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LEARNING RANDOM POINTS FROM GEOMETRIC
GRAPHS OR ORDERINGS

JOSEP DÍAZ, COLIN MCDIARMID, AND DIETER MITSCHE

Abstract. Suppose that there is a family of n random points Xv for v ∈ V ,

independently and uniformly distributed in the square Sn = [−√
n/2,

√
n/2]

2
.

We do not see these points, but learn about them in one of the following

two ways.

Suppose first that we are given the corresponding random geometric

graph G ∈ G (n, r), where distinct vertices u and v are adjacent when the

Euclidean distance dE(Xu,Xv) is at most r. Assume that the threshold

distance r satisfies n3/14 ≪ r ≪ n1/2. We shall see that the following holds

with high probability. Given the graph G (without any geometric infor-

mation), in polynomial time we can approximately reconstruct the hidden

embedding, in the sense that, ‘up to symmetries’, for each vertex v we find

a point within distance about r of Xv; that is, we find an embedding with

‘displacement’ at most about r.

Now suppose that, instead of being given the graph G, we are given, for

each vertex v, the ordering of the other vertices by increasing Euclidean

distance from v. Then, with high probability, in polynomial time we can

find an embedding with the much smaller displacement error O(
√

logn).

Keywords: Random geometric graphs, unit disk graphs, approximate embed-

ding, vertex orders.

1. Introduction

In this section, we first introduce geometric graphs and random geometric

graphs, the approximate realization problem for such graphs, and families of

vertex orderings; and we then present our main theorems, give an outline

sketch of their proofs, and finally give an outline of the rest of the paper.

1.1. Random geometric graphs. Suppose that we are given a non-empty

finite set V , and an embedding Ψ : V → R
2, or equivalently a family (xv : v ∈

V ) of points in R
2, where Ψ(v) = xv. Given also a real threshold distance r > 0,

we may form the geometric graph G = G(Ψ, r) or G = G((xv : v ∈ V ), r) with

vertex set V by, for each pair u, v of distinct elements of V , letting u and v

be adjacent if and only if dE(xu,xv) ≤ r. Here dE denotes Euclidean distance,
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dE(x,x
′) = ‖x−x′‖2. Note that the (abstract) graph G consists of its vertex

set V and its edge set (with no additional geometric information). A graph

is called geometric if it may be written as G(Ψ, r) as above, and then (Ψ, r)

is called a realization of the graph. Since we may rescale so that r = 1, a

geometric graph may also be called a unit disk graph (UDG) [11].

Given a positive integer n, and a real r > 0, the random geometric graph

G ∈ G (n, r) with vertex set V = [n] is defined as follows. Start with n random

points X1, . . . ,Xn independently and uniformly distributed in the square Sn =

[−√
n/2,

√
n/2]

2
of area n; let Ψ(v) = Xv for each v ∈ V ; and form the

geometric graph G = G(Ψ, r) or G = G((Xv : v ∈ V ), r).

Random geometric graphs were first introduced by Gilbert [10] to model

communications between radio stations. Since then, several related variants of

these graphs have been widely used as models for wireless communication, and

have also been extensively studied from a mathematical point of view. The

basic reference on random geometric graphs is the monograph by Penrose [17];

see also the survey of Walters [24]. The properties of G ∈ G (n, r) are usually

investigated from an asymptotic perspective, as n grows to infinity and r =

r(n) = o(
√
n).

A sequence An of events holds with high probability (whp) if P(An) → 1 as

n→ ∞. For example, it is well known that rc =
√

log n/π is a sharp threshold

function for the connectivity of the random geometric graph G ∈ G (n, r). This

means that, for every ε > 0, if r ≤ (1−ε)rc, then G is whp disconnected, whilst

if r ≥ (1 + ε)rc, then G is whp connected (see [17] for a more precise result).

We shall work with much larger r, so our random graphs will whp be (highly)

connected.

Given a graph G, we define the graph distance dG(u, v) between two vertices

u and v to be the least number of edges on a u−v path if u and v are in the

same component, and if not then we let the distance be ∞. Observe that in a

geometric graph G with a given realization (Ψ, r), each pair of vertices u and

v must satisfy dG(u, v) ≥ dE(Ψ(u),Ψ(v))/r, since each edge of the embedded

geometric graph has length at most r. For a finite simple graph G with n

vertices, let A = A(G) denote its adjacency matrix, the n × n symmetric

matrix with aij = 1 if ij is an edge, and aij = 0 otherwise. (We write ij for

an edge rather than the longer form {i, j}.)

1.2. Approximate realization for geometric graphs. For a geometric

graph G with vertex set V , the realization problem for G has input the adja-

cency matrix A(G), and consists in finding some realization (Ψ, r). It is known

that for UD graphs, the realization problem (also called the unit disk graph
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reconstruction problem) is NP-hard [3], and it remains NP-hard even if we

are given all the distances between pairs of vertices in some realization [2], or

if we are given all the angles between incident edges in some realization [4].

Given that these results indicate the difficulty in finding exact polynomial

time algorithms, researchers naturally turned their attention to finding good

approximate realizations (for deterministic problems).

Previous work on approximate realization

There are different possible measures of ‘goodness’ of an embedding. Mo-

tivated by the localization problem for sensor networks, see for example [6],

(essentially) the following scale-invariant measure of quality of embedding was

introduced in [15]: given a geometric graph G = (V,E), and an embedding

Φ : V → R
2 and threshold distance r > 0, if G is not a clique we let

QG(Φ) =
maxxy∈E ‖Φ(x)− Φ(y)‖2
minxy/∈E ‖Φ(x)− Φ(y)‖2

(where we insist that x 6= y); and let QG(Φ) = (1/r)maxxy∈E ‖Φ(x) − Φ(y)‖2
if G is a clique. Observe that if (Φ, r) is a realization of G then QG(Φ) < 1.

The aim is to find an embedding Φ : V → R
2 with say r = 1 which minimizes

QG(Φ), or at least makes it small. The random projection method [22] was

used in [15] to give an algorithm that, for an n-vertex UD graph G, outputs

an embedding Φ with QG(Φ) = O(log3.5 n
√
log logn); this is, it approximates

feasibility in terms of the measure QG up to a factor of O(log3.5 n
√
log log n).

On the other hand, regarding inapproximability, it was shown in [13] that it

is NP-hard to compute an embedding Φ with QG(Φ) ≤
√

3/2−ε.

In this paper we do not aim to control a goodness measure like Q (though

see the discussion following Theorem 1.3). Instead, we find whp a ‘good’

embedding Φ, which is ‘close’ to the hidden original random embedding Ψ .

We investigate the approximate realization problem for a random geometric

graph, and for a family of vertex orderings (see later).

What we achieve for random geometric graphs is roughly as follows. We de-

scribe a polynomial time algorithm which, for a suitable range of values for r,

whp finds an embedding Φ which ‘up to symmetries’ (see below for a detailed

definition) maps each vertex v to within about distance r of the original random

point Ψ(v) = Xv. Observe that the mapping Φ must then satisfy the follow-

ing properties whp: for each pair of vertices u, v with dE(Ψ(u),Ψ(v)) ≤ r

we have dE(Φ(u),Φ(v)) ≤ (3 + ε)r, and for each pair of vertices u, v with

dE(Ψ(u),Ψ(v)) ≥ (3 + ε)r we have dE(Φ(u),Φ(v)) > r. Thus, adjacent pairs
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of vertices remain quite close to being adjacent in Φ, and non-adjacent pairs

of vertices that are sufficiently far apart remain non-adjacent in Φ.

For maps Φ1,Φ2 : V → Sn, the familiar max or sup distance is defined by

dmax(Φ1,Φ2) = max
v∈V

dE(Φ1(v),Φ2(v)).

Since there is no way for us to distinguish embeddings which are equivalent

up to symmetries, we cannot hope to find an embedding Φ such that whp

dmax(Ψ,Φ) is small. There are 8 symmetries (rotations or reflections) of the

square. We define the symmetry-adjusted sup distance d∗ by

d∗(Φ1,Φ2) = min
σ
dmax(σ◦Φ1,Φ2) = min

σ
dmax(Φ1, σ◦Φ2),

where the minima are over the 8 symmetries σ of the square Sn. This is the

natural way of measuring distance ‘up to symmetries’. If we let Φ1 ∼ Φ2 when

Φ1 = σ◦Φ2 for some symmetry σ of Sn, then it is easy to check that ∼ is

an equivalence relation on the set of embeddings Φ : V → Sn, and d∗ is the

natural sup metric on the set of equivalence classes.

Given α > 0, we say that an embedding Φ has displacement at most α (from

the hidden embedding Ψ) if d∗(Ψ,Φ) ≤ α. Consider the graph with three

vertices u, v, w and exactly two edges uv and vw: if this is the geometric graph

G(Ψ, r), then dE(Ψ(u),Ψ(w)) could be any value in (r, 2r]. Examples like this

suggest that we should be happy to find an embedding Φ with displacement

at most about r; and since our methods rely on graph distances, it is natural

that we do not achieve displacement below r.

1.3. Vertex orderings. We also consider a related approximate realization

problem, with different information. As for a random geometric graph, we

start with a family of n unseen points X1, . . . ,Xn independently and uniformly

distributed in the square Sn, forming the hidden embedding Ψ. (There is

no radius r here, and there is no graph.) We are given, for each vertex v,

the ordering τv of the other vertices by increasing Euclidean distance from v.

This is the family of vertex orderings corresponding to Ψ. Notice that with

probability 1 no two distances will be equal. Notice also that, if we had access

to the complete ordering of the Euclidean distances between all pairs of distinct

vertices in the hidden embedding Ψ, then we could read off the family of vertex

orderings.

We shall see that, by using the family of vertex orderings, we can with high

probability find an embedding with displacement error dramatically better

than the bound we obtain for random geometric graphs.
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1.4. Main results. Suppose first that we are given a random geometric

graph G ∈ G (n, r), with hidden original embedding Ψ, for example by being

given the adjacency matrix A(G), with no geometric information. Our goal

is to find an embedding Φ such that whp it has displacement at most about

r, for as wide as possible a range of values for r. However, first we need to

consider how to estimate r. We shall see that adding up the first few vertex

degrees gives us a good enough estimator for our current purposes.

Proposition 1.1. Let r = r(n) → ∞ as n→ ∞, with r ≪ n1/2. Let ρ =
√
n/r

(so ρ→ ∞ as n→ ∞). Fix a small rational constant 0 < ε < 1
2
, say ε = 0.01.

Then in polynomial time we may compute an estimator r̂ such that

|r̂ − r| < ω(ρ) ρ−1/2+ε = o(1) whp. (1)

Our first theorem presents an algorithm to find an embedding Φ for a random

geometric graph (given without any further information), which whp achieves

displacement at most about r, for the range n3/14 ≪ r ≪ √
n. Note that

3/14 ≈ 0.21428.

Theorem 1.2. Let r = r(n) satisfy n3/14 ≪ r ≪ √
n, and consider the ran-

dom geometric graph G ∈ G (n, r) (given say by the adjacency matrix A(G)),

corresponding to the hidden embedding Ψ. Let ε > 0 be an arbitrarily small

rational constant. There is an algorithm which in polynomial time outputs

an embedding Φ which whp has displacement at most (1 + ε)r, that is, whp

d∗(Ψ,Φ) ≤ (1 + ε)r.

For a related recent result concerning estimating Euclidean distances be-

tween points (rather than estimating the points themselves), and for other

recent related work, see Subsection 1.5 below.

In practice, after running the algorithm in this theorem, we would run a local

improvement heuristic, even though this would not lead to a provable decrease

in d∗(Ψ,Φ). For example, we might simulate a dynamical system where each

point Xv (which is not close to the boundary of Sn) tends to move towards the

centre of gravity of the points Xw corresponding to the neighbours w of v.

Our second theorem concerns the case when we are given not the random

geometric graph but the family of vertex orderings; that is, for each vertex v,

we are given the ordering of the other vertices by increasing Euclidean distance

from v.

Theorem 1.3. Suppose that we are given the family of vertex orderings cor-

responding to the hidden embedding Ψ. There is a polynomial-time algorithm

that outputs an embedding Φ which whp has displacement < 1.197
√
logn; that

is, whp d∗(Ψ,Φ) < 1.197
√
log n.
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Now suppose that, as well as being given the family of vertex orderings, for

some unknown value r we are given the corresponding random geometric graph

G ∈ G (n, r). Assume that r ≫
√
log n. Then the constructed embedding Φ

does well in terms of the measure QG introduced earlier: we have

QG(Φ) <
r + 1.197

√
logn

r − 1.197
√
logn

< 1 + 2.4
√

logn/r = 1 + o(1) whp. (2)

Also, from the constructed embedding Φ we may form a second geometric

graph G′ = G(Φ, r). Then G′ is close to G in the sense that ‘we get only a small

proportion of edges wrong’. We make this more precise in the inequality (3)

below. It is easy to see that whp G has ∼ 1
2
πr2n edges (and many more

non-edges). We know from Theorem 1.3 that whp Φ has displacement <

1.197
√
log n: assume that this event holds. If dE(Xu,Xv) ≤ r − 2.394

√
log n

then dE(Φ(u),Φ(v)) ≤ r so uv is an edge in G′; and similarly, if dE(Xu,Xv) ≥
r + 2.394

√
log n then dE(Φ(u),Φ(v)) > r, so uv is not an edge in G′. Thus

there could be a mistake with uv only if

r − 2.394
√

log n < dE(Xu,Xv) < r + 2.394
√

log n.

But whp the number of unordered pairs {u, v} of distinct vertices such that

these inequalities hold is ∼ n · 2πr · 2.394
√
log n. Hence, whp the symmetric

difference of the edge sets of G and G′ satisfies
∣

∣E(G)∆E(G′)
∣

∣ /
∣

∣E(G)
∣

∣ < 9.6
√

log n/r. (3)

Outline sketch of the proofs of Theorems 1.2 and 1.3

In order to prove these theorems, we first identify 4 ‘corner vertices’ such

that the corresponding points are close to the 4 corners of Sn. To do this, for

Theorem 1.2 we are guided by vertex degrees; and for Theorem 1.3 we look at

the set of ‘extreme’ pairs (v, v′) such that v′ is farthest from v in the order τv,

and v is farthest from v′ in the order τv′ .

To prove Theorem 1.2, we continue as follows. For a vertex v, we approx-

imate the Euclidean distance between Xv and a corner by using the graph

distance from v to the corresponding corner vertex, together with the estimate

r̂ of r; and then we place our estimate Φ(v) for Xv at the intersection of circles

centred on a chosen pair of the corners. For each of the circles, whp Xv lies

within a narrow annulus around it, so Φ(v) is close to Xv.

In the proof of Theorem 1.3, we obtain a much better approximation to

the Euclidean distance between Xv and a corner, by using the rank of v in the

ordering from the corresponding corner vertex, and the fact that the number of

points Xw at most a given distance from a given corner is concentrated around
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its mean. In this way, we obtain much narrower annuli, and a correspondingly

much better estimate for Xv.

1.5. Further related work. In this section we mention further related

work.

Theorem 1 of [1] estimates Euclidean distances between points by r times

the graph distance in the corresponding geometric graph. It is assumed that

r is known, and the error is at most r plus a term involving the maximum

radius of an empty ball. In the case of n points distributed uniformly and

independently in Sn, the authors of [1] need r ≥ n1/4(log n)1/4 in order to keep

the error bound down to (1 + o(1))r whp (so they need r a little larger than

we do in Theorem 1.2).

In [16] the authors assume that they are given a slightly perturbed adjacency

matrix (some edges were inserted, some were deleted) of n points in some

metric space. Using fairly general conditions on insertion and deletion, the

authors use the Jaccard index (the size of the intersection of the neighborhood

sets of the endpoints of an edge divided by the size of their union) to compute

a 2-approximation to the graph distances.

The use of graph distances for predicting links in a dynamic social network

such as a co-authorship network was experimentally analyzed in [14]: it was

shown that graph distances (and other approaches) can provide useful infor-

mation to predict the evolution of such a network. In [19] the authors consider

a deterministic and also a non-deterministic model, and show that using graph

distances, and also using common neighbors, they are able to predict links in

a social network. The use of shortest paths in graphs for embedding points

was also experimentally analyzed in [20].

In [23] the authors consider a k-nearest neighbour graph on n points Xi that

have been sampled iid from some unknown density in Euclidean space. They

show how shortest paths in the graph can be used to estimate the unknown

density. In [21] the authors consider the following problem: given a set of

indices (i, j, k, ℓ), together with constraints dE(Xi,Xj) < dE(Xk,Xℓ) (without

knowing the distances), construct a point configuration that preserves these

constraints as well as possible. The authors propose a ‘soft embedding’ al-

gorithm which not only counts the number of violated constraints, but takes

into account also the amount of violation of each constraint. Furthermore, the

authors also provide an algorithm for reconstructing points when only knowing

the k nearest neighbours of each data point, and they show that the obtained

embedding converges for n → ∞ to the real embedding (w.r.t. to a metric

defined by the authors), as long as k ≫
√
n log n. This setup is similar to our
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Theorem 1.3 in the sense that we are given the ordinal ranking of all distances

from a point (for each point), though note that we estimate points up to an

error O(
√
log n) rather than o(

√
n) (recall that our points are sampled from

the
√
n×√

n square Sn).

In a slightly different context, the algorithmic problem of computing the

embedding of n points in Euclidean space given some or all pairwise distances

was considered. If all
(

n
2

)

pairwise distances are known, then one can easily

find exact positions in O(n) arithmetic operations: pick three points forming

a triangle T , and then for each other point separately find its location with

respect to T , using O(1) arithmetic operations. In this way we use only the

O(n) distances involving at least one of the points in T . In [7, 8] the authors

consider the problem of knowing only a subset of the distances (they know

only small distances, as typical in sensor networks) and show that by patching

together local embeddings of small subgraphs a fast approximate embedding

of the points can be found.

The related problem trying to detect latent information on communities in

a geometric framework was studied by [18]. In this case, points of a Poisson

process in the unit square are equipped with an additional label indicating

to which of two hidden communities they belong. The probability that two

vertices are joined by an edge naturally depends on the distance between them,

but also edges between vertices of the same label have a higher probability to

be present than edges between vertices of different labels. The paper gives

exact recovery results for a dense case, and also shows the impossibility of

recovery in a sparse case.

1.6. Organisation of the paper. In Section 2 we recall or establish pre-

liminaries; in Section 3 we see how to estimate the threshold distance r using

vertex degrees, and estimate Euclidean distances using graph distances; in

Section 4 we complete the proof of Theorem 1.2; in Section 5 we prove Theo-

rem 1.3; and in Section 6 we conclude with some open questions.

2. Preliminaries

In this section we gather simple facts and lemmas that are used in the proofs

of the main results. We start with a standard version of the Chernoff bounds

for binomial random variables, see for example Theorem 2.1 and inequality

(2.9) in [12].

Lemma 2.1. (Chernoff bounds) Let X have the binomial distribution Bin(n, p)

with mean µ = np. For every δ > 0 we have

P(X ≤ (1− δ)µ) ≤ e−δ2µ/2
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and

P(X ≥ (1 + δ)µ) ≤ e−δ2(1−δ/3)µ/2;

and it follows that, for each 0 < δ ≤ 1,

P(|X − µ| ≥ δµ) ≤ 2e−δ2µ/3.

For x ∈ R
2 and r > 0, let B(x, r) denote the closed ball of radius r around x.

We shall repeatedly use the following fact.

Fact 2.2. Let G ∈ G (n, r) be a random geometric graph. For each x ∈ Sn

let σn(x) be the area of B(x, r) ∩ Sn, and let ρn(x) = σn(x)/n. Then for each

vertex v ∈ V = [n] and each point x ∈ Sn, degG(v) conditional on Xv = x has

distribution Bin(n−1, ρn(x)). More precisely, this gives a density function: for

any Borel set A ⊆ Sn,

P((degG(v) = k) ∧ (Xv ∈ A)) =

∫

x∈A
P(Bin(n−1, ρn(x)) = k) dx.

In particular, if ρ− ≤ ρn(x) ≤ ρ+ for each x ∈ A, then, conditional on

Xv ∈ A, degG(v) is stochastically at least Bin(n−1, ρ−) and stochastically at

most Bin(n−1, ρ+).

The next lemma gives elementary bounds on the area σn(z) for z ∈ Sn, in

terms of the distance from z to a corner of Sn or to the boundary of Sn.

Lemma 2.3. Let 0 < s ≤ r <
√
n/2, and let z ∈ Sn.

(i) If z is at distance at most s from some corner, then σn(z) ≤ 1
4
π(r+s)2.

(ii) If z is at distance at least s from each corner, then σn(z) ≥ 1
4
πr2 +

s(r − s/2).

(iii) If z is at distance at most s from the boundary, then σn(z) ≤ 1
2
πr2 +

2sr.

(iv) If z is at distance at least s from the boundary and at distance at most r

from at most one side of the boundary, then σn(z) ≥ 1
2
πr2+2s(r−s/2).

Proof. Parts (i) and (iii) are easy. To prove parts (ii) and (iv), we observe first

that, in the disk with centre (0, 0) and radius r, the set S of points (x, y) in the

disk with −s ≤ x ≤ 0 and y ≥ 0 has area at least s(r − s/2). For if (−s, y1)
is the point on the bounding circle with y1 > 0, then y1 =

√
r2 − s2 ≥ r − s,

so the quadrilateral Q with corners (0, 0), (−s, 0), (−s, y1) and (0, r) has area

≥ 1
2
s(r + r − s), and Q ⊆ S.

To prove part (ii) of the lemma, it suffices to consider points z ∈ Sn at

distance equal to s from a corner, wlog from the bottom left corner c1 =

(−√
n/2,−√

n/2). Suppose that z− c1 = (x, y). Then, by the observation in
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the first paragraph,

σn(z)− 1
4
πr2 ≥ x(r − x/2) + y(r − y/2) + xy

≥ (x+ y)(r − (x+ y)/2)

≥ s(r − s/2)

since x+ y ≥ s. Part (iv) follows similarly from the initial observation. �

We shall depend heavily on the following result on the relation between

graph distance and Euclidean distance for random geometric graphs (with

slightly worse constants than the ones given in the original paper to make the

expression cleaner).

Lemma 2.4. [9][Theorem 1.1] Let G ∈ G (n, r) be a random geometric graph

with r ≫
√
log n. Then, whp, for every pair of vertices u, v we have:

dG(u, v) ≤
⌈

dE(Xu,Xv)

r

(

1 + γ r−4/3
)

⌉

where

γ = max

{

3000

(

r logn

r + dE(Xu,Xv)

)2/3

,
4 · 106 log2 n

r8/3
, 1000

}

.

We observed earlier that always dE(xu,xv) ≤ rdG(u, v); we next give a

corollary of the last lemma which shows that whp this bound is quite tight.

Corollary 2.5. There is a constant c (≤ 6 · 106) such that, if r ≥ (log n)3/4

for n sufficiently large, then whp, for every pair of vertices u, v we have:

dG(u, v) ≤ dE(Xu,Xv)/r + 1 + cmax{n1/2r−7/3, n1/6r−5/3(log n)2/3}.

Proof. By Lemma 2.4

rdG(u, v) ≤ dE(Xu,Xv) + r + r · dE(Xu,Xv)γ r
−7/3. (4)

But, for r ≥ (logn)3/4, the second term in the maximum in the definition of γ

is at most 4 · 106; and letting γ1 denote the first term we have

dE(Xu,Xv) γ1 r
−7/3 ≤ 3000 dE(Xu,Xv)

1/3(r logn)2/3r−7/3

≤ 3000 (2n)1/6r−5/3(log n)2/3.

Thus

dE(Xu,Xv) γ r
−7/3

≤ max{3000 (2n)1/6r−5/3(logn)2/3, (4 · 106)(2n)1/2r−7/3}

and the lemma follows from (4). �
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In fact, all we shall need from the last two results is the following immediate

consequence of the last one.

Corollary 2.6. If r ≫ n3/14, then there exists ε = ε(n) = o(1) such that whp,

for every pair u, v of vertices, we have

dG(u, v) ≤ dE(Xu,Xv)/r + 1 + ε.

We consider the four corner points ci = ci(n) of Sn in clockwise order from

the bottom left: c1 = (−√
n/2,−√

n/2) (already defined), c2 = (−√
n/2,

√
n/2),

c3 = (
√
n/2,

√
n/2) and c4 = (

√
n/2,−√

n/2). See Figure 1 for the points ci

and to illustrate the following lemma.

Lemma 2.7. Let r = r(n) satisfy
√
logn≪ r ≪ √

n and consider the random

geometric graph G ∈ G (n, r). Let ω = ω(n) tend to infinity with n arbitrarily

slowly, and in particular assume that ω2 ≤ r/2 and ω ≪ r/
√
logn. Then whp

the following holds: (a) for each i = 1, . . . , 4, there exists vi ∈ V such that

Xvi ∈ B(ci, ω) and degG(vi) <
1
4
πr2 + 1

3
ωr; and (b) for each v ∈ V such that

Xv 6∈ ∪4
i=1B(ci, ω) we have degG(v) >

1
4
πr2 + 1

2
ωr.

Proof. (a) Fix i ∈ [4]. Note first that

P(Xv 6∈ B(ci,
1
7
ω) for each v ∈ V ) = (1− π

4n
(ω
7
)2)n ≤ e−

π
196

ω2

= o(1);

so whp there exists vi ∈ V such that Xvi ∈ B(ci,
1
7
ω). Let Z

(i)
n be the number

of vertices v such that Xv ∈ B(ci,
1
7
ω). Then E[Z

(i)
n ] = π

196
ω2. For each

x ∈ B(ci,
1
7
ω), by Lemma 2.3 (i),

σn(x) ≤ 1
4
π(r + 1

7
ω)2 ≤ 1

4
πr2 + 1

4
ωr

for n sufficiently large; and then, by Lemma 2.1 and Fact 2.2,

P(degG(v) ≥ 1
4
πr2 + 1

3
ωr | Xv ∈ B(ci,

1
7
ω))

≤ P(Bin(n, (1
4
πr2 + 1

4
ωr)/n) ≥ (1

4
πr2 + 1

4
ωr) + 1

12
ωr) ≤ e−Θ(ω2).

Hence

P(for some v ∈ V, (Xv ∈ B(ci,
1
7
ω)) ∧ (degG(v) ≥ 1

4
πr2 + 1

3
ωr))

≤
∑

v∈V

P(Xv ∈ B(ci,
1
7
ω))P(degG(v) ≥ 1

4
πr2 + 1

3
ωr | Xv ∈ B(ci,

1
7
ω))

≤ E[Z(i)
n ] e−Θ(ω2) = o(1).

Thus whp there exists vi ∈ V such that Xvi ∈ B(ci,
1
7
ω) and degG(vi) <

1
4
πr2 + 1

3
ωr. This gives part (a) of the lemma.
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(b) Let j0 = ⌊ω⌋ and j1 = ⌈r/ω⌉. For all integers i ∈ [4] and j0 ≤ j ≤ j1, let

Bj
i = B(ci, j) ∩ Sn. Consider first the central part of the square Sn, omitting

parts near the corners: let Cn = Sn \ ∪iB
j1
i . By Lemma 2.3 (ii), for each

x ∈ Cn we have

σn(x) ≥ 1
4
πr2 + j1(r − j1/2) ≥ 1

4
πr2 + 1

2
j1r

for n sufficiently large. Hence, by Lemma 2.1 and Fact 2.2,

P(degG(v) ≤ 1
4
πr2 + 1

2
ωr | Xv ∈ Cn) ≤ e−Θ(j2

1
).

Since ω ≪ r/
√
log n, we have j21 ≥ (r/ω)2 ≫ logn. Thus ne−Θ(j2

1
) = o(1), and

so whp there is no vertex v such that Xv ∈ Cn and degG(v) ≤ 1
4
πr2 + 1

2
ωr.

We need a little more care near the corners. Let i ∈ [4] and let j be an

integer with j0 ≤ j ≤ j1. The area of Bj+1
i \ Bj

i is 1
4
π(2j + 1). For each

point x ∈ Bj+1
i \ Bj

i , x is at distance at least j from each corner of Sn, so by

Lemma 2.3 (ii) we have

σn(x) ≥ σ(j) := 1
4
πr2 + j(r − j/2) = 1

4
πr2 + (1 + o(1))jr.

Also,
1
4
πr2 + 1

2
ωr ≤ n−1

n
σ(j) − (1

2
+ o(1))jr.

Thus, by Lemma 2.1 and Fact 2.2,

P
(

degG(v) ≤ 1
4
πr2 + 1

2
ωr | Xv ∈ Bj+1

i \Bj
i

)

≤ e−Θ(j2).

Therefore, for each i ∈ [4],

P
(

for some v ∈ V, (Xv ∈ Bj1
i \Bj0

i ) ∧ (degG(v) ≤ 1
4
πr2 + 1

2
ωr)

)

≤
∑

v∈V

j1−1
∑

j=j0

P(Xv ∈ Bj+1
i \Bj

i )P
(

degG(v) ≤ 1
4
πr2 + 1

2
ωr | Xv ∈ Bj+1

i \Bj
i

)

≤ n
∑

j≥j0

1
4
π(2j + 1)

n
e−Θ(j2) = o(1).

Hence whp degG(v) >
1
4
πr2 + 1

2
ωr for each vertex v such that Xv is not in

one of the four corner regions Bj0
i ; and so we have completed the proof of

part (b). �

The above lemma shows us how to find 4 vertices v such that whp the

corresponding points Xv are close to the four corner points ci of Sn.

Lemma 2.8. Let r = r(n) satisfy
√
log n ≪ r ≪ √

n, and consider the

random geometric graph G = G (n, r). Let ω = ω(n) be any function tending

to infinity as n → ∞. There is a polynomial-time (in n) algorithm which, on

input A(G), finds four vertices v1, v2, v3, v4 such that whp the following holds:
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Bj0
1

Bj
4

Bj
2

Bj
3

Bj1
1

ω/7 ω/7

ω/7ω/7

c4c1

c3c2

Figure 1. Choosing points in the 4 corners of the
√
n × √

n
square Sn

for some (unknown) symmetry π of Sn,

Xvi ∈ B(π(ci), ω) for each i ∈ [4].

Proof. Consider the following algorithm: pick a vertex of minimal degree, call

it u1, and mark u1 and all its neighbors. Continue iteratively on the set of

unmarked vertices, until we have found four vertices u1, . . . , u4. (Whp each

vertex has degree at most 1.1 πr2; so after at most 3 steps, at most 3.3 πr2+3 =

o(n) vertices are marked, and so whp we will find u1, . . . , u4.) Let u′1 be a

vertex amongst u2, u3, u4 maximising the graph distance from u1, and list the

four vertices as v1, v2, v3, v4 where v1 = u1 and v3 = u′1 (and v2 and v4 are

the other two of the vertices ui listed in some order). We shall see that whp

v1, v2, v3, v4 are as required.

By Lemma 2.7, whp the vertices u1, . . . , u4 are each within distance ω of a

corner of Sn, and the marking procedure ensures that the four corners involved

are distinct. If ui and uj are such that Xui
and Xuj

are within distance ω of

opposite corners of Sn, then dE(Xui
,Xuj

) ≥
√
2n − 2ω and so dG(ui, uj) ≥

(1 + o(1))
√
2n/r. If Xui

and Xuj
are within distance ω of adjacent corners,

then dE(Xui
,Xuj

) ≤ √
n+ω; and so, since we may assume wlog that ω ≪ √

n,

whp dG(ui, uj) ≤ (1 + o(1))
√
n/r by Corollary 2.5. Hence, whp u1 = v1 and

u′1 = v3 are within distance ω of opposite corners, as are the other two of the

chosen vertices. For each i ∈ [4], denote the corner closest to Xvi by cσ(i).

Then whp σ is a permutation of [4], and cσ(1) and cσ(3) are opposite corners;

and so cσ(1), . . . , cσ(4) lists the corners of Sn in either clockwise or anticlockwise

order. Thus σ extends to a (unique) symmetry π of Sn, and we are done. �
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Having found four vertices v1, . . . , v4 such that the points Xvi are close to

the four corner vertices of Sn, for each other vertex v ∈ V (G) we will be able to

use the graph distances from v to each of v1, . . . , v4 to obtain an approximation

to Xv.

3. Estimating r and Euclidean distances

In this section, we use the preliminary results from the last section to see

how to estimate the threshold distance r, and Euclidean distances between

points, sufficiently accurately to be able to prove Theorem 1.2 in the next

section. Given a vertex v and a set W of vertices with v 6∈ W , let e(v,W )

denote the number of edges between v and W .

Lemma 3.1. Let G ∈ G (n, r), with r = r(n) → ∞ as n → ∞ and r ≪ √
n.

Let ρ =
√
n/r, so ρ→ ∞ as n→ ∞. Fix a small rational constant ε > 0, say

ε = 0.01, and let ω0(x) = xε for x > 0.

Let f(x) = ⌈x/ω0(x)⌉ = ⌈x1−ε⌉ for x > 0. Let Y1 = deg(v1)+ 1 (so Y1 6= 0),

let K = f(
√

πn/Y1), and let Y =
∑K+1

i=2 e(vi, V \{v1}). Finally, let

r̂ =
( Y

πK(1− (K+1)/n)

)1/2
.

Then

|r̂ − r| < ω0(ρ) ρ
−1/2 = o(1) whp; (5)

and in particular r̂/r → 1 in probability as n→ ∞.

The same conclusion holds, with essentially the same proof, if we rede-

fine K as the output of some polynomial time algorithm which returns either

⌊x/ω0(x)⌋ or ⌈x/ω0(x)⌉ where x =
√

πn/Y1; and we may see that in polyno-

mial time we can compute an estimate ˆ̂r very close to r̂, so that the bound (5)

holds for ˆ̂r.

Proof. Let A0(j) be the event that Xj is not within distance r of the boundary

of Sn. (We suppress the dependence on n here, as we often do.) Then

P(A0(j)) ≤ 4r
√
n/n = 4/ρ = o(1).

(Here and in the following A denotes the complement of the event A.) By

Chebyshev’s inequality, if Z ∼ Bin(n − 1, πr2/n) then Z ∼ πr2 whp. Thus,

since A0(1) holds whp, we have Y1 ∼ πr2 whp, so
√

πn/Y1 ∼
√
n/r = ρ whp,

and thus K ∼ f(ρ) whp. In particular,

1
2
f(ρ) ≤ K ≤ 2f(ρ) whp.

Observe that, as n→ ∞, f(ρ) → ∞ and f(ρ) ≪ ρ. Let k satisfy 1
2
f(ρ) ≤ k ≤

2f(ρ), and condition on K = k. It suffices to show now that (5) holds.
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Consider the vertices v2, . . . , vk+1. Let A1 = ∧k+1
j=2A0(j), the event that

no corresponding point Xj is within distance r of the boundary of Sn. The

probability thatA1 fails is at most 4k/ρ ≤ 8f(ρ)/ρ = o(1). LetA2 be the event

that the corresponding balls B(Xj, r) are pairwise disjoint. As the centres must

be 2r apart, the probability that A2 fails is at most
(

k

2

)

π(2r)2/n ≤ 2π(kr/
√
n)2 ≤ 2π(2f(ρ)/ρ)2 = o(1).

Thus A1 ∧ A2 holds whp.

Condition on the event A1 ∧ A2 occurring (still with K = k). Then Y

has distribution Bin(n−(k+1), kπr2/n), with mean (1 − (k+1)/n)kπr2 and

variance at most (1 − (k+1)/n)kπr2. Thus r̂2 has mean r2 and variance at

most r2/(πk(1 − (k+1)/n)) = O(r2/k). It follows by Chebyshev’s inequality

(recalling that, as n → ∞, ρ → ∞ and so also ω0(ρ)
1/3 → ∞), that whp

|r̂2 − r2| ≤ ω0(ρ)
1/3 (r/

√
k). Hence, without conditioning on A1 ∧A2, we have

|r̂2 − r2| ≤ ω0(ρ)
1/3 (r/

√
k) whp. But

|r̂2 − r2| = |r̂ − r| (r̂ + r) ≥ |r̂ − r| r.

Hence |r̂ − r| ≤ ω0(ρ)
1/3/

√
k whp. But

ω0(ρ)
1/3 /

√
k ≤

√
2ω0(ρ)

1/3 (f(ρ))−1/2 ≤ (
√
2 + o(1))ω0(ρ)

1/3
√

ω0(ρ)/ρ ;

and so

ω0(ρ)
1/3/

√
k = O(ω0(ρ)

5/6)ρ−1/2 ≪ ω0(ρ)ρ
−1/2,

which completes the proof. �

Next we restrict r to be large enough so that we can use Corollary 2.6. Let

r̂ be as in the last lemma.

Lemma 3.2. Let r = r(n) satisfy n3/14 ≪ r ≪ √
n. Then there exists δ = δ(n)

with δ → 0 sufficiently slowly such that whp, for all pairs u, v of vertices,

r̂dG(u, v) + δr̂ ≥ dE(Xu,Xv) ≥ r̂dG(u, v)− (1 + δ)r̂. (6)

Note that by (6) and Lemma 3.1, whp we can determine each value dE(Xu,Xv)

up to an additive error of (1 + o(1))r̂ = (1 + o(1))r.

Proof. We claim that, for a suitable choice of δ, whp, for all pairs vertices u, v

we have

rdG(u, v) ≥ dE(Xu,Xv) ≥ rdG(u, v)− (1 + δ/2)r. (7)

The first inequality in (7) is obvious: we shall use Corollary 2.6 to prove the

second inequality. First since n1/2r−7/3 ≪ 1, we may choose δ ≫ n1/2r−7/3, and

we do not need to worry about the first term in the maximum in the corollary.
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Also, we may assume that δ ≫ n−4/21(logn)2/3, and so for the second term we

have

cn1/6r−5/3(log n)2/3 ≪ n−4/21(log n)2/3 ≪ δ,

which completes the proof of (7).

Let ρ =
√
n/r, as in Lemma 3.1. By Corollary 2.6, whp

max
u,v

dG(u, v) ≤
√
2n/r + 2 ≤ 2ρ

for n sufficiently large (where the maximum is over all pairs u, v of vertices).

Hence, by (5) and (7),

r̂dG(u, v) + 2ρ |r̂ − r| ≥ dE(Xu,Xv)

≥ r̂dG(u, v)− 2ρ |r̂ − r| − (1 + δ/2)r. (8)

Now r ≫ n3/14 so (r6/n)1/4 ≫ n1/14. Thus, by Lemma 3.1, we may assume

that whp |r̂ − r| ≤ ω0(ρ)(r
2/n)1/4, where ω0(ρ) ≪ (r6/n)1/4n−1/15. Thus

2ρ |r̂ − r| ≤ 2ω0(ρ)(n/r
2)1/4 = r (2ω0(ρ)(n/r

6)1/4) = o(r n−1/15).

But we may assume that δ ≥ n−1/15, so 2ρ |r̂ − r| = o(δr). Also, if δ → 0

sufficiently slowly, then δr → ∞ as n→ ∞, and whp

(1 + δ)r̂ − (1 + δ
2
)r = (1 + δ

2
)(r̂ − r) + δ

2
r̂ = δ

2
r + o(1).

Putting these bounds into (8) completes the proof of the lemma. �

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2, on the reconstruction of random

geometric graphs.

Throughout this section, let ω = ω(n) be any function tending to infinity

as n → ∞ slowly, and in particular such that w ≪
√
log n. We shall assume

at various places without further comment that n is sufficiently large. Let B1

be the event that we find vertices v1, . . . , v4 such that dE(Xvi , π(ci)) < ω for

each i = 1, . . . , 4, for some (unknown) random symmetry π = π(Ψ) of Sn. By

Lemma 2.8, B1 holds whp. Let σ0 denote the identity symmetry. If B1 does

not hold then let us set π = σ0 (the choice of σ0 will not be important). Now

let σ be any given symmetry. Observe that B1 holds for Ψ if and only if it

holds for σ−1 ◦Ψ; on B1, π(Ψ) = σ if and only if π(σ−1 ◦Ψ) = σ0, and Ψ and

σ−1 ◦Ψ have the same distribution. Thus for each symmetry σ

P(B1 ∧ (π = σ)) = P(B1 ∧ (π = σ0)), (9)

and so P(π = σ) → 1
8
as n → ∞. Since we are using the symmetry-adjusted

measure d∗, we may treat the random symmetry π as if it were the identity,
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as we shall check below. We set Φ(vi) = ci, and still have to assign Φ(v) for

all other vertices v ∈ V (G). Let B2 be the event that B1 holds and π is the

identity. Thus P(B2) → 1
8
as n→ ∞. Recall that we are given ε > 0: we may

assume wlog that ε < 1
2
say. The main step in the proof will be to show that

conditional on B2, we have dmax(Ψ,Φ) < (1 + ε)r whp. (10)

(Of course d∗(Ψ,Φ) ≤ dmax(Ψ,Φ).)

Let us prove the claim (10). By Lemma 3.1 (using the notation ρ =
√
n/r

given there) and Corollary 2.6, whp, for each pair u, v of distinct vertices

r̂(dG(u, v) + ε/5)

≤ r(dG(u, v) + ε/5) + ω0(ρ)ρ
−1/2(dG(u, v) + ε/5)

≤ r(dG(u, v) + ε/5) + (rn−1/2)1/2−ε2dG(u, v)

= r

(

dG(u, v) + ε/5 +
2rdG(u, v)

r3/2+εn1/4−ε/2

)

= r

(

dG(u, v) + ε/5 +
2dE(u, v) +O(r)

r3/2+εn1/4−ε/2

)

= r

(

dG(u, v) + ε/5 +
O(n1/4+ε/2)

r3/2+ε

)

≤ r(dG(u, v) + ε/4),

where the last inequality follows from our assumption that r ≫ n3/14, and so

r ≫ n1/6+ε/3. By the same argument we obtain

r̂(dG(u, v)− (1 + ε/5))

≥ r(dG(u, v)− (1 + ε/5))− ω0(ρ)ρ
−1/2(dG(u, v)− (1 + ε/5))

≥ r(dG(u, v)− (1 + ε/4)).

Hence, by Lemma 3.2 with δ = ε/5, whp, for each pair u, v of distinct vertices,

we have

r(dG(u, v) + ε/4) ≥ r̂(dG(u, v) + ε/5) = r̂(dG(u, v) + δ)

≥ dE(Xu,Xv)

≥ r̂(dG(u, v)− (1 + δ)) = r̂(dG(u, v)− (1 + ε/5)) ≥ r(dG(u, v)− (1 + ε/4)).

By Lemma 2.7, whp, for each i ∈ [4] and vertex v ∈ V − = V \ {v1, . . . , v4}, we
have

r(dG(v, vi) + ε/3) ≥ r̂(dG(v, vi) + ε/4) ≥ dE(Xv,Xvi) + ω

≥ dE(Xv, ci)

≥ dE(Xv,Xvi)− ω ≥ r̂(dG(v, vi)− (1 + ε/4)) ≥ r(dG(v, vi)− (1 + ε/3)).
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Let B3 be the event that these last inequalities hold, so B3 holds whp.

Condition on the events B2 and B3 holding, and fix v1, v2, v3, v4 to be the

‘corner’ vertices found. We shall show that dmax(Ψ,Φ) < (1 + ε)r (determin-

istically): this will establish (10), since then

P(dmax(Ψ,Φ) ≥ (1 + ε)r | B2) ≤ P(B3)/P(B2) = o(1).

By symmetry, we may assume for convenience that vi = i for each i ∈ [4].

For each i ∈ [4], let Q(n, i) denote the quarter of Sn containing the corner ci.

For each vertex v ∈ V − there is a ‘nearest corner’ in terms of graph distance.

Fix j ∈ [4]. Consider the case when a vertex v ∈ V − satisfies dG(v, vj) =

min1≤i≤4 dG(v, vi) (with ties broken arbitrarily).

Claim For each vertex v ∈ V − such that dG(v, vj) = min1≤i≤4 dG(v, vi), the

corresponding point Xv lies within distance at most r of the quarter Q(n, j)

of Sn.

Let us establish this claim. Suppose wlog that j = 4. Let v ∈ V −, and

suppose for a contradiction thatXv is not within distance r of Q(n, 4). Assume

that Xv ∈ Q(n, 1) (we shall consider other cases later). Let us first check that

the minimum value of dE(x, c4) − dE(x, c1) over all points x in Q(n, 1) at

distance ≥ r from Q(n, 4) is attained at x = x∗ where x∗ = (−r, 0). To see

this, let us observe first that the minimum must be attained for some point

(−r,−
√
n
2
+z) with z ∈ [0,

√
n
2
], as otherwise one could obtain a smaller solution

by shifting horizontally to the right until hitting the line y = −r. Next, for a
given point x = (−r,−

√
n
2

+ z) we have

dE(x, c4)− dE(x, c1) =

√

z2 + (
√
n
2

+ r)2 −
√

z2 + (
√
n
2

− r)2.

The derivative with respect to z of the previous expression is

z
√

z2 + (
√
n
2

+ r)2
− z

√

z2 + (
√
n
2

− r)2
,

which is clearly negative, since the denominator in the first term is bigger than

in the second one. Hence, dE(x, c4)− dE(x, c1) is decreasing in z, and so it is

minimized at x = x∗, as we wished to show. Hence, all points x in Q(n, 1) at
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distance ≥ r from Q(n, 4) satisfy

dE(x, c4)− dE(x, c1) ≥ dE(x
∗, c4)− dE(x

∗, c1)

=

√

(
√
n
2
)2 + (

√
n
2

+ r)2 −
√

(
√
n
2
)2 + (

√
n
2

− r)2

=

√

n/2 +
√
nr(1 + o(1))−

√

n/2−
√
nr(1 + o(1))

=
√

n
2

(

1 + r√
n
(1 + o(1))

)

−
√

n
2

(

1− r√
n
(1 + o(1))

)

= (
√
2 + o(1))r. (11)

But, since B3 holds,

dG(v, v1) ≤ dE(Xv, c1)/r + 1 + ε/3

and

dG(v, v4) ≥ dE(Xv, c4)/r − ε/3.

Hence, by (11) and noting that
√
2− ε/3 > 1 + ε/3, we have

dG(v, v4) ≥ dE(Xv, c1)/r +
√
2− ε/3 > dG(v, v1),

a contradiction. Thus we cannot have Xv ∈ Q(n, 1).

The case when Xv is in Q(n, 3) is analogous. Finally consider the case when

Xv is in Q(n, 2). Now we shall check that the minimum value of dE(x, c4) −
dE(x, c2) over all points x in Q(n, 2) at distance ≥ r from Q(n, 4) is again

attained at x = x∗ = (−r, 0) (or at x = (0, r)). To see this, observe much as

before that the minimum must be attained at distance exactly r from (0, 0), as

otherwise one could obtain a smaller solution by shifting x along the straight

line connecting x with (0, 0), until the distance from (0, 0) is exactly r. Next,

for a given point x = (−r cos θ, r sin θ) with θ ∈ [0, π/2], dE(x, c4)− dE(x, c2)

is equal to
√

(

√
n

2
+ r cos θ)2 + (

√
n

2
+ r sin θ)2 −

√

(

√
n

2
− r cos θ)2 + (

√
n

2
− r sin θ)2.

The derivative with respect to θ of the above expression is

r
√
n(cos θ − sin θ)

2
√

(
√
n
2

+ r cos θ)2 + (
√
n
2

+ r sin θ)2
− r

√
n(sin θ − cos θ)

2
√

(
√
n
2

− r cos θ)2 + (
√
n
2

− r sin θ)2
.

For θ ∈ [0, π/4], cos θ ≥ sin θ, the derivative is positive (or zero), whereas for

θ ∈ [π/4, π/2] the derivative is negative (or zero). Hence, the minimum value

of dE(x, c4) − dE(x, c2) is attained at x = x∗ = (−r, 0) (or at x = (0, r)), as

we wished to show.
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Therefore, by (11), all points x in Q(n, 2) at distance ≥ r from Q(n, 4)

satisfy

dE(x, c4)− dE(x, c2) ≥ dE(x
∗, c4)− dE(x

∗, c2)

= (
√
2 + o(1))r.

The remainder of the argument is as before, and so we have established the

claim.

Now mini∈[3] dE(Xv, ci) ≥
√
n/2 − r. Denote by α the angle c2Xvc3 at Xv

between the segmentsXvc2 andXvc3, and by β the angle c1Xvc2 atXv between

the segments Xvc1 and Xvc2. We do not observe α or β directly, but clearly

we have π/4 ≤ α, β ≤ π/2+ o(1) (see Figure 2, left picture), the bounds being

attained if Xv is c4 and if Xv is near (0, 0), respectively.

β

α

Xv
α

α
π − α

π − α

α

β

Figure 2. Illustration of the notation

Let v ∈ V − be such that dG(v, vj) = min1≤i≤4 dG(v, vi), as in the last Claim,

and assume as in the last Claim wlog that j = 4. For each i = 1, 2, 3, let

Ri(v) = r̂(dG(v, vi)−1
2
)
(

= Θ(
√
n)
)

, and let Ci(v) be the circle centred on the

corner ci with radius Ri(v). Also, let Ai(v) be the annulus centred on ci formed

by circles of radii Ri(v)± r̂(1
2
+ ε

4
). We can construct these three circles and

corresponding annuli, and Xv must lie in each of the annuli. It is convenient

to consider them in pairs.

Consider first the circles C2(v), C3(v) and corresponding annuli A2(v), A3(v).

The circles intersect below the line c2c3 in a point Y23(v), where the tangents

are at angle α+o(1) (and π−α+o(1)). The annuli intersect below the line c2c3

in a set B23(v) which is – up to lower order terms accounting for curvatures –

a parallelogram RH23(v) with (interior) angles α and π−α (see Figure 2, right

picture). (We chose to consider the circles and annuli with centres far from

Xv so that curvatures would be negligible.) In fact, RH23(v) is a rhombus, as
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in each annulus the radii differ by the same value (1 + ε/2)r̂; and since the

heights are equal, the sides must be of equal length. Further, the point Y23(v)

is at the centre of the rhombus (up to lower order terms), where the diagonals

cross. (It might happen that some part of the rhombus is actually outside Sn,

but since this makes the region which we know contains Xv smaller, it is only

helpful for us.)

The circles C1(v), C2(v) and corresponding annuli A1(v), A2(v) behave in

exactly the way described above for C2(v), C3(v) and corresponding annuli. In

particular, the annuli A1(v), A2(v) intersect to the right of the line c1c2 in a

set B12(v) which is close to a rhombus RH12(v) with angles β and π − β.

Now consider the circles C1(v), C3(v) and corresponding annuli A1(v), A3(v);

and for convenience let us restrict our attention to the case when α, β ≤
π/3+ o(1) (so Xv is not near the centre (0, 0) of Sn; in the next paragraph we

shall see why it suffices to have this assumption on α and β). The annuli A1(v),

A3(v) intersect inside (or near) the bottom right quarter square Q(n, 4) in a

set B13(v) which is close to a rhombus RH13(v) with angles α+β and π−α−β,
where both these angles are in the interval between π/2 and 2π/3 + o(1).

Among these three pairs of circles and corresponding rhombi, we will con-

sider one whose angles are closest to π/2. Let us check that there must be at

least one with angles in the interval [π/3, 2π/3] – we call the corresponding

rhombus squarelike. Indeed, suppose that this is not the case for RH12(v) or

RH23(v). Then, since π/4 ≤ α, β ≤ π/2 + o(1), we must have α, β < π/3.

Then, however, π/2 ≤ α+ β < 2π/3, and so RH13(v) is the desired squarelike

rhombus. Further, the maximum distance from the centre Y13(v) of the rhom-

bus RH13(v) (the intersection of the diagonals) to a point in the set B13(v)

is half the length d of the long diagonal (recall that we assume n sufficiently

large, so that we can safely ignore curvature issues and we can approximate

B13(v) arbitrarily well by a rhombus).

Pick a rhombus such that its angles are closest to π/2, and without loss of

generality suppose it is RH23(v). We set Φ(v) = Y23(v). Clearly, the further

away the angles α and π − α are from π/2, the longer the long diagonal, and

we may thus assume the worst case of α = π/3 and π−α = 2π/3. The shorter

diagonal of such a rhombus splits it into two equilateral triangles, with height

(1+ ε/2)r̂; and thus half the length d of the longer diagonal is also (1+ ε/2)r̂,

see Figure 3. Thus in general

d/2 ≤ (1 + ε/2)r̂ ≤ (1 + ε)r.



22 JOSEP DÍAZ, COLIN MCDIARMID, AND DIETER MITSCHE

(1 + ε/2)r̂

d

π/6
2π/3

π/2

Φ(v)

Xv

Figure 3. Angles in R23, for the extreme case α = π/3

Hence, the Euclidean distance from Φ(v) to any point inside B23(v) is at

most d/2 ≤ (1 + ε)r. But Xv ∈ B23(v), so dE(Φ(v),Xv) ≤ (1 + ε)r. This

holds for each v ∈ V −, so we have found an embedding Φ with displacement

at most (1 + ε)r. (If the point of the intersection of the two diagonals falls

outside Sn, then we project this point to the closest point on the boundary of

Sn, and clearly the distance to Xv can only decrease).

We have now established (10), and it remains only to justify treating the

random symmetry π as the identity. We want to replace the conditioning on

B2 in (10) by conditioning on B1.

Let t > 0 and let σ be a symmetry. Arguing as for (9), and noting also that

d∗(Ψ,Φ) = d∗(σ−1 ◦Ψ,Φ), we have

P (B1 ∧ (d∗(Ψ,Φ) ≤ t) ∧ (π(Ψ) = σ))

= P
(

B1 ∧ (d∗(σ−1 ◦Ψ,Φ) ≤ t) ∧ (π(σ−1 ◦Ψ) = σ0)
)

= P (B1 ∧ (d∗(Ψ,Φ) ≤ t) ∧ (π(Ψ) = σ0)) ;

so, summing over σ we have

P (B1 ∧ (d∗(Ψ,Φ) ≤ t)) = 8P (B2 ∧ (d∗(Ψ,Φ) ≤ t)) .

But, similarly by (9), we have P(B1) = 8P(B2), so

P(d∗(Ψ,Φ) ≤ t | B1) = P(d∗(Ψ,Φ) ≤ t | B2).

Hence

P(d∗(Ψ,Φ) ≤ (1 + ε)r | B1) = P(d∗(Ψ,Φ) ≤ (1 + ε)r | B2) = 1− o(1)

by (10). Since B1 holds whp, this completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3

In this section, we prove Theorem 1.3, on approximate reconstruction from

the random family of vertex orderings. As in the algorithm in Theorem 1.2,
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the algorithm here has two main steps. In the first subsection we give a sketch

of the method, in the next subsection we fill in details on step (a), and in the

final subsection we fill in details on step (b).

5.1. Sketch of the algorithm. The algorithm has two main steps.

• Step (a) Whp we identify four vertices vi such that the corresponding

points are near the four corners of Sn.

• Step (b) Whp, for each other vertex v we construct two circles, and two

corresponding thin annuli both containing Xv, centered on a chosen

pair of corners, such that the circles meet at an angle between π/3

and 2π/3; and we set Φ(v) to be the relevant point of intersection of

the circles (which is essentially the centre of the rhombus formed by

the intersection of the annuli, as before).

We obtain a much smaller displacement error than with random geometric

graphs in Theorem 1.2 since our annuli are much thinner. We start with a

sketch of the two steps (a) and (b) and of the proofs, before giving the full

proofs. First, however, we introduce some useful notation.

For each pair u, v of vertices, we let k(u, v) be the rank of v in the vertex-

ordering τu. Thus k(u, u) = 1, and if v is last in the order τu (farthest from u)

then k(u, v) = n.

For 0 ≤ s ≤
√
2, let λ(s) be the area of the set of points y in the unit square

S1, centered at (0, 0), within distance s of a fixed corner point, say (−1
2
,−1

2
).

It will be convenient here to say that a sequence An of events holds with

very high probability (wvhp) if P(An) = 1 − o(1/n) as n → ∞. Finally, let

ω = ω(n) → ∞ slowly, and in particular assume as in the previous section

that ω ≪
√
log n.

Sketch of step (a): finding points near the corners of Sn

We use the set F1 of n pairs (v, v′) of vertices with v < v′ (recall that

v, v′ ∈ [n]), such that v′ is last in the order τv, and v is last in the ordering τv′ .

This whp yields pairs of vertices such that the corresponding points are close

to opposite corners of Sn. We pick a pair in F1, discard pairs corresponding

to the same pair of opposite corners, and pick a pair from what remains. We

thus show that the following event C1 holds whp.

Let C1 be the event that this procedure yields vertices v1, . . . , v4 such that,

for some (unknown, random) symmetry π of Sn, we have Xvi ∈ B(π(ci), ω) for

each i ∈ [4] (so Xvi is very close to the corner π(ci)). Also, for given distinct

vertices v1, . . . , v4 let C1(v1, . . . , v4) be the event that C1 holds with this choice
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of the ‘corner’ vertices.

Sketch of step (b): constructing the circles and annuli

Suppose that the event C1(v1, . . . , v4) holds. We use the orders τv1 , . . . , τv4
to estimate the distances from the corners.

Let V − = V \ {v1, . . . , v4}. For each vertex v ∈ V −, we define i0 = i0(v) to

be the least j ∈ [4] such that k(vj, v) = mini∈[4] k(vi, v) (picking the least j is

just a tie-breaker). (Thus π(ci0) is likely to be the closest corner to Xv.) Fix

v ∈ V −, and let I− = [4] \{i0}. We consider the three orders τvi for i ∈ I−.

(We do not use τvi0 , and do not consider distances from π(ci0), so that we work

only with ‘large’ distances, and thus we do not need to worry about curvature,

exactly as before.) We want to find a pair of thin annuli, centred on two of

the three corners near the points Xvi for i ∈ I−, such that wvhp the ‘near-

rhombus’ formed by the intersection of the two annuli is squarelike, and wvhp

Xv is in this near-rhombus.

We shall see that, for each i ∈ I−, we have k(vi, v) > 0.19n wvhp (so we will

work only with ‘large’ distances); and for i = i0 ± 1, we have k(vi, v) < 0.91n

wvhp. (Indices in [4] are always taken mod 4.) Let α0 = π
9
+ 1√

3
≈ 0.9264:

later we shall choose a rational constant α slightly bigger than α0. When

k(vi, v) is Ω(n) and is at most αn, we have a good estimate of dE(π(ci),Xv)

(see Lemma 5.2). Also, as in the proof of Theorem 1.2, it suffices to consider

the case when π is the identity map.

There are two cases depending on the rank k(vi0+2, v) (note that vi0 and vi0+2

are at opposite corners of Sn): case (i) when k(vi0+2, v) ≤ αn, and case (ii)

when k(vi0+2, v) > αn. In case (i) we form three circles and three thin annuli,

and then choose a best pair of them, as in the proof of Theorem 1.2. In case (ii),

we just use the two circles and thin annuli centred on the corners ci0−1 and

ci0+1 (see Lemma 5.3).

5.2. Filling in the details for step (a). We need to show that the method

sketched above works. We first consider step (a), and show that indeed the

event C1 holds whp. We need one deterministic preliminary lemma.

Lemma 5.1. Let x ∈ Sn, and let

t = max{dE(x,y) : y ∈ Sn} = max
i
dE(x, ci) (≥

√

n/2).

Then (assuming that n is sufficiently large)

max{dE(x,y) : y ∈ (Sn \ ∪iB
o(ci, ω))} ≤ t− ω/3

(where the balls Bo(ci, ω) are open).
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Proof of Lemma 5.1. Suppose wlog that x is in the bottom left quarter of Sn

(containing c1). It is easy to see that dE(x, c3) = t, and max{dE(x,y) : y ∈
(Sn \ ∪iB

o(ci, ω))} is achieved at some point y ∈ Sn with dE(y, c3) = ω.

Let c3 − x = (a, b), so
√

n/2 ≤ a, b ≤
√
2n, and t =

√
a2 + b2. Suppose

further wlog that a ≥ b (that is, x lies on or above the line y = x), and note

that a ≤ 2b.

Consider a point y with dE(c3,y) = ω. We claim that

dE(x,y) ≤ t− (1 + o(1))ω/
√
5. (12)

To see this, write c3−y = (p, q). Then p, q ≥ 0 and p2+ q2 = ω2, so p+ q ≥ ω;

and we have

dE(x,y) =
(

(a− p)2 + (b− q)2
)1/2

=
(

t2 − (1 + o(1))(2ap+ 2bq)
)1/2

= t
(

1− (1 + o(1))(ap+ bq)/t2
)

= t− (1 + o(1))(ap+ bq)/t.

But a ≥ b and p+ q ≥ ω, so

dE(x,y) ≤ t− (1 + o(1))b(p+ q)/t ≤ t− (1 + o(1))bω/t.

Also, a ≤ 2b so b/t ≥ b/
√
4b2 + b2 = 1/

√
5. The claim (12) now follows, and

this completes the proof of the lemma. �

Finding points near the corners of Sn

Let C2 be the event that, for each i ∈ [4], there is a vertex ui such Xui
∈

B(ci, ω/4). Then C2 holds whp. To see this, note that, for a fixed i ∈ [4]

P(Xv 6∈ B(ci, ω/4) for each v) = (1− 1
4
π(ω/4)2/n)n < e−

π
64

ω2

= o(1);

and use a union bound. Observe that if z ∈ B(ci, ω/4) and z′ ∈ B(ci′ , ω/4) for

opposite corners ci and ci′, then dE(z, z
′) ≥

√
2n− ω/2.

Start with the set F0 of n (ordered) pairs (v, v′) where v′ is farthest from v

(in the ordering τv). Let F1 be the set of pairs (v, v′) in F0 such that v < v′

and also (v′, v) ∈ F0. Now assume that the event C2 holds. By Lemma 5.1, for

each pair (v, v′) ∈ F0 we must have Xv′ ∈ B(ci, ω) for some i. Hence, for each

pair (v, v′) ∈ F1, Xv ∈ B(ci, ω) and Xv′ ∈ B(ci′, ω) for some corners ci and ci′ ,

which must be an opposite pair of corners.

Choose a pair (v1, v3) ∈ F1. Suppose that Xv1 ∈ B(cσ(1), ω) and Xv3 ∈
B(cσ(3), ω), where cσ(1) and cσ(3) form an opposite pair of corners. (We do

not know σ(1), σ(3).) Observe that, if dE(cσ(1),x) ≤ ω then dE(Xv1 ,x) ≤ 2ω;

and if dE(Xv1,x) ≤ 2ω then x ∈ B(cσ(1), 3ω). Let C3 be the event that the
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number of points Xv ∈ B(cσ(1), 3ω) is at most ω3, and note that C3 holds

whp. Let C4 be the event that the number of points Xv ∈ B(cσ(1), ω
2) is at

least ω3, and note that C4 holds whp. We may assume that ω2 + 3ω <
√
n.

Observe that, if the event C4 holds, then there are at least ω3 points Xv in

B(Xv1 , ω
2 + ω) ⊆ B(cσ(1), ω

2 + 2ω).

Note that a vertex v can occur at most once in the pairs in F1. Form F2

by removing from F1 any pairs containing a vertex within the first ω3 from v1

under the order σv1 . Assuming that C3∧C4 holds, we must have removed from

F1 all pairs with a vertex u such that Xu ∈ B(cσ(1), ω) (and thus all pairs with

a vertex u such that Xu ∈ B(cσ(3), ω)); and removed no pairs with a vertex u

such that Xu ∈ B(cj, ω) for j 6∈ {σ(1), σ(3)} (since each vertex removed is in

B(cσ(1), ω
2 + 2ω), and ω2 + 3ω <

√
n). Hence, the pairs in F2 are exactly the

pairs from F1 which are close to the other pair of opposite corners: choose v2v4

to be any pair in F2. Suppose that Xv2 ∈ B(cσ(2), ω) and Xv4 ∈ B(cσ(4), ω).

Then there is a symmetry π of Sn such that π(ci) = cσ(i) andXvi ∈ B(σ(ci), ω),

for each i ∈ [4]. The vertices v1, . . . , v4 are as required to show that the event

C1 holds. Thus we have just shown that C1 holds whp, as required in step (a).

5.3. Filling in the details for step (b). Before we start the main detailed

proof of step (b), we give some preliminary results.

On the area function λ(s) for S1

If 0 ≤ s ≤ 1 then clearly λ(s) = 1
4
πs2. Let 1 < s <

√
2. Let A be

the point on the right side of S1 at distance s from the corner point c1, so

A = (1
2
,−1

2
+

√
s2 − 1); and similarly B = (−1

2
+

√
s2 − 1, 1

2
) is the point on

the top side of S1 at distance s from c1. Let ψ = ψ(s) be the angle Ac1B,

which is the angle subtended at c1 by the curved part of the boundary of

S1 ∩B(c1, s). We claim that

ψ(s) = sin−1(2s−2 − 1) (13)

and

λ(s) = 1
2
s2ψ(s) +

√
s2 − 1. (14)

To establish this claim, let θ be the angle Ac1c4. Then cos θ = 1/s and so

cos(2θ) = 2 cos2 θ − 1 = 2s−2 − 1. But the angle Bc1c2 also equals θ, so

ψ + 2θ = π/2. Thus sinψ = 2s−2 − 1, giving the formula for ψ in (13). Also,

the sum of the areas of the triangles c1Ac4 and c1Bc2 is
√
s2 − 1, and the

sector with straight sides c1A and c1B (and internal angle ψ) has area 1
2
s2ψ;

and these add up to λ(s), establishing (14).
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For s = 2√
3
we have ψ = sin−1 1

2
= π

6
; and so

λ(s) = 1
2
· 4
3
· π
6
+ 1√

3
= π

9
+ 1√

3
≈ 0.926416. (15)

Also, for 1 ≤ s ≤ 2√
3
we have ψ ≥ π

6
.

On the angle c2xc4 at a point x ∈ S1 far from c1

We need to consider values of s near to
√
2. We shall show that

for each x ∈ S1 with dE(c1,x) ≥ 2√
3
, the angle c2xc4 is at most 2π

3
. (16)

To see this, let F (for ‘far’ from c1) be the set of points (x, y) ∈ S1 with x+y ≥
1√
3
. The line x + y = 1√

3
meets the line x = 1

2
at the point P = (1

2
, 1√

3
− 1

2
),

and meets the line y = 1
2
at the point Q = ( 1√

3
− 1

2
, 1
2
). Consider the midpoint

x∗ = ( 1
2
√
3
, 1
2
√
3
) of the segment of the line x + y = 1√

3
between P and Q.

The point x∗ is at distance 1√
6
from the origin O. Thus the angle c2x

∗O is

tan−1 1/
√
2

1/
√
6
= tan−1

√
3 = π/3; and so the angle c2x

∗c4 is 2π/3. We claim that,

for each point x ∈ F, the angle c2xc4 is at most 2π
3
. (17)

This will follow from the above, once we check that the angle is maximised

over x ∈ F at x = x∗. Clearly it is maximised at some point on the line

x+ y = 1√
3
. Note that the lines c2c4 and x+ y = 1√

3
are parallel. Let a, b > 0,

and consider the parallel lines y = 0 and y = b. Consider the origin O and the

points C = (a, 0) on the line y = 0. For each point z = (z, b) on the line y = b,

let θ(z) be the angle OzC. It suffices now to show that θ(z) is maximised at

z = a/2. Write θ(z) as tan−1 z
b
+ tan−1 a−z

b
, and differentiate: we find

θ′(z) =
1

1 + (z/b)2
1

b
+

1

1 + ((a− z)/b)2
(

−1

b

)

=
ab

(b2 + z2)(b2 + (a− z)2)
(a− 2z)

after some simplification. Thus indeed θ(z) is maximised at z = a/2; and we

have established the claim (17).

Since P and Q lie on the line x+ y = 1√
3
and

dE(c1, P ) = dE(c1, Q) = (1 + 1
3
)1/2 = 2√

3
(≈ 1.1547),

it follows that S1 \B(c1,
2√
3
) ⊆ F . This completes the proof of (16).

We need the following auxiliary lemma. Recall that

α0 = λ( 2√
3
) ≈ 0.9264.

Lemma 5.2. Assume that C1(v1, . . . , v4) holds. There exists ε > 0 such that

if α = α0 + ε then the following holds whp. For each i ∈ [4] and each v ∈ V −,
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if k = k(vi, v) satisfies k = Ω(n) and k ≤ αn, then
∣

∣dE(π(ci),Xv)− s(k/n)
√
n
∣

∣ ≤ 1.19695
√

logn. (18)

Proof. Let i ∈ [4]. Let k be an integer with k = Ω(n) and k ≤ αn. Let

sk = s · (k/n)√n so λ(sk/
√
n) = k/n and λn(sk) = λ(sk/

√
n)n = k For a

measurable subset S of Sn, let N(S) be the random number of vertices v with

Xv ∈ S. Observe that N(B(ci, sk)) ∼ Bin(n, k/n), with mean k.

Let 0 < η < 1: we shall choose a (small) value for η later. By (15), by

taking ε sufficiently small, we may ensure that s(k/n) ≤ (1 + η) 2√
3
and the

angle ψ = ψ(s(k/n)) satisfies ψ ≥ ψ0, where ψ0 = (1 − η)π
6
. Now, for a given

constant c > 0,

λn(sk + c
√

log n)− λn(sk) ≥ (1 + o(1))ψ0

(

(sk + c
√

log n)2 − s2k
)

= (1 + o(1))2cψ0sk
√

log n.

Also, since ψ ≤ π
2
,

λn(sk + c
√

log n)− λn(sk) ≤ (1 + o(1))π
2

(

(sk + c
√

log n)2 − s2k
)

≤ (1 + o(1))πcsk
√

log n,

so

1 ≤ λn(sk + c
√

log n)/λn(sk) ≤ 1 +O
(

√

logn
n

)

= 1 + o(1).

Let X+ = N(B(ci, sk + c
√
log n)). By Lemma 2.1, since sk

√
log n/E[X+] =

o(1),

P(X+ ≤ k) = P(X+ ≤ E[X+](1− (1 + o(1))2cψ0sk
√

log n/E[X+])

≤ exp{−(1 + o(1))1
2

(

2cψ0sk
√

log n/E[X+]
)2)

E[X+]}
≤ exp{−(1 + o(1)) 2 c2ψ2

0s
2
k log n/E[X

+]}.

But

E[X+] ∼ k = λn(sk) ≤ 1
4
πs2k,

so

P(X+ ≤ k) ≤ exp
(

− (1 + o(1))
1
4
πs2k

E[X+]
8
π
c2ψ2

0 logn
)

≤ exp
(

− (1 + o(1))2π
9
c2(1− η)2 logn

)

.

Note that
√

9/(2π) ≈ 1.196827. Thus, if η is sufficiently small, setting c =

1.1969, we have P(X+ ≤ k) = o(1/n).

Similarly, let X− = N(B(ci, sk − c
√
logn)): then, with the same value of c,

P(X− ≥ k) = o(1/n).
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Thus we have seen that whp the following holds. For each i ∈ [4] and each

v ∈ V −, if k = k(vi, v) satisfies k = Ω(n) and k ≤ αn, then

N(B(ci, sk − 1.1969
√

logn)) < k and N(B(ci, sk + 1.1969
√

log n)) > k.

Now, for each i ∈ [4], dE(π(ci), vi) < ω ≪
√
logn. Also

B(π(ci), sk + 1.1969
√

log n) ⊆ B(vi, sk + 1.1969
√

log n+ ω)

⊆ B(π(ci), sk + 1.1969
√

logn + 2ω)

⊆ B(π(ci), sk + 1.19695
√

log n).

But the first of these four balls contains more than k points Xu, so Xv must

be in the second ball, and so it is in the last one; that is dE(π(ci),Xv) ≤
sk + 1.19695

√
logn. Similarly, Xv 6∈ B(π(ci), sk − 1.19695

√
log n), and the

lemma follows. �

We now begin the main proof of Theorem 1.3, starting with the first step.

Nearest corner in Sn

Condition throughout on the event C1, and on a particular choice of v1, . . . , v4;

that is, condition on the event C1(v1, . . . , v4). Let V − = V \ {v1, . . . , v4}. Re-
call that, for each i ∈ [4] and v ∈ V −, k(vi, v) is the rank of v in the order

τvi . Since vi is very close to π(ci) whp, we may think of k(vi, v) as roughly the

number of points Xu for u ∈ V which are as close to π(ci) as Xv is. Let C5 be

the event that, for each j ∈ [4],
∣

∣{u ∈ V : dE(cj ,Xu) <
1
2

√
n− 2ω}

∣

∣ ≥ π
16
n− n2/3.

Then C5 holds whp, by Chebyshev’s inequality.

Let i ∈ [4] and let v ∈ V −. If dE(π(ci),Xv) ≥ 1
2

√
n then dE(Xvi ,Xv) ≥

1
2

√
n − ω, and so each vertex u such that dE(π(ci),Xu) <

1
2

√
n − 2ω satisfies

dE(Xvi,Xu) < dE(Xvi ,Xv); hence, if C5 holds, then k(vi, v) >
π
16
n− n2/3.

Recall that, given v ∈ V −, the index i0 = i0(v) ∈ [4] satisfies k(vi0 , v) =

mini∈[4] k(vi, v) (breaking ties by choosing the least such value i). Condition

on C5 holding. Then, for each v ∈ V − and each i ∈ [4]\{i0}, we have k(vi, v) >
π
16
n− n2/3. (For, if not, then both dE(π(ci0),Xv) <

1
2

√
n and dE(π(ci),Xv) <

1
2

√
n, which is not possible since the distance between distinct corners is at

least
√
n.) Note that π/16 ≈ 0.1963 > 0.19. Hence, for each i ∈ [4]\{i0} we

have k(vi, v) > 0.19n, so k(vi, v) = Θ(n).

Next, we show that for i = i0 ± 1 (indices are taken modulo 4), we have

k(vi, v) ≤ αn. Assume wlog that i0 = 1, and consider i = 2. We saw earlier

that Xv is within distance r of the quarter square containing π(c1). Recall
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that v2 is close to the corner π(c2). The maximum distance from π(c2) to Xv

is (1 + o(1))
√
5n/2. But λ(

√
5/2) = 5

8
sin−1 3

5
+ 1

2
≈ 0.902188. Thus the area

of B(π(c2), (1 + o(1))
√
5n/2) is < 0.905n. Hence, by Lemma 2.1, wvhp the

number of vertices w with Xw ∈ B(π(c2), (1 + o(1))
√
5n/2) is less than 0.91n,

so k(v2, v) < 0.91n < αn, as required.

For i = i0+2, we have k(vi, v) > 0.19n, but the upper bound k ≤ αn might

or might not hold. In order to deal with both cases, we need another auxiliary

lemma.

Lemma 5.3. Let v ∈ V − and let i0 = i0(v). If k(vi0+2, v) > αn, then wvhp

the near-rhombus formed from the intersection of the two annuli centred on the

corners π(ci0−1) and π(ci0+1) is squarelike, i.e., the angles in the near-rhombus

are between π/3 and 2π/3.

Proof. Assume that k(vi0+2, v) > αn.

Suppose that dE(π(ci0+2),Xv) <
2√
3

√
n. Then

k(vi0+2, v) =
∣

∣{u ∈ V : dE(vi0+2,Xu) ≤ dE(vi0+2,Xv)}
∣

∣

≤ N(B(vi0+2,
2√
3

√
n))

≤ N(B(π(ci0+2),
2√
3

√
n + ω)) < αn,

by Lemma 2.1, since by (15) the area of B(π(ci0+2),
2√
3

√
n+ ω) is ∼ α0n, and

α > α0. Then, by (16), the angle ci0−1Xvci0+1 is at most 2π/3 (and clearly

at least π/2). Hence the intersection of the two annuli centred on the corners

π(ci0−1) and π(ci0+1) forms a near-rhombus such that the angles are between

π/3 and 2π/3, that is, it is squarelike. �

Finishing the proof of Theorem 1.3

Now, in order to finish the proof of Theorem 1.3, we may assume wlog that

C1(v1, . . . , v4) holds, and that the random permutation π is the identity map

(as in the proof of Theorem 1.2). We consider a vertex v ∈ V −. We may

assume as before that i0 = i0(v) = 4. We distinguish the two cases, whether

k(vi0+2, v) ≤ αn or not.

Case 1: k(vi0+2, v) ≤ αn.

In this case the ideas of Theorem 1.2 can be applied. Let I− = [4]\{i0}. By

Lemma 5.2 and the first part of the proof, whp, for each vertex v and each

such i, we know the value dE(ci,Xv) up to an additive error of 1.19695
√
log n.

Now, exactly as in the proof of Theorem 1.2, we consider three circles Ci(v)

(with corresponding annuli Ai(v)) for i ∈ I−, and pick a pair of circles meeting

at an angle between π/3 and 2π/3. We set Φ(v) to be the relevant point where

these circles meet, and then dE(Φ(v),Xv) < 1.197
√
log n.
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Case 2: k(vi0+2, v) > αn:

As in the last case, we know the value dE(ci,Xv) up to an additive error of

1.19695
√
logn. In this case, by Lemma 5.3, the two circles (with corresponding

annuli) centred on the corners ci0−1 and ci0+1 meet at an angle between π/3

and 2π/3. As before, we set Φ(v) to be the relevant point where these circles

meet, and we find that dE(Φ(v),Xv) < 1.197
√
log n.

6. Concluding remarks

Recall that there is a family of n random points Xv for v ∈ V , independently

and uniformly distributed in the square Sn = [−√
n/2,

√
n/2]

2
. We do not see

these points, but learn about them in one of the following two ways: (a) when

we are given just the corresponding random geometric graph (for a suitable

threshold distance r), and (b) when we have some geometric information. In

case (a), we obtained an embedding Φ with displacement at most about r, but

we required the threshold distance r to satisfy r ≫ n3/14, which yields rather

a dense random geometric graph. In case (b), for each vertex v, we are given

a list of all the vertices w ordered by increasing Euclidean distance from Xv

of the corresponding points Xw. In this case, we obtain an embedding Φ with

dramatically less error.

Can we obtain lower displacement for these approximate reconstruction

problems? Can we obtain similar low displacement for smaller values of r

(yielding sparser random graphs)? Can we find a better estimator for the

threshold distance r in case (a). It would be natural to look at the degrees of

more vertices, perhaps even count edges – if we could control the dependencies.

Another open issue is whether there is a different choice of non-trivial nat-

ural geometrical information that would help to extend the range of r we can

handle. Notice that exposing the real length of all the edges would trivialize

the problem, as we saw in Subsection 1.5. Another natural line of research is

to consider a region in the plane different from the square Sn, for instance a

disk of area n, still with n iid uniformly distributed random points Xv. Here

we cannot of course start from the corners, but we do have a boundary and

we can identify vertices v with Xv near the boundary by looking at vertex

degrees.

Also it would be interesting to generalize the problem to higher dimensions,

to R
d for d ≥ 3. We believe that for bounded dimension d, or indeed for

sufficiently slowly growing dimension, similar results to those obtained in this

paper could be obtained for n iid points uniformly distributed in the d-cube
[

−n1/d/2, n1/d/2
]d

of volume n.
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Finally, let us mention the model where the underlying space is the unit

sphere Sd−1 in R
d (with n iid uniformly distributed random points Xv). See [5]

for recent work on this model in high dimensions, where the main interest is to

test whether we are looking at a graph from this model or at a corresponding

Erdős-Rényi random graph. See also the references in [5] for other work on

this model. For the estimation problem, there is now not even a boundary to

start from!
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