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Suppose that there is a family of n random points X v for v ∈ V , independently and uniformly distributed in the square

We do not see these points, but learn about them in one of the following two ways. Suppose first that we are given the corresponding random geometric graph G ∈ G (n, r), where distinct vertices u and v are adjacent when the Euclidean distance d E (X u , X v ) is at most r. Assume that the threshold distance r satisfies n 3/14 ≪ r ≪ n 1/2 . We shall see that the following holds with high probability. Given the graph G (without any geometric information), in polynomial time we can approximately reconstruct the hidden embedding, in the sense that, 'up to symmetries', for each vertex v we find a point within distance about r of X v ; that is, we find an embedding with 'displacement' at most about r. Now suppose that, instead of being given the graph G, we are given, for each vertex v, the ordering of the other vertices by increasing Euclidean distance from v. Then, with high probability, in polynomial time we can find an embedding with the much smaller displacement error O( √ log n).

Introduction

In this section, we first introduce geometric graphs and random geometric graphs, the approximate realization problem for such graphs, and families of vertex orderings; and we then present our main theorems, give an outline sketch of their proofs, and finally give an outline of the rest of the paper.

1.1. Random geometric graphs. Suppose that we are given a non-empty finite set V , and an embedding Ψ : V → R 2 , or equivalently a family (x v : v ∈ V ) of points in R 2 , where Ψ(v) = x v . Given also a real threshold distance r > 0, we may form the geometric graph G = G(Ψ, r) or G = G((x v : v ∈ V ), r) with vertex set V by, for each pair u, v of distinct elements of V , letting u and v be adjacent if and only if d E (x u , x v ) ≤ r. Here d E denotes Euclidean distance,

d E (x, x ′ ) = x-x ′ 2 .
Note that the (abstract) graph G consists of its vertex set V and its edge set (with no additional geometric information). A graph is called geometric if it may be written as G(Ψ, r) as above, and then (Ψ, r) is called a realization of the graph. Since we may rescale so that r = 1, a geometric graph may also be called a unit disk graph (UDG) [START_REF] Hale | Frequency assignment: theory and applications[END_REF].

Given a positive integer n, and a real r > 0, the random geometric graph G ∈ G (n, r) with vertex set V = [n] is defined as follows. Start with n random points X 1 , . . . , X n independently and uniformly distributed in the square S n = [-√ n/2, √ n/2] 2 of area n; let Ψ(v) = X v for each v ∈ V ; and form the

geometric graph G = G(Ψ, r) or G = G((X v : v ∈ V ), r).
Random geometric graphs were first introduced by Gilbert [START_REF] Gilbert | Random plane networks[END_REF] to model communications between radio stations. Since then, several related variants of these graphs have been widely used as models for wireless communication, and have also been extensively studied from a mathematical point of view. The basic reference on random geometric graphs is the monograph by Penrose [START_REF] Penrose | Random Geometric Graphs[END_REF]; see also the survey of Walters [START_REF] Walters | Random geometric graphs (Survey paper)[END_REF]. The properties of G ∈ G (n, r) are usually investigated from an asymptotic perspective, as n grows to infinity and r = r(n) = o( √ n).

A sequence A n of events holds with high probability (whp) if P(A n ) → 1 as n → ∞. For example, it is well known that r c = log n/π is a sharp threshold function for the connectivity of the random geometric graph G ∈ G (n, r). This means that, for every ε > 0, if r ≤ (1-ε)r c , then G is whp disconnected, whilst if r ≥ (1 + ε)r c , then G is whp connected (see [START_REF] Penrose | Random Geometric Graphs[END_REF] for a more precise result). We shall work with much larger r, so our random graphs will whp be (highly) connected.

Given a graph G, we define the graph distance d G (u, v) between two vertices u and v to be the least number of edges on a u-v path if u and v are in the same component, and if not then we let the distance be ∞. Observe that in a geometric graph G with a given realization (Ψ, r), each pair of vertices u and v must satisfy d G (u, v) ≥ d E (Ψ(u), Ψ(v))/r, since each edge of the embedded geometric graph has length at most r. For a finite simple graph G with n vertices, let A = A(G) denote its adjacency matrix, the n × n symmetric matrix with a ij = 1 if ij is an edge, and a ij = 0 otherwise. (We write ij for an edge rather than the longer form {i, j}.) 1.2. Approximate realization for geometric graphs. For a geometric graph G with vertex set V , the realization problem for G has input the adjacency matrix A(G), and consists in finding some realization (Ψ, r). It is known that for UD graphs, the realization problem (also called the unit disk graph reconstruction problem) is NP-hard [START_REF] Breu | Unit disk graph recognition is NP-hard[END_REF], and it remains NP-hard even if we are given all the distances between pairs of vertices in some realization [START_REF] Aspnes | On the computational complexity of sensor network localization[END_REF], or if we are given all the angles between incident edges in some realization [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF]. Given that these results indicate the difficulty in finding exact polynomial time algorithms, researchers naturally turned their attention to finding good approximate realizations (for deterministic problems).

Previous work on approximate realization

There are different possible measures of 'goodness' of an embedding. Motivated by the localization problem for sensor networks, see for example [START_REF] Bulusu | Self-configuring localization systems: Design and experimental evaluation[END_REF], (essentially) the following scale-invariant measure of quality of embedding was introduced in [START_REF] Moscibroda | Virtual coordinates for ad-hoc and sensor networks[END_REF]: given a geometric graph G = (V, E), and an embedding Φ : V → R 2 and threshold distance r > 0, if G is not a clique we let

Q G (Φ) = max xy∈E Φ(x) -Φ(y) 2
min xy / ∈E Φ(x) -Φ(y) 2 (where we insist that x = y); and let

Q G (Φ) = (1/r) max xy∈E Φ(x) -Φ(y) 2 if G is a clique. Observe that if (Φ, r) is a realization of G then Q G (Φ) < 1.
The aim is to find an embedding Φ : V → R 2 with say r = 1 which minimizes Q G (Φ), or at least makes it small. The random projection method [START_REF] Vempala | Random projection: A new approach to VLSI layout[END_REF] was used in [START_REF] Moscibroda | Virtual coordinates for ad-hoc and sensor networks[END_REF] to give an algorithm that, for an n-vertex UD graph G, outputs an embedding Φ with Q G (Φ) = O(log 3.5 n √ log log n); this is, it approximates feasibility in terms of the measure Q G up to a factor of O(log 3.5 n √ log log n). On the other hand, regarding inapproximability, it was shown in [START_REF] Kuhn | Unit disk graph approximation[END_REF] that it is NP-hard to compute an embedding Φ with Q G (Φ) ≤ 3/2 -ε.

In this paper we do not aim to control a goodness measure like Q (though see the discussion following Theorem 1.3). Instead, we find whp a 'good' embedding Φ, which is 'close' to the hidden original random embedding Ψ . We investigate the approximate realization problem for a random geometric graph, and for a family of vertex orderings (see later).

What we achieve for random geometric graphs is roughly as follows. We describe a polynomial time algorithm which, for a suitable range of values for r, whp finds an embedding Φ which 'up to symmetries' (see below for a detailed definition) maps each vertex v to within about distance r of the original random point Ψ(v) = X v . Observe that the mapping Φ must then satisfy the following properties whp: for each pair of vertices u, v with d E (Ψ(u), Ψ(v)) ≤ r we have d E (Φ(u), Φ(v)) ≤ (3 + ε)r, and for each pair of vertices u, v with d E (Ψ(u), Ψ(v)) ≥ (3 + ε)r we have d E (Φ(u), Φ(v)) > r. Thus, adjacent pairs of vertices remain quite close to being adjacent in Φ, and non-adjacent pairs of vertices that are sufficiently far apart remain non-adjacent in Φ.

For maps Φ 1 , Φ 2 : V → S n , the familiar max or sup distance is defined by

d max (Φ 1 , Φ 2 ) = max v∈V d E (Φ 1 (v), Φ 2 (v)).
Since there is no way for us to distinguish embeddings which are equivalent up to symmetries, we cannot hope to find an embedding Φ such that whp d max (Ψ, Φ) is small. There are 8 symmetries (rotations or reflections) of the square. We define the symmetry-adjusted sup distance d * by

d * (Φ 1 , Φ 2 ) = min σ d max (σ•Φ 1 , Φ 2 ) = min σ d max (Φ 1 , σ•Φ 2 ),
where the minima are over the 8 symmetries σ of the square S n . This is the natural way of measuring distance 'up to symmetries'. If we let Φ 1 ∼ Φ 2 when Φ 1 = σ • Φ 2 for some symmetry σ of S n , then it is easy to check that ∼ is an equivalence relation on the set of embeddings Φ : V → S n , and d * is the natural sup metric on the set of equivalence classes. Given α > 0, we say that an embedding Φ has displacement at most α (from the hidden embedding Ψ) if d * (Ψ, Φ) ≤ α. Consider the graph with three vertices u, v, w and exactly two edges uv and vw: if this is the geometric graph G(Ψ, r), then d E (Ψ(u), Ψ(w)) could be any value in (r, 2r]. Examples like this suggest that we should be happy to find an embedding Φ with displacement at most about r; and since our methods rely on graph distances, it is natural that we do not achieve displacement below r.

1.3. Vertex orderings. We also consider a related approximate realization problem, with different information. As for a random geometric graph, we start with a family of n unseen points X 1 , . . . , X n independently and uniformly distributed in the square S n , forming the hidden embedding Ψ. (There is no radius r here, and there is no graph.) We are given, for each vertex v, the ordering τ v of the other vertices by increasing Euclidean distance from v. This is the family of vertex orderings corresponding to Ψ. Notice that with probability 1 no two distances will be equal. Notice also that, if we had access to the complete ordering of the Euclidean distances between all pairs of distinct vertices in the hidden embedding Ψ, then we could read off the family of vertex orderings.

We shall see that, by using the family of vertex orderings, we can with high probability find an embedding with displacement error dramatically better than the bound we obtain for random geometric graphs.

Main results

. Suppose first that we are given a random geometric graph G ∈ G (n, r), with hidden original embedding Ψ, for example by being given the adjacency matrix A(G), with no geometric information. Our goal is to find an embedding Φ such that whp it has displacement at most about r, for as wide as possible a range of values for r. However, first we need to consider how to estimate r. We shall see that adding up the first few vertex degrees gives us a good enough estimator for our current purposes.

Proposition 1.1. Let r = r(n) → ∞ as n → ∞, with r ≪ n 1/2 . Let ρ = √ n/r (so ρ → ∞ as n → ∞).
Fix a small rational constant 0 < ε < 1 2 , say ε = 0.01. Then in polynomial time we may compute an estimator r such that

|r -r| < ω(ρ) ρ -1/2+ε = o(1) whp. (1) 
Our first theorem presents an algorithm to find an embedding Φ for a random geometric graph (given without any further information), which whp achieves displacement at most about r, for the range n 3/14 ≪ r ≪ √ n. Note that 3/14 ≈ 0.21428.

Theorem 1.2. Let r = r(n) satisfy n 3/14 ≪ r ≪ √ n, and consider the random geometric graph G ∈ G (n, r) (given say by the adjacency matrix A(G)), corresponding to the hidden embedding Ψ. Let ε > 0 be an arbitrarily small rational constant. There is an algorithm which in polynomial time outputs an embedding Φ which whp has displacement at most (1 + ε)r, that is, whp

d * (Ψ, Φ) ≤ (1 + ε)r.
For a related recent result concerning estimating Euclidean distances between points (rather than estimating the points themselves), and for other recent related work, see Subsection 1.5 below.

In practice, after running the algorithm in this theorem, we would run a local improvement heuristic, even though this would not lead to a provable decrease in d * (Ψ, Φ). For example, we might simulate a dynamical system where each point X v (which is not close to the boundary of S n ) tends to move towards the centre of gravity of the points X w corresponding to the neighbours w of v.

Our second theorem concerns the case when we are given not the random geometric graph but the family of vertex orderings; that is, for each vertex v, we are given the ordering of the other vertices by increasing Euclidean distance from v. Theorem 1.3. Suppose that we are given the family of vertex orderings corresponding to the hidden embedding Ψ. There is a polynomial-time algorithm that outputs an embedding Φ which whp has displacement < 1.197

√ log n; that is, whp d * (Ψ, Φ) < 1.197 √ log n.
Now suppose that, as well as being given the family of vertex orderings, for some unknown value r we are given the corresponding random geometric graph G ∈ G (n, r). Assume that r ≫ √ log n. Then the constructed embedding Φ does well in terms of the measure Q G introduced earlier: we have

Q G (Φ) < r + 1.197 √ log n r -1.197 √ log n < 1 + 2.4 log n/r = 1 + o(1) whp. (2) 
Also, from the constructed embedding Φ we may form a second geometric graph G ′ = G(Φ, r). Then G ′ is close to G in the sense that 'we get only a small proportion of edges wrong'. We make this more precise in the inequality (3) below. It is easy to see that whp G has ∼ 1 2 πr 2 n edges (and many more non-edges). We know from Theorem 1.3 that whp Φ has displacement < 1.197 √ log n: assume that this event holds.

If d E (X u , X v ) ≤ r -2.394 √ log n then d E (Φ(u), Φ(v)) ≤ r so uv is an edge in G ′ ; and similarly, if d E (X u , X v ) ≥ r + 2.394 √ log n then d E (Φ(u), Φ(v))
> r, so uv is not an edge in G ′ . Thus there could be a mistake with uv only if

r -2.394 log n < d E (X u , X v ) < r + 2.394 log n.
But whp the number of unordered pairs {u, v} of distinct vertices such that these inequalities hold is ∼ n • 2πr • 2.394 √ log n. Hence, whp the symmetric difference of the edge sets of G and G ′ satisfies E(G)∆E(G ′ ) / E(G) < 9.6 log n/r.

(
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Outline sketch of the proofs of Theorems 1.2 and 1.3

In order to prove these theorems, we first identify 4 'corner vertices' such that the corresponding points are close to the 4 corners of S n . To do this, for Theorem 1.2 we are guided by vertex degrees; and for Theorem 1.3 we look at the set of 'extreme' pairs (v, v ′ ) such that v ′ is farthest from v in the order τ v , and v is farthest from v ′ in the order τ v ′ .

To prove Theorem 1.2, we continue as follows. For a vertex v, we approximate the Euclidean distance between X v and a corner by using the graph distance from v to the corresponding corner vertex, together with the estimate r of r; and then we place our estimate Φ(v) for X v at the intersection of circles centred on a chosen pair of the corners. For each of the circles, whp X v lies within a narrow annulus around it, so Φ(v) is close to X v .

In the proof of Theorem 1.3, we obtain a much better approximation to the Euclidean distance between X v and a corner, by using the rank of v in the ordering from the corresponding corner vertex, and the fact that the number of points X w at most a given distance from a given corner is concentrated around its mean. In this way, we obtain much narrower annuli, and a correspondingly much better estimate for X v .

1.5. Further related work. In this section we mention further related work.

Theorem 1 of [START_REF] Arias-Castro | On the estimation of latent distances using graph distances[END_REF] estimates Euclidean distances between points by r times the graph distance in the corresponding geometric graph. It is assumed that r is known, and the error is at most r plus a term involving the maximum radius of an empty ball. In the case of n points distributed uniformly and independently in S n , the authors of [START_REF] Arias-Castro | On the estimation of latent distances using graph distances[END_REF] need r ≥ n 1/4 (log n) 1/4 in order to keep the error bound down to (1 + o(1))r whp (so they need r a little larger than we do in Theorem 1.2).

In [START_REF] Parthasarathy | A quest to unravel the metric structure behind perturbed networks[END_REF] the authors assume that they are given a slightly perturbed adjacency matrix (some edges were inserted, some were deleted) of n points in some metric space. Using fairly general conditions on insertion and deletion, the authors use the Jaccard index (the size of the intersection of the neighborhood sets of the endpoints of an edge divided by the size of their union) to compute a 2-approximation to the graph distances.

The use of graph distances for predicting links in a dynamic social network such as a co-authorship network was experimentally analyzed in [START_REF] Liben-Nowell | The link-prediction problem for social networks[END_REF]: it was shown that graph distances (and other approaches) can provide useful information to predict the evolution of such a network. In [START_REF] Sarkar | Theoretical justification of popular link prediction heuristics[END_REF] the authors consider a deterministic and also a non-deterministic model, and show that using graph distances, and also using common neighbors, they are able to predict links in a social network. The use of shortest paths in graphs for embedding points was also experimentally analyzed in [START_REF] Shang | Localization from mere connectivity[END_REF].

In [START_REF] Luxburg | Density estimation from unweighted k-nearest neighbor graphs: a roadmap[END_REF] the authors consider a k-nearest neighbour graph on n points X i that have been sampled iid from some unknown density in Euclidean space. They show how shortest paths in the graph can be used to estimate the unknown density. In [START_REF] Terada | Local ordinal embedding[END_REF] the authors consider the following problem: given a set of indices (i, j, k, ℓ), together with constraints d E (X i , X j ) < d E (X k , X ℓ ) (without knowing the distances), construct a point configuration that preserves these constraints as well as possible. The authors propose a 'soft embedding' algorithm which not only counts the number of violated constraints, but takes into account also the amount of violation of each constraint. Furthermore, the authors also provide an algorithm for reconstructing points when only knowing the k nearest neighbours of each data point, and they show that the obtained embedding converges for n → ∞ to the real embedding (w.r.t. to a metric defined by the authors), as long as k ≫ √ n log n. This setup is similar to our Theorem 1.3 in the sense that we are given the ordinal ranking of all distances from a point (for each point), though note that we estimate points up to an error O(

√ log n) rather than o( √ n) (recall that our points are sampled from the √ n × √ n square S n ).
In a slightly different context, the algorithmic problem of computing the embedding of n points in Euclidean space given some or all pairwise distances was considered. If all n 2 pairwise distances are known, then one can easily find exact positions in O(n) arithmetic operations: pick three points forming a triangle T , and then for each other point separately find its location with respect to T , using O(1) arithmetic operations. In this way we use only the O(n) distances involving at least one of the points in T . In [START_REF] Cucuringu | Asap: An eigenvector synchronization algorithm for the graph realization problem[END_REF][START_REF] Cucuringu | Sensor network localization by eigenvector synchronization over the euclidean group[END_REF] the authors consider the problem of knowing only a subset of the distances (they know only small distances, as typical in sensor networks) and show that by patching together local embeddings of small subgraphs a fast approximate embedding of the points can be found.

The related problem trying to detect latent information on communities in a geometric framework was studied by [START_REF] Sankarararaman | Community detection on Euclidean random graphs[END_REF]. In this case, points of a Poisson process in the unit square are equipped with an additional label indicating to which of two hidden communities they belong. The probability that two vertices are joined by an edge naturally depends on the distance between them, but also edges between vertices of the same label have a higher probability to be present than edges between vertices of different labels. The paper gives exact recovery results for a dense case, and also shows the impossibility of recovery in a sparse case.

1.6. Organisation of the paper. In Section 2 we recall or establish preliminaries; in Section 3 we see how to estimate the threshold distance r using vertex degrees, and estimate Euclidean distances using graph distances; in Section 4 we complete the proof of Theorem 1.2; in Section 5 we prove Theorem 1.3; and in Section 6 we conclude with some open questions.

Preliminaries

In this section we gather simple facts and lemmas that are used in the proofs of the main results. We start with a standard version of the Chernoff bounds for binomial random variables, see for example Theorem 2.1 and inequality (2.9) in [START_REF] Janson | Random Graphs[END_REF].

Lemma 2.1. (Chernoff bounds) Let X have the binomial distribution Bin(n, p) with mean µ = np. For every δ > 0 we have

P(X ≤ (1 -δ)µ) ≤ e -δ 2 µ/2 and P(X ≥ (1 + δ)µ) ≤ e -δ 2 (1-δ/3)µ/2 ;
and it follows that, for each 0 < δ ≤ 1,

P(|X -µ| ≥ δµ) ≤ 2e -δ 2 µ/3 .
For x ∈ R 2 and r > 0, let B(x, r) denote the closed ball of radius r around x. We shall repeatedly use the following fact.

Fact 2.2. Let G ∈ G (n, r) be a random geometric graph. For each x ∈ S n let σ n (x) be the area of B(x, r) ∩ S n , and let

ρ n (x) = σ n (x)/n. Then for each vertex v ∈ V = [n] and each point x ∈ S n , deg G (v) conditional on X v = x has distribution Bin(n-1, ρ n (x))
. More precisely, this gives a density function: for any Borel set A ⊆ S n ,

P((deg G (v) = k) ∧ (X v ∈ A)) = x∈A P(Bin(n-1, ρ n (x)) = k) dx. In particular, if ρ -≤ ρ n (x) ≤ ρ + for each x ∈ A, then, conditional on X v ∈ A, deg G (v) is stochastically at least Bin(n-1, ρ -) and stochastically at most Bin(n-1, ρ + ).
The next lemma gives elementary bounds on the area σ n (z) for z ∈ S n , in terms of the distance from z to a corner of S n or to the boundary of S n .

Lemma 2.3. Let 0 < s ≤ r < √ n/2, and let z ∈ S n .

(i) If z is at distance at most s from some corner, then σ n (z)

≤ 1 4 π(r+s) 2 . (ii) If z is at distance at least s from each corner, then σ n (z) ≥ 1 4 πr 2 + s(r -s/2). (iii) If z is at distance at most s from the boundary, then σ n (z) ≤ 1 2 πr 2 + 2sr.
(iv) If z is at distance at least s from the boundary and at distance at most r from at most one side of the boundary, then σ n (z) ≥ 1 2 πr 2 +2s(r-s/2).

Proof. Parts (i) and (iii) are easy. To prove parts (ii) and (iv), we observe first that, in the disk with centre (0, 0) and radius r, the set S of points (x, y) in the disk with -s ≤ x ≤ 0 and y ≥ 0 has area at least s(r -s/2). For if (-s, y 1 ) is the point on the bounding circle with y 1 > 0, then y 1 = √ r 2 -s 2 ≥ r -s, so the quadrilateral Q with corners (0, 0), (-s, 0), (-s, y 1 ) and (0, r) has area ≥ 1 2 s(r + r -s), and Q ⊆ S.

To prove part (ii) of the lemma, it suffices to consider points z ∈ S n at distance equal to s from a corner, wlog from the bottom left corner c 1 = (-√ n/2, -√ n/2). Suppose that z -c 1 = (x, y). Then, by the observation in the first paragraph,

σ n (z) -1 4 πr 2 ≥ x(r -x/2) + y(r -y/2) + xy ≥ (x + y)(r -(x + y)/2) ≥ s(r -s/2)
since x + y ≥ s. Part (iv) follows similarly from the initial observation.

We shall depend heavily on the following result on the relation between graph distance and Euclidean distance for random geometric graphs (with slightly worse constants than the ones given in the original paper to make the expression cleaner).

Lemma 2.4. [9][Theorem 1.1] Let G ∈ G (n,
r) be a random geometric graph with r ≫ √ log n. Then, whp, for every pair of vertices u, v we have:

d G (u, v) ≤ d E (X u , X v ) r 1 + γ r -4/3
where γ = max 3000

r log n r + d E (X u , X v ) 2/3 , 4 • 10 6 log 2 n r 8/3 , 1000 .
We observed earlier that always d E (x u , x v ) ≤ rd G (u, v); we next give a corollary of the last lemma which shows that whp this bound is quite tight.

Corollary 2.5.

There is a constant c ( ≤ 6 • 10 6 ) such that, if r ≥ (log n) 3/4 for n sufficiently large, then whp, for every pair of vertices u, v we have:

d G (u, v) ≤ d E (X u , X v )/r + 1 + c max{n 1/2 r -7/3 , n 1/6 r -5/3 (log n) 2/3 }. Proof. By Lemma 2.4 rd G (u, v) ≤ d E (X u , X v ) + r + r • d E (X u , X v )γ r -7/3 . (4) 
But, for r ≥ (log n) 3/4 , the second term in the maximum in the definition of γ is at most 4 • 10 6 ; and letting γ 1 denote the first term we have

d E (X u , X v ) γ 1 r -7/3 ≤ 3000 d E (X u , X v ) 1/3 (r log n) 2/3 r -7/3
≤ 3000 (2n) 1/6 r -5/3 (log n) 2/3 .

Thus

d E (X u , X v ) γ r -7/3
≤ max{3000 (2n) 1/6 r -5/3 (log n) 2/3 , (4 • 10 6 )(2n) 1/2 r -7/3 } and the lemma follows from (4).

In fact, all we shall need from the last two results is the following immediate consequence of the last one.

Corollary 2.6. If r ≫ n 3/14 , then there exists ε = ε(n) = o(1) such that whp, for every pair u, v of vertices, we have

d G (u, v) ≤ d E (X u , X v )/r + 1 + ε.
We consider the four corner points c i = c i (n) of S n in clockwise order from the bottom left:

c 1 = (- √ n/2, - √ n/2) (already defined), c 2 = (- √ n/2, √ n/2), c 3 = ( √ n/2, √ n/2) and c 4 = ( √ n/2, - √ n/2).
See Figure 1 for the points c i and to illustrate the following lemma. 

v i ∈ V such that X v i ∈ B(c i , ω) and deg G (v i ) < 1 4 πr 2 + 1 3 ωr; and (b) for each v ∈ V such that X v ∈ ∪ 4 i=1 B(c i , ω) we have deg G (v) > 1 4 πr 2 + 1 2 ωr. Proof. (a) Fix i ∈ [4]. Note first that P(X v ∈ B(c i , 1 7 ω) for each v ∈ V ) = (1 -π 4n ( ω 7 ) 2 ) n ≤ e -π 196 
ω 2 = o(1); so whp there exists v i ∈ V such that X v i ∈ B(c i , 1 7 ω). Let Z (i)
n be the number of vertices v such that X v ∈ B(c i , 1 7 ω). Then E[Z

(i) n ] = π 196 ω 2 . For each x ∈ B(c i , 1 7 ω), by Lemma 2.3 (i), σ n (x) ≤ 1 4 π(r + 1 7 ω) 2 ≤ 1 4 πr 2 + 1
4 ωr for n sufficiently large; and then, by Lemma 2.1 and Fact 2.2,

P(deg G (v) ≥ 1 4 πr 2 + 1 3 ωr | X v ∈ B(c i , 1 7 ω)) ≤ P(Bin(n, ( 1 4 πr 2 + 1 4 ωr)/n) ≥ ( 1 4 πr 2 + 1 4 ωr) + 1 12 ωr) ≤ e -Θ(ω 2 )
. Hence

P(for some v ∈ V, (X v ∈ B(c i , 1 7 ω)) ∧ (deg G (v) ≥ 1 4 πr 2 + 1 3 ωr)) ≤ v∈V P(X v ∈ B(c i , 1 7 ω)) P(deg G (v) ≥ 1 4 πr 2 + 1 3 ωr | X v ∈ B(c i , 1 7 ω)) ≤ E[Z (i) n ] e -Θ(ω 2 ) = o(1).
Thus whp there exists (b) Let j 0 = ⌊ω⌋ and j 1 = ⌈r/ω⌉. For all integers i ∈ [4] and j 0 ≤ j ≤ j 1 , let B j i = B(c i , j) ∩ S n . Consider first the central part of the square S n , omitting parts near the corners: let

v i ∈ V such that X v i ∈ B(c i , 1 7 ω) and deg G (v i ) <
C n = S n \ ∪ i B j 1 i . By Lemma 2.3 (ii), for each x ∈ C n we have σ n (x) ≥ 1 4 πr 2 + j 1 (r -j 1 /2) ≥ 1 4 πr 2 + 1 2 j 1 r
for n sufficiently large. Hence, by Lemma 2.1 and Fact 2.2,

P(deg G (v) ≤ 1 4 πr 2 + 1 2 ωr | X v ∈ C n ) ≤ e -Θ(j 2 1 )
.

Since ω ≪ r/ √ log n, we have j 2 1 ≥ (r/ω) 2 ≫ log n. Thus ne -Θ(j 2 1 ) = o(1), and so whp there is no vertex v such that X v ∈ C n and deg G (v) ≤ 1 4 πr 2 + 1 2 ωr. We need a little more care near the corners. Let i ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF] and let j be an integer with j 0 ≤ j ≤ j 1 . The area of

B j+1 i \ B j i is 1 4 π(2j + 1). For each point x ∈ B j+1 i \ B j i ,
x is at distance at least j from each corner of S n , so by Lemma 2.3 (ii) we have

σ n (x) ≥ σ (j) := 1 4 πr 2 + j(r -j/2) = 1 4 πr 2 + (1 + o(1))jr. Also, 1 4 πr 2 + 1 2 ωr ≤ n-1 n σ (j) -( 1 2 + o(1)
)jr. Thus, by Lemma 2.1 and Fact 2.2,

P deg G (v) ≤ 1 4 πr 2 + 1 2 ωr | X v ∈ B j+1 i \ B j i ≤ e -Θ(j 2 ) .
Therefore, for each i ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF],

P for some v ∈ V, (X v ∈ B j 1 i \ B j 0 i ) ∧ (deg G (v) ≤ 1 4 πr 2 + 1 2 ωr) ≤ v∈V j 1 -1 j=j 0 P(X v ∈ B j+1 i \ B j i ) P deg G (v) ≤ 1 4 πr 2 + 1 2 ωr | X v ∈ B j+1 i \ B j i ≤ n j≥j 0 1 4 π(2j + 1) n e -Θ(j 2 ) = o(1).
Hence whp deg G (v) > 1 4 πr 2 + 1 2 ωr for each vertex v such that X v is not in one of the four corner regions B j 0 i ; and so we have completed the proof of part (b).

The above lemma shows us how to find 4 vertices v such that whp the corresponding points X v are close to the four corner points c i of S n . for some (unknown) symmetry π of S n ,

X v i ∈ B(π(c i ), ω) for each i ∈ [4].
Proof. Consider the following algorithm: pick a vertex of minimal degree, call it u 1 , and mark u 1 and all its neighbors. Continue iteratively on the set of unmarked vertices, until we have found four vertices u 1 , . . . , u 4 . (Whp each vertex has degree at most 1.1 πr 2 ; so after at most 3 steps, at most 3.3 πr 2 +3 = o(n) vertices are marked, and so whp we will find u 1 , . . . , u 4 .) Let u ′ 1 be a vertex amongst u 2 , u 3 , u 4 maximising the graph distance from u 1 , and list the four vertices as v 1 , v 2 , v 3 , v 4 where v 1 = u 1 and v 3 = u ′ 1 (and v 2 and v 4 are the other two of the vertices u i listed in some order). We shall see that whp v 1 , v 2 , v 3 , v 4 are as required.

By Lemma 2.7, whp the vertices u 1 , . . . , u 4 are each within distance ω of a corner of S n , and the marking procedure ensures that the four corners involved are distinct. If u i and u j are such that X u i and X u j are within distance ω of opposite corners of S n , then

d E (X u i , X u j ) ≥ √ 2n -2ω and so d G (u i , u j ) ≥ (1 + o(1)) √ 2n/r. If X u i and X u j are within distance ω of adjacent corners, then d E (X u i , X u j ) ≤ √ n + ω;
and so, since we may assume wlog that ω ≪ √ n,

whp d G (u i , u j ) ≤ (1 + o(1))
√ n/r by Corollary 2.5. Hence, whp u 1 = v 1 and u ′ 1 = v 3 are within distance ω of opposite corners, as are the other two of the chosen vertices. For each i ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF], denote the corner closest to X v i by c σ(i) . Then whp σ is a permutation of [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF], and c σ(1) and c σ(3) are opposite corners; and so c σ(1) , . . . , c σ(4) lists the corners of S n in either clockwise or anticlockwise order. Thus σ extends to a (unique) symmetry π of S n , and we are done.

Having found four vertices v 1 , . . . , v 4 such that the points X v i are close to the four corner vertices of S n , for each other vertex v ∈ V (G) we will be able to use the graph distances from v to each of v 1 , . . . , v 4 to obtain an approximation to X v .

Estimating r and Euclidean distances

In this section, we use the preliminary results from the last section to see how to estimate the threshold distance r, and Euclidean distances between points, sufficiently accurately to be able to prove Theorem 1.2 in the next section. Given a vertex v and a set W of vertices with v ∈ W , let e(v, W ) denote the number of edges between v and W .

Lemma 3.1. Let G ∈ G (n, r), with r = r(n) → ∞ as n → ∞ and r ≪ √ n.
Let ρ = √ n/r, so ρ → ∞ as n → ∞. Fix a small rational constant ε > 0, say ε = 0.01, and let

ω 0 (x) = x ε for x > 0. Let f (x) = ⌈x/ω 0 (x)⌉ = ⌈x 1-ε ⌉ for x > 0. Let Y 1 = deg(v 1 ) + 1 (so Y 1 = 0), let K = f ( πn/Y 1 ), and let Y = K+1 i=2 e(v i , V \{v 1 }). Finally, let r = Y πK(1 -(K +1)/n) 1/2 .
Then |r -r| < ω 0 (ρ) ρ -1/2 = o(1) whp;

and in particular r/r → 1 in probability as n → ∞.

The same conclusion holds, with essentially the same proof, if we redefine K as the output of some polynomial time algorithm which returns either ⌊x/ω 0 (x)⌋ or ⌈x/ω 0 (x)⌉ where x = πn/Y 1 ; and we may see that in polynomial time we can compute an estimate r very close to r, so that the bound (5) holds for r.

Proof. Let A 0 (j) be the event that X j is not within distance r of the boundary of S n . (We suppress the dependence on n here, as we often do.) Then

P(A 0 (j)) ≤ 4r √ n/n = 4/ρ = o(1)
.

(Here and in the following A denotes the complement of the event A.) By Chebyshev's inequality, if Z ∼ Bin(n -1, πr 2 /n) then Z ∼ πr 2 whp. Thus, since A 0 (1) holds whp, we have Y 1 ∼ πr 2 whp, so πn/Y 1 ∼ √ n/r = ρ whp, and thus K ∼ f (ρ) whp. In particular,

1 2 f (ρ) ≤ K ≤ 2f (ρ) whp. Observe that, as n → ∞, f (ρ) → ∞ and f (ρ) ≪ ρ. Let k satisfy 1 2 f (ρ) ≤ k ≤ 2f (ρ)
, and condition on K = k. It suffices to show now that (5) holds.

Consider the vertices v 2 , . . . , v k+1 . Let A 1 = ∧ k+1 j=2 A 0 (j), the event that no corresponding point X j is within distance r of the boundary of S n . The probability that A 1 fails is at most 4k/ρ ≤ 8f (ρ)/ρ = o(1). Let A 2 be the event that the corresponding balls B(X j , r) are pairwise disjoint. As the centres must be 2r apart, the probability that A 2 fails is at most

k 2 π(2r) 2 /n ≤ 2π(kr/ √ n) 2 ≤ 2π(2f (ρ)/ρ) 2 = o(1).
Thus A 1 ∧ A 2 holds whp. Condition on the event 2 and variance at most (1 -(k + 1)/n)kπr 2 . Thus r2 has mean r 2 and variance at most r 2 /(πk(1

A 1 ∧ A 2 occurring (still with K = k). Then Y has distribution Bin(n-(k +1), kπr 2 /n), with mean (1 -(k +1)/n)kπr
-(k +1)/n)) = O(r 2 /k).
It follows by Chebyshev's inequality (recalling that, as n → ∞, ρ → ∞ and so also ω 0 (ρ

) 1/3 → ∞), that whp |r 2 -r 2 | ≤ ω 0 (ρ) 1/3 (r/ √ k). Hence, without conditioning on A 1 ∧ A 2 , we have |r 2 -r 2 | ≤ ω 0 (ρ) 1/3 (r/ √ k) whp. But |r 2 -r 2 | = |r -r| (r + r) ≥ |r -r| r. Hence |r -r| ≤ ω 0 (ρ) 1/3 / √ k whp. But ω 0 (ρ) 1/3 / √ k ≤ √ 2 ω 0 (ρ) 1/3 (f (ρ)) -1/2 ≤ ( √ 2 + o(1)) ω 0 (ρ) 1/3 ω 0 (ρ)/ρ ;
and so ω 0 (ρ

) 1/3 / √ k = O(ω 0 (ρ) 5/6 )ρ -1/2 ≪ ω 0 (ρ)ρ -1/2 ,
which completes the proof.

Next we restrict r to be large enough so that we can use Corollary 2.6. Let r be as in the last lemma. Lemma 3.2. Let r = r(n) satisfy n 3/14 ≪ r ≪ √ n. Then there exists δ = δ(n)

with δ → 0 sufficiently slowly such that whp, for all pairs u, v of vertices,

rd G (u, v) + δr ≥ d E (X u , X v ) ≥ rd G (u, v) -(1 + δ)r. (6) 
Note that by ( 6) and Lemma 3.1, whp we can determine each value d E (X u , X v ) up to an additive error of (1 + o(1))r = (1 + o(1))r.

Proof. We claim that, for a suitable choice of δ, whp, for all pairs vertices u, v we have

rd G (u, v) ≥ d E (X u , X v ) ≥ rd G (u, v) -(1 + δ/2)r. (7) 
The first inequality in ( 7) is obvious: we shall use Corollary 2.6 to prove the second inequality. First since n 1/2 r -7/3 ≪ 1, we may choose δ ≫ n 1/2 r -7/3 , and we do not need to worry about the first term in the maximum in the corollary.

Also, we may assume that δ ≫ n -4/21 (log n) 2/3 , and so for the second term we have cn 1/6 r -5/3 (log n) 2/3 ≪ n -4/21 (log n) 2/3 ≪ δ, which completes the proof of [START_REF] Cucuringu | Asap: An eigenvector synchronization algorithm for the graph realization problem[END_REF]. Let ρ = √ n/r, as in Lemma 3.1. By Corollary 2.6, whp max

u,v d G (u, v) ≤ √ 2n/r + 2 ≤ 2ρ
for n sufficiently large (where the maximum is over all pairs u, v of vertices). Hence, by ( 5) and ( 7),

rd G (u, v) + 2ρ |r -r| ≥ d E (X u , X v ) ≥ rd G (u, v) -2ρ |r -r| -(1 + δ/2)r. (8) 
Now r ≫ n 3/14 so (r 6 /n) 1/4 ≫ n 1/14 . Thus, by Lemma 3.1, we may assume that whp |r -r| ≤ ω 0 (ρ)(r 2 /n) 1/4 , where ω 0 (ρ) ≪ (r

6 /n) 1/4 n -1/15 . Thus 2ρ |r -r| ≤ 2ω 0 (ρ)(n/r 2 ) 1/4 = r (2ω 0 (ρ)(n/r 6 ) 1/4 ) = o(r n -1/15 ).
But we may assume that δ ≥ n -1/15 , so 2ρ |r -r| = o(δr). Also, if δ → 0 sufficiently slowly, then δr → ∞ as n → ∞, and whp

(1 + δ)r -(1 + δ 2 )r = (1 + δ 2 )(r -r) + δ 2 r = δ 2 r + o(1)
. Putting these bounds into (8) completes the proof of the lemma.

Proof of Theorem 1.2

In this section, we prove Theorem 1.2, on the reconstruction of random geometric graphs.

Throughout this section, let ω = ω(n) be any function tending to infinity as n → ∞ slowly, and in particular such that w ≪ √ log n. We shall assume at various places without further comment that n is sufficiently large. Let B 1 be the event that we find vertices v 1 , . . . , v 4 such that d E (X v i , π(c i )) < ω for each i = 1, . . . , 4, for some (unknown) random symmetry π = π(Ψ) of S n . By Lemma 2.8, B 1 holds whp. Let σ 0 denote the identity symmetry. If B 1 does not hold then let us set π = σ 0 (the choice of σ 0 will not be important). Now let σ be any given symmetry. Observe that B 1 holds for Ψ if and only if it holds for σ -1 • Ψ; on B 1 , π(Ψ) = σ if and only if π(σ -1 • Ψ) = σ 0 , and Ψ and σ -1 • Ψ have the same distribution. Thus for each symmetry σ

P(B 1 ∧ (π = σ)) = P(B 1 ∧ (π = σ 0 )), (9) 
and so P(π = σ) → 1 8 as n → ∞. Since we are using the symmetry-adjusted measure d * , we may treat the random symmetry π as if it were the identity, as we shall check below. We set Φ(v i ) = c i , and still have to assign Φ(v) for all other vertices v ∈ V (G). Let B 2 be the event that B 1 holds and π is the identity. Thus P(B 2 ) → 1 8 as n → ∞. Recall that we are given ε > 0: we may assume wlog that ε < 1 2 say. The main step in the proof will be to show that conditional on B 2 , we have d max (Ψ, Φ) < (1 + ε)r whp. [START_REF] Gilbert | Random plane networks[END_REF] (Of course d * (Ψ, Φ) ≤ d max (Ψ, Φ).) Let us prove the claim [START_REF] Gilbert | Random plane networks[END_REF]. By Lemma 3.1 (using the notation ρ = √ n/r

given there) and Corollary 2.6, whp, for each pair u, v of distinct vertices

r(d G (u, v) + ε/5) ≤ r(d G (u, v) + ε/5) + ω 0 (ρ)ρ -1/2 (d G (u, v) + ε/5) ≤ r(d G (u, v) + ε/5) + (rn -1/2 ) 1/2-ε 2d G (u, v) = r d G (u, v) + ε/5 + 2rd G (u, v) r 3/2+ε n 1/4-ε/2 = r d G (u, v) + ε/5 + 2d E (u, v) + O(r) r 3/2+ε n 1/4-ε/2 = r d G (u, v) + ε/5 + O(n 1/4+ε/2 ) r 3/2+ε ≤ r(d G (u, v) + ε/4),
where the last inequality follows from our assumption that r ≫ n 3/14 , and so r ≫ n 1/6+ε/3 . By the same argument we obtain

r(d G (u, v) -(1 + ε/5)) ≥ r(d G (u, v) -(1 + ε/5)) -ω 0 (ρ)ρ -1/2 (d G (u, v) -(1 + ε/5)) ≥ r(d G (u, v) -(1 + ε/4)).
Hence, by Lemma 3.2 with δ = ε/5, whp, for each pair u, v of distinct vertices, we have

r(d G (u, v) + ε/4) ≥ r(d G (u, v) + ε/5) = r(d G (u, v) + δ) ≥ d E (X u , X v ) ≥ r(d G (u, v) -(1 + δ)) = r(d G (u, v) -(1 + ε/5)) ≥ r(d G (u, v) -(1 + ε/4)).
By Lemma 2.7, whp, for each i ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF] and vertex v ∈ V -= V \ {v 1 , . . . , v 4 }, we have

r(d G (v, v i ) + ε/3) ≥ r(d G (v, v i ) + ε/4) ≥ d E (X v , X v i ) + ω ≥ d E (X v , c i ) ≥ d E (X v , X v i ) -ω ≥ r(d G (v, v i ) -(1 + ε/4)) ≥ r(d G (v, v i ) -(1 + ε/3)).
Let B 3 be the event that these last inequalities hold, so B 3 holds whp.

Condition on the events B 2 and B 3 holding, and fix v 1 , v 2 , v 3 , v 4 to be the 'corner' vertices found. We shall show that d max (Ψ, Φ) < (1 + ε)r (deterministically): this will establish [START_REF] Gilbert | Random plane networks[END_REF], since then

P(d max (Ψ, Φ) ≥ (1 + ε)r | B 2 ) ≤ P(B 3 )/P(B 2 ) = o(1).
By symmetry, we may assume for convenience that v i = i for each i ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF].

For each i ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF], let Q(n, i) denote the quarter of S n containing the corner c i . For each vertex v ∈ V -there is a 'nearest corner' in terms of graph distance. Fix j ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF]. Consider the case when a vertex v ∈

V -satisfies d G (v, v j ) = min 1≤i≤4 d G (v, v i ) (with ties broken arbitrarily). Claim For each vertex v ∈ V -such that d G (v, v j ) = min 1≤i≤4 d G (v, v i ), the corresponding point X v lies within distance at most r of the quarter Q(n, j) of S n .
Let us establish this claim. Suppose wlog that j = 4. Let v ∈ V -, and suppose for a contradiction that X v is not within distance r of Q(n, 4). Assume that X v ∈ Q(n, 1) (we shall consider other cases later). Let us first check that the minimum value of d E (x, c 4 ) -d E (x, c 1 ) over all points x in Q(n, 1) at distance ≥ r from Q(n, 4) is attained at x = x * where x * = (-r, 0). To see this, let us observe first that the minimum must be attained for some point (-r, -

√ n 2 +z) with z ∈ [0, √ n 2 ]
, as otherwise one could obtain a smaller solution by shifting horizontally to the right until hitting the line y = -r. Next, for a given point x = (-r, -

√ n 2 + z) we have d E (x, c 4 ) -d E (x, c 1 ) = z 2 + ( √ n 2 + r) 2 -z 2 + ( √ n 2 -r) 2 .
The derivative with respect to z of the previous expression is z

z 2 + ( √ n 2 + r) 2 - z z 2 + ( √ n 2 -r) 2
, which is clearly negative, since the denominator in the first term is bigger than in the second one. Hence, d E (x, c 4 ) -d E (x, c 1 ) is decreasing in z, and so it is minimized at x = x * , as we wished to show. Hence, all points x in Q(n, 1) at distance ≥ r from Q(n, 4) satisfy

d E (x, c 4 ) -d E (x, c 1 ) ≥ d E (x * , c 4 ) -d E (x * , c 1 ) = ( √ n 2 ) 2 + ( √ n 2 + r) 2 -( √ n 2 ) 2 + ( √ n 2 -r) 2 = n/2 + √ nr(1 + o(1)) -n/2 - √ nr(1 + o(1)) = n 2 1 + r √ n (1 + o(1)) -n 2 1 -r √ n (1 + o(1)) = ( √ 2 + o(1))r. (11) 
But, since B 3 holds,

d G (v, v 1 ) ≤ d E (X v , c 1 )/r + 1 + ε/3 and d G (v, v 4 ) ≥ d E (X v , c 4 )/r -ε/3.
Hence, by [START_REF] Hale | Frequency assignment: theory and applications[END_REF] and noting that

√ 2 -ε/3 > 1 + ε/3, we have d G (v, v 4 ) ≥ d E (X v , c 1 )/r + √ 2 -ε/3 > d G (v, v 1 ), a contradiction. Thus we cannot have X v ∈ Q(n, 1). The case when X v is in Q(n, 3
) is analogous. Finally consider the case when X v is in Q(n, 2). Now we shall check that the minimum value of d E (x, c 4 )d E (x, c 2 ) over all points x in Q(n, 2) at distance ≥ r from Q(n, 4) is again attained at x = x * = (-r, 0) (or at x = (0, r)). To see this, observe much as before that the minimum must be attained at distance exactly r from (0, 0), as otherwise one could obtain a smaller solution by shifting x along the straight line connecting x with (0, 0), until the distance from (0, 0) is exactly r. Next, for a given point x = (-r cos θ, r sin θ)

with θ ∈ [0, π/2], d E (x, c 4 ) -d E (x, c 2 ) is equal to ( √ n 2 + r cos θ) 2 + ( √ n 2 + r sin θ) 2 -( √ n 2 -r cos θ) 2 + ( √ n 2 -r sin θ) 2 .
The derivative with respect to θ of the above expression is

r √ n(cos θ -sin θ) 2 ( √ n 2 + r cos θ) 2 + ( √ n 2 + r sin θ) 2 - r √ n(sin θ -cos θ) 2 ( √ n 2 -r cos θ) 2 + ( √ n 2 -r sin θ) 2 .
For θ ∈ [0, π/4], cos θ ≥ sin θ, the derivative is positive (or zero), whereas for θ ∈ [π/4, π/2] the derivative is negative (or zero). Hence, the minimum value of d E (x, c 4 ) -d E (x, c 2 ) is attained at x = x * = (-r, 0) (or at x = (0, r)), as we wished to show.

Therefore, by [START_REF] Hale | Frequency assignment: theory and applications[END_REF], all points x in Q(n, 2) at distance ≥ r from Q(n, 4) satisfy

d E (x, c 4 ) -d E (x, c 2 ) ≥ d E (x * , c 4 ) -d E (x * , c 2 ) = ( √ 2 + o(1))r.
The remainder of the argument is as before, and so we have established the claim.

Now min i∈[3] d E (X v , c i ) ≥ √ n/2 -r. Denote by α the angle c 2 X v c 3 at X v
between the segments X v c 2 and X v c 3 , and by β the angle c 1 X v c 2 at X v between the segments X v c 1 and X v c 2 . We do not observe α or β directly, but clearly we have π/4 ≤ α, β ≤ π/2 + o(1) (see Figure 2, left picture), the bounds being attained if X v is c 4 and if X v is near (0, 0), respectively.

β α X v α α π -α π -α α β Figure 2. Illustration of the notation Let v ∈ V -be such that d G (v, v j ) = min 1≤i≤4 d G (v, v i ),
as in the last Claim, and assume as in the last Claim wlog that j = 4. For each i = 1, 2, 3, let

R i (v) = r(d G (v, v i )-1 2 ) = Θ( √ n)
, and let C i (v) be the circle centred on the corner c i with radius R i (v). Also, let A i (v) be the annulus centred on c i formed by circles of radii R i (v) ± r( 1 2 + ε 4 ). We can construct these three circles and corresponding annuli, and X v must lie in each of the annuli. It is convenient to consider them in pairs.

Consider first the circles C 2 (v), C 3 (v) and corresponding annuli A 2 (v), A 3 (v). The circles intersect below the line c 2 c 3 in a point Y 23 (v), where the tangents are at angle α+o(1) (and π -α+o(1)). The annuli intersect below the line c 2 c 3 in a set B 23 (v) which is -up to lower order terms accounting for curvaturesa parallelogram RH 23 (v) with (interior) angles α and π -α (see Figure 2, right picture). (We chose to consider the circles and annuli with centres far from X v so that curvatures would be negligible.) In fact, RH 23 (v) is a rhombus, as in each annulus the radii differ by the same value (1 + ε/2)r; and since the heights are equal, the sides must be of equal length. Further, the point Y 23 (v) is at the centre of the rhombus (up to lower order terms), where the diagonals cross. (It might happen that some part of the rhombus is actually outside S n , but since this makes the region which we know contains X v smaller, it is only helpful for us.)

The circles C 1 (v), C 2 (v) and corresponding annuli A 1 (v), A 2 (v) behave in exactly the way described above for C 2 (v), C 3 (v) and corresponding annuli. In particular, the annuli A 1 (v), A 2 (v) intersect to the right of the line c 1 c 2 in a set B 12 (v) which is close to a rhombus RH 12 (v) with angles β and π -β. Now consider the circles C 1 (v), C 3 (v) and corresponding annuli A 1 (v), A 3 (v); and for convenience let us restrict our attention to the case when α, β ≤ π/3 + o(1) (so X v is not near the centre (0, 0) of S n ; in the next paragraph we shall see why it suffices to have this assumption on α and β). The annuli A 1 (v), A 3 (v) intersect inside (or near) the bottom right quarter square Q(n, 4) in a set B 13 (v) which is close to a rhombus RH 13 (v) with angles α+β and π -α-β, where both these angles are in the interval between π/2 and 2π/3 + o(1).

Among these three pairs of circles and corresponding rhombi, we will consider one whose angles are closest to π/2. Let us check that there must be at least one with angles in the interval [π/3, 2π/3] -we call the corresponding rhombus squarelike. Indeed, suppose that this is not the case for RH 12 (v) or RH 23 (v). Then, since π/4 ≤ α, β ≤ π/2 + o(1), we must have α, β < π/3. Then, however, π/2 ≤ α + β < 2π/3, and so RH 13 (v) is the desired squarelike rhombus. Further, the maximum distance from the centre Y 13 (v) of the rhombus RH 13 (v) (the intersection of the diagonals) to a point in the set B 13 (v) is half the length d of the long diagonal (recall that we assume n sufficiently large, so that we can safely ignore curvature issues and we can approximate B 13 (v) arbitrarily well by a rhombus).

Pick a rhombus such that its angles are closest to π/2, and without loss of generality suppose it is RH 23 (v). We set Φ(v) = Y 23 (v). Clearly, the further away the angles α and π -α are from π/2, the longer the long diagonal, and we may thus assume the worst case of α = π/3 and π -α = 2π/3. The shorter diagonal of such a rhombus splits it into two equilateral triangles, with height (1 + ε/2)r; and thus half the length d of the longer diagonal is also (1 + ε/2)r, see Figure 3. Thus in general

d/2 ≤ (1 + ε/2)r ≤ (1 + ε)r. (1 + ε/2)r d π/6 2π/3 π/2 Φ(v) X v Figure 3. Angles in R 23 , for the extreme case α = π/3
Hence, the Euclidean distance from Φ(v) to any point inside

B 23 (v) is at most d/2 ≤ (1 + ε)r. But X v ∈ B 23 (v), so d E (Φ(v), X v ) ≤ (1 + ε)r.
This holds for each v ∈ V -, so we have found an embedding Φ with displacement at most (1 + ε)r. (If the point of the intersection of the two diagonals falls outside S n , then we project this point to the closest point on the boundary of S n , and clearly the distance to X v can only decrease).

We have now established [START_REF] Gilbert | Random plane networks[END_REF], and it remains only to justify treating the random symmetry π as the identity. We want to replace the conditioning on B 2 in (10) by conditioning on B 1 .

Let t > 0 and let σ be a symmetry. Arguing as for [START_REF] Díaz | On the relation between graph distance and Euclidean distance in random geometric graphs[END_REF], and noting also that d * (Ψ, Φ) = d * (σ -1 • Ψ, Φ), we have

P (B 1 ∧ (d * (Ψ, Φ) ≤ t) ∧ (π(Ψ) = σ)) = P B 1 ∧ (d * (σ -1 • Ψ, Φ) ≤ t) ∧ (π(σ -1 • Ψ) = σ 0 ) = P (B 1 ∧ (d * (Ψ, Φ) ≤ t) ∧ (π(Ψ) = σ 0 )) ;
so, summing over σ we have

P (B 1 ∧ (d * (Ψ, Φ) ≤ t)) = 8 P (B 2 ∧ (d * (Ψ, Φ) ≤ t)) .
But, similarly by ( 9), we have P(B 1 ) = 8 P(B 2 ), so

P(d * (Ψ, Φ) ≤ t | B 1 ) = P(d * (Ψ, Φ) ≤ t | B 2 ). Hence P(d * (Ψ, Φ) ≤ (1 + ε)r | B 1 ) = P(d * (Ψ, Φ) ≤ (1 + ε)r | B 2 ) = 1 -o(1)
by [START_REF] Gilbert | Random plane networks[END_REF]. Since B 1 holds whp, this completes the proof of Theorem 1.2.

Proof of Theorem 1.3

In this section, we prove Theorem 1.3, on approximate reconstruction from the random family of vertex orderings. As in the algorithm in Theorem 1.2, the algorithm here has two main steps. In the first subsection we give a sketch of the method, in the next subsection we fill in details on step (a), and in the final subsection we fill in details on step (b).

5.1. Sketch of the algorithm. The algorithm has two main steps.

• Step (a) Whp we identify four vertices v i such that the corresponding points are near the four corners of S n . • Step (b) Whp, for each other vertex v we construct two circles, and two corresponding thin annuli both containing X v , centered on a chosen pair of corners, such that the circles meet at an angle between π/3 and 2π/3; and we set Φ(v) to be the relevant point of intersection of the circles (which is essentially the centre of the rhombus formed by the intersection of the annuli, as before).

We obtain a much smaller displacement error than with random geometric graphs in Theorem 1.2 since our annuli are much thinner. We start with a sketch of the two steps (a) and (b) and of the proofs, before giving the full proofs. First, however, we introduce some useful notation.

For each pair u, v of vertices, we let k(u, v) be the rank of v in the vertexordering τ u . Thus k(u, u) = 1, and if v is last in the order τ u (farthest from u) then k(u, v) = n.

For 0 ≤ s ≤ √ 2, let λ(s) be the area of the set of points y in the unit square S 1 , centered at (0, 0), within distance s of a fixed corner point, say (-1 2 , -1 2 ). It will be convenient here to say that a sequence A n of events holds with very high probability (wvhp) if P(A n ) = 1 -o(1/n) as n → ∞. Finally, let ω = ω(n) → ∞ slowly, and in particular assume as in the previous section that ω ≪ √ log n.

Sketch of step (a): finding points near the corners of S n

We use the set

F 1 of n pairs (v, v ′ ) of vertices with v < v ′ (recall that v, v ′ ∈ [n]
), such that v ′ is last in the order τ v , and v is last in the ordering τ v ′ . This whp yields pairs of vertices such that the corresponding points are close to opposite corners of S n . We pick a pair in F 1 , discard pairs corresponding to the same pair of opposite corners, and pick a pair from what remains. We thus show that the following event C 1 holds whp.

Let C 1 be the event that this procedure yields vertices v 1 , . . . , v 4 such that, for some (unknown, random) symmetry π of S n , we have X v i ∈ B(π(c i ), ω) for each i ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF] (so X v i is very close to the corner π(c i )). Also, for given distinct vertices v 1 , . . . , v 4 let C 1 (v 1 , . . . , v 4 ) be the event that C 1 holds with this choice Proof of Lemma 5.1. Suppose wlog that x is in the bottom left quarter of S n (containing c 1 ). It is easy to see that d E (x, c 3 ) = t, and max{d E (x, y) : y ∈ (S n \ ∪ i B o (c i , ω))} is achieved at some point y ∈ S n with d E (y, c 3 ) = ω.

Let c 3x = (a, b), so n/2 ≤ a, b ≤ √ 2n, and t = √ a 2 + b 2 . Suppose further wlog that a ≥ b (that is, x lies on or above the line y = x), and note that a ≤ 2b.

Consider a point y with d E (c 3 , y) = ω. We claim that

d E (x, y) ≤ t -(1 + o(1))ω/ √ 5. ( 12 
)
To see this, write c 3y = (p, q). Then p, q ≥ 0 and p 2 + q 2 = ω 2 , so p + q ≥ ω; and we have

d E (x, y) = (a -p) 2 + (b -q) 2 1/2 = t 2 -(1 + o(1))(2ap + 2bq) 1/2 = t 1 -(1 + o(1))(ap + bq)/t 2 = t -(1 + o(1))(ap + bq)/t.
But a ≥ b and p + q ≥ ω, so

d E (x, y) ≤ t -(1 + o(1))b(p + q)/t ≤ t -(1 + o(1))bω/t. Also, a ≤ 2b so b/t ≥ b/ √ 4b 2 + b 2 = 1/ √ 5.
The claim [START_REF] Janson | Random Graphs[END_REF] now follows, and this completes the proof of the lemma.

Finding points near the corners of S n

Let C 2 be the event that, for each i ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF], there is a vertex u i such X u i ∈ B(c i , ω/4). Then C 2 holds whp. To see this, note that, for a fixed i ∈ [4]

P(X v ∈ B(c i , ω/4) for each v) = (1 -1 4 π(ω/4) 2 /n) n < e -π 64 
ω 2 = o(1);
and use a union bound. Observe that if z ∈ B(c i , ω/4) and z ′ ∈ B(c i ′ , ω/4) for opposite corners c i and

c i ′ , then d E (z, z ′ ) ≥ √ 2n -ω/2. Start with the set F 0 of n (ordered) pairs (v, v ′ ) where v ′ is farthest from v (in the ordering τ v ). Let F 1 be the set of pairs (v, v ′ ) in F 0 such that v < v ′
and also (v ′ , v) ∈ F 0 . Now assume that the event C 2 holds. By Lemma 5.1, for each pair (v, v ′ ) ∈ F 0 we must have X v ′ ∈ B(c i , ω) for some i. Hence, for each pair (v, v ′ ) ∈ F 1 , X v ∈ B(c i , ω) and X v ′ ∈ B(c i ′ , ω) for some corners c i and c i ′ , which must be an opposite pair of corners.

Choose a pair (v 1 , v 3 ) ∈ F 1 . Suppose that X v 1 ∈ B(c σ(1) , ω) and X v 3 ∈ B(c σ(3) , ω), where c σ(1) and c σ(3) form an opposite pair of corners. (We do not know σ(1), σ(3).) Observe that, if d E (c σ(1) , x) ≤ ω then d E (X v 1 , x) ≤ 2ω; and if d E (X v 1 , x) ≤ 2ω then x ∈ B(c σ(1) , 3ω). Let C 3 be the event that the number of points X v ∈ B(c σ(1) , 3ω) is at most ω 3 , and note that C 3 holds whp. Let C 4 be the event that the number of points X v ∈ B(c σ(1) , ω 2 ) is at least ω 3 , and note that C 4 holds whp. We may assume that ω 2 + 3ω < √ n.

Observe that, if the event C 4 holds, then there are at least

ω 3 points X v in B(X v 1 , ω 2 + ω) ⊆ B(c σ(1) , ω 2 + 2ω).
Note that a vertex v can occur at most once in the pairs in F 1 . Form F 2 by removing from F 1 any pairs containing a vertex within the first ω 3 from v 1 under the order σ v 1 . Assuming that C 3 ∧ C 4 holds, we must have removed from F 1 all pairs with a vertex u such that X u ∈ B(c σ(1) , ω) (and thus all pairs with a vertex u such that X u ∈ B(c σ(3) , ω)); and removed no pairs with a vertex u such that X u ∈ B(c j , ω) for j ∈ {σ(1), σ(3)} (since each vertex removed is in B(c σ(1) , ω 2 + 2ω), and ω 2 + 3ω < √ n). Hence, the pairs in F 2 are exactly the pairs from F 1 which are close to the other pair of opposite corners: choose v 2 v 4 to be any pair in F 2 . Suppose that X v 2 ∈ B(c σ(2) , ω) and X v 4 ∈ B(c σ(4) , ω). Then there is a symmetry π of S n such that π(c i ) = c σ(i) and X v i ∈ B(σ(c i ), ω), for each i ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF]. The vertices v 1 , . . . , v 4 are as required to show that the event C 1 holds. Thus we have just shown that C 1 holds whp, as required in step (a).

Filling in the details for step (b).

Before we start the main detailed proof of step (b), we give some preliminary results.

On the area function

λ(s) for S 1 If 0 ≤ s ≤ 1 then clearly λ(s) = 1 4 πs 2 . Let 1 < s < √ 2.
Let A be the point on the right side of S 1 at distance s from the corner point c 1 , so

A = ( 1 2 , -1 2 + √ s 2 -1); and similarly B = (-1 2 + √ s 2 -1, 1 
2 ) is the point on the top side of S 1 at distance s from c 1 . Let ψ = ψ(s) be the angle Ac 1 B, which is the angle subtended at c 1 by the curved part of the boundary of

S 1 ∩ B(c 1 , s). We claim that ψ(s) = sin -1 (2s -2 -1) (13) and λ 
(s) = 1 2 s 2 ψ(s) + √ s 2 -1. (14) 
To establish this claim, let θ be the angle Ac 1 c 4 . Then cos θ = 1/s and so cos(2θ) = 2 cos 2 θ -1 = 2s -2 -1. But the angle Bc 1 c 2 also equals θ, so ψ + 2θ = π/2. Thus sin ψ = 2s -2 -1, giving the formula for ψ in [START_REF] Kuhn | Unit disk graph approximation[END_REF]. Also, the sum of the areas of the triangles c 1 Ac 4 and c 1 Bc 2 is √ s 2 -1, and the sector with straight sides c 1 A and c 1 B (and internal angle ψ) has area 1 2 s 2 ψ; and these add up to λ(s), establishing [START_REF] Liben-Nowell | The link-prediction problem for social networks[END_REF].

if k = k(v i , v) satisfies k = Ω(n) and k ≤ αn, then d E (π(c i ), X v ) -s(k/n) √ n ≤ 1.19695 log n. (18) 
Proof. Let i ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF]. Let k be an integer with k = Ω(n) and k ≤ αn. Let

s k = s • (k/n) √ n so λ(s k / √ n) = k/n and λ n (s k ) = λ(s k / √ n)n = k For a
measurable subset S of S n , let N(S) be the random number of vertices v with X v ∈ S. Observe that N(B(c i , s k )) ∼ Bin(n, k/n), with mean k. Let 0 < η < 1: we shall choose a (small) value for η later. By [START_REF] Moscibroda | Virtual coordinates for ad-hoc and sensor networks[END_REF], by taking ε sufficiently small, we may ensure that s(k/n) ≤ (1 + η) 2 √ 3 and the angle ψ = ψ(s(k/n)) satisfies ψ ≥ ψ 0 , where ψ 0 = (1 -η) π 6 . Now, for a given constant c > 0,

λ n (s k + c log n) -λ n (s k ) ≥ (1 + o(1))ψ 0 (s k + c log n) 2 -s 2 k = (1 + o(1))2cψ 0 s k log n. Also, since ψ ≤ π 2 , λ n (s k + c log n) -λ n (s k ) ≤ (1 + o(1)) π 2 (s k + c log n) 2 -s 2 k ≤ (1 + o(1))πcs k log n, so 1 ≤ λ n (s k + c log n)/λ n (s k ) ≤ 1 + O log n n = 1 + o(1). Let X + = N(B(c i , s k + c √ log n)). By Lemma 2.1, since s k √ log n/E[X + ] = o(1), P(X + ≤ k) = P(X + ≤ E[X + ](1 -(1 + o(1))2cψ 0 s k log n/E[X + ]) ≤ exp{-(1 + o(1)) 1 2 2cψ 0 s k log n/E[X + ] 2 E[X + ]} ≤ exp{-(1 + o(1)) 2 c 2 ψ 2 0 s 2 k log n/E[X + ]}. But E[X + ] ∼ k = λ n (s k ) ≤ 1 4 πs 2 k , so P(X + ≤ k) ≤ exp -(1 + o(1)) 1 4 πs 2 k E[X + ] 8 π c 2 ψ 2 0 log n ≤ exp -(1 + o(1)) 2π 9 c 2 (1 -η) 2 log n . Note that 9/(2π) ≈ 1.196827. Thus, if η is sufficiently small, setting c = 1.1969, we have P(X + ≤ k) = o(1/n).
Similarly, let X -= N(B(c i , s k -c √ log n)): then, with the same value of c,

P(X -≥ k) = o(1/n).
Thus we have seen that whp the following holds. For each i ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF] and each

v ∈ V -, if k = k(v i , v) satisfies k = Ω(n) and k ≤ αn, then N(B(c i , s k -1.1969 log n)) < k and N(B(c i , s k + 1.1969 log n)) > k. Now, for each i ∈ [4], d E (π(c i ), v i ) < ω ≪ √ log n. Also B(π(c i ), s k + 1.1969 log n) ⊆ B(v i , s k + 1.1969 log n + ω) ⊆ B(π(c i ), s k + 1.1969 log n + 2ω) ⊆ B(π(c i ), s k + 1.19695 log n).
But the first of these four balls contains more than k points X u , so X v must be in the second ball, and so it is in the last one; that is

d E (π(c i ), X v ) ≤ s k + 1.19695 √ log n. Similarly, X v ∈ B(π(c i ), s k -1.19695 √ log n),
and the lemma follows.

We now begin the main proof of Theorem 1.3, starting with the first step.

Nearest corner in S n

Condition throughout on the event C 1 , and on a particular choice of v 1 , . . . , v 4 ; that is, condition on the event C 1 (v 1 , . . . , v 4 ). Let V -= V \ {v 1 , . . . , v 4 }. Recall that, for each i ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF] and v ∈ V -, k(v i , v) is the rank of v in the order τ v i . Since v i is very close to π(c i ) whp, we may think of k(v i , v) as roughly the number of points X u for u ∈ V which are as close to π(c i ) as X v is. Let C 5 be the event that, for each j ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF],

{u ∈ V : d E (c j , X u ) < 1 2 √ n -2ω} ≥ π 16 n -n 2/3 . Then C 5 holds whp, by Chebyshev's inequality. Let i ∈ [4] and let v ∈ V -. If d E (π(c i ), X v ) ≥ 1 2 √ n then d E (X v i , X v ) ≥ 1 2
√ n -ω, and so each vertex u such that d

E (π(c i ), X u ) < 1 2 √ n -2ω satisfies d E (X v i , X u ) < d E (X v i , X v ); hence, if C 5 holds, then k(v i , v) > π 16 n -n 2/3 . Recall that, given v ∈ V -, the index i 0 = i 0 (v) ∈ [4] satisfies k(v i 0 , v) = min i∈[4] k(v i , v) (breaking ties by choosing the least such value i). Condition on C 5 holding. Then, for each v ∈ V -and each i ∈ [4]\{i 0 }, we have k(v i , v) > π 16 n -n 2/3 . (For, if not, then both d E (π(c i 0 ), X v ) < 1 2 √ n and d E (π(c i ), X v ) < 1 2
√ n, which is not possible since the distance between distinct corners is at least √ n.) Note that π/16 ≈ 0.1963 > 0.19. Hence, for each i ∈

[4]\{i 0 } we have k(v i , v) > 0.19n, so k(v i , v) = Θ(n).
Next, we show that for i = i 0 ± 1 (indices are taken modulo 4), we have k(v i , v) ≤ αn. Assume wlog that i 0 = 1, and consider i = 2. We saw earlier that X v is within distance r of the quarter square containing π(c 1 ). Recall that v 2 is close to the corner π(c 2 ). The maximum distance from π(c 2 ) to X v is (1 + o(1)) √ 5n/2. But λ( √ 5/2) = 5 8 sin -1 3 5 + 1 2 ≈ 0.902188. Thus the area of B(π(c 2 ), (1 + o(1)) √ 5n/2) is < 0.905n. Hence, by Lemma 2.1, wvhp the number of vertices w with X w ∈ B(π(c 2 ), (1 + o(1)) √ 5n/2) is less than 0.91n, so k(v 2 , v) < 0.91n < αn, as required.

For i = i 0 + 2, we have k(v i , v) > 0.19n, but the upper bound k ≤ αn might or might not hold. In order to deal with both cases, we need another auxiliary lemma.

Lemma 5.3. Let v ∈ V -and let i 0 = i 0 (v). If k(v i 0 +2 , v) > αn, then wvhp the near-rhombus formed from the intersection of the two annuli centred on the corners π(c i 0 -1 ) and π(c i 0 +1 ) is squarelike, i.e., the angles in the near-rhombus are between π/3 and 2π/3.

Proof. Assume that k(v i 0 +2 , v) > αn.

Suppose that d E (π(c i 0 +2 ),

X v ) < 2 √ 3 √ n. Then k(v i 0 +2 , v) = {u ∈ V : d E (v i 0 +2 , X u ) ≤ d E (v i 0 +2 , X v )} ≤ N(B(v i 0 +2 , 2 √ 3 √ n))
≤ N(B(π(c i 0 +2 ), 2 √ n + ω) is ∼ α 0 n, and α > α 0 . Then, by [START_REF] Parthasarathy | A quest to unravel the metric structure behind perturbed networks[END_REF], the angle c i 0 -1 X v c i 0 +1 is at most 2π/3 (and clearly at least π/2). Hence the intersection of the two annuli centred on the corners π(c i 0 -1 ) and π(c i 0 +1 ) forms a near-rhombus such that the angles are between π/3 and 2π/3, that is, it is squarelike.

Finishing the proof of Theorem 1.3 Now, in order to finish the proof of Theorem 1.3, we may assume wlog that C 1 (v 1 , . . . , v 4 ) holds, and that the random permutation π is the identity map (as in the proof of Theorem 1.2). We consider a vertex v ∈ V -. We may assume as before that i 0 = i 0 (v) = 4. We distinguish the two cases, whether k(v i 0 +2 , v) ≤ αn or not.

Case 1: k(v i 0 +2 , v) ≤ αn. In this case the ideas of Theorem 1.2 can be applied. Let I -= [4]\{i 0 }. By Lemma 5.2 and the first part of the proof, whp, for each vertex v and each such i, we know the value d E (c i , X v ) up to an additive error of 1.19695 √ log n. Now, exactly as in the proof of Theorem 1.2, we consider three circles C i (v) (with corresponding annuli A i (v)) for i ∈ I -, and pick a pair of circles meeting at an angle between π/3 and 2π/3. We set Φ(v) to be the relevant point where these circles meet, and then d E (Φ(v), X v ) < 1.197 √ log n.

Case 2: k(v i 0 +2 , v) > αn: As in the last case, we know the value d E (c i , X v ) up to an additive error of 1.19695 √ log n. In this case, by Lemma 5.3, the two circles (with corresponding annuli) centred on the corners c i 0 -1 and c i 0 +1 meet at an angle between π/3 and 2π/3. As before, we set Φ(v) to be the relevant point where these circles meet, and we find that d E (Φ(v), X v ) < 1.197 √ log n.

Concluding remarks

Recall that there is a family of n random points X v for v ∈ V , independently and uniformly distributed in the square S n = [-√ n/2, √ n/2] 2 . We do not see these points, but learn about them in one of the following two ways: (a) when we are given just the corresponding random geometric graph (for a suitable threshold distance r), and (b) when we have some geometric information. In case (a), we obtained an embedding Φ with displacement at most about r, but we required the threshold distance r to satisfy r ≫ n 3/14 , which yields rather a dense random geometric graph. In case (b), for each vertex v, we are given a list of all the vertices w ordered by increasing Euclidean distance from X v of the corresponding points X w . In this case, we obtain an embedding Φ with dramatically less error.

Can we obtain lower displacement for these approximate reconstruction problems? Can we obtain similar low displacement for smaller values of r (yielding sparser random graphs)? Can we find a better estimator for the threshold distance r in case (a). It would be natural to look at the degrees of more vertices, perhaps even count edges -if we could control the dependencies.

Another open issue is whether there is a different choice of non-trivial natural geometrical information that would help to extend the range of r we can handle. Notice that exposing the real length of all the edges would trivialize the problem, as we saw in Subsection 1.5. Another natural line of research is to consider a region in the plane different from the square S n , for instance a disk of area n, still with n iid uniformly distributed random points X v . Here we cannot of course start from the corners, but we do have a boundary and we can identify vertices v with X v near the boundary by looking at vertex degrees.

Also it would be interesting to generalize the problem to higher dimensions, to R d for d ≥ 3. We believe that for bounded dimension d, or indeed for sufficiently slowly growing dimension, similar results to those obtained in this paper could be obtained for n iid points uniformly distributed in the d-cube -n 1/d /2, n 1/d /2 d of volume n.

Finally, let us mention the model where the underlying space is the unit sphere S d-1 in R d (with n iid uniformly distributed random points X v ). See [START_REF] Bubeck | Testing for high-dimensional geometry in random graphs[END_REF] for recent work on this model in high dimensions, where the main interest is to test whether we are looking at a graph from this model or at a corresponding Erdős-Rényi random graph. See also the references in [START_REF] Bubeck | Testing for high-dimensional geometry in random graphs[END_REF] for other work on this model. For the estimation problem, there is now not even a boundary to start from!
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 27 Let r = r(n) satisfy √ log n ≪ r ≪ √ n and consider the random geometric graph G ∈ G (n, r). Let ω = ω(n) tend to infinity with n arbitrarily slowly, and in particular assume that ω 2 ≤ r/2 and ω ≪ r/ √ log n. Then whp the following holds: (a) for each i = 1, . . . , 4, there exists
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 1 πr 2 + 1 3 ωr. This gives part (a) of the lemma.
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 2821 Figure 1. Choosing points in the 4 corners of the √ n × √ n square S n

√ 3 √

 3 n + ω)) < αn, by Lemma 2.1, since by (15) the area of B(π(c i 0 +2 ), 2 √ 3

of the 'corner' vertices.

Sketch of step (b): constructing the circles and annuli

Suppose that the event C 1 (v 1 , . . . , v 4 ) holds. We use the orders τ v 1 , . . . , τ v 4 to estimate the distances from the corners.

Let V -= V \ {v 1 , . . . , v 4 }. For each vertex v ∈ V -, we define i 0 = i 0 (v) to be the least j ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF] such that k(v j , v) = min i∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF] k(v i , v) (picking the least j is just a tie-breaker). (Thus π(c i 0 ) is likely to be the closest corner to X v .) Fix v ∈ V -, and let I -= [4] \{i 0 }. We consider the three orders τ v i for i ∈ I -. (We do not use τ v i 0 , and do not consider distances from π(c i 0 ), so that we work only with 'large' distances, and thus we do not need to worry about curvature, exactly as before.) We want to find a pair of thin annuli, centred on two of the three corners near the points X v i for i ∈ I -, such that wvhp the 'nearrhombus' formed by the intersection of the two annuli is squarelike, and wvhp X v is in this near-rhombus.

We shall see that, for each i ∈ I -, we have k(v i , v) > 0.19 n wvhp (so we will work only with 'large' distances); and for i = i 0 ± 1, we have k(v i , v) < 0.91n wvhp. (Indices in [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF] are always taken mod 4.) Let α 0 = π 9 + 1 √ 3 ≈ 0.9264: later we shall choose a rational constant α slightly bigger than α 0 . When k(v i , v) is Ω(n) and is at most αn, we have a good estimate of d E (π(c i ), X v ) (see Lemma 5.2). Also, as in the proof of Theorem 1.2, it suffices to consider the case when π is the identity map.

There are two cases depending on the rank k(v i 0 +2 , v) (note that v i 0 and v i 0 +2 are at opposite corners of S n ): case (i) when k(v i 0 +2 , v) ≤ αn, and case (ii) when k(v i 0 +2 , v) > αn. In case (i) we form three circles and three thin annuli, and then choose a best pair of them, as in the proof of Theorem 1.2. In case (ii), we just use the two circles and thin annuli centred on the corners c i 0 -1 and c i 0 +1 (see Lemma 5.3).

Filling in the details for step (a)

. We need to show that the method sketched above works. We first consider step (a), and show that indeed the event C 1 holds whp. We need one deterministic preliminary lemma. Lemma 5.1. Let x ∈ S n , and let

Then (assuming that n is sufficiently large)

(where the balls B o (c i , ω) are open).

For s = 2 √ 3 we have ψ = sin -1 1 2 = π 6 ; and so λ

Also, for 1 ≤ s ≤ 2 

; and so the angle c 2 x * c 4 is 2π/3. We claim that,

This will follow from the above, once we check that the angle is maximised over x ∈ F at x = x * . Clearly it is maximised at some point on the line x + y = 1 b + tan -1 a-z b , and differentiate: we find

after some simplification. Thus indeed θ(z) is maximised at z = a/2; and we have established the claim [START_REF] Penrose | Random Geometric Graphs[END_REF].

Since P and Q lie on the line x + y = 1 3 ) ⊆ F . This completes the proof of [START_REF] Parthasarathy | A quest to unravel the metric structure behind perturbed networks[END_REF]. We need the following auxiliary lemma. Recall that α 0 = λ( 2 √ 3 ) ≈ 0.9264. Lemma 5.2. Assume that C 1 (v 1 , . . . , v 4 ) holds. There exists ε > 0 such that if α = α 0 + ε then the following holds whp. For each i ∈ [START_REF] Bruck | Localization and routing in sensor networks by local angle information[END_REF] and each v ∈ V -,