N

N

Concurrent-WIP: an illustrative example with
application to WIP absorption

Pierre Lemaire

» To cite this version:

Pierre Lemaire. Concurrent-WIP: an illustrative example with application to WIP absorption. 2019.
hal-02084050v2

HAL Id: hal-02084050
https://hal.science/hal-02084050v2

Preprint submitted on 29 Mar 2019 (v2), last revised 1 Apr 2019 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02084050v2
https://hal.archives-ouvertes.fr

Concurrent-WIP: an illustrative example with
application to WIP absorption

Pierre Lemaire*

2019-03-29

Introduction

The Concurrent WIP (CWIP) is a way to monitor locally a production system so as to characterize how this
system behaves in the current real conditions. No assumptions are made on the production system itself and
in particular it is not assumed to be well known or well described; instead, the system is looked at through
the jobs it processed. For more details and precise definitions, the reader is referred to [1, 2, 3]. This technical
report merely provides an illustrative usage.

Consider a production step where jobs arrive and then are processed by a set of process units. Our purpose
is to qualify and quantify how production is done at this production step. No assumptions are made on the
production systems itself: it can be quite simple or a mixture of many elements (dedicated machines, set-up
times, down-times, batching, high mix of products, strange arrival patterns...); indeed, we do not assume
any knowledge on the production system itself. We only assume to have access to historical data about the
jobs that have been recently processed. More precisely, for a given recent period of time, we know all jobs
that have been processed at this step and, for each of them, we know:

e its arrival time;

o its start time (time when its actual process begun);

o its completion time (time when it leaves this step);

o its workload (the expected amount of time needed to process it).

From this information, we can deduce, for each job:

o its concurrent WIP (CWIP), that is the total amount of workload that has been processed while it was
waiting;

o its effective waiting time (EWT);

o the effective capacity it witnessed (named Witnessed Capacity (C") hereafter), that is: CV =
CWIP/EWT.

In what follows, we provide some examples on how CWIP and C" are measured, and how they can be used
to infer the WIP absorption of a system.

Note that no technical or implementation details will be provided in the present document. If your interested
by such details or if you just want to play with CWIP yourself, all the sources are available together with
this document: the sources of this document (R-Markdown), the dedicated script written to generate data
and results (cwip.R, in R), and the dedicated program to compute schedules and CWIP (scheduler.py, in
Python3, only run through the R commands that call it). In what follow, we nevertheless provide the R
commands required to create all the results in this document, to ensure a clear and simple reproducibility.
And first of all, we load the necessary stuff:

source("cwip.R") ## load all necessary tools and functions

*Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France.

Simulated systems

Several production systems have been simulated, presenting various aspects. For each case, one sample of
data has been generated and scheduled, and the result is taken as the real historical data used as reference,
on which CWIP is computed.

For each case proposed below, we display a graph of WIP versus time. In all cases: WIP is counted in units
of workload; time ends when the last job starts being processed.

Case 1 : J1-M2a

A very simple case of 1000 jobs; the arrivals follow a Poisson process with rate 6 (every 10 minutes in average);
the durations are i.i.d and follow an exponential distribution with rate 2/3 (average process time of 40
minutes). They are scheduled on two identical machines with FIFO policy.

make.jobs("TR/J1.dat", 1) ## creates jobs J1
make.machines ("TR/M2a.dat", 1) ## creates machines M2a

schedule("TR/J1-M2a.sch", "TR/J1.dat", "TR/M2a.dat") ## schedule jobs on machines and compute CWIP
measures ("TR/J1-M2a_kpi.Rdata", "TR/J1-M2a.sch") ## computes useful measures on the schedule

The resulting WIP is:
graph.wip_vs_time (NULL," (J1-M2a)","TR/J1-M2a.sch")

WIP vs Time (J1-M2a)

o
O_
(90
~ N
©
c O
O O
~~
S
o
R
2 g
= 8 -
—
o _|
Lo
o_

I I I I I I I
0 50 100 150 200 250 300

Time (hours)

Case 2 : J2-M2a, J2-M2b, J2-M3

A more complex case of 1000 jobs of two types. Type 1 represents one third of the jobs; they have a high
priority, arrive exactly every hour, and their processing time is exactly one hour. Type 2 represents two third
of the jobs; they have a low priority, their arrivals follow a Poisson process with rate 3 (every 20 minutes in

average); the durations are i.i.d, following an exponential distribution with rate 2/3 (average process time of
40 minutes). They are scheduled:

e (J2-M2a) on two identical machines with FIFO policy (ignore priorities);

o (J2-M2b) on two machines with different speeds and a priority-based policy;

o (J2-M3) on three machines with different speeds and batch capacities, job-machine incompatibility and
a priority-based policy.

make.jobs("TR/J2.dat", 2) ## creates jobs J2

make.machines("TR/M2a.dat", 1) ## creates machines M2a
make .machines ("TR/M2b.dat", 2) ## creates machines M2b
make.machines("TR/M3.dat", 3) ## creates machines M3

schedule("TR/J2-M2a.sch", "TR/J2.dat", "TR/M2a.dat") ## computations for J2-M2a
measures ("TR/J2-M2a_kpi.Rdata", "TR/J2-M2a.sch")

schedule("TR/J2-M2b.sch", "TR/J2.dat", "TR/M2b.dat") ## computations for J2-M2b
measures ("TR/J2-M2b_kpi.Rdata", "TR/J2-M2b.sch")

schedule("TR/J2-M3.sch", "TR/J2.dat", "TR/M3.dat") ## computations for J2-M3
measures ("TR/J2-M3_kpi.Rdata", "TR/J2-M3.sch")

The resulting WIP is:

layout(mat = matrix(1:3,nrow=1)) ; par(mar=c(4,4,3,1))
graph.wip_vs_time (NULL," (J2-M2a)","TR/J2-M2a.sch")
graph.wip_vs_time (NULL," (J2-M2b)","TR/J2-M2b.sch")
graph.wip_vs_time (NULL," (J2-M3)", "TR/J2-M3.sch")

WIP vs Time (J2-M2a) WIP vs Time (J2-M2b) WIP vs Time (J2-M3)
o _| o0
Yol
o
3 4
N
o
< < -
o
S 4
N
=) T o _| =)
I+ T ™ 5
S o o o
¥ 8 3 ¥ ©
o o o
= = =
a a o
: 2 g - =
O —
—
o —
8 2
—
o - o 4
1 1 1T 1 1T 1T T T T 1 1T 1T T T T 1
0 100 200 300 400 0 50 150 250 0 50 150 250
Time (hours) Time (hours) Time (hours)

Case 3 : J3-M4a, J3-M4b

A case of 1000 jobs of three types. Each type represents, in average, one third of the jobs. Priorities and
duration follow different type-based patterns (see the script for details). Arrivals follow a Poisson process.
They are scheduled:

o (J3-M4a) on four machines with no batch capability and a FIFO policy;
o (J3-M4b) on a single machine with batch capacity (up to 4 jobs of the same type) and a FIFO policy.

make. jobs("TR/J3.dat", 4) ## creates jobs J3
make.machines("TR/M4a.dat", 4) ## creates machines M4a
make.machines("TR/M4b.dat", 5) ## creates machines M4b

schedule("TR/J3-M4a.sch", "TR/J3.dat", "TR/M4a.dat") ## computations for J3-M4a
measures ("TR/J3-M4a_kpi.Rdata", "TR/J3-M4a.sch")
schedule("TR/J3-M4b.sch", "TR/J3.dat", "TR/M4b.dat") ## computations for J3-M4b
measures ("TR/J3-M4b_kpi.Rdata", "TR/J3-M4b.sch")

The resulting WIP is:

layout(mat = matrix(1:2,nrow=1)) ; par(mar=c(4,4,3,1))
graph.wip_vs_time (NULL," (J3-M4a)","TR/J3-M4a.sch")
graph.wip_vs_time (NULL," (J3-M4b)","TR/J3-M4b.sch")

WIP vs Time (J3-M4a) WIP vs Time (J3—-M4b)
Lo p—
o _|
=)
<t —
o _|
~ — o™
3 3
S ™ - S
= =
B $ 8
a N a
= =
o _
—
H p—
o ©
| | | | | | | | | | |
0 20 40 60 80 0O 20 40 60 80 100
Time (hours) Time (hours)

Witnessed Capacities

For each case presented in the previous section, we computed Witness Capacities (C"') and the resulting
mean capacity CW (mean of W weighted by EWT). The results are presented in four graphs:

WIP vs time. (This is the graph presented in the previous section.)

C" vs CWIP. Each gray dot corresponds to a job. Then CW is represented as function of CWIP. The
orange line corresponds to CW (WIP-independent). The blue curve is the mean LOESS regression (on
all points); it corresponds to the average or expected C" for a given level of WIP. The red curve is the
95th percentile LOESS regression; it corresponds to an optimistic C" for a given level of WIP. The
green curve is the 5th percentile LOESS regression; it corresponds to a pessimistic C" for a given level
of WIP.

Histogram of C". The histogram of C"' (the orange curve corresponds to the estimated density). The
red vertical line corresponds to CW.

Clearing of WIP. “Clearing curves” are deduced from WIP-dependent C"'. A clearing curve corresponds
to the way a given amount of WIP is processed, assuming that, at each instant, the effective capacity
of the system is the C" for the current level of WIP. Each curve corresponds to a different estimation
of the C" (the orange, blue, red and green curves of C"' vs CWIP graph). Vertical lines and figures at
the end of each line correspond to the “time-to-clear”, that is the amount of time required to process
the initial amount of WIP, for each scenario.

The corresponding graphs, for each case, are detailed and commented below.

Case 1 : J1-M2a

names and files:

name <- "J1-M2a"

tag <- sprintf(" (%s)", name)

schfile <- sprintf("TR/%s.sch", name)

kpifile <- sprintf("TR/%s_kpi.Rdata", name)
clearfile <- sprintf("TR/s_clear.Rdata", name)

compute clearing:
clearing(clearfile, schfile, kpifile=kpifile)

draw graphs:

layout (matrix(1:4,byrow=T,nrow=2)) ; par(mar=c(4,4,3,1))
graph.wip_vs_time (NULL,tag,schfile)

graph.wc_vs_cwip (NULL,tag,schfile,kpifile=kpifile)
graph.hist_wc (NULL,tag,schfile,kpifile=kpifile)

graph.clearing_wip(NULL,tag,schfile,kpifile=kpifile,clearfile=clearfile)

WIP (workload)

Density

WIP vs Time (J1-M2a) Witnessed Capacity (J1-M2a)

> o
_ 5 o
Q Ty
Q7 g ; 7
| gl —
2 5
= e w ¢
N s +
™ | | | | | | = | | | | | | |
0 50 100 200 300 0 50 100 200 300
Time (hours) CWIP (workload)
Witnessed capacities (J1-M2a) - Clearing of WIP (J1-M2a)
e]
o 8 —
s Tooos £ 2] o
C"=206 5 wv hate P
= N o v
0 i 5 < Lo
— — [
o 2 g | T a
o D SO
N 1 N S L
S — 4 o - Y
S | | | | S | | | 14RO
5 10 15 20 0 50 100 150
Witnessed Capacity Time (hours)

(Top-Left) As jobs arrive more rapidly than they are processed, the WIP increases until jobs stop
arriving, then decreases. As arrivals and durations are quite regular, the increase and the decrease are
regular, each at its own pace.

(Top-Right) Because of this regularity and the FIFO policy, all jobs basically witness the same situation:
they saw two machines always busy processing jobs, which corresponds to a system with capacity 2
(workload per hour). Large CWIPs correspond to the last job arrived, that had to wait for all their
predecessors to be processed. The only irregularities come from the stochastic durations: a job is
expected to last 40 minutes (its workload); if its processing happens to be over in 30 minutes, that is
seen as if a machine run at a capacity of 4/3 (>1, better than expected).

(Bottom-Left) The distribution of the Witnessed Capacities is, without surprise, tightly centered around
2. At any time during, the system performs at full capacity.

(Bottom-Right) This translates into clearing curves that essentially overlap all the way; worst and best
cases are similar. In all cases it takes about 145-165 hours to process a WIP of 300 hours-of-process,
corresponding to an effective capacity ranging from 1.8 to 2.1.

Note that CWIP is not needed to infer such a behavior on this very simple case; all the conclusions could
have been guessed from the start. The CWIP nevertheless allows to disclose these conclusions, and we hope
that this first example will help to understand the following ones.

Case 2 : J2-M2a, J2-M2b, J2-M3

for(name in c("J2-M2a", "J2-M2b", "J2-M3")){

names and files:
tag <- sprintf(" (%s)", name)
schfile <- sprintf("TR/%s.sch", name)

(-

WIP (workload)

Density

kpifile <- sprintf ("TR/%s_kpi.Rdata", name)
clearfile <- sprintf("TR/Ys_clear.Rdata", name)

compute clearing:
clearing(clearfile, schfile, kpifile=kpifile)

draw graphs:

layout (matrix(1:4,byrow=T,nrow=2)) ; par(mar=c(4,4,3,1))
graph.wip_vs_time (NULL,tag,schfile)

graph.wc_vs_cwip (NULL,tag,schfile,kpifile=kpifile)

graph.hist_wc (NULL,tag,schfile,kpifile=kpifile)

graph.clearing wip(NULL,tag,schfile,kpifile=kpifile,clearfile=clearfile)

WIP vs Time (J2-M2a) Witnessed Capacity (J2—-M2a)
2
_ ©
o S .
o 3]
. O |
g g -
— (%) —
1 (O]
E o
° I I I I = o ™4 I I I I I
0 100 200 300 400 0 50 100 150 200 250
Time (hours) CWIP (workload)
Witnessed capacities (J2—-M2a) - Clearing of WIP (J2-M2a)
©
o -_- : —
i W ~ 7 S !
o —cl'=182 B g] ~o I
= N S e
N — ~ | |
o o S -
i o 8 e o
’7 3 = RS N
O. — e | __|I——- f o - \\ \\I \:
e ' ' ' = ' ' ' 14758260
0.5 1.0 15 2.0 0 50 100 150
Witnessed Capacity Time (hours)

WIP (workload)

Density

WIP (workload)

Density

40

20

0.8

0.4

0.0

1 2 3 45

0.15 0.30

0.00

WIP vs Time (J2-M2b)

I I I I I I I
0 50 100 200 300

Time (hours)

Witnessed capacities (J2—M2b)
ik

i

— '__| |_—'|——l N
[I

cV=276

1 2 3 4 5

Witnessed Capacity
WIP vs Time (J2-M3)

I I I I I I I
0 50 100 200 300

Time (hours)

Witnessed capacities (J2-M3)

— cV=3.69

5 10 15 20

Witnessed Capacity

Witnessed Capacity

WIP (hours of workload)

Witnessed Capacity

WIP (hours of workload)

1 2 3 45

20 40

0

20

10

1.0 2.0

0.0

Witnessed Capacity (J2—-M2b)

CWIP (workload)

Clearing of WIP (J2-M2b)

N

N\ N
|
\i N

! ! ! 16.6421.22 !
O 5 10 15 20 25

Time (hours)
Witnessed Capacity (J2-M3)

CWIP (workload)

Clearing of WIP (J2-M3)

Yooy
\
\

\; N
! 0.29" 0.57 ! ! !
00 02 04 06 08 10 1.2

N
N
N

Time (hours)

In comparison to the previous case, there is a new characteristic: C" now presents a wide distribution (see

histograms of J2-M2b, J2-M3). A consequence is that the system are less predictable. For J2-M2b, CW
averages to 2.7, but it is frequently above 3 or below 2; as a consequence the time-to-clear can vary from
single to double. Subcase J2-M3 is even more extreme.

This has practical consequences. In a steady system (J1-M2a, J2-M2a) one knows in advance precisely what
is going to happen; a drawback is that, if the performance is not up to one’s expectations, one must change
the system (add a machine, change policy, control arrivals...). In the other cases (J2-M2b, J2-M3), one does
not know precisely what is going to happen; that implies that, in practice, such a system should be carefully
supervised if a particular performance is required — or one must rely on one’s good luck.

Another characteristic is that, in all three cases, there is a “capacity loss” (the system did not at perform at
the best expected performance). For case J2-M2a, there are two machines so one could count on a capacity of
2, but only 1.82 is achieved on average. For case J2-M2b, there are one machine with speed 1, one machine
with speed 2 (twice faster), so one could count on a capacity of 3, but only 2.76 is achieved on average. For
case J2-M3, there are one machine with speed 2 and batch-capacity of 1, one machine with speed 1 and
batch-capacity of 2 and one machine with speed 1 and batch-capacity of 3, resulting on a capacity of up to 7
(on a very good day), but only 3.69 is achieved on average; remark that this capacity of 7 is sometimes met,
as it corresponds to the optimistic clearing curve (in red).

Case 3 : J3-M4a, J3-M4b

for(name in c("J3-M4a", "J3-M4b")){
names and files:
tag <- sprintf(" (%s)", name)
schfile <- sprintf("TR/%s.sch", name)
kpifile <- sprintf("TR/%s_kpi.Rdata", name)
clearfile <- sprintf("TR/%s_clear.Rdata", name)

compute clearing:
clearing(clearfile, schfile, kpifile=kpifile)

draw graphs:

layout (matrix(1:4,byrow=T,nrow=2)) ; par(mar=c(4,4,3,1))
graph.wip_vs_time (NULL,tag,schfile)

graph.wc_vs_cwip (NULL,tag,schfile,kpifile=kpifile)

graph.hist_wc (NULL, tag,schfile,kpifile=kpifile)

graph.clearing wip(NULL,tag,schfile,kpifile=kpifile,clearfile=clearfile)

WIP vs Time (J3-M4a)

WIP (workload)
01 2 3 465
|

20

I I I
40 60 80

Time (hours)

Witnessed capacities (J3—-M4a)

&
S cV=43
2
|2} o
< —
8 o
s lJl—=_
o | | | |
5 10 15 20
Witnessed Capacity
WIP vs Time (J3-M4b)
g _|
£ 81
S _
2
e 3
= _
T T T T T T
0 20 40 60 80 100
Time (hours)
Witnessed capacities (J3—-M4b)
S c"=1.99
2
2 .
8 S
o | __r= boo, -
S | T T |
1 2 3 4 5

Witnessed Capacity

This case is similar to the previous one.

Witnessed Capacity

WIP (hours of workload)

Witnessed Capacity

WIP (hours of workload)

10

20

10

1 23405

30

10

Witnessed Capacity (J3—-M4a)

CWIP (workload)

Clearing of WIP (J3-M4a)

;
;

;

;
\\!\
1 ¥
NN
N NG

T 064 097

00 02 04 06 08 1.0 1.2

Time (hours)

Witnessed Capacity (J3—-M4b)

CWIP (workload)

Clearing of WIP (J3-M4b)

Time (hours)

Additionally, one may remark that 4 machines (J3-M4a) are a lot more efficient than 1 machine with a
batch-capacity of 4 (J3-M4b). That was expected. What was not obvious is that the 4 machines actually
achieves a better-than-expected performance (C"' > 4) but their behavior varies much; on the contrary, the
4-batch machine behaves very steadily, but at barely half its full capacity (C"'=1.9).

WIP absorption

In the previous section, we presented several results of C" and clearing-curves and we discussed them
assuming they were “correct” and “relevant”. We now want to check that assumption, and that is done
through a simulation procedure.

The procedure is as follows: for each case, 100 new set of jobs are generated with the exact same procedure;
the number of jobs is limited to start with a predefined level of WIP. The jobs are then scheduled. The
effective WIP vs time curve is then computed and added (gray line) to the Clearing of WIP graph.

On the graphs below, it can be seen that the clearing curves estimated by CWIP and C" are quite relevant.
95% of simulations should fall within the optimistic (red) curve and the pessimistic (green) curve; so they

do. The effective mean time-to-clear (added in gray) corresponds to the expected times-to-clear (orange and
blue).

parameters of the instances:

insts.j <- c(1, 2, 2, 3, 3) #y
insts.m <- c("M2a", "M2a", "M2b", "M4a", "M4b") #m
insts.g <- c(1, 2, 2, 4, 4) #idf of job generator

generate all graphs:
invisible(mapply (function(j,m,g){
graph.simulation(NULL, sprintf(" (J/s-%s)", j,m),

schfile = sprintf("TR/J%s-%s.sch", j,m),
machfile = sprintf("TR/%s.dat", m),
kpifile = sprintf("TR/J%s-%s_kpi.Rdata", j,m),
clearfile= sprintf ("TR/J%s-%s_clear.Rdata", j,m),
jobs.generator = g, n.exp = 50

)%,

insts.j,insts.m,insts.g))

11

Clearing of WIP (J1-M2a)

1145.95 158.24

140

_ _ _ _
04T 00T 0§ 0

(peopiiom jo sinoy) diMm

60

120

100

80

Time (hours)
Clearing of WIP (J2-M2a)

142.82 154.60

140

_ _ _ _ _ _ _
0cT 08 09 O 0 O

(peopiiom jo sinoy) diMm

160

120

100

80

Time (hours)

12

Clearing of WIP (J2-M2b)

' 21.22
20

16.64

(peopiiom jo sinoy) diMm

25

15

10

Time (hours)
Clearing of WIP (J3—-M4a)

III

10.64
0.6

(peopiiom jo sinoy) diMm

1.2

1.0

0.8

Time (hours)

13

Clearing of WIP (J3-M4b)

N ! !
N ! !
N3 : :
— (N ! !
T 1o _ AN ! i
k) - NN i i
= XN ! :
2 BN\ : :
Y— o _| S \\ i i
o — N\ R ; ;
n S S i i
5 N * ; ;
o) S S ;]
< N s e
a9 \ N !
—_— \ \ ~ 4
; N ! ~ !
N ~ !
MR
o N >
| | | '16.83 | 19.48 |
10 12 14 16 18 20 22
Time (hours)
Conclusions

This report does not present an achieved work, but merely provides detailed examples of CWIP computations
and uses. The propose examples correspond to various productions systems for which the CWIP allows to
get valuable information at a rather low cost of investigation. This demonstrates, we hope, the relevance of
the CWIP... and the need for further research to better understand its limits and its potential.

References

[1] K. Dequeant, P. Lemaire, M.-L. Espinouse, and P. Vialletelle. Le WIP concurrent : une proposition
de file d’attente du point de vue du produit pour caracteriser le temps de cycle. In MOSIM’16, 11th
International Conference on Modeling, Optimization € SIMulation, Montreal, Canada, 2016. [url].

[2] K. Dequeant. Workflow variability modeling in microelectronic manufacturing. PhD. Thesis, Université
Grenoble Alpes, 2017. [url].

[3] K. Dequeant, P. Lemaire, M.-L. Espinouse, and P. Vialletelle. Concurrent WIP: a Tool to Analyze
Manufacturing Systems Subject to Complex Variability. To appear.

14

https://hal.archives-ouvertes.fr/hal-01382632
https://hal.archives-ouvertes.fr/tel-01652884

	Introduction
	Simulated systems
	Case 1 : J1-M2a
	Case 2 : J2-M2a, J2-M2b, J2-M3
	Case 3 : J3-M4a, J3-M4b

	Witnessed Capacities
	Case 1 : J1-M2a
	Case 2 : J2-M2a, J2-M2b, J2-M3
	Case 3 : J3-M4a, J3-M4b

	WIP absorption
	Conclusions

