). Note that for Memcached-old and Memcached-new, we use one socket of the machine to run the injection threads, so the maximum number of cores tested is lower than the total number of cores on the machine: the figures and tables are modified to take this into account.

We consider three metrics: application-level throughput, tail latency, and energy efficiency. More precisely, for throughput, (i) for MySQL, SSL Proxy, upscaledb, Kyoto Cabinet, RocksDB and SQLite, the application throughput is used as a performance metric, (ii) for the long-lived applications, progress points are inserted in the source code of the application, and (iii) for all the other applications, the inverse of the total execution time is used. For tail latency, we consider the application tail latency, here defined as the 99th percentile of client response time. We perform energy consumption measurements using the RAPL (Running Average Power Limit) [START_REF]Intel 64 and IA-32 Architectures[END_REF] power meter interface on the two Intel machines (I-48 and I-20). RAPL is an on-chip facility that provides counters to measure the energy consumption of several components: cores, package and DRAM. We do not capture energy for our two AMD machines as they do not have APM (Application Power Management), AMD's version of RAPL.

We run each experiment at least 5 times and compute the average value. For long-lived and server workloads, a 30-second warmup phase precedes a 60-second capture phase, before killing the application. For configurations exhibiting high variability (i.e., more than 5% of relative standard deviation), we run more experiments, trying to lower the relative standard deviation of the configuration, to increase the confidence in our results. More precisely, we found that roughly 15% of the (application, lock algorithm, machine, number of threads) configurations have a relative standard deviation (rel.stdev.) higher than 5%. Besides, 6% of the configurations have a rel.stdev higher than 10% and 2% higher than 20%. C-BO-MCS_STP, TTAS and Spinlock-ls are the studied lock algorithms that exhibit the higher variability: the rel.stdev of these locks is higher than 5% for 20% of the configurations. Concerning the applications, ocean_cp, ocean_ncp, streamcluster and fft exhibit a high rel.stdev (roughly 50% of the configurations have a rel.stdev higher than 5%). Finally, streamcluster, dedup and streamcluster_ll are applications for which some configurations exhibit a very high rel.stdev (higher than 20% in 10% of the cases). In order to mitigate the effects of variability, when comparing two locks, we consider a margin of 5%: lock 𝐴 is considered better than lock 𝐵 if 𝐵's performance (resp. energy efficiency or tail latency) is below 95% of 𝐴's. Besides, in order to make fair comparisons among applications, the results presented for the Pthread locks are obtained using the same library interposition mechanism (see Section 4) as with the other locks.

Finally, for the sake of space, we do not report all the results for the four studied machines. We rather focus on the A-64 machine for the different studies and provide summaries of the results for the other machines, which are in accordance to the results on the A-64 machine. Nevertheless, the entire set of results can be found in the Appendix. We also do not systematically report, for the sake of readability, the standard deviations as they are low for most configuration. Note that the raw dataset (for all the experiments, on all machines) of throughput, tail latency and energy is available online [START_REF] Guiroux | LiTL source code and data sets[END_REF], letting the readers perform their own analysis.

LITL: A LIBRARY FOR TRANSPARENT LOCK INTERPOSITION

In this section we present the LiTL library, an open-source, POSIX compliant, low-overhead library that allows transparent interposition of Pthread mutex lock operations and support for mainstream features like condition variables. We first describe the design of LiTL in Section 4.1, discuss its implementation in Section 4.2, evaluate some elementary costs introduced by LiTL in Section 4.3, and experimentally assess its performance in Section 4.4.

Design

We describe the general design principles of LiTL, how it supports condition variables, and how it can easily be extended to support specific lock semantics. The pseudo-code of the main wrapper functions of the LiTL library is depicted in Figure 1.

General principles. The primary role of LiTL is to maintain a mapping between an instance of the standard Pthread lock (pthread_mutex_t) and an instance of the chosen optimized lock type (e.g., MCS_Spin). This mapping is maintained in an external data structure (see details in §4.2), rather than using an "in-place" modification of the pthread_mutex_t structure. This choice is motivated by two main reasons. First, for applications that rely on condition variables, we need to maintain a standard pthread_mutex_t lock instance (as explained later in this section). Second (and regardless of the previous reason), LiTL is aimed at being easily portable across C standard libraries. Given that the POSIX standard does not specify the memory layout and contents of the // pthread_mutex_lock, grabs the optimized // mutex, and tries to acquire the "real" // mutex, there might be a deadlock, as // the "real" mutex lock is held after // real_pthread_cond_wait. } // Note that the pthread_cond_signal and pthread_cond_broadcast primitives // do not need to be interposed. pthread_mutex_t structure 14 , it it is non-trivial to devise an "in-place modification" approach that is at the same time safe, efficient and portable.

The above-mentioned design choice implies that LiTL must keep track of the lifecycle of all the locks through interposition of the calls to pthread_mutex_init and pthread_mutex_destroy, and that each interposed call to pthread_mutex_lock must trigger a lookup for the instance of the optimized lock. In addition, lock instances that are statically initialized can only be discovered and tracked upon the first invocation of pthread_mutex_lock on them (i.e., a failed lookup leads to the creation of a new mapping).

The lock/unlock API of several lock algorithms requires an additional parameter (called struct hereafter) in addition to the lock pointer, e.g., in the case of an MCS lock, this parameter corresponds to the record to be inserted in (or removed from) the lock's waiting queue. In the general case, a struct cannot be reused nor freed before the corresponding lock has been released. For instance, an application may rely on nested critical sections (i.e., a thread 𝑇 must acquire a lock 𝐿 2 while holding another lock 𝐿 1). In this case, 𝑇 must use a distinct struct for 𝐿 2 in order to preserve the integrity of 𝐿 1 's struct. In order to gracefully support the most general cases, LiTL systematically allocates exactly one struct per lock instance and per thread (a static array is allocated alongside the lock instance, upon the first access to the lock instance), while taking care of avoiding false-sharing of cache lines among threads. LiTL uses the default memory allocator (glibc ptmalloc), which has per-thread arenas to avoid lock contention (since glibc 2.15) [49].

Supporting condition variables. Efficiently dealing with condition variables inside each optimized lock algorithm would be complex and tedious as most locks have not been designed with condition variables in mind. Indeed, most lock algorithms suffer from the so-called thundering-herd effect, where all waiting threads unnecessary contend on the lock after a call to pthread_cond_broadcast 15 , which might lead to a scalability collapse. The Linux Pthread implementation does not suffer from the thundering-herd effect, as it only wakes up a single thread from the wait queue of the condition variable and directly transfers the remaining threads to the wait queue of the Pthread lock. However, to implement this optimization, all the waiting threads must block on a single memory address 16 , which is incompatible with lock algorithms that are not based on a competitive succession policy.

We therefore use the following generic strategy: our wrapper for pthread_cond_wait internally calls the actual pthread_cond_wait function. To issue this call, we hold a real Pthread mutex lock (of type pthread_mutex_t), which we systematically acquire just after the optimized lock. This strategy (depicted in the pseudocode of Figure 1) does not introduce high contention on the real Pthread lock. Indeed, (i) for workloads that do not use condition variables 17 , the Pthread lock is only requested by the holder of the optimized lock associated with the critical section and, (ii) workloads that use condition variables are unlikely to have more than two threads competing for the Pthread lock (the holder of the optimized lock and a notified thread).

A careful reader might suggest to take the Pthread lock only before calling pthread_cond_wait on it. This approach has been proposed by Lozi et al. [START_REF] Lozi | Fast and Portable Locking for Multicore Architectures[END_REF], but we discovered that it suffers from liveness hazards due to a race condition. Indeed, when a thread T calls pthread_cond_wait, it is not guaranteed that the two steps (releasing the lock and blocking the thread) are always executed atomically. Thus, a wake-up notification issued by another thread may get interleaved between the two steps and T may remain indefinitely blocked.

We acknowledge that the additional acquire and release calls to the uncontended Pthread lock lengthen the critical section, which might increase the contention (i.e., multiple threads trying to acquire the lock simultaneously). However, the large number of studied applications [START_REF]pthread_mutex_lock GNU C library implementation[END_REF] allows us to observe different critical-section lengths, and the different threads configurations considered (one node, max nodes and opt nodes) allow us to observe different probabilities of conflict for a given application.

Support for specific lock semantics. Our implementation is compliant with the specification of the DEFAULT non-robust POSIX mutex type [48]. More precisely, we do not support lock holder crashes (robustness), relocking the same lock can lead to deadlock or undefined behavior, and the behavior of unlocking a lock with a non-holder thread is undefined (it depends on the underlying lock algorithm). The design of LiTL is compatible with specific lock semantics when the underlying lock algorithms offer the corresponding properties. For example, LiTL supports non-blocking lock requests (pthread_mutex_trylock) for all the currently implemented locks except CLH-based locks and HTicket-ls, which are not compatible with the trylock non-blocking operation 18 .

Although not yet implemented, LiTL could easily support blocking requests with timeouts for the so-called "abortable" locks (e.g., MCS-Try [START_REF] Michael | Scalable queue-based spin locks with timeout[END_REF] and MCS-TimePub [START_REF] He | Preemption Adaptivity in Time-Published Queue-Based Spin Locks[END_REF]). Moreover, support for optional Pthread mutex behavior like reentrance and error checks 19 could be easily integrated in the generic wrapper code by managing fields for the current owner and the lock acquisition counter. Note that none of the applications that we have studied requires a non-DEFAULT POSIX mutex type.

Implementation

The library relies on a scalable concurrent hash table (CLHT [START_REF] David | Asynchronized Concurrency: The Secret to Scaling Concurrent Search Data Structures[END_REF]) in order to store, for each Pthread mutex instance used in the application, the corresponding optimized lock instance, and the associated per-thread structs. For well-established locking algorithms like MCS, the code of LiTL borrows from other libraries [START_REF] Samy | Concurrency Kit[END_REF][START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF][START_REF] Falsafi | Unlocking Energy[END_REF][START_REF] Lozi | Fast and Portable Locking for Multicore Architectures[END_REF]. Other algorithms (i.e., CLH, C-BO-MCS, C-PTL-TKT, C-TKT-TKT, HMCS, AHMCS, Malthusian, Partitioned, Spinlock, TTAS) are implemented from scratch based on the description of the original papers. For algorithms that are based on a parking waiting policy, our implementation directly relies on the futex Linux system call.

Finally, the source code of LiTL relies on preprocessor macros rather than function pointers. We have observed that the use of function pointers in the critical path introduced a surprisingly high overhead (up to a 40% throughput decrease). Moreover, all data structures of the interposition library as well as the ones used to implement the lock algorithms are cache-aligned, in order to mitigate the effect of false sharing. The applications' data structures are not modified, as our approach aims at being transparent.

Lookup overhead

To assess the overhead of performing a lookup in the hash table each time a lock is accessed, we designed a micro-benchmark in which threads perform concurrent lookups, varying the number of threads (from 1 to 64) and the number of elements 20 (from 1 to 32768). On the A-64 machine, no matter the number of lock instances, at 1 thread, a look-up costs 20 cycles, and from 2 to 64 threads, 25 cycles. The 5-cycle difference is explained by the fact that on the A-64 machine, two siblings cores share some microarchitectural units of the CPU.

Regardless of the number of lock instances, the number of threads, and the lock algorithm (as only a pointer is stored), the cost is constant and low. In terms of memory footprint, CLHT stores 3 pairs (pthread lock instance, optimized lock instance) per 64-byte cache-line. Overall, CLHT is a good choice as a hash map, and using a hash map should not influence the results significantly.

Experimental validation

In this section, we assess the performance of LiTL using the A-64 machine. To that end, we compare the performance (throughput) of each lock on a set of applications running in two distinct configurations: manually modified applications and unmodified applications using interposition with LiTL. Clearly, one cannot expect to obtain exactly the same results in both configurations, as the setups differ in several ways, e.g., with respect to the exercised code paths, the process memory layout and the allocation of the locks (e.g., stack-vs. heap-based). However, we show that, for both configurations, (i) the achieved performance is close and (ii) the general trends for the different locks remain stable.

We selected four applications: linear_regression, matrix_multiply, radiosity_ll and s_raytrace_ll. The first two applications do not use condition variables, thus allowing us to compare LiTL with manual lock implementation without the extra uncontended Pthread lock acquisition. Because the two others use condition variables, we compare LiTL with manual lock implementations and with the condition variable algorithm. These four applications are particularly lock-intensive: they represent unfavorable cases for LiTL. Moreover, we focus the discussion on the results under the highest contention level (i.e., when the application uses all the cores of the target machine), as this again represents an unfavorable case for LiTL.

Figure 2 shows the normalized performance (throughput) of both configurations (manual/interposed) for each (application, lock) pair. In addition, Table 4 summarizes the performance differences for each application.

We observe that, for all four applications, the results achieved by the two versions of the same lock are very close: the average performance difference is never higher than 8%. Besides, Figure 2 highlights that the general trends observed with the manual versions are preserved with the interposed versions. l i n e a r _ r e g r e s s i o n m a t r i x _ m u l t i p l y r a d i o s i t y _ l l s _ r a y t r a c e _ l l Better 97% 98% 100% 98% Equal 87% 93% 91% 93% Worse 96% 99% 98% 98% Table 5 compares the relative performance of all lock pairs. The table shows that in most cases (at least 87%), comparing two manually implemented lock algorithms leads to the same conclusion as comparing their transparently interposed versions.

Statistical test. To assess that the conclusions we draw regarding the choice of a lock and the performance of locks with respect to each other (i.e., lock hierarchy) are the same with and without interposition, we use a Student paired t-test. A Student paired t-test tests if two populations for which observations can be paired have the same mean (for example, a population of patients before and after taking a medical treatment).

The null hypothesis tested is 𝑀𝑒𝑎𝑛 𝑤𝑖𝑡ℎ -𝑀𝑒𝑎𝑛 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 = 0. However, because the goal is to assess that the lock hierarchy stays the same (not that the means are the same, i.e., strictly no overhead), 𝑀𝑒𝑎𝑛 𝑤𝑖𝑡ℎ -𝑀𝑒𝑎𝑛 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 = 𝐶 is used as the null hypothesis, where 𝐶 is a (per-application) constant. If 𝐶 is a constant, then it means that there is a constant overhead, thus the lock hierarchy is left unchanged (contrary to an overhead dependent of the lock algorithm or proportional to the performance, in which case the lock hierarchy may change). Ideally, the constant 𝐶 should be small enough, meaning that in addition to not affecting relative lock comparisons, the overhead of using LiTL on absolute performance is low. We choose 𝐶 equal to the average throughput difference with and without interposition for all locks for a given application. Table 6 shows the constant 𝐶 𝑛 (𝐶 normalized w.r.t. the performance of the best lock on a given benchmark) as well as the t-test's p-value. For example, for linear_regression, when removing 1.8% of the maximal throughput (0.03 seconds) to each interposed configuration, the p-value is 0.84. A p-value must be compared against a threshold 𝛼, upon which we reject/accept the null hypothesis (i.e., in our case" "means are equal, up to a constant"). The higher the p-value, the lower the risk to incorrectly reject the null hypothesis. All the tested applications have p-value > 0.05 (the most commonly used threshold [START_REF] Nuzzo | Scientific method: Statistical errors[END_REF]), thus we never reject the null hypothesis, thus the means can be considered equal (up to a constant 𝐶).

Thus, based on the results of the above table, we conclude that using LiTL to study the behavior of locks algorithms only yields very modest differences with respect to the performance behavior of a manually modified version.

STUDY OF LOCK THROUGHPUT

In this section, we use LiTL to compare the performance (throughput) behavior of the different lock algorithms on different workloads and at different levels of contention. Our experimental methodology is described in Section 3. In Sections 6 and 7 we present the results for energy efficiency and tail latency, respectively.

As a summary, Section 5.1 provides preliminary observations that drive the study. Section 5.2 answers the main questions of the study regarding the observed lock behavior. Section 5.3 discusses additional observations, such as how the machine, the BIOS configuration, and the thread pinning affect the results as well as the performance of Pthread locks. Section 5.4 discusses the implications of our study for software developers and for the lock algorithm research community.

Preliminary observations

Before proceeding with the detailed study, we highlight some important characteristics of the applications. 7 shows two metrics for each application and for different numbers of nodes on the A-64 machine (results for the other machines are available in the Appendix, §A.1 and §B.1): the performance gain of the best lock over the worst one, as well as the relative standard deviation for the performance of the different locks. Note that columns of Table 7 cannot be compared to each other. Indeed, the numbers reported are the performance gain and relative standard deviation for the best vs. worst lock at a given number of nodes, i.e., gain at max nodes compares the performance of the best vs. worst lock at max nodes, whereas gain at opt nodes compares the performance of the best vs. worst lock at their respective optimal number of nodes (where they perform best).

Selection of lock-sensitive applications. Table

Besides, the numbers reported at max nodes are generally higher than at opt nodes because performance gaps between locks tend to increase under high contention, which is why we chose the A-64 machine: it has the highest number of cores among our different machines. For the moment, we only focus on the relative standard deviations at the maximum number of nodes (max nodes-highest contention) given in the fifth column (the detailed results from this table are discussed in Section 5.2.1).

We consider that an application is lock-sensitive if the relative standard deviation for the performance of the different locks at max nodes is higher than 10% (highlighted in bold font in the Table). We observe similar trends on the four studied machines (see Table 8). More precisely, we observe that about 60% of the applications are affected by locks, for all machines except the I-20 where the percentage of application is slightly lower (49%). Some applications are lock-sensitive on some machines and not on others. For example, fmm is only lock-sensitive on the AMD machines, not the Intel ones. For such applications, we observe a moderate relative standard deviation at max nodes (< 30%), meaning that they are considered lock-sensitive but they are not the applications that are the most affected by locks. Indeed, we do not observe applications that are highly affected by locks on one machine and not on another. In the remainder of this study, we focus on lock-sensitive applications.

Selection of the number of nodes.

In multicore applications, optimal performance is not always achieved at the maximum number of available nodes (abbreviated as max nodes) due to various kinds of scalability bottlenecks. Therefore, for each (application, lock) pair, we empirically determine the optimized configuration (abbreviated as opt nodes), i.e., the number of nodes that yields the best performance. For the A-64 and A-48 machines, we consider 1, 2, 4, 6, and 8 nodes. For the I-48 machine, we consider 1, 2, 3, and 4 nodes. For the I-20 machine, we consider 1 and 2 nodes. Note that 6 nodes on A-64 and A-48 correspond to 3 nodes on I-48, i.e., 75% of the available cores.

Table 9 shows for each (application, lock) pair, for the A-64 machine the performance gain of opt nodes over max nodes and the number of nodes for opt nodes (results for the other machines are available in the Appendix, §A.2 and §B.2). A line full of black boxes means that the optimal number of nodes is the maximal number of nodes, i.e., for all locks, the best performance is seen at max nodes (the performance of the application does not collapse). However, it is still interesting to consider these applications, because a line full of black boxes does not mean that all locks performs the same, e.g., for water_nsquared, the gain between the best vs. the worst locks at max nodes and opt nodes is of 94% (Table 7). In addition, Table 10 provides a breakdown of the (application, lock) pairs according to their optimized number of nodes for all machines.

We observe that, for many applications, the optimized number of nodes is lower than the max number of nodes. Moreover, we observe (Table 9) that the performance gain of the optimized configuration is often extremely large. We note that the performance gains for the I-20 is lower than the ones for the other machines, which have more cores. This confirms that tuning the degree of parallelism has frequently a very strong impact on performance. We also notice that, for some applications, the optimized number of nodes varies according to the chosen lock (on pca_ll ALock-ls is optimal at 4 nodes, Backoff at 8 nodes), the chosen waiting policy (on pca_ll Malth_Spin is optimal at 4 nodes, Malth_STP at 8 nodes) and the workload (Backoff is optimal at 2 nodes on pca and at 8 nodes on pca_ll).

Main questions

In this section we answer the main questions of the study regarding the observed lock behavior. 7 shows, for each application, the performance gain of the best lock over the worst one at one node, max nodes, and opt nodes for the A-64 machine.

The table also shows the relative standard deviation for the performance of the different locks.

We observe that the number of nodes affects the performance of applications. At one node, the impact of locks on lock-sensitive applications is moderate for most applications. Nonetheless, for the most lock-sensitive ones (upscaledb, MySQL, Kyoto Cabinet, dedup), we observe that the impact is high. More precisely, most applications exhibit a gain of the best lock over the worst one that is lower than 30%. In contrast, at max nodes, the impact of locks is very high for all lock-sensitive applications. More precisely, the gain brought by the best lock over the worst lock ranges from 42% to 2382%. Finally, at opt nodes, the impact of locks is high, but noticeably lower than at max nodes. We explain this difference by the fact that, at max nodes, some of the locks trigger a performance collapse for certain applications (as shown in Table 9), which considerably increases the observed performance gaps between locks. Note that the collapse is not necessarily related to a given lock, but is also a property of the application and how the machine behaves We observe the same trends on the A-48, the I-48 and the I-20 machines (see the Appendix, §A.1, §A.2, §B.1 and §B.2).

5.2.2

Are some locks always among the best? Table 11 displays, for each machine, the coverage of each lock, i.e., how often it stands as the best one (or is within 5% of the best) over all the studied applications, over the different locks. The details for all machines are available in the Appendix (§A.3 and §B.3). We make the following observations. On the A-64, A-48 and I-48 machines, no lock is among the best for more than 76% of the applications at one node and for more than 53% of the applications both at max nodes and at the optimal number of nodes. The results for the I-20 show that the coverage of a given lock algorithm is larger than for the other machines (75% at one node, max nodes and opt nodes). This can be explained by the fact that the machine has less cores (and NUMA sockets) than the three others. Nonetheless, for all machines, no lock algorithm is optimal for all applications. We also observe that the average coverage is much higher at one node than at max nodes, and slightly higher at opt nodes than at max nodes. This is directly explained by the observations made in Section 5.2.1. First, at one node, locks have a much lower impact on applications than in other configurations and thus yield closer results, which increases their likelihood to be among the best ones. Second, at max nodes, all of the different locks cause, in turn, a performance collapse, which reduces their likelihood to be among the best locks. This latter phenomenon is not observed at opt nodes.

5.2.3

Is there a clear hierarchy between locks? Figure 3 shows pairwise comparisons for all locks, at max nodes on the A-64 machine.

We observe that there is no clear global performance hierarchy between locks. More precisely, for most pairs of locks (row A, col B), there are some applications for which A is better than B, or vice-versa (Figure 3). The only marginal exceptions are the cells having 0% for value. This corresponds to pairs of locks (row A, col B) for which A never yields better performance than B. The results at max nodes (available in the Appendix, Figure 15) exhibit similar trends as the ones at opt nodes. Besides, we make the same observations (both at opt nodes and max nodes) on the A-48, the I-48 machines and the I-20 (see the Appendix, §A.4 and §B.4).

5.2.4

Are all locks potentially harmful? Our goal is to determine, for each lock, if there are applications for which it yields substantially lower performance than other locks and to quantify the magnitude of such performance gaps. Table 12 displays, for each machine, the fraction of applications that are significantly hurt by a given lock at max nodes and at opt nodes (results for all machines in the Appendix, §A.5 and §B.5).

On the four machines, we observe that, both at max nodes and at the optimal number of nodes, all locks are potentially harmful, yielding sub-optimal performance for a significant number of applications (Table 12). We also notice that locks are significantly less harmful at opt nodes than at max nodes. This is explained by the fact that several of the locks create performance collapse at max nodes, which does not occur at opt nodes. Moreover, we observe that, for each lock, the performance gap to the best lock can be significant (Table 12).

Additional observations

Impact of the number of nodes. Table 13 shows, for each application on the A-64 machine, the number of pairwise changes in the lock performance hierarchy when the number of nodes is modified. We observe that, for all applications, the lock performance hierarchy changes significantly according to the chosen number of nodes. Moreover, we observe the same trends on the A-48, I-48 and I-20 machines (see the Appendix, §A.6 and §B.6).

Impact of the machine. We look at the number of pairwise lock inversions observed between the machines (both at max nodes and at opt nodes). For a given application at a given node configuration, we check whether two locks are in the same order or not on the target machines. We observe that the lock performance hierarchy changes significantly according to the chosen machine. Interestingly, we observe that there is approximately the same number of inversions between each A note on Pthread locks. The various results presented in this paper show that the current Linux Pthread locks perform reasonably well (i.e., are among the best locks) for a significant share of the studied applications, thus providing a different insight than recent results, which were mostly based on synthetic workloads [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF]. Beyond the changes of workloads, these differences could also be explained by the continuous refinement of the Linux Pthread implementation. It is nevertheless important to note that on each machine, some locks stand out as the best ones for a higher fraction of the applications than Pthread locks. Finally, we note that Pthread locks and PthreadAdapt locks exhibit similar performance.

Table 13. For each lock-sensitive application, percentage of pairwise changes in the lock performance hierarchy when changing the number of nodes. For example, in the case of the facesim application, there are 17% of the pairwise performance comparisons between locks that change when moving from a 1-node configuration to a 2-node configuration. Similarly, there are 97% of pairwise comparisons that change at least once when considering the 1-node, 2-node, 4-node and 8-node configurations. (A-64 machine). Impact of thread pinning. As explained in Section 3.2, all the previously-described experiments were run without any restriction on the placement of threads (i.e., a thread might be scheduled on any core of the machine), leaving the corresponding decisions to the Linux scheduler. However, in order to better control cores allocation and improve locality, some developers and system administrators use pinning to explicitly restrict the placement of each thread to one or several core(s). The impact of thread pinning can vary greatly according to workloads and can yield both positive and negative effects [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF][START_REF] Lozi | The Linux scheduler: a decade of wasted cores[END_REF]. In order to assess the generality of our observations, we also performed the complete set of experiments on the A-64 machine with an alternative configuration in which each thread is pinned to a given node, leaving the scheduler free to place the thread among the cores of the node. Note that for an experiment with a 𝑁 -node configuration, the complete application runs on exactly the first 𝑁 nodes of the machine. We chose thread-to-node pinning rather than thread-to-core pinning because we observed that the former generally provided better performance for our studied applications, especially the ones using more threads than cores. The detailed results of our experiments with thread-to-node pinning are available in the Appendix (Figures and Tables labelled A-64 machine with thread-to-node pinning).

% of pairwise changes between configurations

Overall, we observe that all the conclusions presented in the paper still hold with pernode thread pinning.

Impact of BIOS configuration. The experiments presented in this section were all ran with the BIOS configured in performance mode, for all machines. In performance mode: (i) processor throttling is turned off, so that all cores always run at full speed (i.e., maximum available frequency without Intel Turbo Boost / AMD Turbo Core), and (ii) idle power saving processor C-states are deactivated, thus cores are always immediately available to execute threads (i.e., they never need to be resumed from low-power mode). In addition, for the I-48 and I-20 machines, we also executed the throughput experiments with the BIOS configured in energy-saving move. In such a configuration, processor throttling and idle power saving C-states are activated, letting the hardware and the kernel manage the processors' state, aiming at reducing power consumption. We observe quantitative throughput differences between the two configurations. However, changing the BIOS configuration does not only affect lock performance but also application performance. As a consequence, a full study of the impact of the BIOS configuration modes on the performance of applications falls out of the scope of this article. Nonetheless, we observe that all the conclusions presented in the paper still hold when the BIOS is configured in energy-saving move.

Effects of the lock choice on application performance

The results of our study have several implications for both the software developers and the lock algorithm research community. First, we observe that the choice of a lock algorithm should not be hardwired into the code of applications: applications should always use standard synchronization APIs (e.g., the POSIX Pthread API), so that one can easily interpose the implementation of the API.

Second, the Pthread library should not provide only one lock algorithm (i.e., the Pthread lock algorithm) to software developers as it is currently the case. It is a "good generic solution"; still Pthread locks certainly do not bring the best performance for every application.

Third, the research community should perform further research on optimized lock algorithms. Specifically, there is a need for dynamic approaches to lock algorithms that automatically adapt to the running workload and its environment (e.g., the machine, the possibly collocated workloads). Besides, previous work only focused on the lock/unlock API, while we observe that applications also stress trylocks, barriers and condition variables, thus future research needs to consider complete locking APIs (more details in Section 8). Finally, metrics other than throughput are becoming more and more important, and as a consequence, when designing a new lock algorithm, researchers should not only consider throughput, but all performance metrics, including latency and energy efficiency (as we will see in details in Sections 6 and 7).

STUDY OF LOCK ENERGY EFFICIENCY

In this section, we perform experiments on the I-48 and I-20 machines in order to evaluate the energy efficiency of the different lock algorithms. In Sections 5 and 7, we present the results for throughput and tail latency, respectively. We are interested in energy efficiency as defined by Falsafi et al. [START_REF] Falsafi | Unlocking Energy[END_REF]: energy efficiency represents the amount of work produced for a fixed Table 14. Percentage of lock-sensitive applications for which the energy-efficiency gain of opt nodes over max nodes is at least 5% higher than the performance gain, at least 5% lower than the performance gain or between +5% and -5% of the performance gain (I-48 and I-20 machines).

I-48 I-20

≥ +5%

64% 38% ≤ -5% 4% 9% between -5% and +5% 32% 53% amount of energy and can be defined as throughout per power (abbreviated TPP thereafter, in

#𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 𝑤𝑎𝑡𝑡 = #𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 𝑗𝑜𝑢𝑙𝑒/𝑠𝑒𝑐𝑜𝑛𝑑
= #𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠/𝑗𝑜𝑢𝑙𝑒). Higher TPP represents better energy efficiency. As explained in Section 3.2, we use Intel's RAPL facility to measure the energy consumption of several components: cores, chip package and DRAM.

This section is structured as follows. First, Section 6.1 discusses the results of the energy-efficiency study. We also discuss the similarities and differences between performance and energy-efficiency observations drawn from the study. Next, Section 6.2 discusses and validates the POLY conjecture previously introduced by Falsafi et al. [START_REF] Falsafi | Unlocking Energy[END_REF], stating that energy efficiency and throughput go hand in hand with locks.

Energy-efficiency lock behavior

For the sake of brevity, we do not describe all the individual results for energy efficiency, available in the Appendix (§B). Overall, we observe that all the conclusions presented in the paper about throughput in Section 5 still hold with energy efficiency. More precisely, we observe that: (i) 50% of the applications are lock-sensitive with respect to energy efficiency, (ii) the optimized number of nodes for many applications is lower than the max number of nodes, (iii) the energyefficiency gap is often large between different kinds of locks, (iv) the impact of locks on lock-sensitive applications is moderate at one node, and very high at both opt nodes and max nodes, (v) no lock is among one of the bests for more than 83% of the lock-sensitive applications at one node and for more than 61% both at max nodes and opt nodes, (vi) there is no clear global performance hierarchy among locks, (vii) all locks are potentially harmful, both at max nodes and opt nodes, yielding sub-optimal energy efficiency for a significant number of applications, (viii) the lock performance hierarchy changes significantly according to the chosen number of nodes. We observe, similarly to performance, that the I-20 exhibits less pronounced trends than the I-48 machine. Compared to the four twelve-core NUMA sockets of the I-48 machine, the I-20 machine only has twenty cores, divided into two NUMA sockets. As a consequence, the max node configuration for the I-20 uses half the threads than the I-48. Thus, some bottlenecks leading to collapse when using a high number of threads are not observable on the smaller I-20 machine.

We observe similar general trends between performance and energy efficiency. However, looking at the detailed results and comparing them allows us to discover new interesting facts. The following observations are made from the results on the I-48 machine. The results for the I-20 machine are discussed at the end of the section.

We first observe that the set of lock-sensitive applications for throughput is almost the same as the set with respect to energy efficiency. In other words, changing the lock algorithm affects the throughput if and only if it affects the energy efficiency. This insight simplifies the monitoring/profiling and optimization process of such applications.

Table 15. Percentage of lock-sensitive applications for which opt nodes is lower, the same or higher for energy efficiency w.r.t. performance. We use a 5% tolerance margin, i.e., if the application performance at opt nodes is 𝑁 1 and the energy efficiency at opt nodes is 𝑁 2, and 𝑁 1 ≠ 𝑁 2, we look the performance at 𝑁 2 and the energy efficiency at 𝑁 1, and if the performance or the energy-efficiency difference is lower than 5%, we consider that the application's opt nodes is the same for performance and energy efficiency. (I-48 and I-20 machines).

I-48 I-20 lower opt nodes 25% 11% same opt nodes 74% 87% higher opt nodes 1% 2% Table 14 shows the gain difference of opt nodes over max nodes between energy efficiency and throughput. The gain between opt nodes and max nodes for energy efficiency is generally higher than the one for throughput. We observe that on the I-48, the gain for energy efficiency is higher for at least half of the lock-sensitive applications, and the same for 32% of the lock-sensitive applications. Intuitively, for energy efficiency, wasting resources while waiting behind locks costs both in terms of throughput and wasted energy.

Table 15 shows the percentage of lock-sensitive applications where opt nodes is lower, the same or higher while considering energy efficiency w.r.t. throughput. On the I-48, 25% of the lock-sensitive applications collapse at a lower number of nodes with energy efficiency than with throughput, 74% at the same number of nodes, and 1% at a higher number of nodes. We can conclude that, when throughput collapses, energy efficiency generally starts collapsing at a similar degree of parallelism.

POLY

The POLY21 conjecture introduced by Falsafi et al. [START_REF] Falsafi | Unlocking Energy[END_REF] states that "energy efficiency and throughput go hand in hand in the context of lock algorithms". More precisely, POLY suggests that "locks can be optimized to improve energy efficiency without degrading throughput", and that "[the insights from] prior throughput-oriented research on lock algorithms can be applied almost as-is in the design of energy-efficiency locks". The POLY conjecture could explain why we observe similar trends between our performance and energy-efficiency results. In this section, our goal is to test this conjecture on a large number of lock algorithms and applications (the initial paper about POLY considered 3 lock algorithms and 6 applications).

Figure 4 shows the correlation between performance and energy efficiency. Figure 5 shows the detailed results at one node for each lock-sensitive application (results at max nodes for the I-48 and at one node and max nodes for the I-20 machines are available in the Appendix, §C). The energy efficiency (in TPP -throughput per power, see Section 6) and the throughput are normalized w.r.t. the best performing (resp. energy-efficient) lock for each (machine, application, type, node) configuration. Most data points fall on, or very close to a linear regression between the two variables (the blue diagonal line).

Based on Figure 4, Malth_STP and (to a lesser extent) MCS-TimePub are outliers. These two algorithms use complex load-control algorithms: (i) Malth_STP parks a subset of the threads, while the others always spin for a few cycles before acquiring the lock ; (ii) MCS-TimePub allows spinning threads to bypass parked ones). The "exotic" behaviors of these locks most probably explain why the throughput and the energy consumption are not so well correlated with respect to other locks. Besides, on Figure 5, MySQL and (to a lesser extent) SQLite are outliers. These are the only two applications launching thousand of threads, stressing heavily the Linux scheduler. We conjecture that the overhead of context switches (due to both lock parking and thread preemption) slightly breaks the correlation between throughput and energy.

■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ◠ ◠ ◠ ◠ ▲ ▲ ▲ ▲ ◒ ◒ ◒ ◒ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ◠ ◠ ◠ ◠ ▲ ▲ ▲ ▲ ◒ ◒ ◒ ◒ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ◡ ◡ ◡ ◡ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ◡ ◡ ◡ ◡ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ◡ ◡ ◡ ◡ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃◃ ◓ ◓ ◓ ◓ ◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ■ ■ ■ ■ ▰ ▰ ▰ ▰ ◀ ◀ ◀ ◀ ◐ ◐ ◐ ◐ ◠ ◠ ◠ ◠ ◰ ◰ ◰ ◰ □ □ □ □ ▱ ▱ ▱ ▱ ◁ ◁ ◁ ◁ ◑ ◑ ◑ ◑ ◡ ◡ ◡ ◡ ◱ ◱ ◱ ◱ ▢ ▢ ▢ ▢ ▲ ▲ ▲ ▲ ◂ ◂ ◂ ◂ ◒ ◒ ◒ ◒ ◢ ◢ ◢ ◢ ◲ ◲ ◲ ◲ ▣ ▣ ▣ ▣ △ △ △ △ ◃ ◃ ◃ ◃ ◓ ◓ ◓ ◓◣ ◣ ◣ ◣ ◳ ◳ ◳ ◳ ▤ ▤ ▤ ▤ ▴ ▴ ▴ ▴ ◄ ◄ ◄ ◄ ◔ ◔ ◔ ◔ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □ □ ▱ ▱ ◁ ◁ ◑ ◑ ◡ ◡ ◱ ◱ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ■ ■ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □ □ ▱ ▱ ◁ ◁ ◑ ◑ ◡ ◡ ◱ ◱ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ■ ■ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □ □ ▱ ▱ ◁ ◁ ◑ ◑ ◡ ◡ ◱ ◱ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ■ ■ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □ □ ▱ ▱ ◁ ◁ ◑ ◑ ◡ ◡ ◱ ◱ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ■ ▰ ◀ ◐ ◠ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ■ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □□ ▱ ▱ ◁ ◁ ◑ ◑ ◡ ◡ ◱ ◱▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ■ ■ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □ □ ▱ ▱ ◁ ◁ ◑ ◑ ◡ ◡ ◱ ◱ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ■■ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □□ ▱ ▱ ◁ ◁ ◑ ◑ ◡ ◡ ◱ ◱ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ■ ■ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □ □ ▱ ▱ ◁ ◁ ◑ ◑ ◡ ◡ ◱ ◱ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ■ ■ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □ □ ▱ ▱ ◁ ◁ ◑ ◑ ◡ ◡ ◱ ◱ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ■ ■ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □ □ ▱ ▱ ◁ ◁ ◑ ◑ ◡ ◡ ◱ ◱ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ◠ ◠ ▲ ▲ ◒ ◒ ◲ ◲ ▣ ▣ ◃ ◃ ◓ ◓ ■ ■ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □ □ ◡ ◡ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ■ ■ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □ □ ◡ ◡ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ■ ■ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □ □ ▱ ▱ ◁ ◁ ◑ ◑ ◡ ◡ ◱ ◱ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ■ ■ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □ □ ◡ ◡ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ■ ■ ▰ ▰ ◀ ◀ ◐ ◐ ◠ ◠ ◰ ◰ □ □ ▱ ▱ ◁ ◁ ◑ ◑ ◡ ◡ ◱ ◱ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ ■ ■ ▰ ▰ ◀ ◀ ◐ ◐◠ ◠ ◰ ◰ □ □ ▱ ▱ ◁ ◁ ◑ ◑ ◡ ◡ ◱ ◱ ▢ ▢ ▲ ▲ ◂ ◂ ◒ ◒ ◢ ◢ ◲ ◲ ▣ ▣ △ △ ◃ ◃ ◓ ◓ ◣ ◣ ◳ ◳ ▤ ▤ ▴ ▴ ◄ ◄ ◔ ◔ 0.
■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ahmcs alock-ls backoff c-bo-mcs_spin c-bo-mcs_stp c-ptl-tkt c-tkt-
To quantitatively assess the correlation between energy efficiency and performance, we compute the Pearson correlation coefficient (PCC). The PCC is the value of the slope of a linear regression between two variables: the closer to 1, the greater the correlation between the variables. Intuitively, it quantifies the dispersion of the different configurations around the diagonal blue line. Table 16 shows the PCC on I-48 and I-20 for all the studied lock-sensitive applications. We observe that except MySQL that has a low PCC (0.55), all other configurations have a PCC at least equal to 0.87, which indicates a strong correlation between the performance and energy efficiency. More generally, the PCC across all configurations (3.1k experiments) is 0.95, an almost perfect correlation coefficient.

MySQL, upscaledb, Kyoto Cabinet and radiosity_ll have a PCC lower than 0.9. We observe that these four applications are highly contended. Looking at the detailed results, we observe that lock algorithms that use a parking waiting policy generally have a lower performance-to-energyefficiency ratio (PtE ratio thereafter) than spinning algorithms. For example, for MySQL, algorithms using a fixed threshold for the spinning loop part of the spin-then-park waiting policy (e.g., C-BO-MCS_STP with a PtE of 0.89), have a lower PtE than algorithms that do adaptive spin-then-park (e.g., Mutexee with a PtE of 1.28), and even lower than algorithms that do spinning (e.g., MCS-TimePub22 with a PtE of 1.34). Intuitively, these results are expected, because at high levels of contention, parking locks can save energy compared to spinning, but spinning might still result in higher throughput [START_REF] Falsafi | Unlocking Energy[END_REF].

■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ◠ ▲ ◒ ◲ ▣ ◃ ◓ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ◠ ▲ ◒ ◲ ▣ ◃ ◓ ■ ▰ ◀ ◐ ◠ ◰ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔
To conclude, we can state that the POLY conjecture holds on our experimental testbeds, i.e., for lock algorithms, energy efficiency and throughput go hand in hand.

STUDY OF LOCK TAIL LATENCY

In this section, we are interested in the effect of lock algorithms on the application quality of service (QoS). More precisely, the QoS metric that we consider is the application tail latency, here defined as the 99th percentile of client response time. Note that in Sections 5 and 6 we discussed the results for throughput and energy efficiency, respectively. Understanding the relationship between throughput and tail latency allows us to understand, for example, if some lock properties (i.e., the fairness of FIFO locks) that improve the tail latency of lock acquisitions indeed improve the application tail latency. This analysis also enables us to understand which locks to choose to improve the tail latency of an application, sometimes at the (controlled) expense of throughput.

To perform this analysis, we capture the 99th percentile of the client response time on the A-64 machine for the seven server applications among the lock-sensitive applications that we have studied: Kyoto Cabinet, Memcached-new, Memcached-old, MySQL, SQLite, SSL Proxy, upscaledb. We further captured throughput and energy-efficiency metrics. Note that, as we discuss in Section 6.2, throughput and energy efficiency are correlated, thus we do not clutter the plots with energyefficiency information and only show throughput. We have also performed the same experiments on the I-48 machine (our largest Intel multicore machine) and made similar observations as the ones described hereafter for the A-64 machine.

Figure 6 reports for each application and each lock algorithm at opt nodes the normalized (w.r.t. Pthread) 99th tail latency, as well as the normalized (w.r.t. Pthread) execution time (black squares). The results at one node and max nodes are available in the Appendix (§D). Locks are sorted by increasing tail latency. Note that we plot execution time (rather than throughput) so that "lower is better" for both displayed metrics (latency and execution time). However, in the text we talk about throughput (as the inverse of the execution time) for homogeneity with the other sections.

How does tail latency behave when locks suffer from high levels of contention?

At max nodes, the maximum tail latency is generally higher than at opt nodes and one node. For example, for Kyoto Cabinet, at max nodes, the tail latency of CLH_STP is 5× higher than Pthread, while it is of roughly 1.6× higher than Pthread at one node and opt nodes. The tail latency skyrockets at max nodes: locks suffer from extreme levels of contention and threads wait for a long time to acquire locks. On average, when increasing the number of threads (from one node to max nodes), the request execution time increases 3.3× and the tail latency increases 22.9×. Similarly, from opt nodes to max nodes, the request execution time increases 3.4× and the tail latency increases 21.0×. The experiments with a single thread for all the studied applications except MySQL and SQLite 23are available in the Appendix (§D). Overall, we found that, on the studied applications with a single-threaded configuration, the choice of a lock has very little effect on the throughput or the tail latency of the application.

Do fair lock algorithms improve the application tail latency?

On the one hand, FIFO locks (cf. Section 2.1) promise fairness among threads acquiring a lock. On the other hand, unfair locks might increase tail latencies by letting some threads wait for long durations before acquiring the lock. Interestingly, we observe that fairness affects the tail latency for only two applications: Kyoto Cabinet and upscaledb. For them, we observe low tail latency with almost all FIFO locks. Moreover, all hierarchical locks, which by design do not strictly impose fairness, exhibit roughly the same tail latencies, which are higher than the tail latencies of FIFO locks. Still, for the four other studied applications, we do not observe a correlation between lock fairness and application tail latency.

The main distinction among the group of applications where fair lock algorithms improve the application tail latency and where they do not is how an operation (e.g., a request) uses locks. If an operation is mainly implemented as a single critical section, then lock properties that affect lock acquisition tail latencies and throughput also affect the application, which is the case for upscaledb and Kyoto Cabinet. For example, for upscaledb, at opt nodes, we measured that 90% of the response time is consumed either while waiting for a single global lock, or inside the critical sections. On the contrary, for Memcached-new, which is one of the applications where fair lock algorithms do not necessarily improve the application tail latency, roughly 45% of the response time is spent either waiting for locks or inside critical sections (55% of the response time is spent in parallel code sections). Besides, Memcached-new uses more than one lock while processing a request, and two different threads might use different locks to process different requests: locks are thus less stressed. To summarize, we observe that, on the seven studied applications, lock properties affect application tail latency only for applications where an operation is mainly implemented as a single critical section.

Do lock tail latencies affect application throughput?

Some lock algorithms explicitly try to trade fairness for higher throughput. For example, hierarchical locks prefer to give a lock to a thread on the same NUMA node than to a thread executing on another node. Interestingly, in practice, we observe that this property, which directly affects tail latency and throughput of lock acquisitions, effectively affects the application tail latency and throughput for only two applications: upscaledb and Kyoto Cabinet. For these applications, we generally observe that hierarchical locks lead to higher tail latency and higher throughput. For example, for upscaledb at opt nodes, increasing the tail latency from 100 𝜇s to 1000 𝜇s increases the throughput by 26% (using MCS vs. HMCS). Using Ticket and C-TKT-TKT on Kyoto Cabinet, at opt nodes, increasing the tail latency by 3×, leading to a 33% throughput increase. At max nodes, Mutexee exhibits 80% higher tail latency than Pthread, but improves throughput by 60%. Applications where the tail latency is affected by the lock fairness property of some locks (§7.2) are the same applications that are affected by the fairness/throughput tradeoff property.

For the other applications where an operation is "large", i.e., an operation consists of many critical sections and/or whose critical sections are protected by different lock instances accessed by different threads, we observe that lower application tail latency is correlated with higher application throughput. In such cases, the tail latencies of individual locks are in the scale of hundreds of 𝜇s and do not have a significant weight in the operation latencies. Thus, the lock tail latency does not directly influence the application tail latency and throughput.

Among the 7 server applications for which we studied tail latency, we obtained unexpected results for Memcached-old. This application is known to suffer from extreme levels of contention (see Section 8): the main bottleneck is a single global lock serializing most requests. One might expect that lock properties should directly affect the application throughput and tail latency. However, Memcached-old uses the trylock operation to acquire a lock. Interestingly, most of the lock algorithms have been designed to optimize the lock/unlock operation, not the trylock one, and in practice, there is no such thing as a "fair trylock", even for locks that promise FIFO lock acquisitions.

Implications

Contrary to throughput (see Section 5.2), studying tail latency allows us to draw simpler conclusions, as the results are more stable across applications and machines. We observe two groups of applications that behave differently regarding tail latency.

If an operation is mostly implemented as a single critical section, then lock properties that affect lock acquisition tail latency and throughput affect application tail latency and throughput. In practice, low tail latency can be achieved with FIFO locks. If throughput is more important and a developer is inclined to trade tail latency for throughput, hierarchical locks are a good choice.

In contrast, for applications with "larger" operations that consist of many critical sections and/or the critical sections are protected by different lock instances accessed by different threads, the tail latency of locks does not necessarily affect the application tail latency. For such applications, a developer should choose a lock that best improves the application throughput: the tail latency improvements will follow.

Interestingly, we observe in our set of studied applications that software developers use the trylock operation to implement busy waiting, while the original operation is designed to allow a developer to write a fallback code if the locking attempt fails. Because the trylock is only a one-shot attempt to acquire a lock, there is actually no lock algorithm that provides a fair trylock. We believe that developers use trylocks this way because the default Pthread lock operation is blocking: a developer knows when a critical section is short, and thus would like to avoid the overhead of a thread blocking if the lock is unavailable. Pragmatically, the trylock operation should not be used this way, but this demonstrates the need to extend the Pthread lock API with a lock operation informing the lock algorithm that a thread should busy wait and not block, e.g., pthread_mutex_busylock 24 . exe=303% exe=290% 0.17ms q 1.59ms q 180.81ms q q q q q q q 2.72ms q lat=364% lat=559% 4.96ms q lat=213% lat=626% lat=317% lat=1255% 20.22ms q q q q q q q lat=489% 956.93ms q upscaledb sqlite ssl_proxy

ANALYSIS OF LOCK/APPLICATION BEHAVIOR

In order to understand the performance of a lock algorithm on a given application, we perform a detailed analysis that explains, for each of the studied applications, which types of locks work well/poorly and why. We highlight that a lock can have many side-effects on the performance of an application. In Section 8.1, we give general insights that we draw from our analysis by presenting, for every application, the performance bottleneck it suffers from, and which lock(s) to prefer or to avoid when running it. We found that, beyond the pure performance of a lock algorithm under high contention, different applications stress different aspects of a lock algorithm (e.g., memory footprint, scheduler preemption tolerance). In Section 8.2, we present seven properties shared by the studied lock algorithms, which, when cross-referenced with the performance bottlenecks of an application and a set of general guidelines that we provide, can help a developer to predict whether a lock algorithm performs well or poorly on a given application.

Note that the above-mentioned analysis was performed on the A-64 machine, and was performed with the aim to find the main (lock-related) performance bottlenecks. For each bottleneck, we explain if it is more common at opt nodes or max nodes. Nonetheless, the observations made in Sections 5 and 6 are not specific to lock performance on the A-64 machine. Thus, we think that the conclusions of this Section can be applied to different machines, and not only to throughput but also to energy efficiency.

Summary of the lock/application behavior analysis

In this section, we give general insights that we draw from the detailed analysis of the different lock-sensitive applications. Table 17 lists, for each lock-sensitive application its main performance bottleneck with respect to locking (in column 2). We also recommend which family of lock algorithms (i.e., lock algorithms sharing a similar property) to prefer or avoid for each of the studied applications (detailed in Section 8.2.1). For example, we observed that the performance bottleneck of fluidanimate is due to a high number of uncontended lock acquisitions. As a consequence, it is better to use a light lock algorithm, i.e., a lock that can be acquired very quickly when there is no other thread trying to acquire it at the same time (e.g., with only one atomic CPU instruction). Overall, we identified 9 performance bottlenecks across 22 applications, that can be summarized into four categories: lock contention, scheduling issues, memory footprint and memory contention.

8.1.1 Lock contention. One of the key performance factors of a lock algorithm is how well it behaves under contention, i.e., its performance when a set of threads try to acquire the same lock instance at the same time. Depending on their design, lock algorithms achieve their best performance at different levels of contention. For example, lock algorithms like Spinlock and TTAS are simple enough so that acquiring the lock under a low level of contention is only a matter of a few cycles. However, this simplicity leads to a performance collapse under higher levels of contention. On the contrary, algorithms like MCS or HMCS are designed to perform best under high levels of contention, at the expense of a high cost to acquire the lock when there is no other thread competing to acquire it. We observe four different performance bottlenecks depending on how many threads concurrently try to acquire a lock instance and how they try to acquire it: high levels of contention, extreme levels of contention, trylock contention and many uncontended lock acquisitions. Note that lock contention can be observed both at opt nodes and max nodes.

High levels of contention. A high number of threads (between approx. 10 to 40 threads on A-64) are waiting to acquire the same lock instance at the same time. To measure the contention level on a lock, we take regular snapshots of the application state, looking at how many threads are currently waiting for a lock. More precisely, each time a thread requests a lock, it puts the lock address inside a private cache-aligned memory location, and all such locations are read by a background thread every second. This provides us with a low-overhead approximation of the real number of threads waiting for a lock, with respect to a more straightforward approach where a counter is atomically incremented before waiting for a lock and decreased when the lock is acquired. Radiosity, linear_regression, s_raytrace, s_raytrace_ll are the four lock-sensitive applications that suffer from this performance bottleneck. Radiosity is parallelized using per-core distributed task queues, where each thread can steal work from another task queue. Radiosity allocates a large number of locks (4k); still only two locks are highly contended. With HMCS, one of the best locks, on average, 60% of all the total threads wait on one of the two stressed locks, while there is virtually no contention on the other 4k locks. For linear_regression, we observe that there is only one lock inside the application that protects a distributed task queue. This lock suffer from high levels of contention (65% of the threads waiting on the lock). S_raytrace and s_raytrace_ll render a 3-D scene partitioned among threads and there is a global task queue protected by a single lock. Still, the contended lock is not the global task queue lock, but a lock protecting a single counter used to implement a global unique identifier generator. For the short-lived version (resp. for the long-lived version), on average, 40% (resp. 60%) of the threads are waiting for the same lock (using HMCS, one of the best lock algorithms). When using an atomic fetch_and_add, we observe a 1.8× (resp. 3×) performance improvement for the short-lived version.

For high levels of contention, lock algorithms that rely on local spinning (e.g., MCS) or on a hierarchical approach (e.g., AHMCS) are well suited (see Section 2.1). Light lock algorithms (e.g., Spinlock) and lock algorithms using a parking waiting policy must be avoided when possible.

Extreme levels of contention. A very high number of threads (more than 40 on A-64) are waiting to acquire the same lock instance. This phenomenon can be observed on seven of the lock-sensitive applications: radiosity_ll, volrend, MySQL, SSL Proxy, Kyoto Cabinet, upscaledb. lock instance is the lock protecting the global hash table storing the data. Indeed, all database operations (create/insert/update/delete/lookup) need to acquire the same lock, which becomes highly contended. Upscaledb is an in-memory key/value store tailored for efficiency of analytical functions. Contrary to popular database engines like InnoDB for MySQL that use fine-grained locking (generally one lock for a row/set of rows), upscaledb uses only one lock instance to protect the whole database. Such a poor design choice explains why upscaledb does not scale: indeed we observe that all of the threads spend 98% of their execution time waiting for the lock.

For these applications, the well-performing lock algorithms are the ones designed to support extreme levels of contention, such as AHMCS, HMCS and the cohort locks.

Trylock contention. Some of the studied applications (e.g., Memcached-old, streamcluster) use the (non-blocking) trylock operation to acquire a lock instance. However, most of the existing papers on lock algorithms focus on the design and evaluation of lock operations with blocking semantics. Trylock is a non-blocking operation, and we observe that an algorithm that optimizes the (blocking) lock operation can have a totally different behavior for its trylock operation. In fact, most algorithms (even the more elaborate ones, e.g., AHMCS) have a trylock operation as simple as the one of the simplest algorithm (Spinlock), which consists of a simple atomic instruction on a single memory address. As an example, the MCS trylock operation is a compare-and-set on the tail pointer of the waiter's linked list.

Streamcluster, and its long-lived version streamcluster_ll, are examples of applications that stress trylocks. Streamcluster heavily relies on a custom barrier implementation to synchronize threads between the different phases of the application. This barrier implementation uses a mix of trylock and lock operations, as well as condition variables. During Streamcluster execution, 30% of the threads are on average either inside a trylock or a lock invocation. Because streamcluster mixes locks and trylocks, we observe that algorithms having a contention-hardened trylock operation, like HMCS, exhibit better application performance. Such algorithms include rather complex trylock implementations, with tens of instructions. On the contrary, poor-performing algorithms, like Spinlock, have extremely simple trylock implementations (i.e., Spinlock simply does one compareand-set instruction). As a result, an uncontested trylock costs on average 220 cycles with HMCS and 170 cycles with C-BOMCS (two well-performing locks in Streamcluster), while it costs 60 cycles with Spinlock and 80 cycles with MCS (two poor performing locks when trylock is heavily contended). Another example where trylock is important is Memcached-old. Instead of calling the Pthread mutex lock operation, Memcached-old relies on trylock to improve reactivity for short critical sections. The most contended lock is a global lock protecting the cache hash-table (item_global_lock), followed by the lock protecting the in-house memory allocator (cache_lock). As a results, on average 80% of the threads wait behind one of these locks. These results illustrate that contention-hardened trylocks can play an important performance role under high levels of contention.

Among the studied algorithms, only a few algorithms (HMCS, cohort locks, Partitioned and MCS-TimePub) implement a trylock operation performing well under high levels of contention. For example, the HMCS and the cohort locks implement a trylock in a hierarchical manner, leading to better performance on NUMA machines 26 .

Many uncontended lock acquisitions. One of the applications (fluidanimate) creates a large number of lock instances (500k locks). These locks are used to protect each cell of the grid, and are only used by one or two threads at the same time: most of the time a thread acquires the lock without any competition. More precisely, fluidanimate calls pthread_mutex_lock 5 billions times and half of the acquisitions are immediate, while for the other half a thread waits only because there is another thread inside the critical section, never because there are other waiting threads.

While the main performance bottleneck of facesim is related to memory (see below), we found that, similarly to the SyncPerf study [START_REF] Mejbah | SyncPerf: Categorizing, Detecting, and Diagnosing Synchronization Performance Bugs[END_REF], as lock are rarely contended, an important performance factor is the best-case critical path, i.e., the time to acquire a lock instance when it is not contended. We observe that the "lightest" lock algorithms (i.e., the ones with a short code path for acquisition in the absence of contention) exhibit very good performance (e.g., Backoff, Spinlock, Ticket, TTAS, which require roughly 40 cycles to acquire a lock under no contention). On the contrary, lock algorithms like cohort locks or HMCS (that require roughly 190 cycles to acquire an uncontended lock) perform the worst, because a thread needs to acquire two locks (the NUMA-local lock and the global one) most of the time, hampering the execution.

For application highly sensitive to the time spent acquiring a lock instance in the absence of contention, we recommend to use the "lightest" lock algorithms, such as Backoff, Spinlock, Ticket or TTAS.

Scheduling issues.

The performance of some of the studied applications mainly depends on how well a given lock algorithm behaves with respect to scheduling choices. We observe two different performance bottlenecks related to scheduling: the lock holder preemption effect and the lock handover effect.

Lock holder preemption. The lock holder preemption effect is a well-known issue [START_REF] Blasgen | The Convoy Phenomenon[END_REF] with lock algorithms using a spinning waiting policy. It happens when a thread 𝐴 waiting for a lock instance preempts a thread 𝐵 that is the lock holder. Doing so, 𝐴 runs on a core waiting for 𝐵 to release the lock instance, while the rescheduling of 𝐵 is delayed because of 𝐴, thus delaying 𝐵 to finish the critical section, and release the lock instance for 𝐴. This pattern is highly inefficient. In the worst scenario, this can lead to lock convoy: while the lock holder is descheduled, each thread progresses and eventually tries to acquire the lock instance, spinning, thus delaying the rescheduling of the lock holder. This issue is usually observed in highly-threaded applications, where the scheduler has to frequently decide which thread to run on which core. This effect is more likely to be seen at max nodes; still some applications are already highly-threaded at opt nodes (e.g., MySQL and SQLite). Note that all kinds of spinning algorithms are affected by this phenomenon: the simplest ones (e.g., TTAS), FIFO (e.g., MCS_Spin) and hierarchical approaches (e.g., HMCS). In fact, lock holder preemption is mainly a property of the program concurrency-design, not the lock design. The lock holder is more likely to be preempted inside critical sections with applications composed of long critical sections and that over-subscribe threads to cores (e.g., databases).

MySQL and SQLite are two highly-threaded applications suffering from the lock holder preemption effect. MySQL uses a large thread pool (hundreds of threads) to handle queries from clients. SQLite creates a server that listens for client requests on a Unix socket and uses a globally shared work queue protected by a single lock instance; still many other lock instances are used to synchronize internal data structures. The benchmark used (see Section 3.1) creates hundreds of threads.

In order to mitigate this effect, it is recommended to choose lock algorithms using a parking waiting policy. Indeed, with this policy, when a thread waits for too long, it deschedules itself, and the scheduler does not schedule it back until the lock instance has been released. In particular, we recommend Malth_STP, because, thanks to its concurrency control mechanism, it is able to put aside some threads and let others progress. The smaller set of running threads allows lowering the pressure put on the lock instances, and as a consequence the overall performance of the application is improved. Another well-performing lock is the MCS-TimePub lock algorithm, which is specifically designed to mitigate the lock holder preemption effect.

Lock handover. This phenomenon (also known as the lock waiter preemption problem [START_REF] Shan | APPLES: Efficiently Handling Spin-lock Synchronization on Virtualized Platforms[END_REF]) happens with algorithms that use a direct handoff succession policy (see Section 2.1.2). When a thread waiting in line for a lock is preempted, all other waiting threads after this one are delayed. Worse, these threads spinlock their entire timeslice, postponning the rescheduling of the descheduled thread. In principle, this problem is unlikely to appear on platforms that do not use more threads than cores. In practice, lock waiter preemption actually occurs quite often even when there are never more threads than cores. Indeed, the Linux CFS scheduler sometimes migrates two (or more) threads on the same core, thus leading to situations where the next-acquiring thread is preempted, and where other waiting threads spin uselessly. These migrations are mainly observed when there are many blocking calls inside the application (e.g., condition variables, I/O). This phenomenon is more likely to happen at max nodes.

There are six of the lock-sensitive applications that suffer from the lock handover effect: facesim, ferret, vips, ocean_cp and ocean_ncp, streamcluster. Facesim creates one thread per core that implements a fork-join computation model [START_REF] Bienia | Benchmarking Modern Multiprocessors[END_REF]. The applications uses a barrier to synchronize the successive fork-join phases, implemented with a mutex lock and a condition variable. When threads wait on the condition variable, they might be migrated by the scheduler so that when they are unblocked (i.e., when leaving pthread_cond_wait) they are scheduled on the same core. There are 10× more migrations for a poor performing lock algorithm (MCS, 40k) than for the MCS-TimePub lock algorithm (4k): with a poor performing lock, threads have more chances to share the same core. Note that a straightforward solution to "fix" facesim is to pin each thread to a distinct core, thus avoiding inefficient migrations. For example, with MCS pinning improves performance and yields roughly the same results as MCS-TimePub, one of the best performing locks.

Ferret is parallelized using a pipeline model with 6 stages, where the four middle stages use a thread-pool to handle requests. Ferret is subject to the lock handover effect: treads are migrated because they stress the condition variables propagating work through the stages. To assess the impact of this effect, we compute the lock handover latency, i.e., the time delta between when a thread releases the lock and when the next thread that was waiting for the lock acquires it. The lock handover latency is on average 15× higher with MCS than with Spinlock (30M instead of 2M cycles). As a comparison, on a micro-benchmark that does not suffer from the lock handover effect (1 thread pinned on each core, all trying to acquire the same lock), the average lock handover latency is of 460 cycles with MCS, and 46k with Spinlock.

Vips automatically builds a parallel image processing pipeline, each stage being supported by an independent pool of threads. Threads are migrated inside vips after page faults and calls to condition variables.

Ocean_cp and ocean_ncp are applications simulating large-scale ocean movements. We observe that the main bottleneck in the ocean applications is a barrier implemented with condition variables and used to synchronize the different phases of the simulation.

Streamcluster heavily relies on a barrier to synchronize the threads, and the barrier implementation uses a mix of trylock and lock operations, as well as condition variables.

For applications suffering from the lock handover effect, FIFO algorithms using a waiting policy based on pure spinning (e.g., Ticket, MCS) should be avoided in such cases.

Memory footprint.

A less known category of locking performance bottlenecks is related to the memory footprint of a lock instance. Indeed, not all lock algorithms occupy the same space in memory, and if many lock instances are allocated by the application, it can become a critical performance factor. We observe two different performance bottlenecks related to the memory footprint of a lock, which depend on the memory allocation pattern.

Erasing new memory pages inside the page fault handler. With applications like fmm, fluidanimate, water_spatial and water_nsquared, one thread creates and initializes all the lock instances at the beginning of a run, allowing all other threads to use them. More precisely, water_spatial creates 125k lock instances, water_nsquared 32k, fmm 2k and fluidanimate 500k. The allocating thread requests memory pages from the kernel, that are erased (i.e., filled with zeros) upon the first access. For an application with many lock instances, a lock algorithm with a big memory footprint triggers many memory page requests to the kernel, each of them needing to be erased. For example, with fmm, a poor performing lock (AHMCS) triggers 17% (400k) more page-faults than a well-performing lock (Spinlock). Water_spatial is another good example of an application where this effect has a severe impact on performance: the execution time difference between Spinlock (a well-performing lock) and AHMCS (a bad performing lock) can be explained by the difference of the time spent erasing pages (1 vs 19 seconds). This bottleneck is observed both at opt nodes and max nodes, and happens during the initialization phase of the application. One way to alleviate the bottleneck is to rewrite the application to allocate locks concurrently (though this might cause other issues, see the next bottleneck description). Another way is to reduce the ratio of the initialization time over the steady-state time by increasing the steady-state time. However, this is not always possible. For example, the number of allocated locks for water_nsquared is proportional to the input size, upon which the steady-state time depends. In such applications, we thus recommend to use lock algorithms that have a low memory footprint (e.g., Spinlock, Ticket) to decrease the number of pages that need to be erased.

Applications that need to control their memory footprint can benefit from dynamically allocating per-node data structures of hierarchical locks upon first access [START_REF] Kashyap | Scalable NUMA-aware Blocking Synchronization Primitives[END_REF]. It benefits to applications where locks are in fact rarely acquired by threads from multiple NUMA nodes. However, it leads to more dynamic allocations to be made, which might introduces kernel lock contention inside the page fault handler (see below).

Kernel lock contention inside the page fault handler. On some applications, at both opt nodes and max nodes, all threads are constantly creating new lock instances, putting pressure on the memory allocator (i.e., malloc). Internally, malloc requests pages of memory to the kernel (via brk and mmap), which generates page faults when the pages are first accessed. The page fault handler tries to insert the new page into a process-shared data structure (the virtual address space data structure), protected by a single reader/writer lock [START_REF] Clements | RadixVM: scalable address spaces for multithreaded applications[END_REF]. The contention on this kernel lock becomes more performance critical than the one on the application-level locks, because all threads need exclusive write access to the data structure, and the lock is generally kept for a long time.

Dedup is an example of application where there is kernel lock contention inside the page fault handler. Through its lifetime, dedup creates a very large number of locks (266k), which puts a huge pressure on the memory allocator. To measure the impact of the lock algorithm memory footprint on the performance of dedup, we compare CLH-ls, which has a huge memory footprint, with Pthread, which has a low memory footprint. Using CLH-ls, we observe an increase of the number of calls to mmap by a factor of 96 and an increase of the number of calls to brk by a factor of 46. Moreover, we observe that using the Pthread lock algorithm, at opt nodes, dedup spends 3.3 seconds (30%) of the total execution time inside the kernel page fault handler, whereas with CLH-ls it spends 80 seconds (80%) of the total execution time. One can argue that the performance bottleneck has been introduced by the design of our transparent interposition design, which requires one dynamic memory allocation per lock instance, even if the original POSIX lock instances were not dynamically allocated (i.e., the instance is on the stack), or allocated in batches. However, dedup by itself, i.e. without LiTL, continuously stresses the memory allocator, because it continuously allocates chunks of data, each containing a lock instance. Indeed, when we modify the source code of dedup to increase the allocated size of a lock instance that protects a chunk from concurrent modifications, without LiTL, we still observe a performance decrease of 60%.

As a consequence, the fewer memory pages are used when allocating lock instances, the fewer insertions of new pages inside the virtual address space are made, and thus the lower contention on this lock is observed. We thus recommend lock algorithms having a low memory footprint like Spinlock or Backoff for such applications. Pca (and its long-lived version pca_ll) is a good example of such a phenomenon. Validating the observations on pca from the original paper [START_REF] Ranger | Evaluating MapReduce for Multi-core and Multiprocessor Systems[END_REF], we found that pca suffers either from lock contention (for algorithms that do not support high levels of contention, e.g., Spinlock) or memory controller saturation 27 (for the others, e.g., Pthread). For example, with Pthread (pca suffers from memory controller saturation), we observe a 44% performance increase when we interleave the memory pages of the application, i.e., when the memory pages of the application are allocated in a round-robin fashion on all the NUMA nodes of the machine. This is a clear indicator that, without interleaving, the memory controller of one NUMA node becomes overwhelmed, receiving too many requests from all the threads. Besides, even with interleaving, the memory bottleneck does not fully disappear. Indeed, we observe an increase from 0.4 stalled cycles per instruction (SPI) outside locking primitives with Malth_Spin (one of the best locks) to 2.25 SPI with MCS 28 (a bad performing lock). However, note that the stalled cycles are observed inside the parallel code sections of pca. By being somewhat "too" fast, MCS allows many threads to run in parallel, thus increasing the memory contention of the parallel code sections of pca. More precisely, the number of stalled cycles due to memory accesses, which account for 98% of all stalled cycles, is 20× higher with MCS than with Malth_Spin. Note that this phenomenon is more likely to appear at max nodes, because memory contention exists when a large number of threads access memory concurrently.

In such cases, we recommend lock algorithm that reduce the number of concurrently running threads in the application, thus the number of concurrent memory accesses (e.g., Malth_Spin).

Guidelines for lock algorithms selection

In Section 8.2.1, we describe the different properties of the studied lock algorithms, and in Section 8.2.2 we discuss guidelines to help a developer choosing a lock algorithm for a given application.

Lock properties.

Knowing the performance bottleneck of an application, a developer can now decide which lock algorithms to use in an application. Table 18 summarizes the main properties of each lock algorithm. Overall, we identified seven properties shared by the studied lock algorithms that have an impact on performance. We also describe how the different design properties described in Section 2.1 are related to these "behavioral" properties. We first present properties related to 27 While experimentally assessing the performance overhead of LiTL (see Section 4.4), we noticed a corner case with pca. More precisely, we observe that, most of the time, LiTL improves the performance w.r.t. the manually implemented version. This performance difference comes from the condition variable algorithm of LiTL that lengthens the critical section. Indeed, as pca and pca_ll suffer from memory contention, longer critical sections lower the number of threads running in parallel outside the critical sections, thus improving performance. However, the best locks with LiTL are also among the best manually implemented locks. 28 A careful reader may argue that MCS should not cause heavy cache coherence traffic, because it uses local spinning: MCS should be mostly spinning on the L1 cache and triggers cache coherence traffic only when the lock holder releases the lock to the next waiting thread. different levels of contention, then properties that can affect scheduling, and finish with properties related to memory.

(1) Light: lock algorithms having a short code path to acquire the lock when uncontended. Algorithms such as Spinlock, Backoff or TTAS have this property, where an uncontended lock acquisition is almost only an atomic instruction. Algorithms using a context such as MCS or CLH are generally heavier, because they need to setup the context before acquiring the lock, even if there is no contention. We also observe that there is no hierarchical lock that is light: cohort lock algorithms acquire both local and global locks, and even AHMCS, which implements a fast path; still needs to acquire one uncontended MCS lock. Finally, all existing load-control lock algorithms are heavy, because the load control decision is on the critical path.

Note that for applications where a single thread acquires a lock, biased locking [START_REF] Dice | Quickly Reacquirable Locks[END_REF] can improve performance. This technique can be used to enhance any lock algorithm with an atomic-free fast path, and switches to the default lock algorithm upon the first lock acquisition by a second thread. (2) Hierarchical lock: lock algorithms designed to take into account NUMA architectures, where the cost of accessing a lock instance from a different socket is higher than the one when the lock instance is already inside a cache of the local socket. This category is the same category as described in section 2.1.2. (3) Contention-hardened trylock: lock algorithms with a trylock operation tolerating moderate to high levels of contention. We observe that some applications use the trylock operation to do busy-wait, i.e., the trylock operation is continuously called in a loop until the lock is acquired.

In practice, a large number of atomic instructions are executed concurrently, flooding the memory interconnect with cache-coherence traffic. Here, lock algorithms that lower the cache-coherence traffic are the ones that perform the best. We observe that hierarchical locks have a contention-hardened trylock, because a thread needs to trylock both the local and the global lock 29 . We also observe that algorithms like MCS-TimePub and Partitioned have a contention-hardened trylock because their trylock operation takes time (i.e., the operation consists of one atomic instruction and a significant number of non-atomic instructions), thus lowering the cache-coherence traffic. (4) Parking: lock algorithms using a spin-then-park or a direct parking waiting policy (see Section 2.1.3). (5) FIFO: lock algorithms imposing an order on the acquisitions of a lock instance according to the thread arrival times, i.e., if a thread 𝐴 tries to acquire the same lock instance as 𝐵 before 𝐵, 𝐴 enters the critical section before 𝐵. Note that some lock algorithms leave some degree of freedom regarding this order, i.e., a thread might enter the critical section before another thread that had been waiting for a longer amount of time (e.g., with the cohort lock algorithms that favor threads running on the same socket as the lock holder). This category regroups a subset the lock algorithms using a direct handoff succession policy (see Section concurrently, thus the pressure on the memory interconnect. Surprisingly, lock algorithms that perform both poorly under contention and which do not flood the interconnect with cache-coherence messages (e.g., Backoff, TTAS-ls) are good choices to lower the memory interconnect utilization.

8.2.2 Choice guidelines. Figure 7 shows a series of steps to follow in order to select which lock algorithm to use with each application. The steps are questions the developer needs to answer that help select a small subset of lock algorithms. A box with a white background represents a question and a box with a gray background suggests the developer to select or avoid some locks.

For example, for upscaledb, the developer starts by asking if the application has more threads than cores. Upscaledb does not have more threads than cores. Next, the application is profiled to know if it performs many calls to the scheduler (e.g., with I/O, conditions variables), which might lead to thread migrations. Upscaledb does not call the scheduler often, so the developer can still consider FIFO algorithms. Moving forward, upscaledb does not create many lock instances, does not use the trylock operation and does not suffer from memory contention. We are now at the last step, where the developer has to chose a lock algorithm regarding the levels of contention the lock instances inside upscaledb suffer from. Remember that because upscaledb does not have more threads than cores, and does not call the scheduler often, the developer should choose an algorithm that uses a spinning waiting policy. We observe that upscaledb suffers from extreme levels of contention. Therefore the developer should choose a hierarchical spinning lock algorithm, for example AHMCS.

A word of caution: these guidelines are cursory, because carefully tuning a lock algorithm is highly dependent on a given workload and machine. They give a hint to the developer for the choice of a lock, and mostly target applications in which lock access patterns are stable (e.g., the most contended lock is always the same and it always suffers from a constant level of contention). Many lock bottlenecks can be suppressed by redesigning the application with smaller critical sections, or by using more scalable synchronization primitives, such as lock-free data structures. Besides, some techniques enhancing lock algorithms (e.g., lazy lock allocation [START_REF] Kashyap | Scalable NUMA-aware Blocking Synchronization Primitives[END_REF], biased locking [START_REF] Dice | Quickly Reacquirable Locks[END_REF]) can be beneficial to adapt a given lock that is not initially the best for a given workload. Finally, for applications where the access pattern of a lock varies during the workload, adaptive lock algorithm such as GLK [START_REF] Antic | Locking Made Easy[END_REF] can be used.

Note also that these guidelines do not cover all the possible configurations. For example, if an application allocates many lock instances, and these instances suffer from extreme levels of contention, there is no hierarchical lock algorithm having a low memory footprint. Nonetheless, we propose these guidelines based on our analysis of the set of studied applications: they cover each application, and we believe that the set is large enough to be representative.

RELATED WORK

There is a large body of work studying different aspects of lock algorithms. This section is organized as follows. Section 9.1 presents work studying the implementation of lock algorithms, and previous approaches to transparently replace lock algorithms inside applications. Section 9.2 discusses the possibility to dynamically adapt lock synchronization at run-time. Section 9.3 considers previous studies of multicore lock algorithms. Section 9.4 covers existing works that highlight the importance of energy efficiency for both applications and lock algorithms. Finally, Section 9.5 discusses lockrelated performance bottlenecks.

Lock algorithm implementations

The design and implementation of the LiTL lock library borrows code and ideas from previous open-source toolkits that provide application developers with a set of optimized implementations for some of the most-established lock algorithms: Concurrency Kit [START_REF] Samy | Concurrency Kit[END_REF], liblock [START_REF] Lozi | Vers des mécanismes d'exclusion mutuelle plus efficaces pour les architectures multi-coeur)[END_REF][START_REF] Lozi | Remote Core Locking: Migrating Critical-Section Execution to Improve the Performance of Multithreaded Applications[END_REF][START_REF] Lozi | Fast and Portable Locking for Multicore Architectures[END_REF], libslock [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF] and lockin [START_REF] Antic | Locking Made Easy[END_REF][START_REF] Falsafi | Unlocking Energy[END_REF]. All of these toolkits require potentially tedious source code modifications in the target applications, even in the case of algorithms that have been specifically designed to lower this burden [START_REF] Auslander | Enhancement to the MCS Lock for Increased Functionality and Improved Programmability[END_REF][START_REF] Michael | Shared-Memory Synchronization[END_REF][START_REF] Wang | Be my guest: MCS lock now welcomes guests[END_REF]. Moreover, among the above works, none of them provides a simple and generic solution for supporting Pthread condition variables. One noticeable exception is lockin [START_REF] Antic | Locking Made Easy[END_REF][START_REF] Falsafi | Unlocking Energy[END_REF], which only requires including a header inside the source code of the application and recompile it linked against a specific shared library. lockin also proposes a condition variable algorithm; still the proposed algorithm does not circumvent the "thundering-herd" effect for all lock algorithms (see Section 4.1). The authors of liblock [START_REF] Lozi | Fast and Portable Locking for Multicore Architectures[END_REF] proposed an approach to support condition variables; still we discovered that it suffers from liveness hazards due to a race condition (see Section 4.1). Indeed, when a thread T calls pthread_cond_wait, it is not guaranteed that the two steps (releasing the lock and blocking the thread) are always executed atomically. Thus, a wake-up notification issued by another thread might get interleaved between the two steps and T might remain indefinitely blocked.

Several research works have leveraged library interposition to compare different locking algorithms on legacy applications (e.g., Johnson et al. [START_REF] Johnson | Decoupling contention management from scheduling[END_REF] and Dice et al. [START_REF] Dice | Lock Cohorting: A General Technique for Designing NUMA Locks[END_REF]). However, to the best of our knowledge, they have not publicly documented the design challenges to support arbitrary application patterns (e.g., condition variables), nor disclosed the corresponding source code and the overhead of their interposition library has not been discussed.

Adaptive algorithms

Previous works discuss the possibility to dynamically adapt lock synchronization at run-time. One way is to dynamically switch between lock algorithms depending on the contention level. The work by Lim et al. [START_REF] Lim | Reactive synchronization algorithms for multiprocessors[END_REF] considers switching among three lock algorithms (TTAS, MCS and a delegation-based one), depending on the level of contention on the lock instance. SANL [START_REF] Zhang | Scalable Adaptive NUMA-Aware Lock[END_REF] switches between local and remote (i.e., delegation-based) locking schemes. As explained in Section 2, delegation-based algorithms require critical sections to be expressed as a form of closure, which is incompatible with our transparent approach (i.e., without source code modification). More recently, Antic et al. [START_REF] Antic | Locking Made Easy[END_REF] proposed GLS, a solution that dynamically switches among three lock algorithms (Ticket, MCS, Pthread mutex), using Ticket at low contention levels, MCS at high contention levels, and Pthread when it detects overthreading (i.e., more threads than cores). While these approaches confirm our observations that there is no one-size-fit-all locking algorithm, their goal is to make locking easy for a developer, not to choose the best lock algorithm in all cases. Indeed, they only switch among a few different lock algorithms, whereas, in light of our study, there are more lock algorithms to consider, making the choice more complex. None of the solutions considers some of the bottlenecks that we observed, like trylock contention, the lock handover effect and bottlenecks related to the memory footprint of a lock instance. For example, all solutions embed all the different lock data structures into a unique one, inflating the memory layout of a lock instance: an application like dedup (using thousands of lock instances) that is good with a classical low memory footprint Ticket algorithm might not be good with the Ticket version of GLS, even if GLS never uses lock algorithms other than Ticket.

A second solution is to monitor the load pattern of the application to detect situations that are subject to pathological behavior. Load control (LC) [START_REF] Johnson | Decoupling contention management from scheduling[END_REF] is a runtime solution, which dynamically reduces the number of threads trying to acquire the lock at the same time, to avoid pathological issues (e.g., lock convoy). LC requires kernel modifications on Linux to measure load accurately and with high resolution (∼ 100𝜇𝑠). This approach is thus incompatible with our work, where we focus on lock algorithms that do not require code modifications. Overall, our work highlights the need for low-memory, complete interface (i.e., lock, trylock, and condition variables), fully adaptive (i.e., from spinlocks all the way to complex HMCS locks) lock algorithms.

Studies of synchronization algorithms

Several studies have compared the performance of different multicore lock algorithms, from a theoretical angle and/or based on experimental results [START_REF] Anderson | The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors[END_REF][START_REF] Boyd-Wickizer | Non-scalable Locks are Dangerous[END_REF][START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF][START_REF] Dice | Lock Cohorting: A General Technique for Designing NUMA Locks[END_REF][START_REF] Kontothanassis | Scheduler-Conscious Synchronization[END_REF][START_REF] Lozi | Vers des mécanismes d'exclusion mutuelle plus efficaces pour les architectures multi-coeur)[END_REF][START_REF] John | Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors[END_REF][START_REF] Michael | Shared-Memory Synchronization[END_REF]. Our study encompasses significantly more lock algorithms and waiting policies. Moreover, the bulk of these studies is mainly focused on characterization microbenchmarks, while we focus instead on workloads designed to mimic real applications. Two noticeable exceptions are the work from Boyd-Wickizer et al. [START_REF] Boyd-Wickizer | Non-scalable Locks are Dangerous[END_REF] and Lozi et al. [START_REF] Lozi | Fast and Portable Locking for Multicore Architectures[END_REF]; still they do not consider the same context as our study. The former is focused on kernel-level locking bottlenecks, and the latter is focused on applications in which only one or a few heavily contended critical sections have been rewritten/optimized (after a profiling phase). For all these reasons, we make observations that are significantly different from the ones based on all the above-mentioned studies.

Some related work discusses the choice of synchronization paradigms and lock algorithms [START_REF] Mckenney | Pattern Languages of Program Design 2[END_REF][START_REF] Mckenney | Selecting Locking Primitives for Parallel Programming[END_REF][START_REF] Mckenney | Is Parallel Programming Hard, And, If So, What Can You Do About It[END_REF]. The proposed guidelines are often a subset of our proposed guidelines in Section 8.2.2: because these works only study a smaller set of applications and lock algorithms, they generally do not cover all the cases we observed.

Other synchronization-related studies have a different scope and focus on concurrent data structures, possibly based on other facilities than locks. Gramoli [START_REF] Gramoli | More than you ever wanted to know about synchronization: synchrobench, measuring the impact of the synchronization on concurrent algorithms[END_REF] studies different concurrent data structures on micro-benchmarks with multiple synchronization techniques. David el al. [START_REF] David | Concurrent Search Data Structures Can Be Blocking and Practically Wait-Free[END_REF][START_REF] David | Asynchronized Concurrency: The Secret to Scaling Concurrent Search Data Structures[END_REF] evaluate theoretical and practical progress properties of concurrent search data structures. Brown et al. [START_REF] Brown | Investigating the Performance of Hardware Transactions on a Multi-Socket Machine[END_REF] study the performance of hardware transactional memory with microbenchmarks on modern NUMA multicore machines. Finally, Calciu et al. [START_REF] Calciu | Message Passing or Shared Memory: Evaluating the Delegation Abstraction for Multicores[END_REF] study the tradeoff between message passing and shared memory synchronization on multicore machines. Similarly to us, they advocate that software should be designed to be largely independent of the choice of low-level communication mechanism.

Energy efficiency

Improving energy efficiency in systems and applications has been thoroughly studied in the past. For example, previous works describe user-level [START_REF] Somu Muthukaruppan | Price theory based power management for heterogeneous multi-cores[END_REF][START_REF] Ribic | Energy-efficient work-stealing language runtimes[END_REF][START_REF] Shen | Power containers: an OS facility for fine-grained power and energy management on multicore servers[END_REF][START_REF] Singh | Real time power estimation and thread scheduling via performance counters[END_REF][START_REF] Xie | Compile-time dynamic voltage scaling settings: opportunities and limits[END_REF][START_REF] Xu | Automated OS-level Device Runtime Power Management[END_REF] and kernel [START_REF] Pallipadi | The ondemand governor[END_REF] facilities that both manage and predict power consumption. Prior works propose trading performance and/or precision for energy. For example, programming models [START_REF] Baek | Green: a framework for supporting energy-conscious programming using controlled approximation[END_REF][START_REF] Sampson | EnerJ: approximate data types for safe and general low-power computation[END_REF] allow developers to approximate loops to decrease power consumption. Compiler techniques [START_REF] Wu | A Dynamic Compilation Framework for Controlling Microprocessor Energy and Performance[END_REF][START_REF] Xie | Compile-time dynamic voltage scaling settings: opportunities and limits[END_REF] and hardware mechanisms [START_REF] Koukos | Towards more efficient execution: a decoupled access-execute approach[END_REF] trade off performance for energy. To the best of our knowledge, the work by Falsafi et al. [START_REF] Falsafi | Unlocking Energy[END_REF] is the only one studying the energy efficiency of lock algorithms. We confirm their findings and validate their POLY conjecture on significantly more lock algorithms and applications.

Lock-related performance bottlenecks

Some tools have been proposed to facilitate the identification of locking bottlenecks in applications [START_REF] Antic | Locking Made Easy[END_REF][START_REF] David | Continuously measuring critical section pressure with the free-lunch profiler[END_REF][START_REF] Lozi | Fast and Portable Locking for Multicore Architectures[END_REF][START_REF] Poettering | Measuring Lock Contention[END_REF][START_REF] Tallent | Analyzing lock contention in multithreaded applications[END_REF]. These tools are useful to identify which lock instances suffer from contention; still they do not help a software developer to choose a lock algorithm for an application. The proposed tools are orthogonal to our work. We note that, among them, the profilers based on library interposition could be stacked on top of LiTL.

Finally, lock-related performance bottlenecks have been previously analyzed. For example, many studies [START_REF] Agarwal | Adaptive Backoff Synchronization Techniques[END_REF][START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF][START_REF] Dice | Malthusian Locks[END_REF][START_REF] Kägi | Efficient Synchronization: Let Them Eat QOLB[END_REF] point out scalability problems due to excessive cache-coherence traffic with traditional spinlocks. Scheduling issues like the lock holder preemption problem have been well studied [START_REF] Dice | Malthusian Locks[END_REF][START_REF] Kontothanassis | Scheduler-Conscious Synchronization[END_REF] and some solutions try to mitigate it [START_REF] He | Preemption Adaptivity in Time-Published Queue-Based Spin Locks[END_REF][START_REF] Kontothanassis | Scheduler-Conscious Synchronization[END_REF]. Nonetheless, we discovered lockrelated issues that, to the best of our knowledge, have not been described before. Moreover, we are the first to analyze the impact of lock algorithms on such a large panel of applications, and to discuss in depth and summarize the many different bottlenecks they exhibit.

SyncPerf [START_REF] Mejbah | SyncPerf: Categorizing, Detecting, and Diagnosing Synchronization Performance Bugs[END_REF] is a recent profiler detecting previously undiscussed lock-related performance bottlenecks. Similarly to us, the authors of SyncPerf discover that trylocks contention and uncontended lock acquisitions are two bottlenecks affecting application performance. While this tool is a must-have in the system performance analysis tool belt, it only considers the Pthread mutex lock, and thus fails at detecting some lock-related performance bottlenecks. Indeed, as we showed in this article, many applications benefit from using other locks than Pthread, and these other locks suffer from bottlenecks unseen with Pthread (e.g., scheduling issues, memory consumption).

CONCLUSION

There are a large number of lock algorithms for multicore machines, leaving developers with the cumbersome task of choosing which algorithm to use for an application. One of the main reasons for this complexity is that there were no clear guidelines and methodologies helping developers to select the right lock for their workloads. In this paper, we presented a broad study of the performance and energy efficiency of 28 locks algorithms with 40 applications on Linux/x86 and four different multicore machines. In our quest to understand lock behavior, when choosing the best lock, for these 40 applications, we improve application throughput by on average 90% and energy efficiency by 110% with respect to the default POSIX mutex lock. To perform this study, we have implemented LiTL, an interposition library allowing the transparent replacement of lock algorithms used for Pthread mutex locks. The source code of LiTL and the data sets of our experimental results are available online [START_REF] Guiroux | LiTL source code and data sets[END_REF].

From our study, we draw several conclusions, several of which have not been previously discovered: applications not only stress the lock/unlock interface, but also the full locking API (e.g., trylocks, condition variables), the memory footprint of a lock can directly affect the application performance, for many applications, the interaction between locks and scheduling is an important application performance factor and lock tail latencies may or may not affect application tail latency. We also confirm previous findings [START_REF] David | Everything you always wanted to know about synchronization but were afraid to ask[END_REF][START_REF] Falsafi | Unlocking Energy[END_REF][START_REF] Guiroux | Multicore Locks: The Case Is Not Closed Yet[END_REF] on a larger number of applications, machines, and lock algorithms: no single lock is systematically the best, choosing the best lock is difficult, and energy efficiency and throughput go hand in hand in the context of lock algorithms. Finally, from the insights of our in-depth analysis of lock-related performance bottlenecks, we give guidelines for the choice of a lock algorithm based on given application characteristics. An immediate implication of this result is that lock-related research cannot simply focus on one of the many functions of locking. Lock designers must offer a full suite of lock, unlock, trylock, condition variables, and maybe even barriers, and reader-writer locks. These observations call for further research on optimized lock algorithms, as well as tools and dynamic approaches to better understand and control their behavior.

INP project, led by the Mescal, Moais and Erods teams of of LIG. The injection machine used with the A-48 machine is a reused machine of the former Pipol Cluster (continuous integration) of Inria Grenoble Rhone-Alpes (dismantled). The background color of a cell indicates the number of nodes for opt nodes: The background color of a cell indicates the number of nodes for opt nodes: Fig. 20. For each pair of locks (rowA, colB) at max nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-20 machine in energy-saving move).

l o c k -l s b a c k o f f c -b o -m c s _ s p i n c -b o -m c s _ s t p c -p t l -t k t c -t k t -t k t c l h _ s p i n c l h _ s t p c l h -l s h m c s h t i c k e t -
l o c k -l s b a c k o f f c -b o -m c s _ s p i n c -b o -m c s _ s t p c -p t l -t k t c -t k t -t k t c l h _ s p i n c l h _ s t p c l h -l s h m c s h t i c k e t -
l o c k -l s b a c k o f f c -b o -m c s _ s p i n c -b o -m c s _ s t p c -p t l -t k t c -t k t -t k t c l h _ s p i n c l h _ s t p c l h -l s h m c s h t i c k e t -
l o c k -l s b a c k o f f c -b o -m c s _ s p i n c -b o -m c s _ s t p c -p t l -t k t c -t k t -t k t c l h _ s p i n c l h _ s t p c l h -l s h m c s h t i c k e t -
l o c k -l s b a c k o f f c -b o -m c s _ s p i n c -b o -m c s _ s t p c -p t l -t k t c -t k t -t k t c l h _ s p i n c l h _ s t p c l h -l s h m c s h t i c k e t -
l o c k -l s b a c k o f f c -b o -m c s _ s p i n c -b o -m c s _ s t p c -p t l -t k t c -t k t -t k t c l h _ s p i n c l h _ s t p c l h -l s h m c s h t i c k e t -
l o c k -l s b a c k o f f c -b o -m c s _ s p i n c -b o -m c s _ s t p c -p t l -t k t c -t k t -t k t c l h _ s p i n c l h _ s t p c l h -l s h m c s h t i c k e t -
Table 52. For each lock-sensitive application, at max nodes, performance gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. For example, the table shows that for the dedup application, the best lock (0%, here mutexee) is 609% better than the alock-ls lock.

The gray cells highlight configurations where a given lock hurts the application, i.e., the performance gain brought by the best lock with respect to the given lock is greater than 15%. Thus, for each lock in a column, the number of gray cells corresponds to the number of applications for which the lock is defeated by a gap of 15% or more by the best lock(s) for this application. (A-64 machine). Table 54. For each lock-sensitive application, at max nodes, performance gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. (A-48 machine). water_nsquared 47 17 0 0 1 0 0 32 31 33 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 water_spatial Table 59. For each lock-sensitive application, at opt nodes, performance gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-20 machine in performance mode). water_nsquared 47 17 0 0 1 0 0 32 31 33 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 water_spatial Table 60. For each lock-sensitive application, at max nodes, performance gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. (A-64 machine with thread-to-node pinning). 62. For each lock-sensitive application, at max nodes, performance gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-48 machine in energy-saving mode). water_nsquared 47 17 0 0 1 0 0 32 31 33 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 water_spatial Table 65. For each lock-sensitive application, at opt nodes, performance gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-20 machine in energy-efficiency mode). B.5 Are all locks potentially harmful?

Applications

Applications

Applications

Applications

Applications

Applications

Table 84. For each lock-sensitive application, at max nodes, energy efficiency gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the energy efficiency gain is greater than 15%. A line with many gray cells corresponds to an application whose energy efficiency is hurt by many locks. A column with many gray cells corresponds to a lock that has lower energy-efficiency than many other locks. Dashes correspond to untested cases. (I-48 machine in energy-saving mode). 85. For each lock-sensitive application, at opt nodes, energy efficiency gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the energy efficiency gain is greater than 15%. A line with many gray cells corresponds to an application whose energy efficiency is hurt by many locks. A column with many gray cells corresponds to a lock that has lower energy-efficiency than many other locks. Dashes correspond to untested cases. (I-48 machine in energy-efficiency mode). 86. For each lock-sensitive application, at max nodes, energy efficiency gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the energy efficiency gain is greater than 15%. A line with many gray cells corresponds to an application whose energy efficiency is hurt by many locks. A column with many gray cells corresponds to a lock that has lower energy-efficiency than many other locks. Dashes correspond to untested cases (I-20 machine in energy-saving mode). 87. For each lock-sensitive application, at opt nodes, energy efficiency gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the energy efficiency gain is greater than 15%. A line with many gray cells corresponds to an application whose energy efficiency is hurt by many locks. A column with many gray cells corresponds to a lock that has lower energy-efficiency than many other locks. Dashes correspond to untested cases. (I-20 machine in energy-efficiency mode). 5.43ms q 16.63ms q lat=366% exe=557% 697.6ms q q q q q q q lat=322% lat=355% lat=490% lat=262% exe=257% 4.88ms q lat=346% lat=401% lat=459% lat=583% lat=609% lat=509% lat=304% lat=221% lat=702% lat=716% lat=759% exe=450% exe=325% exe=526% exe=415% 6.92ms q q q q q q q q q q q q q q q q q q lat=262% lat=474% lat=386% 20.22ms q q q q q q q exe=352% exe=237% 83073.43ms q upscaledb sqlite ssl_proxy

Applications

Applications

■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ □ ◡ ▢ ▲ ◂ ◒ ◢◲ ▣ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ◠ ▲ ◒ ◲ ▣ ◃ ◓ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ◠ ▲ ◒ ◲ ▣ ◃ ◓ ■ ▰ ◀ ◐ ◠ ◰ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄
▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ◠ ▲ ◒ ◲ ▣ ◃ ◓ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔
▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ◠ ▲ ◒ ◲ ▣ ◃ ◓ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ □ ◡ ▢ ▲ ◂ ◒ ◢ ◲ ▣ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ▱ ◁ ◑ ◡ ◱ ▢ ▲ ◂ ◒ ◢ ◲ ▣ △ ◃ ◓ ◣ ◳ ▤ ▴ ◄ ◔ ■ ▰ ◀ ◐ ◠ ◰ □ ◡ ▢ ▲ ◂ ◒ ◢

Fig. 1 .

 1 Fig. 1. Pseudocode for the main wrapper functions of LiTL.

Fig. 2 .

 2 Fig.2. Performance comparison (throughput) of manually implemented locks (black bars) vs. transparently interposed locks using LiTL (white bars) for 4 different applications. The throughput is normalized with respect to the best performing configuration for a given application (A-64 machine).

Fig. 4 .

 4 Fig. 4. Correlation of throughput with energy efficiency (TPP) on various lock-sensitive applications with various lock algorithms and various contention levels (all machines).

Fig. 5 .

 5 Fig. 5. Correlation of throughput with energy efficiency (TPP) on various lock-sensitive applications at one node for the different lock algorithms (I-48 machine).

Fig. 6 .

 6 Fig.6. For each server application, the bars represent the normalized 99th tail latency (w.r.t. Pthread) and the dots execution time (lower is better) normalized (w.r.t. Pthread) of each lock algorithm (A-64 at opt nodes).

8. 1 . 4

 14 Memory contention. Lock algorithms can have significant side effects on applications that are primarily affected by other kinds of bottlenecks, like main memory contention.

1 2 .

 2 Dashes correspond to untested cases (I-20 machine in performance mode).

1 2 .A. 3

 23 Dashes correspond to untested cases (I-20 machine in energy-saving mode). Are some locks always among the best?

A. 6

 6 Impact of the number of nodes.

b a c k o f f m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k eFig. 22 .

 22 Fig.[START_REF] Rupp | Upscaledb[END_REF]. For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of locksensitive applications for which lock A is more energy-efficient at least 5% better than B (I-20 machine in energy-saving move).

b a c k o f f m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k eFig. 23 .

 23 Fig.[START_REF] Clements | RadixVM: scalable address spaces for multithreaded applications[END_REF]. For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of locksensitive applications for which lock A is more energy-efficient at least 5% better than B (I-48 machine in energy-saving move).

b a c k o f f m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k eFig. 24 .

 24 Fig.[START_REF] Craig | Building FIFO and Priority-Queuing Spin Locks from Atomic Swap[END_REF]. For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of locksensitive applications for which lock A is more energy-efficient at least 5% better than B (I-20 machine in energy-saving move).

B. 6

 6 Impact of the number of nodes.

L o c k a l g o r iFig. 25 .

 25 Fig. 25. Correlation of throughput with energy efficiency (TPP) on various lock-sensitive applications at max nodes for the different lock algorithms (I-48 machine).

Fig. 26 .

 26 Fig. 26. Correlation of performance (throughput) with energy efficiency (TPP) on various lock-sensitive applications at one node for the different lock algorithms (I-20 machine).

Fig. 27 .Fig. 28 .

 2728 Fig. 27. Correlation of performance (throughput) with energy efficiency (TPP) on various lock-sensitive applications at max nodes for the different lock algorithms (I-20 machine).

Fig. 30 .

 30 Fig. 30. For each server application, the bars represent the normalized 99th tail latency (w.r.t. Pthread) and the dots the execution time (lower is better) normalized (w.r.t. Pthread) of each lock algorithm (A-64 single threaded).

Table 2 .

 2 Hardware characteristics of the testbed platforms.

	Name	A-64	A-48
	Total #cores	64	48
	Server model	Dell PE R815	Dell PE R815
	Processors	4× AMD Opteron 6272	4× AMD Opteron 6344
	Microarchitecture	Bulldozer / Interlagos	Piledriver / Abu Dhabi
	Clock frequency	2.1 GHz	2.6 GHz
	Last-level cache (per node)	8 MB	8 MB
	Interconnect	HT3 -6.4 GT/s per link	HT3 -6.4 GT/s per link
	Memory	256 GB DDR3 1600 MHz	64 GB DDR3 1600 MHz
	#NUMA nodes (#cores/node) 8 (8)	8 (6)
	Network interfaces (10 GbE) 2× 2-port Intel 82599	2× 2-port Intel 82599
	OS & tools	Ubuntu 12.04	Ubuntu 12.04
	Linux kernel	3.17.6 (CFS scheduler)	3.17.6 (CFS scheduler)
	glibc	2.15	2.15
	gcc	4.6.3	4.6.3
	Name	I-48	I-20
	Total #cores	48 (no hyperthreading)	20 (no hyperthreading)
	Server model	SuperMicro SS 4048B-TR4FT SuperMicro X9DRW
	Processors	4× Intel Xeon E7-4830 v3	2× Intel Xeon E5-2680 v2
	Microarchitecture	Haswell-EX	Ivy Bridge-EP
	Clock frequency	2.1 GHz	2.8 GHz
	Last-level cache (per node)	30 MB	25 MB
	Interconnect	QPI -8 GT/s per link	QPI -8 GT/s per link
	Memory	256 GB DDR4 2133 MHz	256 GB DDRR 1600 MHz
	#NUMA nodes (#cores/node) 4 (12)	2 (10)
	Network interfaces (10 GbE) 2-port Intel X540-AT2	-
	OS & tools	Ubuntu 12.04	Ubuntu 14.04
	Linux kernel	3.17.6 (CFS scheduler)	3.13 (CFS scheduler)
	glibc	2.15	2.19
	gcc	4.6.4	4.6.3
	3.1 Testbed and studied applications	

Our experimental testbed consists of four Linux-based x86 multicore servers whose main characteristics are summarized in Table

2

. All the machines run the Ubuntu 12.04 OS with a 3.17.6 Linux kernel (CFS scheduler), except the I-20 machine running an Ubuntu 14.04 OS with a 3.13 Linux kernel. We tried to keep the software configuration as similar as possible for the different versions: they all use glibc (GNU C Library) version 2.15 (2.19 for I-20) and gcc version 4.6.3

(4.6.4 on

Table 3 .

 3 Applications considered.

	Application	Benchmark Suite Type
	kyotocabinet	-	database
	memcached-old	-	memory cache
	memcached-new -	memory cache
	mysqld	-	database
	rocksdb	-	key/value store
	sqlite	-	database
	ssl_proxy	-	ssl reverse proxy
	upscaledb	-	key/value store
	blackscholes	PARSEC 3.0	financial analysis
	bodytrack	PARSEC 3.0	computer vision
	canneal	PARSEC 3.0	engineering
	dedup	PARSEC 3.0	enterprise storage
	facesim	PARSEC 3.0	animation
	ferret	PARSEC 3.0	similarity search
	fluidanimate	PARSEC 3.0	animation
	freqmine	PARSEC 3.0	data mining
	p_raytrace	PARSEC 3.0	rendering
	streamcluster	PARSEC 3.0	data mining
	streamcluster_ll	PARSEC 3.0	data mining
	swaptions	PARSEC 3.0	financial analysis
	vips	PARSEC 3.0	media processing
	x264	PARSEC 3.0	media processing
	histogram	Phoenix 2	image
	kmeans	Phoenix 2	statistics
	linear_regression Phoenix 2	statistics
	matrix_multiply Phoenix 2	mathematical computations
	pca	Phoenix 2	statistics
	pca_ll	Phoenix 2	statistics
	string_match	Phoenix 2	text processing
	barnes	SPLASH2x	physics simulation
	fft	SPLASH2x	mathematical computations
	fmm	SPLASH2x	physics simulation
	lu_cb	SPLASH2x	mathematical computations
	lu_ncb	SPLASH2x	mathematical computations
	ocean_cp	SPLASH2x	physics simulation
	ocean_ncp	SPLASH2x	physics simulation
	radiosity	SPLASH2x	rendering
	radiosity_ll	SPLASH2x	rendering
	radix	SPLASH2x	sorting
	s_raytrace	SPLASH2x	rendering
	s_raytrace_ll	SPLASH2x	rendering
	volrend	SPLASH2x	rendering
	water_nsquared SPLASH2x	physics simulation
	water_spatial	SPLASH2x	physics simulation
	word_count	SPLASH2x	text processing

 // Return values and error checks omitted for simplicity.

	pthread_mutex_lock(pthread_mutex_t * m) {
	optimized_mutex_t * om = get_optimized_mutex(m);
	if (om == null) {
	om = create_and_store_optimized_mutex(m); // This function deals with
	// possibly concurrent
	// creation attempts.
	}
	optimized_mutex_lock(om);
	real_pthread_mutex_lock(m); // Acquiring the "real" mutex in order to
	// support condition variables.
	// Note that there is no contention
	// on this mutex.
	}
	pthread_mutex_unlock(pthread_mutex_t * m) {
	optimized_mutex_t * om = get_optmized_mutex(m);
	optimized_mutex_unlock(om);
	real_pthread_mutex_unlock(m);
	}
	pthread_cond_wait(pthread_cond_t * c, pthread_mutex_t * m) {
	optimized_mutex_t * om = get_optimized_mutex(m);
	optimized_mutex_unlock(om);
	real_pthread_cond_wait(c, m);

real_pthread_mutex_unlock(m); // We need to release the "real" mutex; optimized_mutex_lock(om);

// otherwise if a thread calls real_pthread_mutex_lock(m);

Table 4 .

 4 Detailed statistics for the performance comparison of manually implemented locks vs. transparently interposed locks using LiTL (A-64 machine).

		l i n e a r _ r e g r e s s i o n m a t r i x _ m u l t i p l y r a d i o s i t y _ l l s _ r a y t r a c e _ l l
	Manual		
	# Cases where Manual is better	6 13	2 13
	Average gain	3% 1% 7% 4%
	Relative standard deviation	2% 1% 8% 4%
	LiTL		
	# Cases where LiTL is better	22 15 26 15
	Average gain	3% 2% 3% 3%
	Relative standard deviation	3% 2% 3% 4%

Table 5 .

 5 Percentage of lock pairs (𝐴, 𝐵) where if performance with manually implemented locks of 𝐴 is worse, equal or better than 𝐵, it is also respectively worse, equal or better than 𝐵 with transparently interposed locks using LiTL. We use a 5% threshold, i.e., 𝐴 is better (resp. worse) than 𝐵 if 𝐴's performance is at least 5% better (resp. worse) than 𝐵 (A-64 machine).

Table 6 .

 6 For each application, the p-value of the paired Student t-test testing the null hypothesis 𝑀𝑒𝑎𝑛 𝑤𝑖𝑡ℎ -𝑀𝑒𝑎𝑛 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 = 𝐶. 𝐶 𝑛 is 𝐶 normalized w.r.t. the performance of the best lock on a given benchmark).

	Application	𝐶 𝑛 p-value
	linear_regression -1.8%	0.84
	matrix_multiply -0.2%	0.60
	radiosity_ll	-3.1%	0.72
	s_raytrace_ll	-0.2%	0.85

Table 7 .

 7 For each application, performance gain of the best vs. worst lock and relative standard deviation (A-64 machine).

		Gain	R.Dev.	Gain	R.Dev.	Gain	R.Dev.
		one	one	max	max	opt	opt
		node	node	nodes	nodes	nodes	nodes
	barnes	10%	2%	36%	8%	31%	7%
	blackscholes	11%	2%	2%	1%	2%	1%
	bodytrack	1%	0%	9%	2%	4%	1%
	canneal	5%	1%	7%	2%	7%	2%
	dedup	819%	57% 989%	54% 819%	57%
	facesim	9%	2% 771%	67%	13%	3%
	ferret	1%	0% 349%	56% 101%	25%
	fft	8%	2%	11%	3%	9%	2%
	fluidanimate	48%	11% 284%	28% 127%	20%
	fmm	17%	5%	42%	10%	42%	10%
	freqmine	7%	2%	6%	1%	6%	1%
	histogram	7%	2%	19%	5%	13%	3%
	kmeans	9%	3%	12%	2%	12%	2%
	kyotocabinet	414%	25% 2047%	56% 414%	25%
	linear_regression	9%	3% 198%	20%	49%	9%
	lu_cb	8%	2%	5%	1%	5%	1%
	lu_ncb	26%	5%	8%	2%	8%	2%
	matrix_multiply	6%	2% 608%	26% 169%	20%
	memcached-new	63%	15% 1021%	53% 120%	19%
	memcached-old	73%	14% 308%	50%	73%	14%
	mysqld	166%	42% 174%	36% 122%	33%
	ocean_cp	19%	4% 129%	14%	21%	4%
	ocean_ncp	16%	4% 113%	12%	14%	4%
	p_raytrace	2%	0%	1%	0%	2%	0%
	pca	5%	2% 347%	32%	40%	8%
	pca_ll	6%	1% 713%	44% 160%	20%
	radiosity	3%	1%	91%	15%	13%	4%
	radiosity_ll	10%	2% 2285%	68% 176%	26%
	radix	3%	1%	8%	2%	8%	2%
	rocksdb	4%	1%	16%	4%	16%	4%
	s_raytrace	9%	2% 1898%	58% 232%	31%
	s_raytrace_ll	5%	1% 1601%	63% 402%	51%
	sqlite	66%	19% 2382% 102%	81%	25%
	ssl_proxy	37%	6% 1309%	59%	58%	11%
	streamcluster	14%	3% 1122%	56%	14%	3%
	streamcluster_ll	24%	5% 1423%	56%	35%	8%
	string_match	5%	2%	11%	2%	11%	2%
	swaptions	8%	2%	10%	2%	10%	2%
	upscaledb	158%	22% 748%	43% 197%	24%
	vips	2%	1% 197%	25%	5%	1%
	volrend	7%	1% 163%	22%	24%	5%
	water_nsquared	10%	2%	94%	14%	94%	14%
	water_spatial	23%	5%	98%	15%	96%	15%
	word_count	4%	1%	19%	3%	12%	2%
	x264	4%	1%	6%	2%	5%	2%

Table 8 .

 8 Number of applications and number of lock performance sensitive applications (all machines).

		A-64 A-48 I-48 I-20
	# tested applications	45	39	37	35
	# lock-sensitive applications	28	23	21	17
	ratio	62% 59% 57% 49%
	5.2.1 How much do locks affect applications? Table				

Table 9 .

 9 For each (lock-sensitive application, lock) pair, performance gain (in %) of opt nodes over max nodes. The background color of a cell indicates the number of nodes for opt nodes: 1 2 4 6 8 . Dashes correspond to untested cases (A-64 machine).

	ahmcs alock-ls backoff c-bo-mcs_spin c-bo-mcs_stp c-ptl-tkt c-tkt-tkt clh_spin clh_stp clh-ls hmcs hticket-ls malth_spin malth_stp mcs_spin mcs_stp mcs-ls mcs-timepub mutexee partitioned pthread pthreadadapt spinlock spinlock-ls ticket ticket-ls ttas ttas-ls	-250 127 89 90 118 115 200 204 229 75 95 119 119 110 113 106 59 178 136 120 126 147 122 141 125 135 198	412 902 439 170 126 364 335 895 78 918 304 284 711 71 948 87 1k 26 56 895 91 67 726 160 919 459 211 297	124 154 16 83 68 173 139 110 102 72 183 194 173 6 170 41	-71 6 18 ----7 53 12 54 8 7 5 16 13 10 6 64	9 6	27 82 69 17 224 35 34 35 49 33 24 29 31 22 36 68 34 49 267 55 265 208 2k 1k 179 97 541 282	25 85 35 175 15 12 28 39 60 25 33 14 5 21 34 54 8 55 10 8 38 12 20 9 18 22	25 287 16	12 14 13 396 -10 ---7 -17 33 25 416 22 19 -20 112 818 619 164 51 259 74	520 190 418 149 154 -159 ---124 -955 970 565 695 794 524 370 -569 600 1k 349 806 815 334 414	--------------25 -------	97 79 114 96 114 91 83 125 122 94 99 74 88 75 114 82 115 44 58 103 72 73 238 128 136 65 87 101	93 87 85 79 108 74 83 98 79 83 81 65 83 85 92 95 73 61 65 98 95 82 206 114 90 58 70 104	56 64 22 22 291 44 46 50 148 58 58 46 32 56 153 44 25 116 36 103 44 269 114 110 36 210 139	76 66 493 70 78 77 108 43 76 53 26 81 106 41 39 125 59 110 20 395 303 72 37 309 218	26 69 29 39 10 22 46	13 5 522 31 18 10 473 13 8 9 514 19 19 275 40 185 70 929 581 259 117 756 454	25 12 965 21 24 39 460 24 11 12 7 436 15 83 88 14 269 74 134 88 240 174	162 239 246 12 183 73 32 190 107	----414 ---------522 -3k 196 -154 84 ------	44 69 88 34 957 65 82 61 1k 79 283 70 36 52 90 1k 101 73 351 87 268 195 2k 535 360 153 791 653	2k 2k 3k 2k 4k 1k 2k ---1k -4k 16k 3k 16k 4k 2k 2k 1k 2k 3k 9k 3k 5k 4k 4k 4k	394 260 711 407 1k 236 253 ---250 -816 4k 565 4k 774 252 260 290 413 452 2k 860 1k 682 896 762	13 12 5 10 105 17 14 13 35 11 14 17 11 32 10 19 15 59 39 575 368 71 30 157 237	72 58 26 233 42 127 104 ---111 -251 18 51 18 46 21 20 55 20 21 20 26 37 31 27 32			
	Applications	dedup	facesim	ferret	fluidanimate	fmm	kyotocabinet	linear_regression	matrix_multiply	memcached-new	memcached-old	mysqld	ocean_cp	ocean_ncp	pca	pca_ll	radiosity	radiosity_ll	s_raytrace	s_raytrace_ll	sqlite	ssl_proxy	streamcluster	streamcluster_ll	upscaledb	vips	volrend	water_nsquared	water_spatial

Table 10 .

 10 Breakdown of the (lock-sensitive application, lock) pairs according to their optimized number of nodes (all machines).

		A-64 A-48	I-48	I-20
	1 Node	19% 16%	1 Node 37%	1 Node 39%
	2 Nodes 23% 21%	2 Nodes 17%	2 Nodes 61%
	4 Nodes 26% 23%	3 Nodes 17%	
	6 Nodes 11% 16%	4 Nodes 29%	
	8 Nodes 21% 24%		

Table 11 .

 11 Statistics on the coverage of locks on lock-sensitive applications for three configurations: one node, max nodes, and opt nodes (all machines). The coverage indicates how often a lock algorithm stands as the best one (or is within 5% of the best).

	Score
	80%
	60%
	40%
	20%
	0%
	e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k e t -l s t t a s t t a s -l s

Table 12 .

 12 For each lock, at max nodes and at opt nodes, fraction of the lock-sensitive applications for which the lock is harmful, i.e., the performance gain brought by the best lock with respect to the given lock is greater than 15% (all machines).

		A-64	A-48	I-48	I-20
	Lock	Max Opt	Max Opt	Max Opt	Max Opt
	ahmcs	58% 17%	55% 50%	44% 44%	46% 38%
	alock-ls	96% 46%	70% 50%	53% 47%	29% 29%
	backoff	62% 38%	38% 43%	53% 37%	43% 36%
	c-bo-mcs_spin 65% 42%	62% 62%	47% 32%	29% 29%
	c-bo-mcs_stp	82% 46%	87% 83%	85% 60%	80% 73%
	c-ptl-tkt	58% 25%	58% 53%	47% 29%	29% 21%
	c-tkt-tkt	58% 35%	67% 52%	37% 32%	14% 14%
	clh_spin	85% 35%	60% 53%	86% 71%	50% 50%
	clh_stp	85% 65%	93% 93%	93% 93%	92% 92%
	clh-ls	85% 35%	67% 60%	79% 79%	58% 58%
	hmcs	54% 31%	38% 38%	42% 32%	14% 14%
	hticket-ls	65% 40%	50% 56%	50% 36%	17% 17%
	malth_spin	73% 46%	62% 52%	63% 63%	43% 43%
	malth_stp	57% 46%	74% 74%	60% 60%	33% 33%
	mcs_spin	77% 31%	67% 43%	53% 47%	29% 29%
	mcs_stp	75% 57%	78% 74%	75% 75%	80% 73%
	mcs-ls	81% 42%	67% 48%	58% 53%	29% 29%
	mcs-timepub	50% 29%	61% 48%	55% 50%	47% 40%
	mutexee	68% 57%	74% 61%	70% 60%	40% 40%
	partitioned	79% 33%	68% 63%	71% 53%	36% 36%
	pthread	68% 61%	78% 74%	70% 70%	53% 47%
	pthreadadapt	68% 54%	70% 70%	75% 60%	53% 40%
	spinlock	69% 50%	81% 67%	74% 63%	64% 50%
	spinlock-ls	77% 46%	81% 57%	74% 63%	57% 36%
	ticket	77% 50%	90% 62%	89% 79%	43% 36%
	ticket-ls	69% 42%	76% 57%	68% 53%	36% 29%
	ttas	69% 38%	81% 52%	74% 58%	43% 36%
	ttas-ls	92% 54%	90% 60%	84% 68%	71% 57%
	pair of machines, roughly 30% for all configurations. The detailed results for each pair of machines
	are available inside the Appendix (§A.7 and §B.7).		

Table 16 .

 16 Pearson correlation coefficient between throughput and TPP for all lock-sensitive applications. Dashes mark applications that are not lock-sensitive (or not evaluated due to a lack of high-throughput network connectivity, see Section 3.1) on the I-20 machine. (I-48 and I-20 machines).

		I-20 I-48
	bodytrack	-0.98
	dedup	1.00 1.00
	ferret	0.98 0.96
	kyotocabinet	0.89 0.88
	linear_regression 0.96 0.98
	memcached-new 0.99 0.91
	memcached-old	1.00 0.97
	mysqld	-0.55
	pca	0.97 0.96
	pca_ll	0.95 0.91
	radiosity	0.98 0.98
	radiosity_ll	0.89 0.94
	s_raytrace	0.97 0.95
	s_raytrace_ll	0.94 0.98
	sqlite	0.98 0.94
	ssl_proxy	-0.95
	streamcluster	0.97 0.99
	streamcluster_ll	0.91 0.98
	upscaledb	0.91 0.87
	vips	0.97 0.96
	volrend	-0.96
	water_nsquared 1.00 0.99
	water_spatial	0.99 1.00

Table 17 .

 17 Lock-sensitive application performance bottleneck(s) and lock algorithms choice advice.

		Performance Bottleneck(s)	Advice
	facesim	scheduling issue: lock handover	avoid FIFO locks
	radiosity	lock contention: high	avoid light or parking locks
	radiosity_ll	lock contention: extreme	prefer hierarchical locks
	ferret	scheduling issue: lock handover	avoid FIFO locks
	streamcluster	lock contention: extreme (mixing trylocks	prefer locks with a contention-hardened
		and locks)	trylock operation
	dedup	kernel lock contention inside the page	prefer locks with small memory footprint
		fault handler	
	vips	scheduling issue: lock handover	avoid FIFO locks
	fluidanimate	page fault memory erase page and lot of	prefer light locks
		uncontended lock acquisitions	
	pca	memory contention	prefer locks lowering memory traffic
	linear_regression lock contention: high	avoid light or parking locks
	s_raytrace	lock contention: high	avoid light or parking locks
	s_raytrace_ll	lock contention: high	avoid light or parking locks
	ocean_cp/ncp	scheduling issue: lock handover and lock	avoid light or FIFO locks
		contention: high	
	water_spatial	page fault memory erase page	prefer locks with small memory footprint
	water_nsquared page fault memory erase page	prefer locks with small memory footprint
	fmm	page fault memory erase page	prefer locks with small memory footprint
	volrend	lock contention: extreme	prefer hierarchical locks
	mysql	lock contention: extreme and memory	prefer parking locks
		contention and scheduling issue: lock	
		holder preemption	
	ssl_proxy	lock contention: extreme	prefer hierarchical locks
	kyotocabinet	lock contention: extreme	prefer hierarchical locks
	upscaledb	lock contention: extreme	prefer hierarchical locks
	memcached-old lock contention: extreme (with trylocks) prefer locks with a contention-hardened
			trylock operation
	memcached-new lock contention: high	avoid light or parking locks
	sqlite	scheduling issue: lock holder preemption prefer parking locks

Table 18 .

 18 Lock algorithm properties. The algorithms are grouped by categories as defined in Section 2.1.2. For example, ahmcs does not use a parking waiting policy, nor does it have a low memory footprint. However, it is a hierarchical lock algorithm. Some lock algorithms do not support the trylock operation and thus cannot be run with applications that use this operation: we denote these cases by a cross sign. locks without the property locks with the property x trylock not supported

	light	hierarchical lock	contention-hardened trylock	parking	FIFO	low memory footprint	low memory (interconnect) traffic
	Competitive						
	backoff						
	mutexee						
	pthread						
	pthreadadapt						
	spinlock						
	spinlock-ls						
	ttas						
	ttas-ls						
	Direct handoff						
	alock-ls						
	clh-ls		x				
	clh_spin		x				
	clh_stp		x				
	mcs-ls						
	mcs_spin						
	mcs_stp						
	partitioned						
	ticket						
	ticket-ls						
	Hierarchical						
	c-bo-mcs_spin						
	c-bo-mcs_stp						
	c-ptl-tkt						
	c-tkt-tkt						
	hmcs						
	hticket-ls		x				
	Load-control						
	ahmcs						
	malth_spin						
	malth_stp						
	mcs-timepub						

 2.1.2). (6) Low memory footprint: lock algorithms having a low memory footprint. All locks that need a context (e.g., MCS, CLH, Malthusian have a high memory footprint, because each thread needs its own context. Besides, hierarchical lock algorithms also have a high memory footprint because one lock instance is composed of one top lock instance, and one instance per NUMA node, but the footprint can be lowered by dynamically allocating per-node data structures of hierarchical locks upon first access [55]. Steps to follow for the application developer to chose a lock algorithm.

	start	More threads	yes	Avoid spinning
		than cores?		algorithms
		no		Avoid FIFO
			yes	algorithms
		Stress the scheduler		
	(e.g., IO, condition variables?)		
			no	Prefer spinning
				algorithms
	Many lock instances? (>1k)	yes	footprint algorithms Prefer low memory
		no		
	Application suffers from memory contention?	yes	of the memory interconnect Prefer algorithms that induce a moderate usage
		no		Light
			low	lock algorithms
		Levels of contention?		
			moderate	Local spinning
				lock algorithms
		high		
				Hierarchical lock
			lock	algorithms
		Lock operation?		
			trylock	Hierarchical trylock
				algorithms
	Fig. 7.			

[START_REF] Anastopoulos | Facilitating efficient synchronization of asymmetric threads on hyper-threaded processors[END_REF]

Low (memory) interconnect traffic: lock algorithms that only induce a moderate traffic on the memory interconnect of the machine. Algorithms using a load-control mechanism sensitive to the concurrency level (e.g., Malthusian) reduce the number of threads running

Table 19 .

 19 For each application, performance gain of the best vs. worst lock and relative standard deviation (A-48 machine).

		Gain	R.Dev.	Gain	R.Dev.	Gain	R.Dev.
		one	one	max	max	opt	opt
		node	node	nodes	nodes	nodes	nodes
	barnes	7%	2%	18%	4%	18%	4%
	blackscholes	3%	1%	2%	0%	2%	0%
	bodytrack	2%	1%	26%	6%	19%	4%
	canneal	7%	1%	8%	1%	5%	1%
	dedup	190%	35% 544%	51% 200%	36%
	ferret	1%	0% 481%	70% 132%	30%
	fmm	21%	5%	53%	13%	50%	12%
	freqmine	12%	2%	5%	1%	5%	1%
	histogram	21%	4%	54%	10%	46%	8%
	kmeans	4%	1%	14%	3%	14%	3%
	kyotocabinet	427%	26% 1491%	55% 427%	26%
	linear_regression	40%	7% 243%	20% 243%	23%
	lu_cb	4%	1%	3%	1%	3%	1%
	lu_ncb	12%	3%	37%	7%	37%	7%
	matrix_multiply	8%	2%	17%	5%	17%	4%
	memcached-new	37%	7% 621%	52%	78%	19%
	memcached-old	255%	22% 1112%	47% 255%	22%
	mysqld	100%	25%	54%	15%	53%	15%
	p_raytrace	3%	0%	3%	0%	3%	0%
	pca	13%	3% 257%	32%	74%	14%
	pca_ll	3%	1% 569%	39% 177%	20%
	radiosity	33%	7% 685%	32%	45%	8%
	radiosity_ll	16%	3% 1524%	69% 234%	29%
	rocksdb	5%	1%	9%	2%	9%	2%
	s_raytrace	6%	1% 1479%	55% 340%	30%
	s_raytrace_ll	2%	1% 1015%	58% 686%	53%
	sqlite	455%	43% 939%	51% 511%	45%
	ssl_proxy	1130%	31% 2595%	67% 2116%	41%
	streamcluster	1342%	29% 2011%	48% 955%	28%
	streamcluster_ll	18%	3% 1286%	54%	44%	10%
	string_match	6%	1%	18%	4%	18%	4%
	swaptions	1%	0%	6%	1%	6%	1%
	upscaledb	152%	24% 501%	40% 214%	26%
	vips	2%	0% 781%	42%	18%	6%
	volrend	9%	2% 127%	22%	29%	7%
	water_nsquared	11%	2%	79%	11%	79%	11%
	water_spatial	18%	4%	70%	12%	70%	12%
	word_count	7%	2%	35%	8%	24%	6%
	x264	3%	1%	4%	1%	4%	1%

Table 20 .

 20 For each application, performance gain of the best vs. worst lock and relative standard deviation (I-48 machine in performance mode).

		Gain	R.Dev.	Gain	R.Dev.	Gain	R.Dev.
		one	one	max	max	opt	opt
		node	node	nodes	nodes	nodes	nodes
	barnes	8%	2%	26%	6%	26%	6%
	blackscholes	0%	0%	1%	0%	1%	0%
	bodytrack	2%	1%	39%	6%	5%	2%
	canneal	1%	0%	1%	0%	1%	0%
	dedup	729%	46% 2316%	83% 729%	46%
	ferret	1%	0% 662%	78%	81%	20%
	fmm	7%	2%	26%	6%	22%	5%
	freqmine	2%	0%	1%	0%	1%	0%
	histogram	53%	7%	31%	7%	48%	7%
	kmeans	2%	0%	11%	2%	11%	2%
	kyotocabinet	462%	29% 579%	37% 413%	28%
	linear_regression	18%	3%	84%	16%	80%	14%
	lu_cb	0%	0%	3%	1%	3%	1%
	lu_ncb	9%	2%	12%	3%	12%	3%
	matrix_multiply	3%	1%	7%	2%	7%	2%
	memcached-new	139%	20% 297%	25%	69%	14%
	memcached-old	85%	19% 195%	38%	85%	19%
	mysqld	62%	14%	57%	13%	57%	14%
	p_raytrace	3%	1%	3%	1%	1%	0%
	pca	278%	20% 315%	30% 308%	21%
	pca_ll	90%	9% 981%	47% 403%	31%
	radiosity	63%	8% 174%	23%	72%	9%
	radiosity_ll	766%	31% 1979%	65% 1531%	48%
	rocksdb	2%	1%	11%	3%	11%	3%
	s_raytrace	15%	2% 1256%	50% 212%	31%
	s_raytrace_ll	3%	1% 1260%	49% 345%	42%
	sqlite	618%	41% 3581%	68% 618%	41%
	ssl_proxy	1057%	40% 1594%	51% 1308%	45%
	streamcluster	43%	11% 489%	70%	43%	11%
	streamcluster_ll	66%	15% 569%	77% 162%	33%
	string_match	1%	0%	6%	2%	6%	2%
	swaptions	1%	0%	3%	1%	3%	1%
	upscaledb	277%	27% 303%	33% 275%	28%
	vips	1%	0% 707%	52%	24%	10%
	volrend	8%	3% 151%	15%	42%	8%
	water_nsquared	40%	9% 129%	20% 129%	20%
	water_spatial	361%	33% 917%	42% 917%	42%
	word_count	9%	2%	14%	4%	9%	2%
	x264	1%	0%	2%	0%	2%	0%

Table 21 .

 21 For each application, performance gain of the best vs. worst lock and relative standard deviation (I-20 machine in performance mode).

		Gain	R.Dev.	Gain	R.Dev.	Gain	R.Dev.
		one	one	max	max	opt	opt
		node	node	nodes	nodes	nodes	nodes
	barnes	6%	2%	12%	3%	12%	3%
	blackscholes	0%	0%	1%	0%	1%	0%
	bodytrack	1%	0%	1%	0%	1%	0%
	canneal	2%	0%	4%	1%	4%	1%
	dedup	723%	46% 1063%	61% 723%	46%
	ferret	60%	15% 408%	66% 137%	31%
	fmm	5%	1%	10%	2%	10%	2%
	freqmine	3%	1%	4%	1%	4%	1%
	histogram	7%	2%	21%	4%	7%	2%
	kmeans	3%	1%	2%	1%	2%	1%
	kyotocabinet	256%	26% 254%	28% 256%	26%
	linear_regression	6%	1%	28%	6%	28%	6%
	lu_cb	0%	0%	3%	1%	3%	1%
	lu_ncb	10%	2%	6%	2%	6%	2%
	matrix_multiply	1%	0%	2%	0%	2%	0%
	memcached-new	38%	8%	38%	8%	38%	8%
	memcached-old	316%	28% 316%	28% 316%	28%
	p_raytrace	3%	1%	4%	1%	3%	1%
	pca	8%	2% 185%	21%	24%	6%
	pca_ll	4%	1% 473%	28%	89%	15%
	radiosity	25%	5%	77%	13%	23%	5%
	radiosity_ll	12%	3% 802%	42%	70%	19%
	rocksdb	6%	2%	11%	2%	11%	2%
	s_raytrace	2%	0% 338%	25%	92%	15%
	s_raytrace_ll	1%	0% 643%	30%	77%	14%
	sqlite	394%	36% 8608%	71% 394%	36%
	streamcluster	36%	8% 387%	27%	36%	8%
	streamcluster_ll	47%	9% 466%	30% 113%	22%
	string_match	0%	0%	2%	1%	2%	1%
	swaptions	0%	0%	1%	0%	1%	0%
	upscaledb	127%	24% 153%	26% 148%	26%
	vips	1%	0% 115%	22%	94%	22%
	volrend	9%	2%	56%	8%	39%	7%
	water_nsquared	24%	6%	48%	10%	48%	10%
	water_spatial	170%	24% 326%	31% 326%	31%
	word_count	2%	0%	4%	1%	2%	0%
	x264	2%	0%	3%	1%	3%	1%

Table 22 .

 22 For each application, performance gain of the best vs. worst lock and relative standard deviation (A-64 machine with thread-to-node pinning).

		Gain	R.Dev.	Gain	R.Dev.	Gain	R.Dev.
		one	one	max	max	opt	opt
		node	node	nodes	nodes	nodes	nodes
	barnes	3%	1%	22%	5%	22%	5%
	blackscholes	1%	0%	2%	0%	2%	0%
	bodytrack	0%	0%	44%	6%	15%	3%
	canneal	2%	0%	4%	1%	3%	1%
	dedup	623%	51% 1090%	51% 727%	56%
	facesim	1%	0% 297%	25%	21%	5%
	ferret	8%	3% 386%	64% 356%	63%
	fft	7%	1%	9%	2%	9%	2%
	fluidanimate	60%	11% 301%	39% 198%	36%
	fmm	5%	1%	12%	3%	12%	3%
	freqmine	4%	1%	3%	1%	3%	1%
	histogram	5%	1%	20%	5%	16%	4%
	kmeans	6%	2%	5%	1%	5%	1%
	kyotocabinet	116%	17% 2034%	54% 116%	17%
	linear_regression	3%	1% 101%	17%	70%	13%
	lu_cb	0%	0%	4%	1%	4%	1%
	lu_ncb	6%	1%	5%	1%	5%	1%
	matrix_multiply	4%	1%	5%	1%	5%	1%
	memcached-new	35%	7% 910%	47%	81%	20%
	memcached-old	128%	25% 309%	49% 115%	24%
	mysqld	85%	28%	66%	21%	59%	16%
	ocean_cp	4%	1% 130%	20%	12%	3%
	ocean_ncp	3%	1% 110%	16%	10%	3%
	p_raytrace	1%	0%	1%	0%	1%	0%
	pca	2%	1% 347%	32%	58%	9%
	pca_ll	7%	2% 551%	41% 125%	18%
	radiosity	5%	1% 114%	18%	7%	2%
	radiosity_ll	9%	2% 2260%	64% 146%	22%
	radix	1%	0%	15%	3%	15%	3%
	rocksdb	7%	2%	19%	5%	19%	5%
	s_raytrace	8%	2% 1192%	58% 222%	29%
	s_raytrace_ll	1%	0% 1477%	59% 467%	52%
	sqlite	2830%	43% 809%	86% 828%	44%
	ssl_proxy	29%	5% 1250%	56%	68%	14%
	streamcluster	21%	4% 706%	50%	41%	9%
	streamcluster_ll	32%	6% 826%	52%	78%	20%
	string_match	7%	2%	8%	2%	8%	2%
	swaptions	1%	0%	2%	0%	2%	0%
	upscaledb	143%	23% 1555%	56% 191%	25%
	vips	81%	21% 238%	28% 294%	33%
	volrend	5%	1% 106%	16%	28%	6%
	water_nsquared	7%	2%	89%	15%	89%	15%
	water_spatial	95%	14% 298%	26% 298%	26%
	word_count	2%	0%	5%	1%	4%	1%
	x264	0%	0%	1%	0%	1%	0%

Table 23 .

 23 For each application, performance gain of the best vs. worst lock and relative standard deviation (I-48 machine in energy-saving mode).

		Gain	R.Dev.	Gain	R.Dev.	Gain	R.Dev.
		one	one	max	max	opt	opt
		node	node	nodes	nodes	nodes	nodes
	barnes	8%	2%	26%	6%	26%	6%
	blackscholes	0%	0%	1%	0%	1%	0%
	bodytrack	2%	1%	39%	6%	5%	2%
	canneal	1%	0%	1%	0%	1%	0%
	dedup	729%	46% 2316%	83% 729%	46%
	ferret	1%	0% 662%	78%	81%	20%
	fmm	7%	2%	26%	6%	22%	5%
	freqmine	2%	0%	1%	0%	1%	0%
	histogram	53%	7%	31%	7%	48%	7%
	kmeans	2%	0%	11%	2%	11%	2%
	kyotocabinet	462%	29% 579%	37% 413%	28%
	linear_regression	18%	3%	84%	16%	80%	14%
	lu_cb	0%	0%	3%	1%	3%	1%
	lu_ncb	9%	2%	12%	3%	12%	3%
	matrix_multiply	3%	1%	7%	2%	7%	2%
	memcached-new	139%	20% 297%	25%	69%	14%
	memcached-old	85%	19% 195%	38%	85%	19%
	mysqld	62%	14%	57%	13%	57%	14%
	p_raytrace	3%	1%	3%	1%	1%	0%
	pca	278%	20% 315%	30% 308%	21%
	pca_ll	90%	9% 981%	47% 403%	31%
	radiosity	63%	8% 174%	23%	72%	9%
	radiosity_ll	766%	31% 1979%	65% 1531%	48%
	rocksdb	2%	1%	11%	3%	11%	3%
	s_raytrace	15%	2% 1256%	50% 212%	31%
	s_raytrace_ll	3%	1% 1260%	49% 345%	42%
	sqlite	618%	41% 3581%	68% 618%	41%
	ssl_proxy	1057%	40% 1594%	51% 1308%	45%
	streamcluster	43%	11% 489%	70%	43%	11%
	streamcluster_ll	66%	15% 569%	77% 162%	33%
	string_match	1%	0%	6%	2%	6%	2%
	swaptions	1%	0%	3%	1%	3%	1%
	upscaledb	277%	27% 303%	33% 275%	28%
	vips	1%	0% 707%	52%	24%	10%
	volrend	8%	3% 151%	15%	42%	8%
	water_nsquared	40%	9% 129%	20% 129%	20%
	water_spatial	361%	33% 917%	42% 917%	42%
	word_count	9%	2%	14%	4%	9%	2%
	x264	1%	0%	2%	0%	2%	0%

Table 24 .

 24 For each application, performance gain of the best vs. worst lock and relative standard deviation (I-20 machine in energy-saving mode).

		Gain	R.Dev.	Gain	R.Dev.	Gain	R.Dev.
		one	one	max	max	opt	opt
		node	node	nodes	nodes	nodes	nodes
	barnes	6%	2%	12%	3%	12%	3%
	blackscholes	0%	0%	1%	0%	1%	0%
	bodytrack	1%	0%	1%	0%	1%	0%
	canneal	2%	0%	4%	1%	4%	1%
	dedup	723%	46% 1063%	61% 723%	46%
	ferret	60%	15% 408%	66% 137%	31%
	fmm	5%	1%	10%	2%	10%	2%
	freqmine	3%	1%	4%	1%	4%	1%
	histogram	7%	2%	21%	4%	7%	2%
	kmeans	3%	1%	2%	1%	2%	1%
	kyotocabinet	256%	26% 254%	28% 256%	26%
	linear_regression	6%	1%	28%	6%	28%	6%
	lu_cb	0%	0%	3%	1%	3%	1%
	lu_ncb	10%	2%	6%	2%	6%	2%
	matrix_multiply	1%	0%	2%	0%	2%	0%
	memcached-new	38%	8%	38%	8%	38%	8%
	memcached-old	316%	28% 316%	28% 316%	28%
	p_raytrace	3%	1%	4%	1%	3%	1%
	pca	8%	2% 185%	21%	24%	6%
	pca_ll	4%	1% 473%	28%	89%	15%
	radiosity	25%	5%	77%	13%	23%	5%
	radiosity_ll	12%	3% 802%	42%	70%	19%
	rocksdb	6%	2%	11%	2%	11%	2%
	s_raytrace	2%	0% 338%	25%	92%	15%
	s_raytrace_ll	1%	0% 643%	30%	77%	14%
	sqlite	394%	36% 8608%	71% 394%	36%
	streamcluster	36%	8% 387%	27%	36%	8%
	streamcluster_ll	47%	9% 466%	30% 113%	22%
	string_match	0%	0%	2%	1%	2%	1%
	swaptions	0%	0%	1%	0%	1%	0%
	upscaledb	127%	24% 153%	26% 148%	26%
	vips	1%	0% 115%	22%	94%	22%
	volrend	9%	2%	56%	8%	39%	7%
	water_nsquared	24%	6%	48%	10%	48%	10%
	water_spatial	170%	24% 326%	31% 326%	31%
	word_count	2%	0%	4%	1%	2%	0%
	x264	2%	0%	3%	1%	3%	1%

Table 25 .

 25 For each (lock-sensitive application, lock) pair, performance gain (in %) of opt nodes over max nodes. The background color of a cell indicates the number of nodes for opt nodes: 1 2 4 6 8 . Dashes correspond to untested cases (A-48 machine).

Table 26 .

 26 For each (lock-sensitive application, lock) pair, performance gain (in %) of opt nodes over max nodes. The background color of a cell indicates the number of nodes for opt nodes: 1 2 3 4 . Dashes correspond to untested cases (I-48 machine in performance mode).

	80 78 61 45 ---72 82 67 62 83 84 86 86 45 703 48 45 69 49 721 59 50 -	150 190 250 154 141 197 186 142 147 201 188 207 203 7 191 146		8 24 51 13 321 18 16 24 24 13 9 27 51 26 10 20 30 222 36 223 213 1k 849 140 80 504 192	13 10 9 181 13 11 14 18 10 10 11 18 44 6 15 24 133 14 13 35 13 15 7 10 13	6 267 -----93 132 27 166 5 -15 87 524 317 101 48 171 151	65 81 15 230 -79 ---67 -28 70 88 27 79 46 25 -27 50 1k 638 202 142 165 327	---------------------	26 32 10 12 176 19 30 31 80 34 12 14 12 42 21 133 24 62 26 54 27 169 89 75 29 101 92	15 39 337 23 33 22 25 32 38 27 144 32 26 23 11 92 20 100 27 291 143 80 17 110 142	9 85 9 538 6 36 18 557 13 52 8 56 17 143 52 39 14 49 51	6 471 8 269 6 114 10 281 19 7 300 33 261 87 841 373 227 68 342 316	22 26 27 590 21 23 121 16 26 10 34 126 16 202 30 94 28 70 23 226 120 193 53 161 204	106 41 44 7 74 12 7 19 40	----261 ---------6 -2k 153 -134 82 ------	39 49 15 25 973 52 40 85 104 47 42 38 48 78 46 45 52 213 85 247 114 813 328 40 191 412 423	715 674 1k 937 1k 490 546 ---488 -2k 7k 1k 12k 2k 1k 850 792 48 59 2k 1k 2k 1k 1k 928	117 116 278 88 392 68 120 ---98 -335 2k 389 2k 354 212 145 144 269 384 510 282 360 293 201 172	6 6 7 6 7 11 7 7 8 7 9 7 5 7 58 30 364 172 52 25 67 173	108 80 278 13 193 148 ---169 -667 47 44 58 45 5		
		ferret	fmm	kyotocabinet	linear_regression	memcached-new	memcached-old	mysqld	pca	pca_ll	radiosity	radiosity_ll	s_raytrace	s_raytrace_ll	sqlite	ssl_proxy	streamcluster	streamcluster_ll	upscaledb	vips	volrend	water_nsquared	water_spatial

Table 27 .

 27 For each (lock-sensitive application, lock) pair, performance gain (in %) of opt nodes over max nodes.

Table 28 .

 28 For each (lock-sensitive application, lock) pair, performance gain (in %) of opt nodes over max nodes. The background color of a cell indicates the number of nodes for opt nodes: 1 2 4 6 8 . Dashes correspond to untested cases (A-64 machine with thread-to-node pinning).

	ahmcs alock-ls backoff c-bo-mcs_spin c-bo-mcs_stp c-ptl-tkt c-tkt-tkt clh_spin clh_stp clh-ls hmcs hticket-ls malth_spin malth_stp mcs_spin mcs_stp mcs-ls mcs-timepub mutexee partitioned pthread pthreadadapt spinlock spinlock-ls ticket ticket-ls ttas ttas-ls	-173 53 40 48 47 48 165 90 163 15 48 8 49 48 52 83 59 92 90 76 54 65 50 54 138	18 19 53 48 134 19 18 20 59 20 18 18 14 56 20 60 19 22 42 19 42 58 276 127 45 17 55 61	6 9 11 9	-41 ----6 6 35	23 43 50 5 47 27 23 42 407 40 23 25 37 36 43 501 42 53 222 61 260 200 1k 1k 240 97 669 365	21 24 18 7 9	17 14 78 -10 ---14 -7 21 17 134 29 17 12 -31 97 588 465 167 90 317 42	344 278 412 77 78 -110 ---52 -620 635 435 480 611 429 372 -512 561 687 360 656 709 394 467	----26 ----------6 7 -------	20 18 52 68 95 18 19 19 61 18 18 25 21 58 17 58 22 32 44 19 38 56 147 97 30 19 51 48	15 9 33 22 74 11 14 14 44 9 14 15 13 37 11 42 11 17 24 12 27 36 111 67 23 13 36 35	28 22 20 21 27 27 23 157 23 26 26 24 26 144 20 21 89 27 88 25 282 102 66 6 189 126	23 17 15 24 12 33 118 9 30 21 8 23 114 74 17 64 355 269 57 195 120	7 5 65 68 29 25 16 103 47 28 10 48 49	6 19 24 6 807 6 750 7 13 243 34 153 83 1k 654 291 80 664 440	43 302 307 107 81 31 371 162 194 26 412 284	179 176 150 67 24 127 81	-------------375 -185 -160 86 ------	65 66 112 48 165 47 42 78 1k 70 55 55 52 55 73 1k 81 71 349 96 287 199 1k 482 340 167 765 684	1k 968 2k 1k 1k 915 973 ---863 -3k 6k 2k 3k 2k 1k 1k 1k 2k 3k 5k 3k 3k 2k 2k 2k	233 178 448 267 370 211 268 ---198 -479 2k 285 588 373 246 265 231 423 437 979 891 888 583 641 565	716 360 38 37 401 16 32 353 279 1k 15 125 75	27 20 15 9 ----19 16 20 6 20 23 21 21 18 26 18 24 27			
	Applications	dedup	facesim	ferret	fluidanimate	kyotocabinet	linear_regression	memcached-new	memcached-old	mysqld	ocean_cp	ocean_ncp	pca	pca_ll	radiosity	radiosity_ll	s_raytrace	s_raytrace_ll	sqlite	ssl_proxy	streamcluster	streamcluster_ll	upscaledb	vips	volrend	water_nsquared	water_spatial

Table 29 .

 29 For each (lock-sensitive application, lock) pair, performance gain (in %) of opt nodes over max nodes. The background color of a cell indicates the number of nodes for opt nodes: 1 2 3 4 . Dashes correspond to untested cases. (I-48 machine in energy-saving mode).

	ahmcs alock-ls backoff c-bo-mcs_spin c-bo-mcs_stp c-ptl-tkt c-tkt-tkt clh_spin clh_stp clh-ls hmcs hticket-ls malth_spin malth_stp mcs_spin mcs_stp mcs-ls mcs-timepub mutexee partitioned pthread pthreadadapt spinlock spinlock-ls ticket ticket-ls ttas ttas-ls	-146 62 128 66 3k 3k 240 54 385 96 255 491 78 243 69 471 54 71 3k 84 99 82 64 3k 2k 64 77	407 355 8 382 390 359 339 350 402 319 365 349 288 322 6 333 247 7 5	8 11 37 136 12 12 16 26 12 7 7 24 17 10 6 10 15 18 19 13 16 208 130 21 13 31 35	20 11 6 14 34 5	24 25 36 -43 ----29 21 135 12 37 -46 38 115 73 18 18 19	55 20 131 57 58 -20 ---63 -126 118 97 100 132 126 110 -135 121 97 90 109 122 134 86	---------------------	10 20 10 74 11 16 15 21 14 7 12 15 10 13 13 13 29 14 18 236 178 41 36 46 45	29 104 19 278 6 8 7 47 180 284 28 7 77 67	38 59 97 9 5 5 97 79 10 7 15 15	475 31 46 27 7 6 18 38 5 472 364 38 29 104 105	6 191 9 380 5 6 335 27 5 12 226 190 35 26 71 86	207 207 113 106	----368 --------11 -33 -4k 34 -22 17 ------	51 45 39 31 421 60 62 35 15 39 49 49 25 16 49 19 48 44 43 76 34 18 335 276 46 40 72 78	306 187 1k 641 1k 422 233 ---307 -865 1k 896 1k 750 877 1k 228 1k 1k 1k 847 1k 1k 725 729	39 14 185 120 327 116 ---49 -108 149 165 172 134 118 152 6 253 192 168 165 170 162 127 158	8 8 6 6 75 72 7 7 8	152 83 556 21 316 246 ---261 -313 94 92 118 62	10 89 5 23 8 6 9 9 8 12 14 6 5 11 6 18 15 7 9 9		
	Applications	dedup	ferret	kyotocabinet	linear_regression	memcached-new	memcached-old	mysqld	pca	pca_ll	radiosity	radiosity_ll	s_raytrace	s_raytrace_ll	sqlite	ssl_proxy	streamcluster	streamcluster_ll	upscaledb	vips	volrend	water_nsquared	water_spatial

Table 30 .

 30 For each (lock-sensitive application, lock) pair, performance gain (in %) of opt nodes over max nodes.

Table 31 .

 31 For each lock, fraction of the lock-sensitive applications for which the lock yields the best performance for three configurations: one node, max nodes and opt nodes (A-64 machine).

		Number of nodes	
	Locks	one node max nodes opt nodes
	ahmcs	54%	21%	50%
	alock-ls	50%	0%	23%
	backoff	62%	23%	31%
	c-bo-mcs_spin	50%	12%	27%
	c-bo-mcs_stp	46%	11%	18%
	c-ptl-tkt	62%	17%	42%
	c-tkt-tkt	73%	8%	38%
	clh_spin	65%	5%	30%
	clh_stp	60%	15%	20%
	clh-ls	55%	5%	35%
	hmcs	50%	15%	42%
	hticket-ls	70%	15%	40%
	malth_spin	58%	8%	27%
	malth_stp	43%	25%	29%
	mcs_spin	65%	19%	38%
	mcs_stp	61%	18%	21%
	mcs-ls	58%	4%	31%
	mcs-timepub	57%	29%	36%
	mutexee	57%	14%	21%
	partitioned	71%	12%	42%
	pthread	43%	21%	21%
	pthreadadapt	39%	25%	21%
	spinlock	73%	23%	23%
	spinlock-ls	62%	15%	31%
	ticket	69%	15%	35%
	ticket-ls	65%	12%	31%
	ttas	73%	12%	31%
	ttas-ls	54%	0%	15%

Table 32 .

 32 For each lock, fraction of the lock-sensitive applications for which the lock yields the best performance for three configurations: one node, max nodes and opt nodes (A-48 machine).

		Number of nodes	
	Locks	one node max nodes opt nodes
	ahmcs	60%	15%	40%
	alock-ls	55%	10%	35%
	backoff	71%	33%	33%
	c-bo-mcs_spin	57%	24%	19%
	c-bo-mcs_stp	52%	9%	9%
	c-ptl-tkt	58%	16%	21%
	c-tkt-tkt	62%	14%	29%
	clh_spin	47%	13%	20%
	clh_stp	33%	7%	7%
	clh-ls	53%	0%	27%
	hmcs	71%	29%	48%
	hticket-ls	69%	31%	31%
	malth_spin	67%	19%	10%
	malth_stp	35%	4%	4%
	mcs_spin	67%	14%	43%
	mcs_stp	39%	9%	9%
	mcs-ls	67%	5%	29%
	mcs-timepub	52%	22%	35%
	mutexee	61%	22%	30%
	partitioned	58%	5%	21%
	pthread	43%	17%	17%
	pthreadadapt	57%	26%	17%
	spinlock	67%	14%	24%
	spinlock-ls	67%	10%	29%
	ticket	71%	5%	14%
	ticket-ls	71%	10%	29%
	ttas	67%	10%	24%
	ttas-ls	65%	0%	20%

Table 33 .

 33 For each lock, fraction of the lock-sensitive applications for which the lock yields the best performance for three configurations: one node, max nodes and opt nodes (I-48 machine in performance mode).

		Number of nodes	
	Locks	one node max nodes opt nodes
	ahmcs	47%	26%	37%
	alock-ls	55%	15%	10%
	backoff	60%	30%	20%
	c-bo-mcs_spin	65%	35%	35%
	c-bo-mcs_stp	55%	14%	18%
	c-ptl-tkt	72%	44%	50%
	c-tkt-tkt	70%	40%	50%
	clh_spin	47%	7%	7%
	clh_stp	20%	7%	7%
	clh-ls	27%	0%	0%
	hmcs	75%	45%	50%
	hticket-ls	73%	33%	33%
	malth_spin	55%	10%	15%
	malth_stp	41%	18%	18%
	mcs_spin	60%	10%	20%
	mcs_stp	27%	5%	5%
	mcs-ls	55%	15%	15%
	mcs-timepub	45%	9%	5%
	mutexee	41%	27%	27%
	partitioned	56%	17%	11%
	pthread	41%	23%	27%
	pthreadadapt	41%	14%	23%
	spinlock	40%	15%	20%
	spinlock-ls	40%	15%	15%
	ticket	45%	10%	15%
	ticket-ls	55%	10%	15%
	ttas	55%	20%	20%
	ttas-ls	30%	5%	5%

Table 34 .

 34 For each lock, fraction of the lock-sensitive applications for which the lock yields the best performance for three configurations: one node, max nodes and opt nodes (I-20 machine in performance mode).

		Number of nodes	
	Locks	one node max nodes opt nodes
	ahmcs	60%	53%	53%
	alock-ls	50%	38%	38%
	backoff	56%	38%	44%
	c-bo-mcs_spin	75%	62%	62%
	c-bo-mcs_stp	47%	24%	24%
	c-ptl-tkt	67%	60%	60%
	c-tkt-tkt	75%	62%	62%
	clh_spin	42%	25%	25%
	clh_stp	42%	8%	8%
	clh-ls	42%	25%	25%
	hmcs	69%	62%	62%
	hticket-ls	75%	75%	75%
	malth_spin	56%	44%	44%
	malth_stp	59%	47%	47%
	mcs_spin	62%	50%	50%
	mcs_stp	59%	24%	24%
	mcs-ls	62%	50%	50%
	mcs-timepub	53%	53%	53%
	mutexee	59%	41%	47%
	partitioned	60%	47%	47%
	pthread	71%	35%	47%
	pthreadadapt	59%	47%	47%
	spinlock	75%	44%	50%
	spinlock-ls	62%	44%	44%
	ticket	56%	38%	38%
	ticket-ls	62%	44%	44%
	ttas	69%	50%	50%
	ttas-ls	50%	31%	31%

Table 35 .

 35 For each lock, fraction of the lock-sensitive applications for which the lock yields the best performance for three configurations: one node, max nodes and opt nodes (A-64 machine with thread-to-node pinning).

		Number of nodes	
	Locks	one node max nodes opt nodes
	ahmcs	50%	32%	41%
	alock-ls	62%	21%	25%
	backoff	75%	21%	42%
	c-bo-mcs_spin	54%	17%	29%
	c-bo-mcs_stp	54%	19%	19%
	c-ptl-tkt	59%	32%	36%
	c-tkt-tkt	54%	29%	38%
	clh_spin	67%	28%	44%
	clh_stp	56%	6%	11%
	clh-ls	67%	11%	28%
	hmcs	54%	50%	46%
	hticket-ls	78%	39%	44%
	malth_spin	54%	33%	38%
	malth_stp	58%	38%	38%
	mcs_spin	62%	38%	46%
	mcs_stp	62%	19%	19%
	mcs-ls	54%	29%	33%
	mcs-timepub	54%	8%	27%
	mutexee	65%	19%	31%
	partitioned	73%	23%	36%
	pthread	62%	19%	27%
	pthreadadapt	65%	19%	27%
	spinlock	62%	12%	12%
	spinlock-ls	75%	17%	33%
	ticket	75%	8%	25%
	ticket-ls	79%	25%	38%
	ttas	92%	17%	50%
	ttas-ls	79%	4%	21%

Table 36 .

 36 For each lock, fraction of the lock-sensitive applications for which the lock yields the best performance for three configurations: one node, max nodes and opt nodes (I-48 machine in energy-saving mode).

		Number of nodes	
	Locks	one node max nodes opt nodes
	ahmcs	47%	26%	37%
	alock-ls	55%	15%	10%
	backoff	60%	30%	20%
	c-bo-mcs_spin	65%	35%	35%
	c-bo-mcs_stp	55%	14%	18%
	c-ptl-tkt	72%	44%	50%
	c-tkt-tkt	70%	40%	50%
	clh_spin	47%	7%	7%
	clh_stp	20%	7%	7%
	clh-ls	27%	0%	0%
	hmcs	75%	45%	50%
	hticket-ls	73%	33%	33%
	malth_spin	55%	10%	15%
	malth_stp	41%	18%	18%
	mcs_spin	60%	10%	20%
	mcs_stp	27%	5%	5%
	mcs-ls	55%	15%	15%
	mcs-timepub	45%	9%	5%
	mutexee	41%	27%	27%
	partitioned	56%	17%	11%
	pthread	41%	23%	27%
	pthreadadapt	41%	14%	23%
	spinlock	40%	15%	20%
	spinlock-ls	40%	15%	15%
	ticket	45%	10%	15%
	ticket-ls	55%	10%	15%
	ttas	55%	20%	20%
	ttas-ls	30%	5%	5%

Table 37 .

 37 For each lock, fraction of the lock-sensitive applications for which the lock yields the best performance for three configurations: one node, max nodes and opt nodes (I-20 machine in energy-saving mode).

		Number of nodes	
	Locks	one node max nodes opt nodes
	ahmcs	60%	53%	53%
	alock-ls	50%	38%	38%
	backoff	56%	38%	44%
	c-bo-mcs_spin	75%	62%	62%
	c-bo-mcs_stp	47%	24%	24%
	c-ptl-tkt	67%	60%	60%
	c-tkt-tkt	75%	62%	62%
	clh_spin	42%	25%	25%
	clh_stp	42%	8%	8%
	clh-ls	42%	25%	25%
	hmcs	69%	62%	62%
	hticket-ls	75%	75%	75%
	malth_spin	56%	44%	44%
	malth_stp	59%	47%	47%
	mcs_spin	62%	50%	50%
	mcs_stp	59%	24%	24%
	mcs-ls	62%	50%	50%
	mcs-timepub	53%	53%	53%
	mutexee	59%	41%	47%
	partitioned	60%	47%	47%
	pthread	71%	35%	47%
	pthreadadapt	59%	47%	47%
	spinlock	75%	44%	50%
	spinlock-ls	62%	44%	44%
	ticket	56%	38%	38%
	ticket-ls	62%	44%	44%
	ttas	69%	50%	50%
	ttas-ls	50%	31%	31%

Table 38 .

 38 For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive applications for which lock A performs at least 5% better than B (A-64 machine).

		ahmcs	alock-ls	backoff	c-bo-mcs_spin	c-bo-mcs_stp	c-ptl-tkt	c-tkt-tkt	clh_spin	clh_stp	clh-ls	hmcs	hticket-ls	malth_spin	malth_stp	mcs_spin	mcs_stp	mcs-ls	mcs-timepub	mutexee	partitioned	pthread	pthreadadapt	spinlock	spinlock-ls	ticket	ticket-ls	ttas	ttas-ls	average
	ahmcs		38 46 42 54 23 33 16 63 21 21 26 29 54 42 54 42 46 58 27 50 58 50 50 42 42 38 42
	alock-ls	12		42 27 38 4 12 5 60 20 8 10 27 27 12 50 19 27 54 4 42 50 46 42 35 27 31 38
	backoff	33 35		35 58 25 23 30 70 40 35 30 35 38 27 58 35 23 54 25 46 50 38 35 27 19 23 50
	c-bo-mcs_spin 29 46 23		42 17 23 30 70 40 35 20 23 35 19 46 27 19 62 21 54 46 35 42 35 35 35 58
	c-bo-mcs_stp 17 35 15 12		12 15 25 65 35 23 15 12 14 19 43 19 21 36 17 32 32 38 23 23 19 23 38
	c-ptl-tkt	18 42 46 46 54		17 30 75 40 29 25 25 50 29 67 33 42 54 21 54 50 50 46 42 29 38 62
	c-tkt-tkt	17 42 42 35 50 12		25 80 35 27 20 38 54 27 65 46 38 58 12 54 54 50 54 42 31 42 65
	clh_spin	26 40 40 45 45 20 35		55 40 20 30 30 30 20 55 30 35 50 20 50 55 55 60 45 30 45 50
	clh_stp	32 35 5 15 10 15 20 15		35 25 25 15 10 15 10 20 5 25 10 10 10 20 20 10 15 15 25
	clh-ls	21 15 40 35 45 20 25 0 55		20 25 30 30 15 55 10 25 55 15 50 55 55 60 40 35 40 50
	hmcs	12 38 42 35 38 4 23 35 75 40		15 23 38 23 58 35 35 58 21 46 46 46 42 38 35 35 50
	hticket-ls	16 40 55 40 55 0 10 35 75 30 15		20 45 15 65 25 35 55 20 60 55 55 50 45 30 45 60
	malth_spin	12 38 19 27 50 12 15 25 65 35 23 15		31 15 46 27 31 50 12 46 46 38 38 31 19 19 46
	malth_stp	21 38 23 35 39 21 15 30 65 35 31 20 8		15 39 23 25 54 12 54 46 38 35 31 23 23 46
	mcs_spin	29 54 46 38 65 29 23 40 70 40 42 40 38 46		50 46 31 65 21 54 54 42 54 46 35 42 69
	mcs_stp	25 35 12 27 29 25 15 30 35 30 31 25 15 14 8		27 14 39 17 29 29 12 12 12 15 12 31
	mcs-ls	21 27 38 38 50 8 15 15 70 15 23 20 31 27 8 46		12 62 8 50 54 46 46 38 15 35 54
	mcs-timepub 29 38 27 35 50 17 12 35 70 35 35 20 38 36 8 43 19		61 17 46 50 42 54 42 27 35 62
	mutexee	17 31 8 19 21 12 12 20 60 30 27 20 8 4 19 36 15 14		12 29 21 31 27 19 12 15 27
	partitioned	23 38 38 33 62 25 21 35 70 35 33 35 38 42 25 67 38 38 62		46 50 46 54 33 38 38 62
	pthread	25 38 4 23 29 21 15 30 60 35 35 25 23 18 23 46 31 18 21 12		18 27 19 15 12 19 42
	pthreadadapt 25 38 8 23 32 29 19 30 55 35 31 25 19 18 23 43 31 18 36 12 36		19 19 15 19 19 42
	spinlock	25 38 15 38 38 33 23 30 55 35 38 30 38 38 23 42 35 19 50 21 38 38		27 12 27 19 31
	spinlock-ls	25 35 15 31 31 12 19 20 50 25 35 10 23 23 27 54 23 23 42 17 38 31 35		19 12 8 23
	ticket	25 31 12 31 38 25 23 30 60 30 35 30 31 31 27 54 31 23 50 12 35 50 23 31		15 8 27
	ticket-ls	17 35 31 31 54 17 19 25 70 30 27 10 31 42 27 58 27 31 58 12 46 58 46 38 35		27 46
	ttas	21 31 15 38 35 21 19 20 55 30 31 25 27 35 31 50 27 23 50 17 42 46 35 27 15 15		31
	ttas-ls	17 23 15 23 23 4 12 5 35 20 12 5 15 23 19 38 15 15 42 4 35 46 27 15 12 8 0	
	average																												

Table 39 .

 39 For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive applications for which lock A performs at least 5% better than B (A-48 machine).

		ahmcs	alock-ls	backoff	c-bo-mcs_spin	c-bo-mcs_stp	c-ptl-tkt	c-tkt-tkt	clh_spin	clh_stp	clh-ls	hmcs	hticket-ls	malth_spin	malth_stp	mcs_spin	mcs_stp	mcs-ls	mcs-timepub	mutexee	partitioned	pthread	pthreadadapt	spinlock	spinlock-ls	ticket	ticket-ls	ttas	ttas-ls	average
	ahmcs		20 25 35 60 28 25 33 73 20 5 20 30 70 30 60 20 45 60 28 65 65 50 50 55 20 40 45
	alock-ls	20		25 30 65 28 30 20 73 20 10 33 30 65 15 60 10 35 65 22 70 70 50 50 50 20 35 35
	backoff	35 35		52 71 32 33 40 87 40 29 31 48 71 33 67 29 33 52 26 62 62 48 38 52 33 38 50
	c-bo-mcs_spin 30 30 14		57 11 14 33 87 40 19 19 33 67 38 71 19 48 57 26 71 62 52 43 52 33 38 60
	c-bo-mcs_stp 25 25 10 10		5 10 33 80 27 10 6 14 43 24 61 10 22 13 11 30 13 29 5 14 10 14 25
	c-ptl-tkt	28 17 26 32 63		16 33 87 33 11 19 37 68 37 74 26 53 53 32 68 63 58 58 53 32 47 72
	c-tkt-tkt	20 25 14 29 57 5		27 87 27 14 12 38 76 24 71 24 52 57 16 71 67 57 52 52 24 33 50
	clh_spin	27 13 33 13 67 13 33		73 27 13 27 33 73 13 67 7 40 53 33 73 73 60 53 53 40 40 60
	clh_stp	27 13 7 7 0 7 7 13		27 7 7 7 7 7 27 7 0 0 7 0 0 7 0 7 7 7 7
	clh-ls	20 0 27 20 67 20 27 13 73		13 33 40 73 27 67 13 47 53 27 73 60 60 60 53 27 53 53
	hmcs	25 35 33 43 67 32 33 47 87 40		19 38 71 33 71 24 57 62 32 71 62 62 48 52 29 38 55
	hticket-ls	20 27 19 25 62 6 12 33 87 27 12		38 69 38 75 12 50 56 19 69 69 62 56 56 25 50 73
	malth_spin	20 35 10 19 71 11 14 33 87 40 14 12		62 24 67 19 29 57 11 67 67 43 38 38 24 24 50
	malth_stp	25 25 5 29 22 16 14 27 60 27 14 19 10		19 48 19 13 13 11 13 9 14 0 14 10 5 20
	mcs_spin	30 35 33 43 67 42 38 40 93 40 19 44 43 76		62 29 33 62 21 67 67 52 52 52 33 43 50
	mcs_stp	25 30 5 24 22 26 19 27 33 27 19 19 14 13 14		19 4 13 16 9 13 5 5 19 19 10 15
	mcs-ls	25 25 24 38 67 21 29 33 87 33 14 25 48 71 24 67		48 62 21 67 67 57 43 52 24 29 50
	mcs-timepub 30 30 19 43 70 32 33 33 93 33 19 31 43 61 10 61 29		57 21 61 57 52 43 48 33 29 50
	mutexee	35 35 14 24 48 26 24 40 87 40 24 25 29 65 29 70 29 22		26 39 17 33 19 29 24 24 35
	partitioned	33 22 11 26 68 16 21 20 87 27 21 25 37 68 21 74 16 32 58		68 63 58 47 47 32 42 61
	pthread	25 25 10 24 48 16 14 27 93 27 24 25 19 74 19 70 19 17 9 16		4 19 10 19 10 24 30
	pthreadadapt 25 25 5 24 57 16 14 27 93 27 24 25 19 74 24 74 19 22 30 11 43		29 10 24 14 19 30
	spinlock	30 40 14 43 57 37 33 33 87 33 29 31 29 71 19 71 29 14 48 26 57 43		14 33 24 14 25
	spinlock-ls	35 40 10 29 57 21 19 27 87 27 19 12 29 76 29 76 19 24 43 16 48 29 33		29 19 5 20
	ticket	20 15 5 24 52 11 14 13 87 13 10 12 19 67 14 67 10 19 38 5 57 33 29 5		5 10 10
	ticket-ls	20 25 10 24 62 16 19 33 87 33 19 12 29 71 29 67 24 38 57 11 67 57 52 43 48		38 45
	ttas	30 30 5 24 67 26 24 27 87 33 19 19 33 71 29 67 19 24 48 21 52 52 38 14 38 14		25
	ttas-ls	20 30 5 20 55 11 10 13 73 27 5 7 10 65 10 60 5 15 45 6 55 40 30 15 35 5 10	
	average	26 26 15 28 56 20 22 29 82 30 16 21 29 65 23 66 19 31 45 19 55 48 42 32 40 22 28 41

Table 40 .

 40 For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive applications for which lock A performs at least 5% better than B (I-48 machine in performance mode).

	75%
	50%
	25%
	0%
	t p c -p t l -t k t c -t k t -t k t c l h _ s p i n c l h _ s t p c l h -l s h m c s h t i c k e t -l s m a l t h _ s p i n m a l t h _ s t p m c s _ s p i n m c s _ s t p m c s -l s m c s -t i m e p u b m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k e t -l s t t a s t t a s -l s

Score

Fig.

8

. For each pair of locks (rowA, colB) at opt nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive applications for which lock 𝐴 performs at least 5% better than 𝐵 (A-48 machine).

Table 41 .

 41 For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive applications for which lock A performs at least 5% better than B (I-20 machine in performance mode).

	75%
	50%
	25%
	0%
	t p c -p t l -t k t c -t k t -t k t c l h _ s p i n c l h _ s t p c l h -l s h m c s h t i c k e t -l s m a l t h _ s p i n m a l t h _ s t p m c s _ s p i n m c s _ s t p m c s -l s m c s -t i m e p u b m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k e t -l s t t a s t t a s -l s

Score

Fig.

9

. For each pair of locks (rowA, colB) at opt nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-48 machine in performance mode).

Table 42 .

 42 For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive applications for which lock A performs at least 5% better than B (A-64 machine with thread-to-node pinning).

	75%
	50%
	25%
	0%
	t p c -p t l -t k t c -t k t -t k t c l h _ s p i n c l h _ s t p c l h -l s h m c s h t i c k e t -l s m a l t h _ s p i n m a l t h _ s t p m c s _ s p i n m c s _ s t p m c s -l s m c s -t i m e p u b m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k e t -l s t t a s t t a s -l s

Score

Fig.

10

. For each pair of locks (rowA, colB) at opt nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-20 machine in performance mode).

Table 43 .

 43 For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive applications for which lock A performs at least 5% better than B (I-48 machine in energy-saving mode).

	75%
	50%
	25%
	0%
	t p c -p t l -t k t c -t k t -t k t c l h _ s p i n c l h _ s t p c l h -l s h m c s h t i c k e t -l s m a l t h _ s p i n m a l t h _ s t p m c s _ s p i n m c s _ s t p m c s -l s m c s -t i m e p u b m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k e t -l s t t a s t t a s -l s

Score

Fig.

11

. For each pair of locks (rowA, colB) at opt nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive applications for which lock 𝐴 performs at least 5% better than 𝐵 (A-64-node machine).

Table 44 .

 44 For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive applications for which lock A performs at least 5% better than B (I-20 machine in energy-saving mode).

	75%
	50%
	25%
	0%
	t p c -p t l -t k t c -t k t -t k t c l h _ s p i n c l h _ s t p c l h -l s h m c s h t i c k e t -l s m a l t h _ s p i n m a l t h _ s t p m c s _ s p i n m c s _ s t p m c s -l s m c s -t i m e p u b m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k e t -l s t t a s t t a s -l s

Score

Fig.

[START_REF] Emery | Hoard: A Scalable Memory Allocator for Multithreaded Applications[END_REF]

. For each pair of locks (rowA, colB) at opt nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-48 machine in energy-saving move).

Table 45 .

 45 For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of lock-sensitive applications for which lock A performs at least 5% better than B (A-64 machine).

	75%
	50%
	25%
	0%
	t p c -p t l -t k t c -t k t -t k t c l h _ s p i n c l h _ s t p c l h -l s h m c s h t i c k e t -l s m a l t h _ s p i n m a l t h _ s t p m c s _ s p i n m c s _ s t p m c s -l s m c s -t i m e p u b m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k e t -l s t t a s t t a s -l s

Score

Fig.

[START_REF] Bienia | Benchmarking Modern Multiprocessors[END_REF]

. For each pair of locks (rowA, colB) at opt nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-20 machine in energy-saving move).

Table 46 .

 46 For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of lock-sensitive applications for which lock A performs at least 5% better than B (A-48 machine).

	75%
	50%
	25%
	0%
	l s a l t h _ s p i n m m a l t h _ s t p m c s _ s p i n m c s _ s t p m c s -l s m c s -t i m e p u b m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k e t -l s t t a s t t a s -l s

Score

Fig.

[START_REF] Blasgen | The Convoy Phenomenon[END_REF]

. For each pair of locks (rowA, colB) at max nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive applications for which lock 𝐴 performs at least 5% better than 𝐵 (A-64 machine).

Table 47 .

 47 For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of locksensitive applications for which lock A performs at least 5% better than B (I-48 machine in performance mode).

	75%
	50%
	25%
	0%
	l s a l t h _ s p i n m m a l t h _ s t p m c s _ s p i n m c s _ s t p m c s -l s m c s -t i m e p u b m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k e t -l s t t a s t t a s -l s

Score

Fig.

[START_REF] Boyd-Wickizer | Non-scalable Locks are Dangerous[END_REF]

. For each pair of locks (rowA, colB) at max nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive applications for which lock 𝐴 performs at least 5% better than 𝐵 (A-48 machine).

Table 48 .

 48 For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of locksensitive applications for which lock A performs at least 5% better than B (I-20 machine in performance mode).

	75%
	50%
	25%
	0%
	l s a l t h _ s p i n m m a l t h _ s t p m c s _ s p i n m c s _ s t p m c s -l s m c s -t i m e p u b m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k e t -l s t t a s t t a s -l s

Score

Fig.

[START_REF] Fitzpatrick | Memcached[END_REF]

. For each pair of locks (rowA, colB) at max nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-48 machine in performance mode).

Table 49 .

 49 For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of lock-sensitive applications for which lock A performs at least 5% better than B (A-64 machine with thread-to-node pinning).

	75%
	50%
	25%
	0%
	l s a l t h _ s p i n m m a l t h _ s t p m c s _ s p i n m c s _ s t p m c s -l s m c s -t i m e p u b m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k e t -l s t t a s t t a s -l s

Score

Fig.

[START_REF] Brown | Investigating the Performance of Hardware Transactions on a Multi-Socket Machine[END_REF]

. For each pair of locks (rowA, colB) at max nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-20 machine in performance mode).

Table 50 .

 50 For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of locksensitive applications for which lock A performs at least 5% better than B (I-48 machine in energy-saving mode).

	75%
	50%
	25%
	0%
	l s a l t h _ s p i n m m a l t h _ s t p m c s _ s p i n m c s _ s t p m c s -l s m c s -t i m e p u b m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k e t -l s t t a s t t a s -l s

Score

Fig.

[START_REF] Calciu | Message Passing or Shared Memory: Evaluating the Delegation Abstraction for Multicores[END_REF]

. For each pair of locks (rowA, colB) at max nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive applications for which lock 𝐴 performs at least 5% better than 𝐵 (A-64-node machine).

Table 51 .

 51 For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of locksensitive applications for which lock A performs at least 5% better than B (I-20 machine in energy-saving mode).

	75%
	50%
	25%
	0%
	l s a l t h _ s p i n m m a l t h _ s t p m c s _ s p i n m c s _ s t p m c s -l s m c s -t i m e p u b m u t e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k e t -l s t t a s t t a s -l s

Score

Fig.

[START_REF] Calciu | NUMA-aware readerwriter locks[END_REF]

. For each pair of locks (rowA, colB) at max nodes, scores of lock 𝐴 vs lock 𝐵: percentage of lock-sensitive applications for which lock 𝐴 performs at least 5% better than 𝐵 (I-48 machine in energy-saving move).

Table 53 .

 53 For each lock-sensitive application, at opt nodes, performance gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. (A-64 machine).

	13 588 590 988 150 134 135 133 131 133 127 84 0 16 8 4 4 3 6 4 5 591	facesim 298 694 338 115 85 258 231 687 52 700 219 196 531 40 710 52 771 0 23 685 56 44 572 117 719 337 147 224	ferret 310 270 8 50 0 239 229 312 0 252 274 277 209 0 317 0 349 4 1 314 0 1 10 4 308 93 8 8	fluidanimate -284 0 53 71 30 12 ---65 -31 87 35 86 44 44 76 9 1 7 21 2 13 10 4 187	fmm 41 37 22 16 27 29 15 39 33 38 35 32 21 18 2 0 32 0 25 20 25 23 2 27 19 28 22 32	kyotocabinet 9 91 29 0 171 24 28 33 484 43 12 19 22 22 28 474 38 52 397 45 409 276 2k 2k 214 89 589 334	linear_regression 17 89 10 34 198 14 17 17 64 56 13 29 8 0 22 58 54 4 16 47 16 2 85 31 33 12 34 38	matrix_multiply 9 78 3 14 5 27 54 9 3 12 608 59 5 3 28 2 168 0 6 44 3 3 5 59 3 59 4 55	memcached-new 0 20 38 70 871 -10 ---0 -35 81 20 582 31 17 53 -103 193 1k 764 221 80 331 110	memcached-old 117 54 63 0 1 -14 ---6 -289 307 149 192 264 175 108 -209 225 305 45 216 223 33 74	mysqld ----53 --------0 -7 -173 10 -97 102 ------	ocean_cp 28 17 38 32 47 24 21 41 38 19 31 14 23 27 43 32 30 0 13 31 11 19 129 54 55 7 23 34	ocean_ncp 24 17 23 24 31 8 12 27 25 18 13 3 16 19 33 34 11 8 5 26 28 24 113 34 22 0 11 31	pca 51 57 26 27 346 43 47 49 221 53 51 41 30 0 57 229 39 25 124 31 121 45 266 107 104 26 200 128	pca_ll 64 52 0 8 713 56 58 66 379 31 60 35 14 10 61 369 27 26 165 41 166 51 522 331 116 23 273 193	radiosity 13 12 4 4 38 8 5 9 0 13 7 8 8 12 0 90 9 0 42 0 0 0 1 54 0 19 34 61	radiosity_ll 0 41 43 26 1k 37 47 31 1k 49 0 17 68 67 26 2k 57 60 535 76 569 262 2k 1k 585 200 1k 802	s_raytrace 0 33 65 37 2k 29 39 46 1k 37 16 31 26 64 0 1k 16 13 282 103 230 122 714 252 412 145 661 514	s_raytrace_ll 10 20 42 39 645 11 13 0 2k 5 41 19 37 21 0 2k 10 14 284 56 201 67 1k 744 554 172 1k 916	sqlite ----405 --------0 -591 -2k 375 -336 181 ------	ssl_proxy 0 17 48 5 790 11 26 16 879 27 159 15 16 35 41 900 48 29 319 36 293 153 1k 447 271 89 594 499	streamcluster 49 21 137 43 195 0 15 ---0 -219 1k 121 1k 188 13 32 8 95 142 527 129 302 181 215 206	streamcluster_ll 65 20 188 58 277 0 21 ---15 -262 1k 144 1k 228 28 44 27 80 120 549 196 321 177 232 189	upscaledb 8 18 30 9 110 16 12 16 281 19 8 14 0 5 17 267 21 34 107 25 215 109 747 496 106 49 226 318	vips 48 38 6 184 21 95 73 ---84 -196 0 28 1 28 3 2 33 0 2 3 6 16 10 8 14	volrend 2 27 36 19 72 0 7 26 58 17 0 2 18 63 27 47 22 25 80 25 78 105 162 87 25 15 40 48	water_nsquared 94 48 4 6 10 8 2 35 35 58 14 11 7 6 3 2 9 7 7 4 6 7 0 6 4 6 5 37	water_spatial

Table 55 .

 55 For each lock-sensitive application, at opt nodes, performance gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. (A-48 machine).

	10 395 271 10 10

Table 56 .

 56 For each lock-sensitive application, at max nodes, performance gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-48 machine in performance mode).

	radiosity 30 26 29 25 33 22 27 23 44 27 26 27 25 43 0 29 24 4 33 22 34 34 15 29 28 30 26 31	radiosity_ll 0 4 25 11 70 15 24 14 234 21 0 29 53 208 4 218 9 30 78 25 111 72 72 66 78 61 59 64	s_raytrace 5 2 9 16 130 5 10 1 294 3 4 9 21 186 0 340 5 0 55 4 59 55 50 53 51 32 54 50	s_raytrace_ll 5 0 22 48 323 24 35 7 686 7 4 44 64 414 12 672 14 24 192 30 143 76 336 333 339 110 327 282	sqlite ----31 --------175 -511 -0 55 -68 35 ------	ssl_proxy 69 64 4 92 74 79 86 89 873 64 70 77 124 2k 98 2k 74 109 0 104 163 141 130 139 134 72 93 138	streamcluster 6 8 6 16 20 14 17 ---0 -8 8 3 6 1 8 20 6 907 954 7 0 10 6 4 3	streamcluster_ll 29 35 32 15 14 6 12 ---0 -34 39 30 28 32 33 44 19 30 43 28 19 36 33 30 29	upscaledb	vips 15 18 3 15 17 16 17 ---17 -14 6 16 7 15 4 3 15 0 0 3 3 15 17 5 12	volrend 0 2 6 1 23 0 3 6 23 0 1 1 6 27 6 28 1 10 11 5 12 12 17 9 8 3 6 7	water_nsquared 78 42 8 15 14 11 11 29 29 48 13 14 8 9 5 6 16 8 10 6 8 8 0 10 9 12 12 32	water_spatial 69 35 2 4 4 1 0 34 33 45 6 4 9 8 19 21 4 19 2 5 0 1 15 1 3 1 2 28

Table 57 .

 57 For each lock-sensitive application, at opt nodes, performance gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-48 machine in performance mode).

Table 58 .

 58 For each lock-sensitive application, at max nodes, performance gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-20 machine in performance mode).

	6 8 1 11 10 308 9 11 26 8 32 21 12 14 17 10 7 12	pca_ll 3 10 52 9 195 0 1 16 403 14 1 1 18 45 9 186 9 19 75 20 89 97 182 69 40 37 39 39	radiosity 16 9 6 0 7 0 0 17 71 17 0 1 5 9 4 25 4 6 12 7 16 11 22 15 16 12 13 20	radiosity_ll 1 61 102 8 52 18 21 87 1k 88 0 24 129 149 57 2k 59 80 163 99 249 159 263 218 248 169 162 163	s_raytrace 0 7 9 24 90 0 7 13 179 18 0 13 38 88 5 211 6 12 57 31 54 80 172 172 94 60 62 84	s_raytrace_ll 2 14 44 29 151 8 15 31 342 30 0 35 104 135 11 343 13 26 63 58 68 74 343 345 176 98 213 245	sqlite ----0 --------41 -618 -35 61 -74 55 ------	ssl_proxy 0 42 23 6 54 27 9 61 1k 53 0 12 80 153 48 1k 37 58 124 57 144 130 445 209 178 125 135 121	streamcluster 8 3 25 5 6 3 1 ---0 -41 38 19 15 36 14 32 7 15 35 19 17 41 42 17 14	streamcluster_ll 21 0 125 43 41 16 15 ---15 -151 158 91 99 103 109 145 21 78 160 122 75 161 161 84 75	upscaledb 1 23 27 0 63 2 1 26 264 26 1 0 17 21 26 274 22 36 124 35 124 106 68 67 48 37 46 47	vips 24 24 2 22 22 22 22 ---24 -23 1 23 6 22 2 0 22 2 0 3 3 23 5 0 1	volrend 17 7 41 3 23 0 0 12 24 11 1 0 5 15 3 13 2 9 17 7 20 27 26 20 18 9 15 18	water_nsquared 128 52 0 0 4 2 4 97 89 90 5 2 2 0 3 6 2 6 2 0 1 5 2 3 2 5 0 44	water_spatial

Table 61 .

 61 For each lock-sensitive application, at opt nodes, performance gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. (A-64 machine with thread-to-node pinning).

	38 130 76 13 1 29 30

Table 63 .

 63 For each lock-sensitive application, at opt nodes, performance gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-48 machine in energy-efficiency mode).

	14 527 401 14 14

Table 64 .

 64 For each lock-sensitive application, at max nodes, performance gain, (in %) obtained by the best lock(s) with respect to each of the other locks. A gray cell highlights a configuration where a given lock hurts the application, i.e., the performance gain is greater than 15%. A line with many gray cells corresponds to an application whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed by many other locks. Dashes correspond to untested cases. (I-20 machine in energy-saving mode).

	6 8 1 11 10 308 9 11 26 8 32 21 12 14 17 10 7 12	pca_ll 3 10 52 9 195 0 1 16 403 14 1 1 18 45 9 186 9 19 75 20 89 97 182 69 40 37 39 39	radiosity 16 9 6 0 7 0 0 17 71 17 0 1 5 9 4 25 4 6 12 7 16 11 22 15 16 12 13 20	radiosity_ll 1 61 102 8 52 18 21 87 1k 88 0 24 129 149 57 2k 59 80 163 99 249 159 263 218 248 169 162 163	s_raytrace 0 7 9 24 90 0 7 13 179 18 0 13 38 88 5 211 6 12 57 31 54 80 172 172 94 60 62 84	s_raytrace_ll 2 14 44 29 151 8 15 31 342 30 0 35 104 135 11 343 13 26 63 58 68 74 343 345 176 98 213 245	sqlite ----0 --------41 -618 -35 61 -74 55 ------	ssl_proxy 0 42 23 6 54 27 9 61 1k 53 0 12 80 153 48 1k 37 58 124 57 144 130 445 209 178 125 135 121	streamcluster 8 3 25 5 6 3 1 ---0 -41 38 19 15 36 14 32 7 15 35 19 17 41 42 17 14	streamcluster_ll 21 0 125 43 41 16 15 ---15 -151 158 91 99 103 109 145 21 78 160 122 75 161 161 84 75	upscaledb 1 23 27 0 63 2 1 26 264 26 1 0 17 21 26 274 22 36 124 35 124 106 68 67 48 37 46 47	vips 24 24 2 22 22 22 22 ---24 -23 1 23 6 22 2 0 22 2 0 3 3 23 5 0 1	volrend 17 7 41 3 23 0 0 12 24 11 1 0 5 15 3 13 2 9 17 7 20 27 26 20 18 9 15 18	water_nsquared 128 52 0 0 4 2 4 97 89 90 5 2 2 0 3 6 2 6 2 0 1 5 2 3 2 5 0 44	water_spatial

Table 66 .

 66 For each lock-sensitive application, percentage of pairwise changes in the lock performance hierarchy when changing the number of nodes (A-48 machine).

		% of pairwise changes between configurations
	Applications	1/2	2/4	4/8	1/2/4/8
	dedup	14%	10%	22%	32%
	ferret	0%	72%	15%	83%
	fmm	23%	23%	18%	36%
	kyotocabinet	25%	8%	14%	38%
	linear_regression	18%	36%	32%	61%
	memcached-new	58%	39%	0%	76%
	memcached-old	37%	29%	0%	55%
	mysqld	29%	0%	5%	33%
	pca	31%	33%	29%	76%
	pca_ll	20%	25%	53%	91%
	radiosity	31%	45%	15%	76%
	radiosity_ll	30%	53%	18%	84%
	s_raytrace	21%	43%	33%	94%
	s_raytrace_ll	24%	51%	27%	96%
	sqlite	5%	14%	52%	67%
	ssl_proxy	35%	26%	14%	56%
	streamcluster	15%	59%	35%	85%
	streamcluster_ll	32%	49%	38%	95%
	upscaledb	23%	16%	11%	44%
	vips	0%	5%	84%	84%
	volrend	19%	21%	39%	77%
	water_nsquared	29%	28%	22%	60%
	water_spatial	15%	15%	6%	31%

Table 67 .

 67 For each lock-sensitive application, percentage of pairwise changes in the lock performance hierarchy when changing the number of nodes (I-48 machine in performance mode).

		% of pairwise changes between configurations
	Applications	1/2	2/3	3/4	1/2/3/4
	dedup	13%	28%	22%	48%
	ferret	26%	65%	15%	87%
	kyotocabinet	12%	7%	4%	19%
	linear_regression	34%	38%	39%	78%
	memcached-new	47%	29%	0%	56%
	memcached-old	14%	15%	0%	25%
	mysqld	7%	29%	24%	38%
	pca	47%	12%	15%	59%
	pca_ll	41%	30%	14%	76%
	radiosity	25%	15%	10%	42%
	radiosity_ll	23%	10%	7%	31%
	s_raytrace	65%	19%	9%	89%
	s_raytrace_ll	86%	15%	10%	98%
	sqlite	29%	33%	19%	57%
	ssl_proxy	14%	4%	6%	20%
	streamcluster	24%	22%	23%	44%
	streamcluster_ll	20%	19%	25%	43%
	upscaledb	7%	8%	6%	15%
	vips	0%	0%	76%	76%
	volrend	31%	34%	21%	71%
	water_nsquared	0%	0%	4%	4%
	water_spatial	13%	13%	5%	29%

Table 68 .

 68 For each lock-sensitive application, percentage of pairwise changes in the lock performance hierarchy when changing the number of nodes (I-20 machine in performance mode).

		% of pairwise changes between configurations
	Applications	1/2
	dedup	27%
	ferret	18%
	kyotocabinet	9%
	memcached-old	0%
	pca	52%
	pca_ll	37%
	radiosity	56%
	radiosity_ll	75%
	s_raytrace	21%
	s_raytrace_ll	21%
	sqlite	48%
	streamcluster	46%
	streamcluster_ll	46%
	upscaledb	13%
	vips	74%
	water_nsquared	0%
	water_spatial	0%

Table 69 .

 69 For each lock-sensitive application, percentage of pairwise changes in the lock performance hierarchy when changing the number of nodes (A-64 machine with thread-to-node pinning).

		% of pairwise changes between configurations
	Applications	1/2	2/4	4/8	1/2/4/8
	dedup	10%	11%	13%	19%
	facesim	0%	43%	30%	73%
	ferret	23%	13%	15%	41%
	fluidanimate	28%	9%	10%	36%
	kyotocabinet	30%	16%	10%	47%
	linear_regression	27%	50%	25%	80%
	memcached-new	52%	23%	0%	68%
	memcached-old	36%	20%	0%	51%
	mysqld	26%	14%	38%	57%
	ocean_cp	0%	30%	46%	76%
	ocean_ncp	0%	25%	48%	74%
	pca	25%	48%	16%	81%
	pca_ll	8%	53%	58%	95%
	radiosity	0%	54%	12%	66%
	radiosity_ll	53%	52%	14%	96%
	s_raytrace	5%	46%	44%	88%
	s_raytrace_ll	0%	87%	23%	96%
	sqlite	45%	10%	5%	45%
	ssl_proxy	62%	15%	13%	74%
	streamcluster	62%	24%	23%	84%
	streamcluster_ll	56%	23%	26%	81%
	upscaledb	47%	20%	20%	58%
	vips	13%	6%	15%	26%
	volrend	23%	22%	36%	80%
	water_nsquared	20%	10%	7%	38%
	water_spatial	3%	0%	3%	6%

Table 70 .

 70 For each lock-sensitive application, percentage of pairwise changes in the lock performance hierarchy when changing the number of nodes (I-48 machine in energy-saving mode).

		% of pairwise changes between configurations
	Applications	1/2	2/3	3/4	1/2/3/4
	dedup	13%	28%	22%	48%
	ferret	26%	65%	15%	87%
	kyotocabinet	12%	7%	4%	19%
	linear_regression	34%	38%	39%	78%
	memcached-new	47%	29%	0%	56%
	memcached-old	14%	15%	0%	25%
	mysqld	7%	29%	24%	38%
	pca	47%	12%	15%	59%
	pca_ll	41%	30%	14%	76%
	radiosity	25%	15%	10%	42%
	radiosity_ll	23%	10%	7%	31%
	s_raytrace	65%	19%	9%	89%
	s_raytrace_ll	86%	15%	10%	98%
	sqlite	29%	33%	19%	57%
	ssl_proxy	14%	4%	6%	20%
	streamcluster	24%	22%	23%	44%
	streamcluster_ll	20%	19%	25%	43%
	upscaledb	7%	8%	6%	15%
	vips	0%	0%	76%	76%
	volrend	31%	34%	21%	71%
	water_nsquared	0%	0%	4%	4%
	water_spatial	13%	13%	5%	29%

Table 71 .

 71 For each lock-sensitive application, percentage of pairwise changes in the lock performance hierarchy when changing the number of nodes (I-20 machine in energy-saving mode).

		% of pairwise changes between configurations
	Applications	1/2
	dedup	27%
	ferret	18%
	kyotocabinet	9%
	memcached-old	0%
	pca	52%
	pca_ll	37%
	radiosity	56%
	radiosity_ll	75%
	s_raytrace	21%
	s_raytrace_ll	21%
	sqlite	48%
	streamcluster	46%
	streamcluster_ll	46%
	upscaledb	13%
	vips	74%
	water_nsquared	0%
	water_spatial	0%

Table 72 .

 72 For each pair of machines, at max nodes and opt nodes, percentage of pairwise changes in the lock performance hierarchy (all machines).

		A-64 A-48 A-64 I-48
		vs.	vs.	vs. vs.
	# nodes A-48 I-48 I-48 I-20
	Max	25% 26% 28% 33%
	Opt	31% 36% 34% 36%

Table 73 .

 73 For each application, energy-efficiency gain of the best vs. worst lock and relative standard deviation (I-48 machine in energy-saving mode).

		Gain	R.Dev.	Gain	R.Dev.	Gain	R.Dev.
		one	one	max	max	opt	opt
		node	node	nodes	nodes	nodes	nodes
	barnes	7%	2%	17%	4%	17%	4%
	blackscholes	1%	0%	1%	0%	1%	0%
	bodytrack	1%	0%	80%	9%	11%	3%
	canneal	1%	0%	2%	0%	2%	0%
	dedup	619%	44% 2789% 68% 619%	44%
	ferret	1%	0% 569%	75%	28%	8%
	fmm	6%	2%	22%	6%	18%	4%
	freqmine	2%	0%	1%	0%	1%	0%
	histogram	17%	3%	30%	6%	17%	3%
	kmeans	2%	0%	7%	2%	4%	1%
	kyotocabinet	293%	26% 967%	37% 293%	26%
	linear_regression	8%	2% 192%	22%	86%	14%
	lu_cb	3%	1%	2%	1%	2%	1%
	lu_ncb	7%	2%	4%	1%	4%	1%
	matrix_multiply	2%	1%	7%	2%	7%	2%
	memcached-new 107%	21% 629%	27%	88%	17%
	memcached-old	69%	18% 191%	37%	69%	18%
	mysqld	103%	19%	87%	18%	87%	18%
	p_raytrace	2%	1%	3%	1%	1%	0%
	pca	204%	19% 778%	35% 204%	19%
	pca_ll	16%	3% 1139% 44%	52%	14%
	radiosity	36%	7% 577%	31%	39%	8%
	radiosity_ll	169%	22% 4028% 62% 223%	28%
	rocksdb	3%	1%	7%	2%	7%	2%
	s_raytrace	3%	1% 2308% 49%	81%	20%
	s_raytrace_ll	2%	1% 1941% 45% 189%	33%
	sqlite	359%	35% 5657% 75% 395%	37%
	ssl_proxy	793%	37% 2306% 51% 804%	38%
	streamcluster	43%	11% 520%	65%	43%	11%
	streamcluster_ll	60%	15% 613%	74%	98%	22%
	string_match	1%	0%	8%	2%	8%	2%
	swaptions	1%	0%	2%	0%	2%	0%
	upscaledb	586%	30% 768%	39% 586%	30%
	vips	2%	0% 636%	46%	9%	3%
	volrend	11%	2%	44%	9%	19%	4%
	water_nsquared	31%	7%	67%	13%	67%	13%
	water_spatial	303%	31% 589%	38% 589%	38%
	word_count	4%	1%	5%	1%	4%	1%
	x264	1%	0%	1%	0%	1%	0%

Table 74 .

 74 For each application, energy-efficiency gain of the best vs. worst lock and relative standard deviation (I-20 machine in energy-saving mode).

		Gain	R.Dev.	Gain	R.Dev.	Gain	R.Dev.
		one	one	max	max	opt	opt
		node	node	nodes	nodes	nodes	nodes
	barnes	5%	1%	7%	2%	7%	2%
	blackscholes	1%	0%	1%	0%	1%	0%
	bodytrack	7%	2%	2%	1%	2%	1%
	canneal	1%	0%	2%	1%	2%	1%
	dedup	489%	41% 1171% 46% 489%	41%
	ferret	40%	9% 325%	61%	75%	18%
	fmm	5%	1%	8%	2%	8%	2%
	freqmine	8%	1%	1%	0%	1%	0%
	histogram	8%	2%	30%	6%	8%	2%
	kmeans	2%	0%	3%	1%	2%	0%
	kyotocabinet	747%	32% 1684% 34% 747%	32%
	linear_regression	10%	2% 102%	13%	24%	5%
	lu_cb	1%	0%	1%	0%	1%	0%
	lu_ncb	7%	2%	8%	1%	8%	1%
	matrix_multiply	2%	0%	5%	1%	5%	1%
	memcached-new	47%	9%	47%	9%	47%	9%
	memcached-old	204%	25% 204%	25% 204%	25%
	p_raytrace	4%	1%	3%	1%	2%	1%
	pca	8%	2% 1314% 28%	18%	5%
	pca_ll	6%	1% 1020% 29%	37%	8%
	radiosity	19%	4% 406%	24%	20%	5%
	radiosity_ll	16%	3% 4327% 42%	32%	8%
	rocksdb	7%	1%	7%	2%	7%	2%
	s_raytrace	4%	1% 2043% 28%	47%	10%
	s_raytrace_ll	2%	0% 2581% 29%	32%	7%
	sqlite	364%	34% 5444% 78% 364%	34%
	streamcluster	25%	6% 118%	20%	25%	6%
	streamcluster_ll	23%	7% 153%	24%	79%	19%
	string_match	1%	0%	3%	1%	3%	1%
	swaptions	1%	0%	1%	0%	1%	0%
	upscaledb	661%	36% 1027% 37% 661%	36%
	vips	1%	0%	66%	18%	49%	17%
	volrend	15%	4%	39%	6%	15%	4%
	water_nsquared	20%	5%	27%	7%	27%	7%
	water_spatial	207%	26% 296%	30% 296%	30%
	word_count	3%	1%	9%	2%	3%	1%
	x264	3%	1%	2%	1%	2%	1%

Table 75 .

 75 Number of tested applications and number of lock energy efficiency sensitive applications (all machines).

		I-48 I-20
	# tested applications	38	36
	# lock-sensitive applications	20	17
	ratio	53% 47%

Table 76 .

 76 For each (lock-sensitive application, lock) pair, energy-efficiency gain (in %) of opt nodes over max nodes. The background color of a cell indicates the number of nodes for opt nodes: 1 2 3 4 . Dashes correspond to untested cases. (I-48 machine in energy-saving mode).

	ahmcs alock-ls backoff c-bo-mcs_spin c-bo-mcs_stp c-ptl-tkt c-tkt-tkt clh_spin clh_stp clh-ls hmcs hticket-ls malth_spin malth_stp mcs_spin mcs_stp mcs-ls mcs-timepub mutexee partitioned pthread pthreadadapt spinlock spinlock-ls ticket ticket-ls ttas ttas-ls	-221 95 151 105 1k 900 323 86 665 101 226 119 104 113 115 154 107 103 368 83 110 108 102 4k 3k 90 113	441 397 6 400 396 406 378 395 428 461 415 393 399 395 362 271 6 5	68 70 105 60 200 84 73 73 335 67 65 69 87 34 73 345 74 94 65 88 83 75 255 232 88 77 96 102	16 70 46 6 9 58 44 15 5 11 11 6	40 14 26 44 62 -58 ---7 -8 12 484 6 17 52 -91 64 211 140 64 30 23 26	78 50 152 97 96 -69 ---102 -183 185 147 139 213 167 176 -195 187 138 184 166 158 148 129	-------------8 --5 ------	31 40 19 18 94 37 27 46 247 40 28 37 35 30 40 232 39 36 47 54 49 57 367 306 89 76 88 86	9 12 135 9 701 10 10 98 8 744 8 19 30 19 30 59 304 262 55 30 76 71	9 9 43 10 6 11 389 9 7 5 7 366 9 11 20 26 19 17 174 125 27 25 37 38	32 47 473 45 13 41 1k 40 14 50 9 29 2k 37 49 70 104 58 38 728 595 98 99 196 199	15 9 188 7 6 17 1k 20 15 15 23 16 1k 9 9 19 37 21 35 317 301 65 59 100 130	8 14 7 13 13 665 9 11 5 671 178 177 20	----256 ---------381 -6k 75 -63 47 ------	86 121 101 71 474 122 99 96 351 107 82 93 89 50 123 366 121 125 124 162 107 76 552 478 110 125 169 177	1k 573 2k 2k 2k 1k 595 ---793 -2k 2k 2k 2k 1k 2k 2k 427 2k 2k 2k 2k 2k 2k 1k 2k	315 72 330 472 555 234 60 ---126 -302 504 302 495 226 307 353 48 350 299 397 474 367 359 324 319	45 49 50 36 58 50 44 46 84 46 44 42 41 48 54 46 63 51 54 61 68 236 163 55 50 40 61	75 118 581 36 255 163 ---165 -338 91 124 132 114 6		
	Applications	dedup	ferret	kyotocabinet	linear_regression	memcached-new	memcached-old	mysqld	pca	pca_ll	radiosity	radiosity_ll	s_raytrace	s_raytrace_ll	sqlite	ssl_proxy	streamcluster	streamcluster_ll	upscaledb	vips	water_nsquared	water_spatial

Table 77 .

 77 For each (lock-sensitive application, lock) pair, energy-efficiency gain (in %) of opt nodes over max nodes. The background color of a cell indicates the number of nodes for opt nodes:1 2 . Dashes correspond to untested cases. (I-20 machine in energy-saving mode).

	ahmcs alock-ls backoff c-bo-mcs_spin c-bo-mcs_stp c-ptl-tkt c-tkt-tkt clh_spin clh_stp clh-ls hmcs hticket-ls malth_spin malth_stp mcs_spin mcs_stp mcs-ls mcs-timepub mutexee partitioned pthread pthreadadapt spinlock spinlock-ls ticket ticket-ls ttas ttas-ls	-321 49 83 52 170 109 85 29 78 72 54 82 50 48 53 87 49 48 148 46 43 44 44 141 208 48 35	169 167 182 179 174 168 170 177 177 142 170 169 173 174 143	36 33 39 34 39 46 36 164 37 37 37 42 8 35 162 36 34 6 41 20 42 79 67 45 35 43 37	61 64	------	49 1k 1k 14 27 24	154 490 730	18 323 6 284 12 10 16 23 74 27 12 14 11	8 157 7 3k 8 10 4k 27 32 44 68 345 116 58 21 44 32	28 1k 1k	63 2k 2k	----409 --------21 -452 -7k 7 -43 50 ------	82 46 130 46 60 54 64 ---53 -103 113 98 104 95 106 130 58 127 178 124 86 113 132 93 87	25 19 45 13 13 9 ----	19 51 18 25 23 45 35 19 15 17 25 20 21 19 25 26 19 24 23 72 20 17 19 17	11 7 ---5 -	
	Applications	dedup	ferret	kyotocabinet	linear_regression	memcached-old	pca	pca_ll	radiosity	radiosity_ll	s_raytrace	s_raytrace_ll	sqlite	streamcluster	streamcluster_ll	upscaledb	vips	water_spatial

Table 78 .

 78 For each lock, fraction of the lock-sensitive applications for which the lock yields the best energyefficiency for three configurations: one node, max nodes and opt nodes (I-48 machine in energy-saving mode).

		Number of nodes	
	Locks	one node max nodes opt nodes
	ahmcs	56%	17%	50%
	alock-ls	53%	16%	32%
	backoff	68%	21%	37%
	c-bo-mcs_spin	68%	37%	53%
	c-bo-mcs_stp	57%	14%	24%
	c-ptl-tkt	76%	24%	59%
	c-tkt-tkt	79%	21%	53%
	clh_spin	43%	7%	14%
	clh_stp	29%	7%	7%
	clh-ls	43%	0%	21%
	hmcs	74%	37%	58%
	hticket-ls	71%	21%	43%
	malth_spin	53%	11%	16%
	malth_stp	43%	33%	24%
	mcs_spin	58%	11%	37%
	mcs_stp	33%	19%	19%
	mcs-ls	58%	11%	37%
	mcs-timepub	43%	10%	24%
	mutexee	38%	19%	24%
	partitioned	65%	24%	29%
	pthread	38%	24%	24%
	pthreadadapt	43%	19%	29%
	spinlock	42%	16%	21%
	spinlock-ls	53%	16%	32%
	ticket	53%	11%	21%
	ticket-ls	53%	11%	21%
	ttas	53%	21%	26%
	ttas-ls	37%	5%	11%

Table 79 .

 79 For each lock, fraction of the lock-sensitive applications for which the lock yields the best energyefficiency for three configurations: one node, max nodes and opt nodes (I-20 machine in energy-saving mode).

		Number of nodes	
	Locks	one node max nodes opt nodes
	ahmcs	60%	40%	53%
	alock-ls	50%	44%	38%
	backoff	69%	44%	50%
	c-bo-mcs_spin	75%	50%	62%
	c-bo-mcs_stp	53%	18%	24%
	c-ptl-tkt	73%	53%	67%
	c-tkt-tkt	81%	56%	69%
	clh_spin	50%	33%	33%
	clh_stp	33%	8%	8%
	clh-ls	50%	33%	33%
	hmcs	69%	50%	56%
	hticket-ls	83%	58%	75%
	malth_spin	56%	38%	38%
	malth_stp	53%	53%	47%
	mcs_spin	62%	44%	44%
	mcs_stp	53%	18%	18%
	mcs-ls	56%	44%	44%
	mcs-timepub	59%	47%	53%
	mutexee	59%	47%	47%
	partitioned	80%	47%	60%
	pthread	59%	24%	24%
	pthreadadapt	59%	47%	53%
	spinlock	62%	38%	38%
	spinlock-ls	69%	44%	50%
	ticket	69%	31%	38%
	ticket-ls	69%	44%	56%
	ttas	81%	44%	56%
	ttas-ls	56%	31%	31%

Table 80 .

 80 For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive applications for which lock A is more energy-efficient by at least 5% than B (I-48 machine in energy-saving mode).

		ahmcs	alock-ls	backoff	c-bo-mcs_spin	c-bo-mcs_stp	c-ptl-tkt	c-tkt-tkt	clh_spin	clh_stp	clh-ls	hmcs	hticket-ls	malth_spin	malth_stp	mcs_spin	mcs_stp	mcs-ls	mcs-timepub	mutexee	partitioned	pthread	pthreadadapt	spinlock	spinlock-ls	ticket	ticket-ls	ttas	ttas-ls	average
	ahmcs		33 44 17 61 25 28 46 77 38 22 23 61 61 50 72 50 50 67 50 67 61 67 61 67 61 61 61
	alock-ls	28		37 11 42 12 5 57 93 57 11 7 47 47 21 68 21 47 63 41 63 58 63 58 68 47 47 58
	backoff	33 42		26 58 29 16 50 93 50 32 29 63 58 32 68 42 47 47 41 63 58 58 42 63 63 47 68
	c-bo-mcs_spin 28 47 42		53 24 11 64 93 64 21 21 63 63 42 74 42 58 74 41 68 63 63 58 58 58 63 79
	c-bo-mcs_stp 28 37 26 5		6 5 43 86 50 21 7 47 43 37 67 32 43 43 18 48 43 53 47 47 42 53 68
	c-ptl-tkt	19 53 53 18 59		6 79 93 71 12 29 65 71 47 76 41 59 71 47 71 65 65 65 65 65 65 82
	c-tkt-tkt	28 53 47 16 63 18		71 93 71 26 14 74 68 47 79 53 58 74 53 68 63 63 58 68 63 68 84
	clh_spin	15 0 14 7 43 7 0		71 0 0 0 43 43 0 71 0 21 57 21 57 57 64 57 50 36 43 50
	clh_stp	23 7 7 7 0 7 7 7		7 7 7 7 0 7 7 7 7 0 7 0 0 7 7 7 7 7 7
	clh-ls	15 0 14 7 43 7 0 7 71		0 0 36 43 0 71 0 29 57 14 57 57 64 57 57 29 36 36
	hmcs	17 47 53 21 47 18 16 79 93 71		29 63 58 42 68 42 53 68 41 63 63 68 58 68 63 58 79
	hticket-ls	23 57 29 14 57 7 0 57 93 57 7		57 71 29 71 21 43 71 57 71 64 64 64 71 64 64 86
	malth_spin	22 21 11 5 32 0 0 29 93 29 11 0		21 5 58 5 26 37 6 42 37 53 47 53 21 21 53
	malth_stp	28 32 16 11 33 12 11 29 93 29 21 7 16		16 62 16 29 29 12 29 38 53 53 37 21 21 37
	mcs_spin	17 21 37 16 42 6 0 57 93 50 11 14 47 53		53 16 53 68 41 58 63 53 47 63 53 47 58
	mcs_stp	17 21 16 11 5 6 5 29 29 29 16 7 21 14 11		26 24 14 6 5 14 11 5 21 21 5 21
	mcs-ls	17 16 21 11 42 6 0 57 93 57 11 7 47 47 5 53		42 53 35 53 53 53 47 74 47 42 63
	mcs-timepub 22 21 16 11 33 6 5 36 93 36 16 7 32 33 11 52 16		48 24 48 52 53 47 53 42 26 47
	mutexee	33 32 5 21 33 18 11 29 93 29 26 21 42 33 21 67 26 33		12 29 29 47 37 53 32 16 37
	partitioned	19 18 29 6 47 18 0 29 93 29 18 7 41 47 18 76 18 24 59		59 65 65 65 59 35 41 65
	pthread	28 32 16 16 29 18 11 29 93 29 26 14 37 24 21 67 32 33 14 12		19 53 26 42 26 21 32
	pthreadadapt 28 32 11 16 29 18 11 29 86 29 26 14 32 19 21 62 21 29 14 12 19		42 37 47 21 16 32
	spinlock	22 26 11 16 26 12 5 29 71 29 21 14 37 21 16 47 32 26 26 6 16 26		0 21 21 5 21
	spinlock-ls	22 32 21 26 37 12 11 29 79 29 32 21 37 32 21 63 32 26 32 12 32 37 53		26 26 16 26
	ticket	17 21 11 11 37 6 5 21 93 21 16 7 11 16 11 63 11 11 26 0 26 21 47 32		5 5 32
	ticket-ls	22 21 11 5 37 12 0 21 93 21 16 7 16 21 11 63 11 32 26 0 42 37 47 47 42		16 37
	ttas	28 32 16 21 42 18 11 29 93 29 26 21 37 32 26 74 37 42 32 12 37 47 58 42 53 26		37
	ttas-ls	28 21 16 11 32 12 11 29 86 29 16 7 26 26 16 58 32 21 32 12 37 47 47 37 53 26 0	
	average	23 29 23 13 39 12 7 40 86 38 17 13 41 39 22 63 25 36 45 23 45 46 53 45 51 38 34 50

Table 81 .

 81 For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock B: percentage of lock-sensitive applications for which lock A is more energy-efficient by at least 5% than B (I-20 machine in energy-saving mode).

	Score
	75%
	50%
	25%
	0%
	e x e e p a r t i t i o n e d p t h r e a d p t h r e a d a d a p t s p i n l o c k s p i n l o c k -l s t i c k e t t i c k e t -l s t t a s t t a s -l s

Table 82 .

 82 For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of locksensitive applications for which lock A is more energy-efficient by at least 5% than B (I-48 machine in energy-saving mode).[START_REF] Nuzzo | Scientific method: Statistical errors[END_REF] 38 22 69 77 69 11 38 61 44 67 78 67 61 67 69 67 67 78 78 72 67 67 67 alock-ls 44 32 32 74 24 26 57 86 57 32 14 58 47 26 74 21 53 74 65 74 74 74 74 74 68 63 68 backoff 33 42 26 79 24 21 57 93 57 26 21 58 47 37 74 37 42 74 71 63 68 74 68 89 79 53 74 c-bo-mcs_spin 50 47 58 68 47 32 71 93 79 32 50 68 63 42 74 47 63 68 65 74 74 74 74 74 74 53 79 c-bo-mcs_stp 28 26 11 16 18 16 29 93 29 21 14 21 24 16 76 21 19 14 18 19 14 63 74 37 32 16 37 c-ptl-tkt 31 47 35 29 71 6 79 86 79 6 21 59 53 41 71 35 65 71 59 71 71 71 71 76 76 71 82 c-tkt-tkt 44 58 53 26 74 53 86 93 93 26 29 74 53 58 74 58 68 68 59 74 74 74 74 74 74 68 79 clh_spin 31 0 21 7 71 7 7 71 14 7 14 43 36 7 71 7 43 57 57 71 57 71 71 79 64 57 71 clh_stp 23 14 7 7 0 14 7 14 14 7 7 7 0 7 7 7 7 0 7 0 0 7 7 14 14 7 7 clh-ls 23 0 21 0 71 7 0 0 71 7 14 43 29 0 71 7 36 64 71 64 57 71 71 64 57 57 64 hmcs 44 63 63 37 63 65 32 86 93 93 57 68 53 68 74 68 68 63 65 74 68 74 74 74 74 68 84 hticket-ls 31 64 36 0 71 36 7 71 93 79 0 57 50 43 71 50 50 71 71 71 71 71 71 79 79 71 93 malth_spin 22 26 11 16 53 6 11 43 93 50 11 7 26 16 68 21 42 47 53 58 58 58 68 74 58 47 74 malth_stp 33 47 26 26 62 35 26 57 93 57 26 29 32 32 62 37 48 38 59 43 43 63 63 63 53 53 68 mcs_spin 28 26 26 21 74 18 21 64 93 50 21 21 53 42 68 32 53 68 71 68 68 68 68 74 63 42 68 mcs_stp 22 26 5 16 10 18 16 29 29 29 16 14 16 14 11 21 24 5 18 5 5 5 5 21 21 5 21 mcs-ls 22 21 26 26 68 18 16 57 93 50 16 29 53 37 21 68 42 58 59 68 63 68 63 63 58 53 74 mcs-timepub 28 26 21 21 67 18 16 43 93 43 16 21 42 29 11 62 26 57 59 57 62 68 68 63 63 37 58 mutexee 33 26 5 21 67 18 16 29 93 29 26 21 26 33 16 76 21 29 24 29 14 63 68 63 53 42 58 partitioned 31 24 18 18 71 29 24 21 93 21 29 7 29 29 12 71 18 24 47 47 47 71 71 65 53 53 76 pthread 28 26 21 16 57 18 16 29 93 29 21 14 32 29 16 76 21 24 14 24 19 79 79 58 37 37 47 pthreadadapt 33 26 11 16 62 18 16 29 93 29 21 14 32 19 16 76 21 24 29 35 33 74 74 58 58 37 53 spinlock 22 26 0 21 21 18 16 29 93 29 21 14 26 21 16 74 21 16 5 18 5 5 11 32 32 0 16 spinlock-ls 22 26 5 21 21 18 16 29 93 29 21 21 26 26 21 74 21 16 5 18 5 5 53 26 21 0 16 ticket 22 11 0 5 47 12 11 14 86 21 21 7 11 16 0 58 16 5 16 12 26 26 58 58 0 11 47 ticket-ls 28 26 0 16 58 12 16 21 86 29 21 7 16 16 16 63 26 21 21 29 26 26 58 58 74 42 58 ttas 33 26 11 21 74 18 21 29 93 29 26 21 37 26 16 74 26 32 37 29 32 42 74 74 53 37 32 ttas-ls 28 16 11 11 63 18 16 29 93 29 16 7 26 21 11 68 21 11 32 18 32 37 68 68 37 32 0 average 30 30 22 19 59 23 17 43 87 45 19 20 40 33 24 69 29 36 43 44 47 45 64 63 60 52 41 58

	ahmcs	alock-ls	backoff	c-bo-mcs_spin	c-bo-mcs_stp	c-ptl-tkt	c-tkt-tkt	clh_spin	clh_stp	clh-ls	hmcs	hticket-ls	malth_spin	malth_stp	mcs_spin	mcs_stp	mcs-ls	mcs-timepub	mutexee	partitioned	pthread	pthreadadapt	spinlock	spinlock-ls	ticket	ticket-ls	ttas	ttas-ls	average
	ahmcs	50 56 39																									

Table 83 .

 83 For each pair of locks (rowA, colB) at max nodes, scores of lock A vs lock B: percentage of locksensitive applications for which lock A is more energy-efficient by at least 5% than B (I-20 machine in energy-saving mode).[START_REF] Mckenney | Pattern Languages of Program Design 2[END_REF] 7 13 27 82 27 20 0 27 27 27 80 33 33 53 29 53 53 60 33 33 27 20 40 alock-ls 27 38 25 75 20 12 25 83 33 25 0 31 25 12 75 12 25 50 27 56 50 56 38 31 19 31 44 backoff 33 38 25 69 20 25 50 92 42 25 17 31 12 31 69 31 19 44 40 50 50 56 38 56 44 25 38 c-bo-mcs_spin 27 38 50 75 20 12 58 92 50 12 17 31 38 38 75 31 31 50 27 62 50 56 50 50 38 38 56 c-bo-mcs_stp 27 25 19 19 20 12 25 92 25 19 8 31 12 25 71 31 24 12 20 12 12 31 25 25 31 19 31 c-ptl-tkt 14 33 47 0 60 13 50 92 58 0 0 47 33 20 73 27 33 53 27 60 47 53 47 47 40 47 60 c-tkt-tkt 27 25 44 12 75 27 50 92 33 19 0 38 38 19 75 25 31 56 33 69 50 56 56 56 31 31 50 8 0 75 0 8 42 25 42 42 50 33 17 8 17 25 hmcs 27 31 44 6 75 13 19 50 92 50 0 44 38 25 75 25 31 50 27 62 50 50 50 50 44 38 56 hticket-ls 18 50 42 8 75 8 8 50 92 50 8 50 25 8 75 25 33 50 42 50 42 50 33 50 33 33 58 malth_spin 20 19 25 6 62 13 6 33 92 25 19 0 6 6 62 6 6 56 27 44 50 56 25 38 31 12 38 malth_stp 40 38 31 31 71 33 25 50 92 50 31 25 31 25 65 31 29 41 40 47 53 56 31 56 50 31 44 mcs_spin 13 31 44 12 62 13 6 33 92 42 19 0 44 31 62 6 38 56 40 56 50 56 31 38 38 19 44 mcs_stp 20 25 19 19 6 20 12 25 25 25 19 8 25 6 12 19 12 18 20 18 12 19 6 31 31 6 19 mcs-ls 13 25 38 6 62 13 6 33 92 42 19 0 31 38 0 62 19 56 33 56 50 56 31 38 25 19 44 mcs-timepub 27 31 38 19 59 20 12 42 92 33 25 8 38 24 12 59 19 53 40 53 47 62 31 44 38 25 38 mutexee 20 25 6 19 71 20 19 25 92 25 19 17 19 12 19 65 19 18 20 29 41 38 25 25 19 6 25 partitioned 21 13 33 33 73 27 13 17 92 17 20 0 20 20 13 73 20 13 40 53 47 53 47 33 20 20 47 pthread 20 25 6 19 65 20 19 25 92 25 19 17 19 6 19 65 19 18 12 20 29 50 19 31 31 6 19 pthreadadapt 20 25 6 19 65 20 19 25 92 25 19 17 19 6 19 71 19 18 12 20 18 31 19 19 19 6 19 spinlock 20 25 6 19 50 20 19 25 92 25 19 17 19 12 19 69 19 6 31 20 25 25 0 19 19 0 12 spinlock-ls 20 25 25 19 62 20 19 25 92 25 25 17 31 25 31 81 31 19 38 20 44 31 56 31 31 0 12 ticket 7 19 19 12 56 13 6 17 92 17 19 0 12 6 0 62 6 12 44 13 38 44 50 31 6 0 19 ticket-ls 20 25 19 12 62 13 12 42 92 33 19 8 12 12 6 62 6 12 50 40 50 50 44 38 38 25 38 ttas 20 25 31 19 62 20 19 25 92 25 25 17 31 25 31 81 31 25 44 27 56 50 56 25 44 31 25 ttas-ls 20 19 25 12 56 13 12 25 92 25 19 8 31 19 25 75 25 12 50 20 50 44 56 25 38 25 12 average 21 26 28 15 61 16 13 32 87 31 17 8 28 19 17 69 19 20 41 27 44 41 49 31 36 28 19 35

		ahmcs	alock-ls	backoff	c-bo-mcs_spin	c-bo-mcs_stp	c-ptl-tkt	c-tkt-tkt	clh_spin	clh_stp	clh-ls	hmcs	hticket-ls	malth_spin	malth_stp	mcs_spin	mcs_stp	mcs-ls	mcs-timepub	mutexee	partitioned	pthread	pthreadadapt	spinlock	spinlock-ls	ticket	ticket-ls	ttas	ttas-ls	average
	ahmcs 27 40 7 clh_spin 9 8 25 0 75 0 0		75 0 0 0 17 8 0 75 0 8 42 17 42 42 50 33 17 8 17 25
	clh_stp	18 17 8 8 0 8 8 17		17 8 8 8 0 8 17 8 8 0 8 0 0 8 8 8 8 8 8
	clh-ls	9 8 33 8 67 0 0 0 75		0 0 17															

Table 88 .

 88 For each lock-sensitive application, percentage of pairwise changes in the lock energy-efficiency hierarchy when changing the number of nodes (I-48 machine in energy-saving mode).

		% of pairwise changes between configurations
	Applications	1/2	2/3	3/4	1/2/3/4
	dedup	7%	21%	19%	41%
	ferret	19%	66%	8%	84%
	kyotocabinet	16%	5%	5%	22%
	linear_regression	26%	24%	38%	72%
	memcached-new	59%	29%	0%	70%
	memcached-old	14%	14%	0%	23%
	mysqld	5%	0%	0%	5%
	pca	49%	13%	13%	62%
	pca_ll	47%	31%	15%	85%
	radiosity	24%	14%	10%	43%
	radiosity_ll	25%	7%	10%	33%
	s_raytrace	69%	19%	12%	95%
	s_raytrace_ll	84%	17%	10%	97%
	sqlite	19%	33%	19%	57%
	ssl_proxy	15%	6%	6%	21%
	streamcluster	22%	22%	28%	48%
	streamcluster_ll	20%	21%	25%	42%
	upscaledb	12%	7%	3%	17%
	vips	0%	0%	78%	78%
	water_nsquared	0%	0%	0%	0%
	water_spatial	3%	4%	8%	12%

Table 89 .

 89 For each lock-sensitive application, percentage of pairwise changes in the lock energy-efficiency hierarchy when changing the number of nodes (I-20 machine in energy-saving mode).

		% of pairwise changes between configurations
	Applications	1/2
	dedup	29%
	ferret	17%
	kyotocabinet	15%
	linear_regression	17%
	memcached-old	0%
	pca	55%
	pca_ll	32%
	radiosity	63%
	radiosity_ll	69%
	s_raytrace	22%
	s_raytrace_ll	21%
	sqlite	62%
	streamcluster	50%
	streamcluster_ll	39%
	upscaledb	17%
	vips	70%
	water_spatial	0%

 Fig. 29. For each server application, the bars represent the normalized 99th tail latency (w.r.t. Pthread) and the dots the execution time (lower is better) normalized (w.r.t. Pthread) of each lock algorithm (A-64 at max nodes).

			kyotocabinet		memcached-new
		200% 200%		200% 200%
		150%		150%
		150%		150%
		100%		100%
		50% 100%		50% 100%
		0%		0%
		50%		50%	c k -ls tt a s
					lo
		0%	-old	0%	mysqld
		200%		200%
		150%		150%
	Normalized 99th latency w.r.t. pthread Normalized 99th latency w.r.t. pthread	0% 50% 100% 100% 150% 200% 0% 50% 100% 150% 200%		0% 50% 100% 100% 150% 200% 0% 50% 100% 150% 200%
		50%		50%
		0%		0%
		200%		
		150%		
		200%		
		100% 150%		q q	Execution time Execution time
				Legend Legend
		100% 50%			Tail latency Tail latency
		50%		
		0% 0%		

LiTL: Library for Transparent Lock interposition.

POLY stands for "Pareto optimality in locks for energy efficiency".

Releasing the lock and blocking is atomic, to avoid loosing a signal and being blocked indefinitely.

MCS-TimePub is mostly known as MCS-TP. Still, we use MC-TimePub to avoid confusion with MCS_STP.

The original AHMCS paper[START_REF] Chabbi | Contention-conscious, locality-preserving locks[END_REF] presents multiple versions of AHMCS. In this article, the version without hardware transactional memory of AHMCS is considered.

Malth_Spin and Malth_STP correspond to MCSCR-S and MCSCR-STP respectively in the terminology of Dave Dice[START_REF] Dice | Malthusian Locks[END_REF]; still we do not use the latter names to avoid confusion with other MCS locks.

The MFENCE instruction can also be used and is known to yield lower energy consumption than the PAUSE instruction on certain Intel processors[START_REF] Falsafi | Unlocking Energy[END_REF].

In the remainder of this paper, we use blocking and (immediate) parking interchangeably.

Some locks use timeouts to bound the time spent in the blocked state in order to improve responsiveness.

We excluded the Cholesky application because of extremely short completion times.

Memcached 1.4.15 uses a global lock to synchronize all accesses to a shared hash table. This lock is known to be the main bottleneck. Newer versions use per-bucket locks, thus suffer less from contention.

https://sourceforge.net/projects/osdldbt/

For the Memcached-* experiments where some nodes are dedicated to network injection, memory is interleaved only on the nodes dedicated to the server.

In fact, different standard libraries[START_REF] Felker | musl libc[END_REF][START_REF]The GNU C Library[END_REF] and even different versions of the same library have significantly different implementations.

[START_REF] Calciu | NUMA-aware readerwriter locks[END_REF] out of 40 of our studied application uses this operation, in most cases to implement barriers.

This is a restriction of the Linux futex syscall.

LiTL comes with a switch to turn off the condition variable algorithm at compile time. However, in order to make fair comparisons, we always use LiTL with the condition variable algorithm turned on for all the studied applications.

The design of the Partitioned (and by extension C-PTL-TKT) lock does not allow implementing a perfect trylock, i.e., a trylock that never blocks. As a consequence, if two threads try to acquire the lock simultaneously, one of them might block for a short time.

The key and value are both pointers -8 bytes -, to the original pthread lock instance and to the LiTL lock instance (plus per-thread structs) respectively.

POLY stands for "Pareto optimality in locks for energy efficiency".

MySQL is highly multi-threaded (hundreds of threads), and, as a consequence, MCS-TimePub is the only spinning lock algorithm that we study because it has a preemption tolerance mechanism. With other spinning algorithms the application throughput drops close to zero.

Running MySQL or SQLite with a single thread totally changes the workload, thus numbers cannot be compared with other configurations with more threads.

There is a function named pthread_spin_lock that allows spining on a lock instance, but this function only accepts a pthread_spinlock_t lock, not a pthread_mutex_t lock. Thus, there is no way to either spin or block on the same lock instance.

R. Guerraoui et al.

Radiosity_ll, the long lived version of radiosity, also suffers from lock contention. Contrary to the short lived version, radiosity_ll puts more pressure on the locks[START_REF] David | Continuously measuring critical section pressure with the free-lunch profiler[END_REF] . Volrend suffers from lock contention on the lock instances protecting different distributed task queues, as well as on a lock instance used to implement a barrier that separates the computation steps. These task queue locks (as well as the barrier lock) suffer from extreme levels of contention, especially the barrier lock that suffers from spikes of contention when all the threads wait for the barrier at the same time. MySQL suffers from lock contention on a lock that protects the page cache, a data structure that serves as an in-memory cache for the SQL table data stored on disk. This lock is heavily stressed: we observe on average 50 threads (on a 64-core machine) competing for the same lock instance, resulting in 40% of the thread lifetimes spent waiting to acquire this lock. The SSL Proxy application implements a reverse SSL proxy using OpenSSL via the Boost ASIO library. This application is subject to a huge performance collapse: the optimized number of nodes is one. In this application, the main bottleneck is a lock protecting the error queue of OpenSSL, which suffers from extreme levels of contention (on average 85% of the threads wait on the same lock). Similarly to Zemek[START_REF] Zemek | Asio, SSL, and scalability[END_REF], we found that the problem comes from an inefficient usage of the OpenSSL library by the Boost ASIO library. Indeed, the original lock that the OpenSSL library requests is a reader-writer lock; still Boost ignores it and uses a classic mutex lock, lowering the potential degree of parallelism. Kyoto Cabinet is a straightforward implementation of a database. As explained by Afek et al.[START_REF] Afek | Amalgamated Lock-Elision[END_REF], the most contended[START_REF] David | Continuously measuring critical section pressure with the free-lunch profiler[END_REF] The short-lived version is launched with a BF[START_REF] Hanrahan | A rapid hierarchical radiosity algorithm[END_REF] refinement epsilon of (1.5𝑒 -3) and the long-lived version is launched with a BF refinement epsilon of (1.5𝑒 -5). With a lower epsilon, computations are refined more frequently, creating more tasks.

The trylock algorithms for HMCS and cohort algorithms acquire the per-socket lock instance, and if successful, try to acquire the global lock instance. The Partitioned lock first checks non-atomically if there is another thread waiting for the lock, then does a classic (blocking) mutex lock acquisition. The MCS-TimePub trylock runs an adaptive algorithm that is long, thus lowering the number of concurrent atomic instructions.

With the exception of AHMCS, where the trylock can be directly made on the top MCS lock.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, the associate editor and the editor-in-chief, Todd C. Mowry, for their insightful comments on earlier drafts of this paper. We are also grateful to Tim Harris for his feedback on an earlier version of this work. Dave Dice provided detailed answers for our questions on Malthusian locks. Baptiste Lepers provided valuable insights for some of the case studies. Pierre Neyron provided his help to set up experiments on the I-48 machine and Fabien Salvi on the I-20 machine. Elise Arnaud provided feedback on the statistical tests. Finally, this work has been partially supported by: LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01), the EmSoc "Replicanos" and AGIR "CAEC" projects of Université Grenoble-Alpes and GrenobleINP, the FSN OCCIware project, the "Studio virtuel" project funded by BPI and FEDER grant agreement number 16.010402.01, the "RainbowFS" project of Agence Nationale de la Recherche, number ANR-16-CE25-0013-01, and the European ERC GRANT 339539 -AOC. Some of the experiments presented in this paper were carried out using the Digitalis platform (http://digitalis.imag) of the Grid'5000 testbed. Grid'5000 is supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr). Access to the experimental machine(s) used in this paper was gracefully granted by research teams from LIG (http://www.liglab.fr) and Inria (http://www.inria.fr). The A-48 machine was funded by a Grenoble

A.5 Are all locks potentially harmful? B.7 Impact of the machine. D STUDY OF LOCK TAIL LATENCY exe=303% exe=290% 0.17ms q 1.59ms q 180.81ms q q q q q q q 1.86ms q 3.94ms q 208.8ms q q q q q q q 956.93ms q upscaledb sqlite ssl_proxy memcached-old mysqld kyotocabinet memcached-new 0.0081ms q 1.9944ms q 0.0232ms q 10.8662ms q 560.639ms q upscaledb memcached-old ssl_proxy kyotocabinet memcached-new