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Inhibition of the swallowing reflex by nesfatin-1

Abstract

Nesfatin-1, an 82-amino acid peptide encoded by the secreted precursor nucleobinin-2
(NUCB?2), exerts potent anorexigenic action independently of leptin signaling. This propensity has
propelled this peptide and its analogues as potential anti-obesity drug candidates. However, a more
extensive comprehension of its biological actions is needed prior to envisaging its potential use in the
treatment of metabolic diseases. Swallowing is an essential motor component of ingestive behavior,
which induces the propulsion of the alimentary bolus from the mouth to the esophagus. The dorsal
swallowing group (DSG) which constitutes a part of the central pattern generator of swallowing
(SWCPQG) is located within the solitary tract nucleus (STN), a region reported to contain nesfatin-
1/NUCB?2 expressing neurons. In this context, we investigate here the possible effects of nesfatin-1
on swallowing discharge. Nesfatin-1 dose-dependently inhibited swallowing reflex and activated
neurons located in the DSG region. In addition, we provide evidences that strongly suggest that this
nesfatin-1 inhibitory effect involved an oxytocinergic relay. Indeed, oxytocin (OT) injection at the
brainstem level inhibited swallowing reflex and OT receptor antagonist prevented nesfatin-1
inhibitory action. Altogether, these data constitute the first demonstration that nesfatin-1 modulates

swallowing reflex by acting at the brainstem level via an oxytocinergic relay.

Keywords: Superior laryngeal nerve, electrophysiology, solitary tract nucleus, central pattern
generator of swallowing, vasotocin.
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1. Introduction

Nesfatin-1 is an 82-amino acid peptide encoded by the secreted precursor nucleobinin-2
(NUCB?2), reported to inhibit food intake via modulation of neuropeptides in the feeding centers of
rodent brain (Oh-I et al., 2006). Nesfatin-1 quickly aroused community interest as it was shown that
its action was independent of leptin signaling (Goebel et al., 2011; Oh-I et al., 2006; Shimizu et al.,
2009a). Indeed, given the well-known leptin resistance that occurs in obese individuals, this
propensity has propelled this peptide and its analogues as potential anti-obesity drug candidates. In
addition, in humans, the modulation of nesfatin-1 expression was reported in various metabolic
conditions, so that it could be considered as a potential biomarker for obesity (Dogan et al., 2016; St-
Pierre et al., 2016; Tsuchiya et al., 2010). For instance, a significant negative correlation between
plasma concentrations of nesfatin-1 and BMI, body fat percentage, and body fat weight was
described in healthy non-obese individuals (BMI < 25 kg/m?) (Tsuchiya et al., 2010). Furthermore,
these authors reported significantly lower fasting concentrations of plasma nesfatin-1 in a group of
high BMI (BMI > 28 kg/m?) subjects compared to non-obese subjects (Tsuchiya et al., 2010). This
negative correlation between nesfatin-1 and BMI also suggests that overweight or obesity could
result from a deficiency of nesfatin-1 and thus that increasing the plasma nesfatin-1 concentration in
the body could result in reduced body fat mass. Like-minded, it was shown that morbidly obese
patients who had undergone laparoscopic sleeve gastrectomy exhibited significant increases in
nesfatin-1 hormone levels in parallel to weight loss (Dogan et al., 2016). Accordingly, the therapeutic
use of nesfatin-1 was envisaged for the treatment of obesity and associated co-morbidities (Ayada et
al., 2015; Shimizu et al., 2009b). However, a deeper and comprehensive understanding of specific
effects of nesfatin-1 is critical prior to envisaging its potential use in the detection and treatment of
metabolic diseases. Indeed, nesfatin-1 was reported to exert multiple and diverse biological actions.
Thus, nesfatin-1 regulates insulin secretion, adipocyte differentiation, gastric motility and arterial

pressure (see (Wang et al., 2016); (Ramesh et al., 2017) for review). In accordance, nesfatin-
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Inhibition of the swallowing reflex by nesfatin-1

1/NUCB2 expression was described in diverse peripheral tissue including pancreas (Mohan and
Unniappan, 2012), adipocyte (Ramanjaneya et al., 2010), stomach (Chung et al., 2013), intestine
(Zhang et al., 2010) and heart (Feijoo-Bandin et al., 2013).

Swallowing is an essential motor component of ingestive behavior, which induces the propulsion
of the alimentary bolus from the mouth to the esophagus and involves various muscles localized in
the mouth, larynx, pharynx and esophagus. The superior laryngeal nerve (SLN) contains the sensory
afferent fibers involved in the swallowing reflex. The afferent fibers contact interneurons located
rostrocaudally within the medial part of the lateral NTS defined as the intermediate-subpostremal
portion of this nucleus. This region overlaps with the interstitial, intermediate, ventral, and, to some
extent, the ventrolateral subdivision of the NTS (Barraco et al., 1992). This neuronal population
referred as the dorsal swallowing group (DSG) constitutes, with a ventral swallowing group located
within the ventrolateral medulla above the nucleus ambiguous, the central pattern generator of
swallowing (SWCPG) (Jean, 2001). Interestingly, previous works have shown that the swallowing
reflex could be modulated by anorexigenic and orexigenic compounds (Abysique et al., 2015;
Bariohay et al., 2008; Felix et al., 2006; Kobashi et al., 2010; Kobashi et al., 2014; Kobashi et al.,
2017; Mostafeezur et al., 2012) suggesting that this motor component and the regulation of energy
balance could be simultaneously targeted by the same effectors. For instance, leptin (Felix et al.,
2006), ghrelin (Kobashi et al., 2010), brain derived neurotrophic factor (BDNF) (Bariohay et al.,
2008) or glucagon like peptide-1 (Kobashi et al., 2017) were reported to inhibit the swallowing reflex
after their central administration while cannabinoids facilitate the swallowing reflex elicited by the
superior laryngeal nerve stimulation in rats (Mostafeezur et al., 2012).

In this context, the purpose of the present study was to perform the first investigation
regarding the possible effects of nesfatin-1 on swallowing discharge. Since the anorexigenic action of

central nesfatin-1 requires the recruitment of oxytocin neurons (Maejima et al., 2009; Nakata et al.,
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2016; Saito et al., 2017; Yosten and Samson, 2010), we also tested a possible interaction between

oxytocin and nesfatin-1 signaling in the control of swallowing.

2. Results
2.1. Inhibition of swallowing by nesfatin-1 administered into the DSG

Effects of nesfatin-1 were studied after central microinjections on 32 rats from 44 trials. The present
results showed that nesfatin-1 induced a significant dose-dependent decrease in the number of
swallows recorded during SLN stimulation. At 100 nM (22 rats, 22 trials), nesfatin-1 decreased the
number of swallows with a short latency of 42.27 £ 4.70 s and this effect lasted for 12.11 + 0.63 min
(Fig. 1 and 2A). This effect was maximal for 10 minutes after nesfatin-1 injection (P < 0.0001) (Fig.
2A). At 50 nM (10 rats, 10 trials), nesfatin-1 also induced after a short latency of 51 + 11.88 s a
significant decrease in the number of swallows and this effect persisted for 13.35 + 0.68 min (Fig.
2A). Compared with 100 nM, the maximal inhibitory effect presented similar amplitude (P < 0.0001)
but lasted less time, only 4 minutes after microinjection. The effect of nesfatin-1 at 10 nM was
investigated on the same rats used to study the effect of nesfatin-1 at 50 nM. In contrast, at this low
dose (10 nM), nesfatin-1 did not modify the pattern of swallowing during SLN stimulation (10 rats,
12 trials). Therefore this dose could be considered as ineffective in our experimental conditions (Fig.
2A). Statistical comparison of the inhibitory effects of nesfatin-1 doses showed that inhibition time
course was significantly different only between 100 nM and 10 nM and the difference between these
two doses was significant between 2 and 12 minutes after microinjection (Fig. 2A). Nesfatin-1
administered within the DSG inhibited swallowing, without any variation of either cardiac frequency

or respiratory activity (Fig. 1 and 2B-C).
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Inhibition of the swallowing reflex by nesfatin-1

2.2. Effects of 4™ ventricle nesfatin-1 injection on c-Fos expression in the brainstem

Central structures activated in response to i.c.v. (4™ ventricle) nesfatin-1 injection were identified
using the immune detection of the c-Fos protein. A low basal level of c-Fos positive nuclei was
observed in the brainstem of control (NaCl) rats (Fig. 3A-C). We firstly evaluated the effect of 100
nM nesfatin-1 on c-Fos expression since this dose induced a robust inhibition of swallowing. At this
concentration, the ventricular injection of nesfatin-1 resulted in a modest but non-significant
induction of c-Fos expression (data not shown). This negative result could be explained by a different
route of administration used here i.e. intraventricular vs intraparenchymal. We next tested an higher
nesfatin-1 dose i.e. 300 nM. This concentration was chosen since it was lower than concentrations
reported to induce reduction of food intake after their intracerebroventricular administration (Oh-1 et
al., 2006; Stengel et al., 2009). Interestingly, at this concentration, treated rats exhibited an elevated
number of c-Fos positive nuclei throughout the dorsal vagal complex (DVC, Fig. 3D-F) with a
particular strong c-Fos labelling observed in STN regions surrounding the solitary tract (Fig.3G-H).
Counts of positive nuclei in the STN revealed significant increases in the number of c-Fos labeled
nuclei in treated animals compared with control animals whatever the sub-region of the STN
considered i.e. rostral (NaCl : 8.3 +/- 3.2 vs nesfatin-1 : 18.0 +/- 4.3; p < 0.001), subpostremal (NaCl
: 5.1 +/- 2.3 vs nesfatin-1 : 26.1 +/- 7.3; p < 0.001) and caudal (NaCl : 2.5 +/- 1.2 vs nesfatin-1 : 5.8
+/- 2.4 ; p < 0.001) parts (Fig. 31). No labelling was observed outside the DVC including other

brainstem nuclei and hypothalamus (data not shown).

2.3. Oxytocinergic terminals place alongside brainstem nesfatin-1/NUCB2 expressing
neurons
We next performed oxytocin (OT) and nesfatin-1/NUCB2 double labelling on brainstem sections to

evaluate the possible neuronal co-expression of these two peptides and/or the juxtaposition of
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neuronal elements expressing OT and nesfatin-1/NUCB2. In contrary to hypothalamic nuclei where
OT and nesfatin-1/NUCB2 were reported to co-localize in neuronal sub-populations (Goebel-Stengel
and Wang, 2013), no localization was observed within the STN (Fig. 4A). Nevertheless, throughout
the STN, including its lateral region comprising the DSG, OT positive fibers and varicosities were
found in close apposition to nesfatin-1/NUCB2 expressing neurons (Fig. 4B and C). This closeness
led us to consider a possible interaction between these two peptides at the brainstem level and in the

context of swallowing control.

2.4. Oxytocin signaling and nesfatin-1-induced inhibition of the swallowing reflex
We investigated the effects of oxytocin (10 nM) on 11 rats from 13 trials. Microinjection of oxytocin
in the DSG induced a significant decrease in the number of swallows recorded during SLN
stimulation with a latency of 41.5 £ 5.41 s. This inhibitory effect was maximal for 4 minutes after
oxytocin microinjection (p<0.0001) and persisted for 7.3 £ 1.44 min (Fig. 5 and 6A). Oxytocin
administered within the DSG inhibited swallowing, without any variation of either cardiac frequency
or respiratory activity (Fig. 5 and 6B-C). To investigate the possible involvement of oxytocin in the
mechanism of the nesfatinergic inhibitory effect on swallowing reflex, we have studied the effects of
the highest dose of nesfatin-1 after pre-treatment by vasotocin (OVT), an oxytocin receptor
antagonist. Before OVT microinjection, nesfatin-1 (100 nM) induced a significant decrease in the
number of swallows with a latency of 33 + 3 s and a duration of 13.7 + 0.92 min (10 rats, 10 trials,
Fig. 7A and C). OVT (1 uM) was administered in the DSG 5 minutes before microinjection of
nesfatin-1 (100 nM). In these conditions, nesfatin-1 did not modify the swallowing pattern discharge

(20 rats, 10 trials, Fig. 7B and C). Moreover, OVT microinjected alone did not affect swallowing.
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Inhibition of the swallowing reflex by nesfatin-1

3. Discussion

In the present study, we observed for the first time that nesfatin-1 injected into the DSG is able to
inhibit the swallowing reflex. Central administration of nesfatin-1 reduced the number of swallows in
a dose-dependent and specific manner, without affecting other physiological functions (heart rate and
respiratory activity). Whatever the dose of nesfatin-1 injected, the inhibitory action appeared with a
short latency (<1 min) but this effect was relatively labile (~12-13 min). This duration was shorter
when compared to other energy homeostasis-linked effectors reported to decrease swallowing i.e.
leptin, BDNF (Bariohay et al., 2008; Felix et al., 2006). Interestingly, the nesfatin-1 doses able to
modify swallowing frequency (50-100 nM) are consistent with endogenous nesfatin-1 levels reported
within the rat hypothalamus and LCR (Oh-1 et al., 2006). The pioneer work of Oh-1 and colleagues
(2006) reported a concentration of ~240 and 200 ng/ml within the hypothalamus and LCR
respectively. Based on these values, we can approximate a nesfatin-1 concentration of ~ 24 and 20
nM within the hypothalamus and LCR respectively. Moreover, we also showed that 4" ventricle
nesfatin-1 injection resulted in a strong and significant increase in c-Fos expression within the STN
including the DSG. This nesfatin-1-induced c-Fos expression was specific as it was absent in other
brainstem or forebrain nuclei. Importantly, hypothalamic nuclei did not exhibit increased of c-Fos
expression in response to 4" ventricle nesfatin-1 administration. When nesfatin-1 was injected into
the 4™ ventricle, its effects must have been larger than when injected in the DSG and in particular, it
may have acted on the entire STN, involved in various autonomic functions. c-Fos data showed
neuronal activation in various parts of the STN involved in autonomic functions including respiratory
and cardiac functions. However, electrophysiological data did not present any variations of
respiratory and cardiac activities. The data suggested that these functions were not affected by
nesfatin-1 dose reaching the dedicated neurons. The subpostremal NTS level appears particularly

sensible to icv nesfatin-1 injection. It’s difficult to know why since the nesfatin-1 receptor or binding
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site(s) remain unknown. Nevertheless, we can speculate that this region contains a large part of
interneurons regulating not only swallowing but also food intake. Indeed, peripheral administration
of anorexigenic nesfatin-1 dose (0,25 nmol/g of body weight), was reported to specifically induced c-
Fos expression at the subpostremal NTS level after its peripheral injection (Shimizu et al., 2009a).
Swallowing is the first motor component of the ingestive behavior and is essential for normal food
intake; our results suggest that inhibition of swallowing by nesfatin-1 may contribute, at least in part,

to the well-known anorexigenic effects of this substance.

To investigate the mechanism by which nesfatin-1 inhibits swallowing reflex, we aimed to
establish the existence of interactions between nesfatin-1 and oxytocin signaling in this context of
swallowing control. In addition to classical effects of oxytocin, numerous works have involved
oxytocin in the regulation of feeding and energy expenditure. Evidences showed clearly that oxytocin
acts as an anorexigenic hormone (Arletti et al., 1990; Olson et al., 1991; Yosten and Samson, 2010).
Accordingly, animals deficient in oxytocin gene or genes related to the differentiation of oxytocin
neurons exhibit hyperphagia and obesity (Kublaoui et al., 2008; Takayanagi et al., 2008). Moreover,
several lines of evidences suggest that oxytocin may relay nesfatin-1 anorexigenic effects (Maejima
et al., 2009; Price et al., 2008; Yosten and Samson, 2010). Nesfatin-1 exerts direct depolarizing
action on oxytocinergic neurons and its central injection recruited both magnocellular and
parvocellular oxytocin neurons which in turn stimulates oxytocin release (Price et al., 2008; Yosten
and Samson, 2010). Altogether, these observations led to the conclusion that nesfatin-1 decreases
food intake by activating oxytocinergic neurons. Here, we reported that the STN area corresponding
to the DSG contains both oxytocin fibers and nesfatin-1 neurons which are often found in close
apposition. In accordance, (Blevins et al., 2003) have clearly shown a high density of oxytocin
projections in the medial subdivision of the STN, an area which includes the DSG. In parallel, we

observed that oxytocin injection into the DSG inhibited significantly the swallowing reflex. Oxytocin

9
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Inhibition of the swallowing reflex by nesfatin-1

inhibited the swallowing reflex with a similar latency to nesfatin-1 while the inhibition duration was
shorter. In the brain, the main sources of oxytocin are the magnocellular and parvocellular neurons of
the paraventricular nucleus (PVN) and the supraoptic nucleus (Armstrong, 2004; Rosen et al., 2008).
Moreover, in the rat, oxytocin receptors are abundantly present in several brain regions such as the
hypothalamus and the brainstem (Gimpl and Fahrenholz, 2001). As described by several authors,
there is a significant anatomical link between PVN and STN since PVN oxytocinergic neurons,
particularly neurons of the posterior parvocellular subdivision, convey descending inputs from the
hypothalamus to the STN neurons involved in food intake control (Blevins et al., 2003; Uchoa et al.,
2013). Moreover (Rinaman, 1998) demonstrated by a retrograde transport of cholera toxin that all
oxytocinergic neurons projecting to the STN originate from the PVN. In vivo experiments also
demonstrated that electrical stimulation of the ipsilateral PVVN triggered a release of oxytocin in the
STN (Landgraf et al., 1990). Therefore, in our study, in regard to the inhibition of rhythmic
swallowing induced by brainstem oxytocin administration, we can hypothesized that PVN
oxytocinergic neurons could project to the STN area corresponding to the DSG and modulate the
activity of the interneurons involved in the coordination of motor sequences necessary for
swallowing reflex.

In our study, the inhibitory effect induced by the high nesfatin-1 dose was blocked by
administration into the DSG of OVT, an oxytocin receptors antagonist. This suggests that the
brainstem effects of nesfatin-1 on the swallowing reflex requires a release of oxytocin by the OT
neurons endings. Remarkably, it was previously shown that intra-PVVN nesfatin-1 injection induces c-
Fos expression within the STN and that nesfatin-1 induced anorexia is blocked by 4™ ventricle
injection of oxytocin receptor antagonist (Maejima et al., 2009; Yosten and Samson, 2010). Hence,
the blockade of the nesfatin-1 inhibitory effect by OVT pre-treatment strongly suggests that nesfatin-

1 stimulates locally (i.e. within the DSG) OT release from PVN-originating OT fibers.

10
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In summary, our study demonstrates that nesfatin-1 inhibits the swallowing reflex in
anesthetized rats. The nesfatin-1 mechanism of action appears to involve the oxytocin signaling.
Nesfatinergic neurons, previously characterized in the STN by our team (Bonnet et al., 2009; Bonnet
et al., 2013) and reported to be sensitive to inflammatory and glycemic related signals, may stimulate
the release of oxytocin by the PVN neurons endings, and oxytocin may modulate swallowing by

acting on the DSG.

4. Materials and methods

4.1. Ethical Statement
The experimental procedures were carried out in accordance with the directives of the French
Ministry of Agriculture and Fisheries and the European Community Council (86/609/EEC). The
protocol was approved by the committee on the ethics of animal experiments of Marseille/N°14

(authorization number: 01288.02).

4.2. Surgical and electrophysiological procedures

This study was performed on 43 adult male Wistar rats weighing 350 g (Charles River, 1’Arbresle,
France). The animals were anesthetized with 0.6 ml of a mixture of ketamine (100 mg/ml; Kétamine
1000 Virbac) and xylazine (20 mg/ml; Rompun, Bayer Santé, France), injected intraperitoneally in a
proportion of 90% and 10%, respectively. The level of anaesthesia was maintained by perfusing the
same mixture diluted at 10 % through a catheter inserted in the femoral vein, at a rate of 0.01-0.05
ml/h.

As previously described by (Abysique et al., 2015), the SLN was placed on bipolar electrodes
included in a plexiglas gutter and, after craniotomy, the surface of the medulla was exposed in order

to allow drugs microinjections in the intermediate STN which contains the DSG.

11
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Inhibition of the swallowing reflex by nesfatin-1

4.3. Drugs microinjections

As previously described by (Abysique et al., 2015), we used glutamate microinjection (1 fmol) as
control to induce swallowing and to verify that the microelectrode was well positioned within the
DSG. Then, these stereotaxic coordinates were conserved, and all drugs tested were microinjected in
the DSG extending between 0.2-0.7 mm rostral to the caudal edge of the area postrema (taken as the
0), 0.5-0.7 mm laterally and 0.4-0.8 mm in depth.

The following drugs were used: nesfatin-1 (Phoenix Pharmaceuticals, France), oxytocin (Tocris,
France) and oxytocin receptor antagonist: vasotocin/Compound IV/OVT (Phoenix Pharmaceuticals,
France). Nesfatine-1, oxytocin and OVT were dissolved in NaCl 0.9% solution. As described by
(Abysique et al., 2015), 100 nl of all the drugs were injected in the DSG by pressure ejections

through glass micropipettes.

4.4. Stimulations and recordings
Swallowing was triggered by stimulation of the SLN. In this study, repetitive long trains of pulses (5
s duration at 15-30 Hz frequency every 30 s) were used and produced several swallows at a rhythm
depending on stimulation frequency. The parameters of stimulation varied according to the animal
(1.0-5.5 V; 0.02-0.8 ms) to induce a basal swallowing frequency comprised between 0.6 and 1.2 Hz.
As described by (Abysique et al., 2015): i) the electromyographical (EMG) activity of sublingual
muscles was recorded to monitor swallowing, ii) the respiratory activity and the electrocardiogram
(ECG) were recorded to evaluate the level of anaesthesia and to determine any variation induced by
drugs injection. Rectal temperature was monitored and maintained around 37°C with a heating pad.
The EMG, ECG and respiration activity were recorded on a computer using an analog-to-digital

interface (PowerLab 8SP data acquisition software for Windows, ADInstruments, USA).

12
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4.5. Signal Analysis

A stable control sequence of swallowing involving three 5s trains of stimulations was recorded
before each drug injection and the mean values calculated were used as control values. Stimulations
and recordings were maintained until recovery. A specially designed computer program Chart5.5
software calculated: JEMG (electromyogram envelope signal normalized), Sw Number (number of
swallows triggered by SLN stimulation), ECG and respiratory frequency. All swallows calculated
values were normalized as percent of control values. ECG and respiratory frequencies were

expressed as percent of control values recorded before each drug injection.

4.6. Surgery and intracerebroventricular injection of nesfatin-1
For cannula implantation, animals (n=6) were anesthetized by an intraperitoneal (ip) injection of
ketamine (100 mg/ml, Ketamine 1000 Virbac, France) and xylazine (20 mg/ml; Rompun, Bayer
Santé, France), and then placed in a digital stereotaxic apparatus (Model 502600, WPI) coupled to the
neurostar software (Neurostar GmbH). A 26-gauge stainless steel cannula was implanted into the
lateral ventricle at the following coordinates: 12.8 mm posterior to bregma, 0.2 mm lateral to the
midline and 7.5 mm ventral to the skull surface. The cannula was secured to the skull with dental
cement and sealed with removable obturators. The animals were sutured, placed in individual cages
and allowed to recover for 7 days. During this resting period, animals were injected with
physiological saline every other day for habituation. One week post-surgery, rats were administered

10 pl (2.5 pl/min) of either physiological saline (NaCl) or nesfatin-1 (300 nM) solution.
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4.7. Immunohistochemistry

Animals treated by intracerebroventricular (icv) 10 ul injection of nesfatin-1 (300 nM, n=3) or NaCl
(0.9 %, n=3) were used for immunostaining. Ninety minutes after injections rats under deep
anesthesia were firstly perfused intracardially with ice-cold 0.1M phosphate buffered saline (PBS, pH
7.4) and then with ice-cold freshly prepared solution of 4 % paraformaldehyde (PFA) in 0.1M PB.
The brains were immediately removed, post-fixed 1h in 4 % PFA at room temperature, rinsed
overnight in PBS and then cryoprotected for 24 to 48h in 30 % sucrose at 4°C. The brains were
frozen in isopentane (-40°C), then coronal sections (40 um thick) of the brainstem were made with a
cryostat (Leica CM3050, France) and collected serially in 0.1M PBS.

For c-Fos immunohistochemistry, brainstem sections were incubated for 10 minutes in 0.1M
PBS containing 1.5 % H,0O, for quenching of endogenous peroxidase activity. After one hour in
saturation PBS buffer containing 3% normal goat serum and 0.3 % triton X-100, sections were
incubated for 48h at 4°C with a rabbit anti-c-Fos antibody (1/5000 Ab-5; Calbiochem). A
biotinylated goat anti-rabbit 1gG (1/400, Vector Labs) was used as a secondary antibody (incubated
for 1h30 at room temperature). Peroxidase activity was revealed using the avidin-biotin complex
(17200, Vector Labs) and diaminobenzidine as chromogen. Non-specific labelling was observed on
adjacent sections that were treated identically but without the primary antibody. The reaction was
closely monitored and terminated by washing the sections in distilled water when optimum intensity
was obtained (3-5 min). For each animal, c-Fos immunostaining photomicrographs were acquired
using a 10 fold lens with a DMX 1200 camera (Nikon) coupled to ACT-1 software. The microscope
was set at a specific illumination level, as was the camera exposure time. c-Fos positive nuclei were
then counted on these pictures by computer-assisted morphometry using the ImageJ software.
To investigate relationships between nesfatinergic neurons and oxytocin fibers located in the DVC,
we performed a double immunochemistry. Brainstem sections were treated with PBS containing 5 %

donkey serum to block non-specific binding sites and 0.3 % triton X-100. Sections were incubated
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overnight at room temperature with a primary antibody raised against nesfatin-1 (1/10000, Phoenix
Pharmaceuticals), washed in PBS and then incubated for 2h at room temperature with a secondary
antibody conjugated with Alexa 594 (1/400, Invitrogen). To identify oxytocin fibers, sections were
then treated with PBS containing 3 % bovine serum albumin (BSA) to block non-specific binding
sites and 0.3 % triton X-100. Sections were incubated overnight at room temperature with a primary
antibody raised against oxytocin (1/1000, Millipore), washed in PBS and then incubated for 2h at
room temperature with a secondary antibody conjugated with Alexa 488 (1/400, Life Technologies).

Fluorescent images were acquired on a confocal microscope (Zeiss LSN 700) using the 488 nm band
of an Ar-laser and the 543 nm band of an He/Ne-laser for excitation of Alexa-488 and Alexa-594,
respectively. In double labeling experiments, images were sequentially acquired. All images were

further processed in Adobe Photoshop 6.0, only contrast and brightness were adjusted.

4.8. Statistical analyses
For electrophysiogical data, statistical analyses were performed using one- or two-way analysis of
variance (ANOVA) followed by Fisher’s protected least-significant difference post-hoc test
(StatView for Windows 5.0.1; SAS Institute). For c-Fos immunostaining, comparisons between data
from vehicle and nesfatin-1 treated rats were performed using unpaired 2-tailed Student’s t-test. All
data were expressed as mean £SEM. For all data, differences were considered significant when P <

0.05.
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Figure Legends

Figure 1: Effects of nesfatin-1 injection on sublingual muscle electromyographical activity
(EMG) induced by SLN stimulation and on cardiorespiratory activity.

Nesfatin-1 (100 nM) injected within the DSG induced a rapid and powerful inhibition of the number
of swallows. 90 s after nesfatin-1 microinjection, only one swallow was triggered by SLN
stimulation. This effect was transient since the swallows recovered after 16 minutes. Patterns of heart
(ECG) and respiration rates were illustrated before and after nesfatin-1 injection (basal heart rate:

254.27+11.32/min, basal respiration rate: 95.87+6.58/min).

Figure 2: Specific and dose-dependent inhibition of triggered swallowing by nesfatin-1.

A: Time course of nesfatin-1 effects on the number of swallows after its injection within the DSG
(100 nM : 22 trials, 50 nM :10 trials and 10 nM : 12 trials). Recordings were performed over 2
minutes periods until recovery. Note that at 10 nM, nesfatin-1 did not modify swallowing triggered
by SLN stimulation.

B-C: Quantification of heart (B) and respiration (C) rates during nesfatin-1 application.

Time 0 represent the mean control value recorded before nesfatin-1 microinjection (100 %). Data are

represented as means + SEM normalized to the control value. * P < 0.05, *** P < 0.001, **** P <
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0.0001 significantly different from control values. # P < 0.05, ## P < 0.01, ### P < 0.001, #### P <

0.0001 significant differences between 100 nM and 10 nM treated rats.

Figure 3: Effects of central nesfatin-1 administration on brainstem c-Fos immunoreactivity.
A-F: Representative coronal sections illustrating c-Fos labeling observed at different levels of the
NTS of rats treated with NaCl 0.9 % (A-C) or nesfatin-1 300 nM (D-F) and sacrificed 1h30 post-
treatment. Scale bar: 100 um.

G-H: High magnification of images B and E illustrating the strong labelling observed in
subpostremal STN regions surrounding the solitary tract. Scale bar: 50 pm.

I: Quantification of immunoreactive c-Fos nuclei in the brainstem of rats treated either with NaCl
(0.9 %, gray bars) or nesfatin-1 (300 nM, black bars). ** P < 0.01, *** P < 0.001 significantly
different from NaCl-treated rats; AP, area postrema; cc, central canal; STN, solitary tract nucleus; ts,

solitary tract; X, Dorsal motor nucleus of the vagus; 4V, 4" ventricle.

Figure 4: lllustration of the strong spatial association between OT positive processes and
nesfatin-1/NUCB?2 expressing neurons.

A: Immunohistochemical double-labelling of nesfatin-1/NUCB2 and oxytocin (OT) performed on
coronal sections of STN. Arrows: OT+ fibers. Scale bar: 30 um. B: Higher magnification of OT and
nesfastin-1/NUCB2 labelling in the STN. The area where the image originates is indicated by a
rectangle in the low-power photomicrograph in A. Scale bar: 5 um. C: Serial confocal images
illustrating the close apposition of OT fibers and nesfatin-1/NUCB2 neurons. Scale bar: 5 pum.

AP, area postrema; STN, solitary tract nucleus; ts, solitary tract.
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Inhibition of the swallowing reflex by nesfatin-1

Figure 5: Effects of oxytocin central administration on swallowing triggered by SLN

stimulation and on cardiorespiratory activity.

Oxytocin (10 nM) inhibited sublingual muscle electromyographical activity. 2 minutes after oxytocin
microinjection within the DSG, only three swallows were triggered by SLN stimulation. This effect
was transient since the swallows recovered after 9 minutes. Patterns of heart (ECG) and respiration
rates were illustrated before and after oxytocin injection (basal heart rate: 280.77+19.20/min, basal

respiration rate: 70.99+5.74/min).

Figure 6: Specific inhibition by oxytocin on triggered swallowing.

A: Time course of the effects of oxytocin (10 nM, 13 trials) microinjected within the DSG on the
number of swallows recorded over 2 minutes periods and until recovery.

B-C: Quantification of heart (B) and respiration (C) rates during oxytocin application.

Time 0 represent the mean control value recorded before oxytocin microinjection (100%; black bars).

Data are represented as means = SEM normalized to the control value. ** P < 0.01, **** P < 0.0001.

Figure 7: Effects of nesfatin-1 central administration on swallows before and after OVT
microinjection.

A: Before OVT microinjection, nesfatin-1 (100 nM, 10 trials) always induced a rapid and powerful
inhibition of the number of swallows. 49s after nesfatin-1 microinjection, only two swallows were
triggered by SLN stimulation. This effect was transient since the swallows recovered after 16
minutes.

B: After pre-treatment by OVT (1 uM), nesfatin-1 microinjection within the DSG no longer changed

the number of swallows.
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C: Time course of the effects of nesfatin-1 centrally administered (100 nM, 10 trials) on the
swallowing reflex before and after pre-treatment by OVT (1 uM). The number of swallows was
recorded over 2 minutes periods and until recovery. Time O represent the mean control value
recorded before nesfatin-1 microinjection (100 %). Data are represented as means £ SEM normalized

to the control value. ** P < 0.01, *** P < 0.001, **** P < 0.0001.
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