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On the second largest component of random hyperbolic graphs

. We also show that for α = 1 2 the corresponding size is Θ(log n), whereas for α = 1 it is Ω(n b ) for some b > 0.

Introduction

The model of random hyperbolic graphs introduced by Krioukov et al. [KPK + 10] has attracted quite a bit of interest due to its key properties also observed in large real-world networks. One convincing demonstration of this fact was given by Boguñá et al. in [START_REF] Boguñá | Sustaining the internet with hyperbolic mapping[END_REF] where a compelling (heuristic) maximum likelihood fit of autonomous systems of the internet graph in hyperbolic space was computed. A second powerful reason for why the model initially caught attention is due to the experimental results reported by Krioukov et al. [KPK + 10, § X] confirming that the model exhibits the algorithmic small-world phenomenon established by the groundbreaking letter forwarding experiment of Milgram from the 60's [START_REF] Travers | The small world problem[END_REF].

Another important aspect of the random graph model introduced in [KPK + 10] is its mathematically elegant specification and the fact that it is amenable to mathematical analysis. This partly explains why the model has been studied not only empirically by the networking community but also analytically by theoreticians. For the latter, it is natural to first consider those issues that played a crucial role in the development of the theory of other random graph models. Among these, the Erdős-Rényi random graph model is undisputedly the most relevant. One of the most, if not the most, studied aspect of the Erdős-Rényi model is the evolution (as a function of the graph density) of the size and number of its connected components [START_REF] Erdős | On the evolution of random graphs[END_REF], specially the size of the largest one, but also the size of the second largest. These studies have played a crucial role in the development of mathematical techniques and significantly contributed to the understanding of the Erdős-Rényi random graph model. For the random hyperbolic graph model, the study of the largest component's size was started by Bode, Fountoulakis and Müller [START_REF] Bode | On the giant component of random hyperbolic graphs[END_REF] and recently refined by Fountoulakis and Müller [FMar]. A logarithmic lower bound and polylogarithmic upper bound for the size of the second largest component of random hyperbolic graphs (when 1 2 < α < 1) were first established in [KMar]. In this note we improve on these bounds and determine the precise order of the size of the second largest component of random hyperbolic graphs.

Model specification: In the original model of Krioukov et al. [KPK + 10] an n-vertex size graph G was obtained by first randomly choosing n points in B O (R) (the disk of radius R = R(n) centered at the origin O of the hyperbolic plane). From a probabilistic point of view it is arguably more natural to consider the Poissonized version of this model. Formally, the Poissonized model is the following (see also [START_REF] Gugelmann | Random hyperbolic graphs: Degree sequence and clustering[END_REF] for the same description in the uniform model): for each n ∈ N, we consider a Poisson point process on the hyperbolic disk of radius R := 2 log(n/ν) for some positive constant ν ∈ R + (log denotes here and throughout the paper the natural logarithm) and denote its point set by V (the choice of V is due to the fact that we will identify points of the Poisson process with vertices of the graph). The intensity function at polar coordinates (r, θ) for 0 ≤ r < R and 0 ≤ θ < 2π is equal to g(r, θ)

:= νe R 2 f (r, θ),
where f (r, θ) is the joint density function with θ chosen uniformly at random in the interval [0, 2π) and independently of r chosen according to the density function

f (r) :=    α sinh(αr) cosh(αR) -1 , if 0 ≤ r < R, 0, otherwise. 
Identify then the points of the Poisson process with vertices (that is, for each vertex v ∈ V we identify it with its position in polar coordinates (r v , θ v )) and make the following graph G = (V, E): for u, u ∈ V , u = u , there is an edge with endpoints u and u provided the distance (in the hyperbolic plane) between u and u is at most R, i.e., the hyperbolic distance between u and u , denoted by

d h := d h (u, u ), is such that d h ≤ R where d h is obtained by solving cosh d h := cosh r u cosh r u -sinh r u sinh r u cos(θ u -θ u ). (1) 
For a given n ∈ N, we denote this model by Poi α,ν (n). Note in particular that

g(r, θ)dθdr = νe R 2 = n,
and thus E|V | = n. The main advantage of defining V as a Poisson point process is motivated by the following two properties: the number of points of V that lie in any region A ⊆ B O (R) follows a Poisson distribution with mean given by A g(r, θ)drdθ = nµ(A), and the numbers of points of V in disjoint regions of the hyperbolic plane are independently distributed. The restriction α > 1 2 and the role of R, informally speaking, guarantee that the resulting graph has bounded average degree (depending on α and ν only): if α < 1 2 , then the degree sequence is so heavy tailed that this is impossible (the graph is with high probability connected in this case, as shown in [BFMar]), and if α > 1, then as the number of vertices grows, the largest component of a random hyperbolic graph has sublinear order [BFM15, Theorem 1.4]. In fact, although some of our results hold for a wider range of α, we will always assume 1 2 < α < 1; only in the concluding remarks we discuss the cases α = 1 2 and α = 1.

It is known that for 1 2 < α < 1, with high probability the graph G has a linear size component [BFM15, Theorem 1.4] and all other components are of polylogarithmic order [KM15, Corollary 13], which justifies referring to the linear size component as the giant component. Implicit in the proof of [START_REF] Bode | On the largest component of a hyperbolic model of complex networks[END_REF]Theorem 1.4] is that the giant component of a random hyperbolic graph G is the one that contains all vertices whose radial coordinates are at most R 2 . More precise results including a law of large numbers for the largest component in these networks were established recently in [FMar].

Main result and proof overview:

In this note we determine the exact order of the size of the second largest component, which we denote by L 2 (G).

We say that an event holds asymptotically almost surely (a.a.s.), if it holds with probability tending to 1 as n → ∞. The main result of this note is the following:

Theorem 1. Let 1 2 < α < 1. Let G = (V, E) be chosen according to Poi α,ν (n). A.a.s., L 2 (G) = Θ(log 1 1-α n).
Moreover, for some sufficiently small constant b > 0, there are Ω(n b ) components in G, each one of size Θ(log

1 1-α n).
To establish the lower bound, we partition the disk into sectors, so that close to the central axis of each sector, one can find a chain (a path) of vertices at a certain distance from the boundary so that the expected number of vertices with larger radius and in the same sector is of the desired order. While it is relatively easy to show that a constant fraction of these vertices indeed connects to the chain, it is more work to show that none of these vertices in fact is connected to the giant component. Technically, this is tedious since vertices at all radii might potentially be connected to the giant component; vertices with smaller radii might be more dangerous to have neighbors with smaller radii, whilst vertices with bigger radii (close to the border) might be more dangerous to have neighbors with larger radii.

An original aspect of our lower bound analysis consists in identifying "walls", that is, regions W, inside B O (R) and close to its boundary (specifically, a collection of connected points at distance at least := R -O(log R) from the origin) which satisfy the following conflicting properties: (i) they do not contain vertices, and (ii) for a sector Φ of B O (R) strictly containing W, the region Φ \ B O ( ) is partitioned into connected regions W , W, W in such a way that the hyperbolic distance between a point in W and a point in W is greater than R. The abundance of walls coupled with the fact that the subgraph of G induced by the vertices in B O (R) \ B O ( ) contains, many connected components (which we refer to as pre-components) reduces the problem of bounding L 2 (G) from below to one of showing that there are regions of B O ( ) which are unlikely to contain vertices of G (these latter regions are the ones where neighbors of pre-components can potentially lie).

Interestingly, the mentioned abundance of walls also explains the "forest-like" structure close to the boundary of B O (R) that random hyperbolic graphs exhibit (see Figure 1). The upper bound of Theorem 1, comparably easier, makes use of the fact that all vertices that are not too close to the boundary of B O (R) belong to the giant component. We can thus find in every sector of not too big angle a vertex belonging to the giant component, and by simple known geometric observations any other component must be squeezed between two such sectors. Since the number of vertices in such a sector is concentrated, we get an upper bound on the size of the second component.

To conclude our study of the size of the second largest component of random hyperbolic graphs we consider the relevant remaining cases where α = 1 2 or α = 1. In the former case, we show that a.a.s. every vertex of the second largest component must be within C = Θ(1) of the boundary of B O (R). Moreover, by some geometric considerations, such component must be contained in a sector Φ of B O (R) for which Φ ∩ B O (R -C) does not contain vertices of G. An analysis of the likely maximum angle such a sector Φ can have and of the number of vertices that can be found in Φ \ B O (R -C) yields the following: Proposition 2. For α = 1 2 , a.a.s., L 2 (G) = Θ(log n). For the α = 1 case, we show that a.a.s. there is 1 2 < λ < 1 and a vertex of degree Θ(n 1-λ ) that belongs to a component separated from the giant, so we obtain the following: Proposition 3. For α = 1 there exists γ, 0 < γ < 1 such that a.a.s., L 2 (G) = Ω(n γ ). Moreover, for some 0 < δ < γ and for some sufficiently small constant b > 0, a.a.s. there are Ω(n b ) components in G, each one of size Ω(n δ ).

Related work:

Although the random hyperbolic graph model was relatively recently introduced [KPK + 10], several of its key properties have already been established. As already mentioned, in [START_REF] Gugelmann | Random hyperbolic graphs: Degree sequence and clustering[END_REF], the degree distribution, the expected value of the maximum degree and global clustering coefficient were determined, and in [START_REF] Bode | On the largest component of a hyperbolic model of complex networks[END_REF], the existence of a giant component as a function of α.

The threshold in terms of α for the connectivity of random hyperbolic graphs was given in [BFMar]. Concerning diameter and graph distances, except for the aforementioned papers of [START_REF] Kiwi | A bound for the diameter of random hyperbolic graphs[END_REF] and [START_REF] Friedrich | On the diameter of hyperbolic random graphs[END_REF], the average distance of two points belonging to the giant component was investigated in [ABF]. Results on the global clustering coefficient of the so called binomial model of random hyperbolic graphs were obtained in [START_REF] Candellero | Clustering in random geometric graphs on the hyperbolic plane[END_REF], and on the evolution of graphs on more general spaces with negative curvature in [START_REF] Fountoulakis | On the evolution of random graphs on spaces with negative curvature[END_REF]. Finally, the spectral gap of the Laplacian of this model was studied in [KMar] The model of random hyperbolic graphs for 1 2 < α < 1 is very similar to two different models studied in the literature: the model of inhomogeneous long-range percolation in Z d as defined in [START_REF] Deijfen | Scale-free percolation[END_REF], and the model of geometric inhomogeneous random graphs, as introduced in [BKLb]. In both cases, each vertex is given a weight, and conditionally on the weights, the edges are independent (the presence of edges depending on one or more parameters). In [START_REF] Deijfen | Scale-free percolation[END_REF] the degree distribution, the existence of an infinite component and the graph distance between remote pairs of vertices in the model of inhomogeneous long-range percolation are analyzed. On the other hand, results on typical distances, diameter, clustering coefficient, separators, and existence of a giant component in the model of geometric inhomogeneous graphs were given in [BKLa, BKLb], bootstrap percolation in the same model was studied in [START_REF] Koch | Bootstrap percolation on geometric inhomogeneous random graphs[END_REF] and greedy routing in [BKL + 17]. Both models are very similar to each other, and similar results were obtained in both cases; since the latter model assumes vertices in a toroidal space, it generalizes random hyperbolic graphs.

Notation: All asymptotic notation in this paper is respect to n. Expressions given in terms of other variables such as O(R) are still asymptotics with respect to n, since these variables still depend on n. We say that an event holds with extremely high probability (w.e.p.), if for every c > 0, there exists an n 0 := n 0 (c) such that for every n ≥ n 0 the event holds with probability at least 1 -O(n -c ). Note that the union of polynomially (in n) many events (where the degree of the polynomial is not allowed to depend on c) that hold w.e.p. is also an event that holds w.e.p. In what follows, any union bound is over at most O(n 2 ) many events.

Preliminaries

In this section we collect some of the known properties concerning random hyperbolic graphs.

By the hyperbolic law of cosines (1), the hyperbolic triangle formed by the geodesics between points p , p , and p, with opposing side segments of length d h , d h , and d h respectively, is such that the angle formed at p is:

θ d h (d h , d h ) = arccos cosh d h cosh d h -cosh d h sinh d h sinh d h .
Clearly,

θ d h (d h , d h ) = θ d h (d h , d h ).
Remark 4. Recall that cosh(•) is at least 1 and strictly increasing in R + . Moreover, cosh 2 x-

sinh 2 x = 1. Hence, if 0 < x, y ≤ R, then ∂ ∂x cosh x cosh y -cosh R sinh x sinh y = -cosh y + cosh R cosh x sinh 2 x sinh y > cosh R -cosh y sinh 2 x sinh y ≥ 0.
Since arccos(•) is strictly decreasing, it follows that θ R (•, y) is strictly decreasing for fixed 0 < y ≤ R. By symmetry, a similar claim holds for θ R (x, •).

Next, we state a very handy approximation for θ R (•, •).

Lemma 5 ([GPP12, Lemma 3.1]). If 0 ≤ min{d h , d h } ≤ R ≤ d h + d h , then θ R (d h , d h ) = 2e 1 2 (R-d h -d h ) 1 + Θ(e R-d h -d h ) .
Remark 6. We will use the previous lemma also in this form: let p and p be two points at distance R from each other such that r p , r p > R 2 and min{r p , r p } ≤ R. Then, taking

d h = r p and d h = r p in Lemma 5, we get θ R (r p , r p ) := 2e 1 2 (R-r p -r p ) 1 + Θ(e R-r p -r p ) .
Throughout, we will need estimates for measures of regions of the hyperbolic plane, and more specifically, for regions obtained by performing some set algebra involving a few balls. For a point p of the hyperbolic plane H 2 , the ball of radius ρ centered at p will be denoted by B p (ρ), i.e., B p (ρ) := {q ∈ H 2 : d h (p, q) ≤ ρ}. Also, we denote by µ(S) the measure of a set S ⊆ H 2 , i.e., µ(S) := S f (r, θ)drdθ.

Next, we collect a few results for such measures.

Lemma 7 ([GPP12, Lemma 3.2]). If 0 ≤ ρ < R, then µ(B O (ρ)) = e -α(R-ρ) (1 + o(1)). A direct consequence of Lemma 7 is Corollary 8. If 0 ≤ ρ O < ρ O < R, then µ(B O (ρ O ) \ B O (ρ O )) = e -α(R-ρ O ) (1 -e -α(ρ O -ρ O ) + o(1)).
By a simple application of Chernoff bounds, we have the following lemma:

Lemma 9 ([KMar, Lemma 12]). Let V be the vertex set of a graph chosen according to Poi α,ν (n). For every c > 0, there is a sufficiently large constant

c = c (c) such that if S ⊆ B O (R) with µ(S) ≥ c log n/n, then with probability at least 1-n -c , |S ∩V | = Θ(nµ(S)). If moreover S ⊆ B O (R) is such that µ(S) = ω(log n/n), then w.e.p. |S ∩ V | = Θ(nµ(S)).
We need one more lemma.

Lemma 10 ([FK15, Lemma 9]). Let p, p , p ∈ B O (R) be such that θ p ≤ θ p ≤ θ p and let d h (p, p ) ≤ R. Then the following holds: if r p ≤ min{r p , r p }, then d h (p, p ), d h (p , p ) ≤ R.

Intermediate regime of α

In this section we prove the main result of this article which concerns the regime where α takes values strictly between 1 2 and 1. Since our results are asymptotic, we may and will ignore floors in the following calculations, and assume that certain expressions such as

R -log R 1-α , R -log R 1-α -L
1-α for some constant L or the like are integers, if needed. When working with a Poisson point process V , for a positive integer , we refer to the vertices of G that belong to B O ( ) \ B O ( -1) as the -th band or layer and denote it by V := V (G), i.e., V = V ∩ B O ( ) \ B O ( -1). Throughout this section we always assume that 1 2 < α < 1.

Upper bound

We start with an observation that simplifies arguing about the giant component of random hyperbolic graphs. A similar but slightly weaker result was already proven in [KMar].

Lemma 11. Let := R -log R 1-α -L 1-α and G = (V, E) be chosen according to Poi α,ν (n).
For every c > 0, there is a sufficiently large constant L := L(c) > 0 such that with probability at least 1 -O(n -c ), all vertices in V ∩ B O ( ) belong to the giant component.

Proof. First observe that by [START_REF] Bode | On the largest component of a hyperbolic model of complex networks[END_REF], w.e.p. every vertex v ∈ V i with i ≤ R 2 belongs to the giant component. Hence, it suffices to show that for a sufficiently large L and every vertex v ∈ V i with R 2 ≤ i ≤ with probability at least 1 -O(n -c ), there exists a path connecting v to a vertex in V ∩ B O ( R 2 ). Taking a union bound, and iterating the argument with i -1 instead of i until i = R 2 , it is enough to show that for a fixed vertex v ∈ V i with i as before, with probability at least 1 -O(n -(c+1) ), vertex v has a neighbor in V i-1 . Indeed, by Remark 6, v is connected to vertex u ∈ V i-1 if the angle at the origin between u and v is O(θ R (i, i)). By Corollary 8, we have

µ(B v (R) ∩ B O (i -1) \ B O (i -2)) = Θ(e -α(R-i) e 1 2 (R-2i) ) = Θ(e (1-α)(R-i) /n).
Since α < 1, this expression is clearly decreasing in i, and plugging in our upper bound on i, we obtain

µ(B v (R) ∩ B O (i -1) \ B O (i -2)) = Ω(e (R-)(1-α /n) = Ω(log n/n),
where the constant hidden in the asymptotic expression can be made arbitrarily large by choosing L large enough so that applying Lemma 9 guarantees that with probability at least 1 -O(n -(c+1) ), vertex v has Ω(log n) neighbors in V i-1 . By definition, v is connected by an edge to any such vertex, and hence in particular with probability at least 1

-O(n -(c+1) ), vertex v has a neighbor in V i-1 .
Define next a φ-sector Φ to be a sector of B O (R), that contains all points in B O (R) making an angle of at most φ at the origin with an arbitrary but fixed reference point.

We deduce from the previous lemma that in any not too small angle there will be at least one vertex belonging to the giant component:

Lemma 12. For every c > 0, there are sufficiently large positive constants L := L(c) and

L := L (c), such that for := R -log R 1-α -L 1-α and φ := L n (log n) 1/(1-α)
, with probability at least 1 -O(n -c ), every 2φ-sector Φ contains at least one vertex v ∈ V . 

µ(Φ i ∩ B O ( ) \ B O ( -1)) = Θ(φe -α(R-) ) = Θ(log n/n).
For L sufficiently large, the constant hidden in the asymptotic notation can be made as large as required by Lemma 9 to get that, with probability at least 1 -O(n -(c+1) ), the number of vertices in V ∩ Φ i is Θ(log n). By taking a union bound over all φ-sectors Φ i (there are 2π/φ = O(n) of them), this holds with probability at least 1 -O(n -c ) in all of them simultaneously. The statement then follows since every 2φ-sector Φ has to contain entirely a φ-sector Φ i , and by a union bound over all events.

We are now ready for the upper bound on the second largest component.

Proposition 13. Let G = (V, E) be chosen according to Poi α,ν (n). W.e.p.,

L 2 (G) = O(log 1 1-α n).
Proof. Let c > 0. Let := (L), L := L(c + 1), φ := φ(L ), and L := L (c + 1) be as in the statement of Lemma 12. By a union bound and appropriate choices of L and L , Lemma 11 and Lemma 12 imply that, with probability at least 1 -O(n -(c+1) ), all vertices in B O ( ) belong to the giant component and every 2φ-sector contains at least one vertex v ∈ B O ( ). Henceforth, condition on the latter event. Then, every vertex x outside the giant component belongs to B O (R) \ B O ( ). Now, consider a component C distinct from the giant component and let u, u be vertices in C such that |θ u -θ u | = max x,x |θ x -θ x |, where the maximum is taken over all pairs of vertices x, x belonging to C. If we had |θ u -θ u | ≥ 2φ then by our conditioning there would be a vertex v ∈ B O ( ) (thus in the giant component) such that θ u ≤ θ v ≤ θ u . Since there exists a path in C between u and u containing only vertices u j with r u j > , in such a path there must be a pair of vertices, say u i , u j , with r v ≤ r u i , r u j , u i u j ∈ E, and θ u i ≤ θ v ≤ θ u j . By Lemma 10, then however, also 

u i v ∈ E and u j v ∈ E,

Lower bound

We next turn to prove a lower bound matching the bound of Proposition 13. Let M = M (α, ν) throughout this subsection be a sufficiently large constant. Partition B O (R) into ψsectors with ψ := (ν/n) 1-β for a sufficiently small constant β = β(α, M, ν) (first, M has to be chosen sufficiently large as a function of the model parameters α and ν, independent of β, and then, β has to be chosen small enough). Fix throughout this subsection :

= R -log R 1-α + M 1-α
(recall that we suppose that is an integer). Let φ := 9θ R ( , ). By Lemma 5 and since

R = 2 log n ν , θ R ( , ) = (2 + o(1)) ν n e R-= (2 + o(1)) ν n R 1 1-α e -M 1-α . (2) 
For each ψ-sector Ψ, consider the region Υ := Υ (Ψ) consisting of those points of B O ( ) \ B O ( -1) that belong to the φ-sector having the same bisector as Ψ. Next, we establish a lower bound on the probability that V ∩ Υ induces a connected component of G. Actually, we establish a stronger fact. In the ensuing discussion, unless we say otherwise, the ψ-sector Ψ is assumed to be given and all regions as well as subgraphs mentioned depend on Ψ.

Lemma 14. Let Υ 1 , . . . , Υ 18 be a partition of Υ into 18 parts, each Υ i obtained as the intersection of Υ and a φ 18 -sector. The following hold: (i).-Let B be the event that V ∩ Υ i is non-empty for every i = 1, ..., 18. Then, B occurs a.a.s.

(ii).-For sufficiently large n, conditioned on B, all vertices in V ∩ Υ belong to the same connected component. Proof. To prove (i), observe that by our choice of φ, Corollary 8, and (2), for each i,

µ(Υ i ) = 1 2 θ R ( , )µ(B O ( ) \ B O ( -1)) = (1 + o(1))(1 -e -α ) ν n e (1-α)(R-) .
Clearly, the events V ∩ Υ 1 = ∅, ..., V ∩ Υ 18 = ∅ are independent. Hence, by our choice of ,

P(B) = (1 -e -ν(1+o(1))(1-e -α )e (1-α)(R-) ) 18 = 1 + o(1).
To prove (ii), note that if two vertices in V form an angle at the origin of at most θ R ( , ), then by Remark 4 they are adjacent. Thus, every vertex in Υ i is connected by an edge to every vertex in Υ i-1 ∪ Υ i ∪ Υ i+1 , since the maximal angle such pairs of vertices form is, by our choice of φ, at most 2 φ 18 = θ R ( , ). Henceforth, for two points p, p ∈ B O (R) let ∆φ p,p denote the small angle in [0, π) between p and p formed at the origin. By definition of θ R (•, •), we know that d h (p, p ) ≤ R if and only if ∆φ p,p ≤ θ R (r p , r p ). Now, for i ∈ {0, . . . , R -}, let Υ +i be the collection of points in B O ( + i) \ B O ( + i -1) that belong to the (2υ +i )-sector with the same bisector as Ψ where

υ +i := φ 2 + i-1 j=0 θ R ( -1 + j, + j).
(Note that the previous definition of Υ is consistent with the one given before Lemma 14.) Similarly, for i ∈ {0, . . . , R-}, let Ξ +i be the collection of points in B O ( +i)\B O ( +i-1) that belong to the (2ξ +i )-sector with the same bisector as Ψ where Υ +i (see Figure 2). Clearly, Υ ⊆ Ξ.

ξ +i := θ R ( -1 + i, -1 + i) + φ 2 + ξ,
and ξ := R--1 j=0 θ R ( -1 + j, + j).
Next we establish several facts concerning regions Ξ and Υ, but first we bound ξ just defined. By Lemma 5, the formula for the sum of a geometric series, since R = 2 log n ν , and by our choice of

ξ = (2 + o(1)) ν n e R-+ 1 2 R--1 j=0 e -j = (2 + o(1)) e 3/2 e -1 ν n e R-. (3) 
Since e 3/2 /(e -1) < 3, by (2), and our choice of φ, for sufficiently large n,

ξ < 3θ R ( , ) = 1 3 φ. (4) 
Let C be the event that there is no vertex in Ξ \ Υ. Proof. To prove (i), observe that by Lemma 5, Corollary 8, by definition of Ξ +i , the formula for the sum of a geometric series and since √ e/(e -1) < 1,

O φ 2φ ξ ξ -1 R 1 1 1 1 1 1
µ(Ξ +i \ Υ +i ) = 2(ξ +i -υ +i )µ(B O ( + i) \ B O ( -1 + i)) = 2 (2e + o(1)) ν n e R--i + (2 √ e + o(1)) ν n e R- R--1 j=i e -j (1 -e -α )e -α(R--i) ≤ (8e + o(1))(1 -e -α ) ν n e (1-α)(R--i) .
Hence, again by the formula for the sum of a geometric series and our choice of ,

µ(Ξ \ Υ) ≤ (8e + o(1))(1 -e -α ) 1 -e -(1-α) ν n e (1-α)(R-) (1 -e -(1-α)(R-) ) < C 0 ν n Re -M ,
where C 0 is a constant depending only on α. The sought after lower bound on the probability that V ∩ Ξ \ Υ is empty follows immediately.

Next, consider (ii). To prove that d h (p, p ) > R it suffices to show that ∆φ p,p > θ R (r p , r p ). Assume p

∈ (B O ( + i) \ B O ( + i -1)) \ Ξ and p ∈ Υ +i . Hence, ∆φ p,p > ξ +i -υ +i = θ R ( -1 + i, -1 + i) + R--1 j=i θ R ( -1 + j, + j) = (2e + o(1)) ν n e R-e -i + e -i √ e e -1 (1 -e -(R--i ) ) ,
where the last equality follows from Lemma 5, since R = 2 log n ν , and the formula for the sum of a geometric series. If i < R-, then e -(R--i ) ≤ e -1 , and since √ e(1-e -1 )/(e-1) ≈ 0.61, applying Jensen's inequality we obtain that for sufficiently large n,

∆φ p,p > (2e + o(1)) ν n e R-e -1 2 (i+i ) = θ R ( -1 + i, -1 + i ). If i = R -, then e -i ≥ e -1 2 (i+i ) and e -(R--i ) = 1, so by Remark 4, ∆φ p,p > θ R ( -1 + i, -1 + i) ≥ θ R ( -1 + i, -1 + i ).
Now, by Remark 4, Lemma 5, and again since

R = 2 log n ν , θ R (r p , r p ) ≤ θ R ( -1 + i, -1 + i ) = (2e + o(1)) ν n e R-e -1 2 (i+i ) .
The last three displayed bounds imply that, for a sufficiently large n (independent of i and i ), we have ∆φ p,p > θ R (r p , r p ) as claimed.

Observe that Ξ \ Υ is the union of two disconnected regions, say W and W . We refer to any such region that does not contain vertices as a wall (Lemma 15 part (ii) corresponds exactly to the second property satisfied by walls as described in Section 1).

For a given Ψ, let H be the subgraph of G induced by V ∩ Υ, where Υ = Υ(Ψ), and denote by C := C(Υ) the collection of connected components of H that contain at least one vertex in V ∩ Υ .

Let G be the event that C := C(Υ) has size Ω((log n)

1 1-α ).
Lemma 16. The event G occurs a.a.s. Moreover, all area exposed in G is inside Υ.

Proof. Let η = η(α, ν) be a sufficiently large constant, let Φ be the φ 3 -sector with the same bisector as Ψ, and let := R -c log R 1-α for some small constant 0 < c < 1. For each vertex z ∈ V R-η ∩ Φ, let X z be the indicator random variable that indicates whether there exists a path z = z R-η , . . . , z in G so that z i ∈ V i for every i.

We claim that for a sufficiently large n, there is a δ > 0 such that if z ∈ V R-η ∩ Φ, then the expected value of X z is at least δ. Indeed, suppose that for some i we found a path until z i+1 . By Lemma 5, Remark 4, and Corollary 8, the region R ⊆ B O (i) \ B O (i -1) in which the next vertex z i with the desired properties can be found satisfies

µ(R) ≥ θ R (i + 1, i)µ(B O (i) \ B O (i -1)) = (2 + o(1))(1 -e -α ) ν n e (1-α)(R-i)-1 2 , ( 5 
)
and hence, with probability at most e -(2+o(1))ν(1-e -α )e (1-α)(R-i)-1 2 no such vertex is found. Thus, for some positive constant δ > 0, assuming η was chosen sufficiently large,

EX z ≥ 1 - R-η-1 i= e -(2+o(1))ν(1-e -α )e (1-α)(R-i)-1 2 ≥ δ. (6)
Now, let X := z X z where the summation is over the z's in V R-η ∩ Φ. We claim that X = (1 + o(1))EX a.a.s. Indeed, by Lemma 5, Corollary 8, and (2), we have

µ(Φ ∩ B O (R -η) \ B O (R -η -1)) = Θ( 1 n R 1 1-α
). Thus, by Lemma 9, for η large enough, w.e.p., |V R-η ∩ Φ| = Θ((log n) 1 1-α ), and hence by ( 6), EX = Θ((log n) 1 1-α ). Moreover, in case there is a path z = z R-η , . . . , z in G so that z i ∈ V i for every i, the total angle between z and z is

∆φ z,z ≤ R-η-1 i= ∆φ z i ,z i+1 ≤ R-η-1 i= θ R (i -1, i) = O ν n e R-= O ν n R c 1-α = o(φ).
Also, if two such vertices z, z ∈ V R-η ∩ Φ are at an angle ω((log n) c 1-α ), then X z and X z are independent. Since c < 1, most pairs of vertices are at angular distance ω((log n) c 1-α ), and thus E(X 2 ) = (1 + o(1))(EX) 2 , so by Chebyshev's inequality, a.a.s. X = (1 + o(1))EX as claimed.

By the preceding discussion, in order to conclude that a.a.s. C has size X = (1 + o(1))EX = Ω((log n) 1 1-α ) it is enough to show that a.a.s. the following event occurs: for every vertex z in V ∩ Φ there exists a path z = z . . . z in G with z i ∈ V i . Indeed, similar calculations as the ones performed above to estimate |V R-η ∩ Φ| yield that w.e.p. |V ∩ Φ| = O((log n) 1 1-α ). By calculations as in (5) together with a union bound, the desired event does not occur with probability

O((log n) 1 1-α e -log c n ) + P |V ∩ Φ| = ω((log n) 1 1-α = e Θ(log log n)-log c n + o(n -1 ) = e -Θ(log c n) .
Finally, let z be a vertex in V R-η ∩ Φ for which there exists a path z = z R-η , . . . , z in G with z i ∈ V i for all i. Note that the angle ∆φ z,z between the endvertices z and z of the path satisfies, by Remark 4,

∆φ z,z ≤ R-η-1 i= ∆φ z i ,z i+1 ≤ R-η-1 i= θ R (i -1, i) ≤ R--1 i=0 θ R ( -1 + i, + i) = ξ.
Thus, by (4), the total angle between z and z -1 is at most 1 3 φ. Since z is a vertex in Φ, it lies within an angle of at most φ 6 of the bisector of Ψ. Thus, all vertices of the z, ..., z path are inside Φ, so by construction are also within Υ, and hence in establishing that G occurs a.a.s. only Υ ∩ Φ needs to be exposed. Now, in order to have a component disconnected from the giant component it is enough that all vertices in Υ have no neighbors in B O (R) \ Υ. By Lemma 15 Part (ii), this happens if V ∩ Ξ \ Υ is empty and no vertex in Υ can have a neighbor in (B O (R) \ B O ( -1)) \ Υ. However, it could have neighbors in B O ( -1). We next deal with this situation. First, we show that it is unlikely for such neighbors to fall within B O ( -1) \ B O ((1 -β 2 )R) and then we deal with the possibility of having neighbors in

B O ((1 -β 2 )R) (recall that β = β(M ) is a sufficiently small constant).
Let H be the event that no vertex in Υ has a neighbor in

B O ( -1) \ B O ((1 -β 2 )R). Lemma 17.
There is a constant C 1 = C 1 (α) depending only on α so that for sufficiently large n the event H occurs with probability at least e -C 1 νRe -M . Moreover, all area exposed in

H is inside Ψ ∩ B O ( -1) \ B O ((1 -β 2 )R). Proof.
Since by definition υ +i increases with i, all vertices in Υ are within an angle 2υ R = 2( φ 2 +ξ), so recalling (4) also within an angle 2φ. Moreover, by Remark 4, between two points within distance at most R one of which is in

B O (j + 1) \ B O (j), (1 -β 2 )R ≤ j ≤ -2
, and the other one in Υ there is an angle at the origin of at most θ R (j, -1). Hence, by Lemma 5 and Lemma 7, and again by our choices for φ and , the expected number of neighbors of the vertices in Υ that are inside

B O ( -1) \ B O ((1 -β 2 )R) is at most n -2 j=(1-β 2 )R 2(υ R + θ R (j, -1))µ(B O (j + 1) \ B O (j)) ≤ 2φnµ(B O ( )) + 2 -2 j=(1-β 2 )R θ R (j, -1)nµ(B O (j + 1)) ≤ 18(2 + o(1))νe (1-α)(R-) + 2(2e 3/2-α + o(1))νe 1 2 (R-) k≥R- e -(α-1 2 )k ≤ C 1 νRe -M ,
where C 1 is a constant depending on α, but independent of M . The lower bound on P(H) immediately follows.

To conclude, observe that all area exposed in H is inside the ψ-sector Ψ, as all area exposed lies within an angle of at most 2(υ R + θ R ( - 1, (1 -β 2 )R)), which by the preceding discussion, Lemma 5, and our choices of ψ, φ, and , is at most

2φ + 2(2 √ e + o(1))e 1 2 (R--(1-β 2 )R) = ν n 1-β 2 +o(1) = o(ψ).
If for a sector Ψ the events B, C, G, H hold, then we have found a precomponent of size Θ((log n) 1 1-α ): by G and B, there is a collection of vertices in Υ connected to each other (but perhaps not separated from the giant component) of size Θ((log n) 1 1-α ). All events are independent or positively correlated: the events B, C, and H are independent because they expose disjoint regions of Ψ \ B O ((1 -β 2 )R). For the same reason, the events C, G, and H are independent. The event G is positively correlated with B. Hence, by combining Lemmata 14, 15, 16 and 17 we get

P(B ∩ C ∩ G ∩ H) ≥ (1 + o(1))e -C 0 νRe -M e -C 1 νRe -M = e -c M R (7)
for some constant c M = c M (α, ν) > 0 that can be made as small as desired by choosing M sufficiently large. Hence, for a given sector Ψ, the probability to have a precomponent of size Θ((log n) 1 1-α ) is at least e -c M R , independent of β. Observe also that all events B, C, G, H expose only areas inside Ψ \ B O ((1 -β 2 )R), and thus the events corresponding to the existence of a precomponent in different ψ-sectors are independent. Now, consider the partition of B O (R) into ψ-sectors Ψ 1 , . . . , Ψ 2π/ψ . By (7), the probability that there is no ψ i with a precomponent is therefore at most

(1 -e -c M R ) n 1-β+o(1) ≤ e -n 1-β-c M +o(1) , (8) 
which tends to 0 faster than the inverse of any fixed polynomial in n, if c M is chosen small enough so that 1 -β -c M > 0 (such a choice exists, since c M is independent of β). Hence, w.e.p. there exists a ψ-sector Ψ that contains a precomponent of size Θ((log n) 1 1-α ). Let S be the event that a randomly chosen ψ-sector Ψ is such that all vertices in Υ = Υ(Ψ) have no neighbor inside B O ((1 -β 2 )R). Lemma 18. The event S holds a.a.s.

Proof. By Remark 4, for a vertex in V ∩ Υ not to have a neighbor in V j , j ≤ (1 -β 2 )R, a region of angle at most θ R ( -1, j -1) = (2e + o(1))e 1 2 (R--j) has to be free of vertices. Also, as observed at the beginning of the proof of Lemma 17, all vertices inside Υ are within an angle of 2φ. Hence, the region R ⊆ B O ((1 -β 2 )R) that needs to be empty in order for S to hold satisfies

µ(R) = (2e + o(1)) (1-β 2 )R j=0 e 1 2 (R--j) + 2φ e -α(R-j) = O(R 1 1-α e -αR+(α-1 2 )(1-β 2 )R ) = n -1-β(α-1 2 )+o(1) .
Thus, the expected number of vertices inside R is o(1), and by Markov's inequality, the event S holds a.a.s.

To prove Theorem 1, observe now that if in addition to the existence of a precomponent the event S holds, then the precomponent inside the randomly chosen ψ-sector Ψ forms a connected component separated from the giant component. Since by (8) w.e.p. there is a precomponent, by Lemma 18, by a union bound, a.a.s. there exists a component of size Θ((log n) 1 1-α ). Summarizing, we have established the following:

Proposition 19. For 1 2 < α < 1, a.a.s. L 2 (G) = Θ((log n) 1 1-α ).
In fact, we have established that for some sufficiently small β > 0 a.a.s. there are Ω(n β ) components of size Θ((log n) 1 1-α ): indeed, the partition of B O (R) into ψ-sectors can be grouped into groups of sectors making for a total angle of n -β , where β > 0 is chosen small enough so that (8) holds in each group, and also small enough, so that a union bound of all events over all groups still holds as well.

Proposition 13, Proposition 19, and the previous paragraph argument yield Theorem 1.

Boundary cases of α

As noted in the introduction, for the hyperbolic random graph model, the interesting range of the parameter is when 1 2 ≤ α ≤ 1. In this section we investigate the size of the second largest component when α takes the values 1 2 or 1.

4.1 Case α = 1 2 By [BFMar], for α = 1 2 , it is known that for ν ≥ π, with probability tending to 1, the random graph G is connected, whereas for smaller values of ν, the probability of being connected is a continuous function of ν tending to 0 as ν → 0.

On the one hand, for any constant ν, there exists a constant C (with C being large as ν being small) so that a.a.s. each vertex

v ∈ B O (R-C) belongs to the giant component: indeed, for a vertex v ∈ B O (i)\B O (i-1) with R 2 < i ≤ R -C, the expected number of neighbors of v that belong to B O (j) \ B O (j -1) with say j > R 2 is Θ(e 1 2 (R-i-j) ne -1 2 (R-j) ) = Ω(1)
, where the constant can be made large by making C large. Hence, the probability that v does not find a neighbor in On the other hand, for ν sufficiently small, we now show that a.a.s. there exists a sector Φ of angle ε log n/n with ε = ε(C) sufficiently small so that the following three events hold:

B O ( 5R 6 ) \ B O ( 4R 
(i).-inside Φ there is no vertex v in B O (R -C), (ii).
-there exists a path of length ε log n (ε sufficiently small) with all vertices being in ε log n consecutive subsectors of Φ of angle ε /n (with ε = ε (C) small enough), with all but the first and last vertex belonging to

B O (R -C 1 + 1) \ B O (R -C 1 ) while the first and last belong to B O (R -C 1 ) \ B O (R -C 1 -1) (
for C 1 a small constant in comparison to C, but not too small so that any two vertices in consecutive subsectors are adjacent; clearly, if a smaller value of C 1 is needed below, then this can be achieved by making ε smaller), and except for this first and last vertex in all these ε log n subsectors there is no vertex

v in B O (R -C 1 ) \ B O (R -C), and (iii) 
.-no vertex of the path is connected to the giant component.

Note that for a fixed sector Φ condition (i) is satisfied with probability e -Θ(R) with the constant in the exponent small for ε small. Condition (ii) also holds with probability e -Θ(R) with the constant small for ε small. By Lemma 10, the last condition is satisfied if the leftmost and rightmost vertex of the path do not connect to the giant component, which once again happens with probability e -Θ(R) (again with a constant in the exponent that can be made small for C 1 still small). All three conditions are either independent or positively correlated.

Thus the expected number of sectors Φ for which all conditions hold is ne -Θ(R) / log n = ω(1) for ε, ε , ε sufficiently small. A second moment method analogous to the one in Lemma 16 shows that different sectors are "almost" independent (special care is taken of vertices close to the center as in Lemma 17 and Lemma 18). Thus, a.a.s. such a sector exists, so a.a.s., the second largest component is of size Ω(log n), and thus we obtain Proposition 2.

Case α = 1

Again by [START_REF] Bode | On the largest component of a hyperbolic model of complex networks[END_REF], for α = 1, for ν sufficiently large, a.a.s. there exists a giant component, whereas for ν small enough, a.a.s. the largest component is sublinear. Choose = λR for some 1 2 < λ < 1 and consider a vertex v in B O ( ) \ B O ( -1) (there are w.e.p. Θ(ne -(R-) ) = Θ(n 2λ-1 ) such vertices). Since the expected number of neighbors of v in B O ( ) is Θ(ne -(R-) e 1 2 (R-2 ) ) = Θ(1) (where the constant can be made small enough by choosing ν sufficiently small), there is a positive probability that v has no neighbor in B O ( ). Now, for i ∈ {1, ..., R -}, let Υ +i be the collection of points of B O ( + i) \ B O ( + i -1) that belong to the (2υ +i )-sector whose bisector contains the segment Ov where and since the events that all vertices in Υ +i have no neighbors in B O ( + i) \ Υ are positively correlated (also the union of all these events over all i), with probability at least e -Θ(R) = n -γ no vertex in Υ has a neighbor in (B O (R) \ B O ( -1)) \ Υ, where the constant γ in the exponent can be made small for λ close to 1. In this case, the original vertex v is contained in a component separated from the giant component (if the latter one exists) and its size is at least the degree of the starting vertex, thus at least Θ(e 1 2 (R-) ) = Θ(n 1-λ ). Choosing angles sufficiently well separated and as before, taking care of vertices close to the origin (more precisely, on the one hand, a.a.s. there is no vertex in B O (0.49R), and on the other hand the angle exposed inside B O ( ) \ B O (0.49R) of possible neighbors of vertices in Υ is Θ(n 1-λ-0.49 ); for λ close to 1 the number of disjoint such angles is Θ(n λ+0.49-1 ) = Ω(n γ ) with γ from before, and thus, for λ close to 1, with probability tending to 1, there will be a second component of polynomial size. As in the case 1 2 < α < 1, a regrouping of B O (R) into groups of sectors making for a angle of n -β for β > 0 sufficiently small, the argument shows that many polynomial-size components exist (of size Ω(n δ ) for some 0 < δ < γ), thus establishing Proposition 3. We do not know the exponent of the second component, though.

Final remarks

For 1 2 < α < 1, the proof argument put forth in this article does not seem strong enough to be able to pinpoint the constant accompanying the (log n) 1 1-α term in the asymptotic expression derived for L 2 (G) in Theorem 1. We believe that developing techniques that would allow to do so is a worthwhile and interesting endeavor.

Figure 1 :

 1 Figure 1: (Left) An instance G of Krioukov et. al.'s random hyperbolic graph model with parameters n = 1000, α = 0.7, and ν = 1.1. (Right) The subgraph of G induced by the vertices inside the dashed region shown on the left side, where angular coordinates have been scaled by factor of 6 in order to better elicit the forest-like structure of the induced graph.

Proof.

  By Lemma 11, for L sufficiently large, with probability at least 1-O(n -c ), all vertices in B O ( ) belong to the giant component. Partition B O (R) into φ-sectors Φ 1 , . . . , Φ 2π/φ . By Corollary 8, we get

  and hence u and u are connected to the giant component. Therefore, by our conditioning we may assume that |θ u -θ u | < 2φ. Note that conditioning on Lemma 11 and Lemma 12 does not change the distribution of vertices in B O (R) \ B O ( ). Hence, since φ = ω(log n/n), by Lemma 9, w.e.p. we get |C| = O(φn) = O((log n) 1 1-α ). By a union bound over all events, with probability at least 1 -O(n -c ), it holds that L 2 (G) = O((log n) 1 1-α ) and the statement follows.

Finally

  

Figure 2 :

 2 Figure 2: Region Ξ is shown shaded in gray and region Υ diagonally hatched (not to scale).

  5 ) is e -Ω(R) , where the constant in the exponent can be made large by choosing C large. By a similar argument, a.a.s. every vertex in B O ( 5R 6 ) \ B O ( 4R 5 ) also has a neighbor in B O ( R 2 ) \ B O ( R 4 ). Since all vertices within B O ( R 2 ) form a clique, all vertices in B O (R -C) thus form a component of linear size. Now, by choosing a sector Φ of angle C log n/n with C = C (C) sufficiently large, by Chernoff bounds, each such sector will a.a.s. contain a vertex in B O (R -C). Hence, a.a.s. the second component has to be contained in at most two consecutive sectors, as otherwise, by Lemma 10, any path whose vertices are all in B O (R) \ B O (R -C) spanning two sectors, as well as the component to which such path belongs, would necessarily also have to be connected to a vertex of the giant component. Since the number of vertices in each sector of angle C log n/n is a.a.s. O(log n), this upper bound holds also for the size of the second component.

υυ

  +i := i-1 j=0 θ R ( -1 + j, + j) = Θ(e 1 2 (R-2 ) ). Let Υ = R- i=1 Υ +i .For every vertex v ∈ Υ +i , as before, there is a positive probability that v has no neighbor in B O ( + i) \ Υ. A similar argument shows that there is a positive probability that v has no neighbor in B O ( + i + d) \ Υ for fixed d > 0. On the other hand, its neighbors in B O ( + i + d) for d sufficiently large must lie in Υ: indeed, if v is adjacent to a vertex w ∈ B O ( + i + d), then the angle at the origin between v and w is O(e1 2 (R-2 -2i-d) ), whereas υ +i+d -υ +i = i+d-1 j=i θ R ( -1 + j, + j) = Θ(e 1 2 (R-2 -2i) ),which for sufficiently large d is larger than the maximum angle between v and w, and hence if v and w are adjacent, then w ∈ Υ.Since the number of vertices inside Υ is, w.e.p., +i µ(B O ( + i) \ B O ( + i -1)) = Θ(n 2(1-λ) ),
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