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Abstract 

Proteomic workflows based on nanoLC-MS/MS data-dependent-acquisition analysis have 

progressed tremendously in recent years. High-resolution and fast sequencing instruments 

have enabled the use of label-free quantitative methods, based either on spectral counting or 

on MS signal analysis, which appear as an attractive way to analyze differential protein 
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expression in complex biological samples. However, the computational processing of the data 

for label-free quantification still remains a challenge. Here, we used a proteomic standard 

composed of an equimolar mixture of 48 human proteins (Sigma UPS1) spiked at different 

concentrations into a background of yeast cell lysate to benchmark several label-free 

quantitative workflows, involving  different software packages developed in recent years. 

This experimental design allowed to finely assess their performances in terms of sensitivity 

and false discovery rate, by measuring the number of true and false-positive (respectively 

UPS1 or yeast background proteins found as differential). The spiked standard dataset has 

been deposited to the ProteomeXchange repository with the identifier PXD001819 * and can 

be used to benchmark other label-free workflows, adjust software parameter settings, improve 

algorithms for extraction of the quantitative metrics from raw MS data, or evaluate 

downstream statistical methods. 

 

* dataset accessible during peer review process at: 

http://www.ebi.ac.uk/pride/archive/users/profile 

Username: reviewer40987@ebi.ac.uk  

Password: mWsW9Tcw  
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Introduction 

Label-free quantitative methods based on LC-MS/MS have become increasingly popular in 

proteomic studies, as an attractive and powerful way to analyze differential protein expression 

in complex biological samples [1-3]. They can be based either on the measurement of the 

MS/MS sampling rate for a particular protein (spectral counting), or on the MS 

chromatographic peak area of its corresponding peptides in the survey MS scan (MS trace 

analysis), both values being directly related to protein abundance. Both approaches have 

benefited from tremendous improvements in instrumentation, namely increased sequencing 

speed for spectral counting approaches (up to 15-20Hz in recent orbitrap or Q-TOF mass 

spectrometers) and higher resolution allowing more accurate MS signal analysis and 

improved matching of complex LC-MS maps. These methods have concomitantly gained in 

analytical depth, and can now routinely be used to profile the expression of thousands of 

proteins from biological systems submitted to different conditions. An important point is 

however to be able to assess, minimize, and eventually correct the variability associated to the 

LC-MS/MS analytical workflow, to ensure sufficient repeatability of the measurements and 

provide robust relative quantification of proteins across samples. To this respect, the 

development of proteomic standards has proved to be essential to assess the performances of 

LC-MS platforms, provide a quality control of the system and identify potential sources of 

variability. Importantly, they are also needed to evaluate the downstream elements of the 

analytical pipeline, i.e. bioinformatics processing and statistical analysis, which represent 

critical steps to generate the final comparative results. 

The yeast Saccharomyces cerevisiae proteome has been used in many studies as a test sample 

to illustrate the benefits of various technological optimizations in the LC-MS/MS workflow. 

Due to its wide availability and relatively high complexity and dynamic range, it can be 

considered as a good surrogate to many real biological samples, both for method development 
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and quality control. In previous studies, yeast samples have been used to establish and 

demonstrate the efficiency of a wide range of metrics to evaluate the LC-MS/MS 

performances[4, 5]. These metrics were directly related to the LC system, the MS instrument 

(electrospray source, MS1 and MS2 intensities), the dynamic sampling, but also the first steps 

of data processing, i.e. peptide identification results. They were applied by Paulovich et al. for 

LC-MS benchmarking of several instrumental systems operated in different laboratories [6]. 

Instead of focusing on specific proteins or peptides, the monitoring proposed in this study 

allowed to give a global and very exhaustive view of the quality of the analysis through 

general metrics reflecting for example the median peak FWHM on the whole peptide 

population, the number of MS1 or MS2 scans triggered over various portions of the 

chromatogram, the level of TIC, the median MS1 signal for the population of identified 

precursors, or the number of peptides and proteins identified. 

However, the final objective of most label-free studies is to measure quantitative levels, and 

detect variation of some proteins across samples. To evaluate the performances of a workflow 

in this respect, it is relevant to use a standard spiked with known amounts of some peptides or 

proteins, which can then be specifically monitored to assess the ability of the analysis in 

detecting relative quantitative changes. Controlled datasets based on spike-in experiments 

thus represent a useful tool to objectively assess the performances of quantitative methods for 

differential analysis. Paired comparison between spiked versus non-spiked samples can be 

performed to benchmark analytical and computational pipelines for biomarker discovery. 

Such controlled datasets with known “ground truth” have been for example generated in the 

past in the field of microarray analysis, by spiking at different concentrations a panel of 100-

200 specific RNAs into a well-defined, constant background of RNA species [7], and was 

then widely used as a gold standard to evaluate various data processing methods [8-12]. In the 

proteomics field, spiked samples are also often used to evaluate MS methods or data 
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processing tools, although generally the number of spiked proteins or peptides is relatively 

low [13-16].  Interestingly, as exemplified in the report from Paulovich et al, the use of a 

more complex spiked material, such as the UPS1 standard containing 48 well-characterized 

purified proteins, allows to compute more extensively the exact proportion of false 

discoveries (number of yeast false positives relative to the total number of proteins declared 

as variant) and of true discoveries (number of true positives out of the 48 real variant UPS1 

proteins). As a proof of concept of the kind of benchmarking that can be done with this spiked 

standard, they showed the performances of a spectral count approach (the SASPECT method) 

for detection of biomarkers when comparing the spiked sample (simulating a case sample) 

and the pure yeast reference sample (control sample). 

In the present study, we wanted to extend this concept and use the yeast+UPS1 standard to 

benchmark several tools developed in recent years for relative quantification, including 

widely used software such as MaxQuant and Skyline. Indeed, while numerous software tools 

have been developed and are more and more routinely used for label-free quantitation, 

stringent and side-by-side evaluations have to be performed to prove the efficiency of the 

quantification. In addition, proper tuning and parameter settings in each of these software 

tools are also important for optimal downstream analysis. We thus generated a dataset from 

yeast samples spiked with 9 different concentrations of UPS1, analyzed in triplicate on an 

Orbitrap-Velos mass spectrometer. Starting from this dataset, different data processing 

workflows were implemented to perform relative quantification of proteins. Common 

statistical tests and fold-change criteria were used to identify differential peptides and 

proteins, for several theoretical fold variations of the spiked UPS1 standard. This 

experimental design allowed us to assess the performances of several workflows (4 based on 

spectral-count analysis and 4 based on MS signal analysis) in discovering true positive (UPS1 

proteins successfully classified as variant) and avoiding false positive (yeast proteins 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

7 

 

erroneaously detected as variant). Overall, this study allowed to objectively evaluate label-

free quantitative methods and concretely illustrate what one can expect from these approaches 

in terms of false discovery proportion and sensitivity for the detection of variant proteins. 

 

Experimental procedures 

Sample preparation. A yeast cell lysate was prepared in 8M urea / 0.1M ammonium 

bicarbonate buffer, protein concentration was adjusted at 8µg/µL after Bradford assay, and 

this lysate was used to resuspend and perform a serial dilution of the UPS1 standard mixture 

(Sigma). Twenty µL of each of the resulting samples, corresponding to 9 different spiked 

levels of UPS1 (respectively 0.05 – 0.125 – 0.250 – 0.5 – 2.5 - 5 – 12.5 - 25 - 50 fmol of 

UPS1 /µg of yeast lysate), were reduced with DTT and alkylated with iodoacetamide. The 

urea concentration was lowered to 1M by dilution, and proteins were digested in solution by 

addition of 2% of trypsin overnight. Enzymatic digestion was stopped by addition of TFA 

(0.5% final concentration).  

NanoLC-MS/MS analysis. Samples (2µg of yeast cell lysate + different spiked level of 

UPS1) were analyzed in triplicate by nanoLC-MS/MS using a nanoRS UHPLC system 

(Dionex, Amsterdam, The Netherlands) coupled to an LTQ-Orbitrap Velos mass spectrometer 

(Thermo Fisher Scientific, Bremen, Germany). 2 µL of each sample were loaded on a C-18 

precolumn (300 µm ID x 5 mm, Dionex) at 20 µL/min in 5% acetonitrile, 0.05% TFA. After 5 

minutes desalting, the precolumn was switched online with the analytical C-18 column (75 

µm ID x 15 cm, in-house packed with C18 Reprosil) equilibrated in 95% solvent A (5% 

acetonitrile, 0.2% formic acid) and 5% solvent B (80% acetonitrile, 0.2% formic acid). 

Peptides were eluted using the following gradient of solvent B at 300 nL/min flow rate: 5 to 

25% gradient during 75 min; 25 to 50% during 30min; 50 to 100% during 10min. The LTQ-
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Orbitrap Velos was operated in data-dependent acquisition mode with the XCalibur software. 

Survey scan MS were acquired in the Orbitrap on the 300-2000 m/z range with the resolution 

set to a value of 60000. The 20 most intense ions per survey scan were selected for CID 

fragmentation and the resulting fragments were analyzed in the linear trap (LTQ). Dynamic 

exclusion was employed within 60 seconds to prevent repetitive selection of the same peptide. 

MS data processing. The dataset was processed according to different workflows listed in 

Table 1, consisting in the following steps: peaklist generation, database search, validation of 

the identified proteins and extraction of quantitative metric (spectral count or MS signal). 

According to the different tools used for each step, eight distinct workflows were evaluated. 

The same databases were used for peptide identifications: yeast database from UniprotKB 

(S_cerevisiae_ 20121108.fasta, 7798 sequences) and a compiled database containing the 

UPS1 human sequences (48 sequences). 

Workflow 1: ExtractMSn / Mascot / MFPaQ / Spectral Counting. The Mascot Daemon 

software (version 2.4; Matrix Science, London, UK) was used to perform database searches, 

using the Extract_msn.exe macro provided with Xcalibur (version 2.0 SR2; Thermo Fisher 

Scientific) to generate peaklists. Parameters used for creation of the peaklists were: parent 

ions in the mass range 400–4500, no grouping of MS/MS scans, and threshold at 1000. 

Peaklists were submitted to Mascot database searches (version 2.4.2).  ESI-TRAP was chosen 

as the instrument, trypsin/P as the enzyme and 2 missed cleavages were allowed. Precursor 

and fragment mass error tolerances were set at 5 ppm and 0.8 Da, respectively. Peptide 

variable modifications allowed during the search were: acetyl (Protein N-ter), oxidation (M), 

whereas carbamidomethyl (C) was set as fixed modification.  To calculate the false discovery 

rate (FDR), the search was performed using the “decoy” option in Mascot. Validation was 

performed with an in-house developed module associated to MFPaQ [17] 

(http://mfpaq.sourceforge.net/), based on the target-decoy strategy, as described before [18]. 
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Briefly, FDR at peptide level was calculated as described in [19] and set at 5% by adjusting 

peptide p-value threshold. Validated peptides were assembled into protein groups following 

the principle of parsimony (Occam's razor) [20]. Protein groups were then validated to obtain 

a FDR of 1% at the protein level, by adjusting the threshold on a protein group score defined 

as the sum of peptide score offsets (difference between each peptide Mascot score and its 

homology or identity threshold). The total spectral count metric was extracted for each protein 

group by MFPaQ in each analytical run. 

Workflow 2: Andromeda / MaxQuant / Spectral Counting. Acquired MS data were processed 

using MaxQuant version 1.3.0.5 [21]. Derived peak lists were submitted to the Andromeda 

search engine [22]) (www.maxquant.org). For database searches, the precursor mass tolerance 

was set to 20 ppm for first searches and 6ppm for main Andromeda database searches. The 

fragment ion mass tolerance was set to 0.5 Da.  Trypsin/P was chosen as the enzyme and 2 

missed cleavages were allowed. Oxidation of methionine and protein N-terminal acetylation 

were defined as variable modifications, and carbamidomethylation of cysteine was defined as 

a fixed modification. Minimum peptide length was set to six amino acids. Minimum number 

of unique peptides was set to one. Maximum FDR – calculated by employing a reverse 

database strategy – were set to 1% for peptides and proteins. Proteins identified as “reverse” 

and “only identified by site” were discarded from the list of identified proteins. In this 

particular workflow, total spectral count for each validated protein group was computed from 

msms.txt table. 

Workflow 3: Mascot Distiller / Mascot / IRMa-hEIDI / Spectral Counting. Data were 

processed automatically using Mascot Distiller software (version 2.4.3.0, Matrix Science). 

ESI-TRAP was chosen as the instrument, trypsin/P as the enzyme and 2 missed cleavages 

were allowed. Precursor and fragment mass error tolerances were set at 5 ppm and 0.8 Da, 

respectively. Peptide variable modifications allowed during the search were: acetylation 
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(Protein N-ter), oxidation (M), whereas carbamidomethyl (C) was set as fixed modification. 

The IRMa software v1.31 [23] was used to filter the results. Filters used were : (1) peptides 

whose score ≥ query homology threshold (p<0.5) and rank ≤ 1 are marked as significant; (2) 

Single match per query filter was: Move to ambiguous all peptides which aren't assigned to 

best protein  for this query (best is higher protein score); (3) FDR seeker filter : Seek a 1% 

FDR based on score filtering; (4) Accession filter : Delete proteins coming from reverse 

database ; (5) Specific peptide filter : Accept only protein hits whose specific peptides count 

>= 1. The filtered results were then compiled and structured within dedicated relational 

Databases and a homemade tool (hEIDI) was used for the compilation, grouping and 

comparison of the proteins from the different samples, analytical replicates and conditions to 

compare (Hesse et al., in preparation). In such workflow, total spectral count values 

calculated for each protein groups are used for quantification. 

Workflow 4: ExtractMSn / Mascot / Scaffold  / Spectral Counting. Peaklists generation and 

protein identifications were made as detailed in workflow 1. Mascot results were loaded into 

the Scaffold software (Version 3.6.5, Proteome Software, Portland, USA). To minimize false 

positive identifications, results were subjected to very stringent filtering criteria as follows. 

For the identification of proteins, a Mascot ion score had to be minimum 30 and above the 

95% Mascot significance threshold ("Identity score"). The target-decoy database search 

allowed us to control and estimate the false positive identification rate of our study, and the 

final catalogue of proteins presented an estimated false discovery rate (FDR) below 5%. The 

spectral count metric used for quantitation corresponds to the Unweighted Spectrum Count 

values in Scaffold. 

Workflow 5: ExtractMSn / Mascot / MFPaQ / MS Signal analysis. The first steps (peaklist 

creation, database search, validation) were the same than in workflow 1. Quantification of 

proteins was then performed using the label-free module implemented in the MFPaQ v4.0.0 
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software, as previously described [18, 24]. Briefly, the software uses the validated 

identification results and retrieves the XIC of the identified peptide ions in the corresponding 

raw nanoLC-MS files, based on their experimentally measured RT and 

monoisotopic m/z values. Peptide ions identified in all the samples to be compared are used to 

build a retention time matrix and re-align in time LC-MS runs. For peptides not identified by 

MS/MS in a particular run, this re-alignment matrix is used to perform cross-assignment and 

extract their XIC signal starting from a predicted RT. Normalization across conditions is 

performed based on the median of XIC area ratios for all the extracted peptide ions. Protein 

quantification is based on a protein abundance index calculated as the average of XIC area 

values for at most three intense reference tryptic peptides per protein. 

Workflow 6 and 7: Andromeda / MaxQuant / MS Signal analysis. The first steps (database 

search with Andromeda and validation) were the same as in workflow 2. For quantification 

purposes, either Intensities (workflow 6) or LFQ [25] (workflow 7) calculated by MaxQuant 

were used. The LFQ metric, as described in [25], is derived from the raw intensities by the 

MaxLFQ algorithm, which uses a specific normalization procedure, as well as a particular 

aggregation method to calculate protein intensities, by taking into account, for each protein, 

all the peptide ratios measured in all pair-wise comparisons of the different quantified 

samples. “Match between run” time window was set to 2 minutes.  For LFQ quantification, 

only protein ratios calculated from at least two unique peptides ratios (min LFQ ratio 

count=2) were considered for calculation of the LFQ protein intensity. 

Workflow 8: Mascot Distiller / Mascot / Skyline / MS Signal analysis. Peaklist creation was 

performed with Mascot Distiller as described in workflow 3, then database searches were 

performed with Mascot and validated with Scaffold as described for workflow 4.  XIC signal 

corresponding to all validated peptides were extracted using the Skyline software [26] 
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(Skyline version v2.5, daily updates of April 2014, https://skyline.gs.washington.edu). This 

method was well described by Schilling et al (Schilling et al, MCP, 2012). Total areas, 

corresponding to the sum of the 3 extracted isotopes areas, were used for statistical analysis. 

Statistical analysis. For pairwise comparisons of samples spiked at different concentrations of 

UPS1, same statistical tests and fold-change criteria were applied to the quantitative data 

obtained from each workflow, as follows:  

When working on spectral count metrics (workflows 1-2-3-4), a beta-binomial test  was 

performed based on triplicate MS/MS analyses. p-values were calculated with the software 

package BetaBinomial_1.2 [27] implemented in R. Fold change was calculated as ratio of 

average spectral counts from both conditions. For proteins absent in all replicates of one 

specific condition, their spectral count values were modified by adding 1 spectrum to all 6 

samples in order to be able to calculate a fold change for these particular proteins.  To classify 

proteins as variant and non-variant and plot ROC curves, different combinations of criteria 

were tested (|log2 fold change| > x, from 0.8 to 3 ; p-value < y, from 0.05 to 0.0001).  

When working on MS signal intensity-based metrics (workflows 5-6-7-8), proteins were 

filtered out if they were not quantified in at least all replicates from one condition. Missing 

protein intensity values were replaced by a constant value calculated independently for each 

sample as the 5-percentile value of the total population. A welch t-test (two-tailed t-test, 

unequal variances) based on triplicate MS analyses was then performed on log2 transformed 

values using the Perseus toolbox (version 1.4.0.11;  http://141.61.102.17/perseus_doku). 

Criteria used to classify the proteins were the Welch t-test difference calculated by Perseus 

(difference between the two compared conditions of the mean log2 transformed value for 

triplicate MS/MS analyses), and the Welch t-test p-value. Results were filtered using different 

combinations of these criteria: |welch t-test difference| > x (from 0 to 7) and p-value < y (from 

0.3 to 0.0001).  z-score was also calculated as z-score= {(Welch t-test difference) - Median 
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[(Welch t-test difference) for all quantified proteins] } / Standard deviation [(Welch t-test 

difference) for all quantified proteins]. 

 

 

Results 

Experimental design, sample preparation and analysis. In order to evaluate different 

quantitative workflows in their ability to correctly detect known variant proteins in complex 

samples, we prepared a series of 9 yeast lysate samples spiked with growing concentrations of 

the Sigma UPS1 standard composed of an equimolar mixture of 48 human proteins. To that 

aim, UPS1 lyophilized proteins were directly resuspended using the yeast lysate prepared in 

urea buffer, and a serial dilution of this initial mixture was then performed using the same 

yeast lysate, resulting in spiked UPS1 concentrations ranging from 50amol/µg up to 

50fmol/µg of yeast lysate. Protein samples were digested with trypsin, and resulting peptides 

were analyzed by nanoLC-MS/MS on a LTQ Velos-Orbitrap instrument, using routine 

chromatographic conditions (15cm C18 reverse-phase column, 2 hours gradient) and data-

dependent acquisition MS parameters (resolution 60000 for MS survey scan, top 20 CID 

sequencing in the ion trap). Triplicate MS analysis was performed for each sample, resulting 

in 27 raw data files that were subsequently processed in different ways, using several 

computational workflows (Table 1). Two different softwares were used for protein 

identification (Mascot and Andromeda) and 5 solutions were employed for protein 

quantification (Scaffold, IRMa/hEIDI (Hesse et al, in preparation), MaxQuant [21, 22, 28], 

MFPaQ [17, 24] and Skyline [26, 29]), some of them generating a unique quantitative output, 

either spectral counting or MS signal extraction data, and some of them generating both types 
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of quantitative data. Finally, 8 different quantitative datasets were obtained, as indicated in 

Table 1 and described in details in the Experimental section. 

We first evaluated the identification datasets in a qualitative way by simply reporting the 

number of identified and validated proteins for both the background (yeast proteins) and the 

spiked standard (UPS1 proteins) in each sample. Sup data 1 shows the number of proteins 

identified by MS/MS sequencing and validated by various bioinformatics workflows. As 

expected, the total number of proteins, reflecting mainly the constant yeast background 

proteome, was fairly reproducible across triplicate MS analysis and across the series of spiked 

samples, whereas the number of identified UPS1 proteins increased with the spiked amount. 

While no UPS1 protein was correctly identified at a concentration of 500amol/µg (as none of 

the peptide sequence matches could be validated at this concentration), all 48 human proteins 

were sequenced and correctly identified at 50fmol/µg. From these results, we decided to 

select different concentration levels of UPS1 to perform pairwise quantitative comparisons of 

samples, trying to mimic distinct biochemical situations, as illustrated in Figure 1. 

Comparison A (500amol/µg versus 50fmol/µg) should reflect a case were a protein is 

typically under the detection level of the instrument in one condition, and strongly expressed 

in the other condition with a fold change of 100. In comparison B (5fmol/µg versus 

50fmol/µg), the protein may be in turn detectable in both conditions, and strongly up-

regulated with a fold change of 10. Finally, comparison C (12.5fmol/µg versus 25fmol/µg) 

should simulate a situation where the protein is detectable in both conditions, but only slightly 

up-regulated with a fold change of 2. Because “real-life” biological samples usually contain 

many proteins with a differential abundance, encompassing a wide range of absolute 

expression levels and fold change values, we tried to approximate such a situation by 

gathering together the quantitative data obtained for each binary comparison, after 

computational processing. Using this post-processing assembly of the 3 individual datasets, 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

15 

 

we composed a global quantitative dataset containing theoretically 144 variant proteins (UPS1 

proteins issued from the 3 relative quantitative analyses, and thus expected to vary with a fold 

change of 100, 10 or 2), and a background of around 2500 non-variant yeast proteins 

(measured and quantified in the different pairwise comparisons) (see ref [30], Sup Table 1). 

The generation of this synthetic dataset allowed us to illustrate, in a single representation, the 

performance of quantitative proteomic tools and methods, challenged with different 

situations. 

The final aim of relative quantitative analysis in discovery proteomics is usually to identify 

differentially expressed proteins. Therefore, the tested informatics workflows were mainly 

evaluated in their ability to correctly detect the expected variants, rather than in the accuracy 

of the measured fold change. The experimental design and the spiked standard used here 

allowed us to unambiguously assess such performances by counting the number of true-

positives (TP) and false-positives (FP), respectively UPS1 or yeast background proteins found 

to be differentially expressed. Clearly, the classification of proteins as variant (positive hits) 

or non-variant (negative hits) both relies on the one hand, on the accuracy of the quantitative 

metrics generated by the bioinformatics software, and on the other hand, on the performance 

of the statistical test and criteria used to discriminate the positive and negative populations. 

Here, we mainly tried to benchmark the former step of the workflow (extraction of 

quantitative metrics by informatics tools), and we didn’t aim to evaluate statistical methods. 

We thus used a common, simple statistical test for protein classification, based either on the 

beta-binomial method for spectral count datasets [27], or on a modified t-test for datasets 

containing peptide intensity-based values (see Experimental section and below). Proteins were 

classified as variant or non-variant by a combined filtering on the p-value of this statistical 

test and on the fold change value, as very often performed in “real life “ biological studies 

[31-34]. Following such classification, the sensitivity of the workflows for the detection of 
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variant proteins (number of true positive hits relative to the real total number of variant 

proteins, i.e. TP/144), and false discovery proportion (FDP, defined as the number of false 

positive hits relative to the total number of proteins found as variant, i.e. FP/(TP+FP)) could 

easily be computed. 

Performances of spectral counting for discrimination of variant proteins. Figure 2A shows 

the volcano plots obtained by applying spectral counting quantification methods, in which the 

log10(p-value) (calculated from the results of the BetaBinomial R package) is plotted against 

the calculated protein log2(fold change). As illustrated on these graphs, the majority of UPS1 

proteins from comparison A and B (green and red populations, theoretical fold changes of 

respectively 100 and 10) were easily discriminated from the background of yeast proteins 

(grey), by both their p-values and fold changes. This was particularly the case with software 

tools such as IRMa/hEIDI and Scaffold. These results indicated the ability of the spectral 

count-based quantitative approaches to confidently detect protein variations of high to 

medium amplitude while minimizing the level of false discoveries. However, it can be noted 

that the UPS1 proteins quantified in the comparison C (12.5fmol/µg versus 25fmol/µg, yellow 

dots) were not well segregated from the background independently of the software used. 

Overall, these observations pointed out some limitations of quantification with spectral count 

data when dealing with low fold change variations or weakly concentrated proteins. 

From these data, we tried to determine which criterion was best suited to retrieve significantly 

variant proteins. Sensitivity-FDP curves were plotted for the data obtained from the different 

workflows by using either the fold change or the p-value as a unique criterion to classify the 

proteins, and we further wanted to apply combinations of these filters to improve the 

classification. Resulting curves (Sup data 2A) show that the beta-binomial test was per se 

more efficient than a simple fold change to discriminate the TP from the TN. However, 

applying an additional fixed fold change cutoff improved significantly the results, as could be 
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anticipated already from the volcano plots. On the dataset presented here, the best 

classification was obtained for all the workflows by applying this double-filtering approach 

with a threshold of 2 (or ½) on the fold change. Therefore sensitivity-FDP curves were plotted 

this way (variation of the p-value combined with a fixed threshold of 1 on the absolute 

log2(fold change)) for the different spectral count workflows as shown in Figure 2B. 

Globally, the best results were obtained with workflow 3 (Mascot/IRMa-hEIDI) which 

allowed for example to obtain a reasonable sensitivity (62%) with a very low FDP (4%) when 

setting a stringent p-value threshold of 0.001. Leveraging the p-value threshold at 0.0025 led 

to a slightly better sensitivity (67%) at the cost of a FDP increase to about 10%. Interestingly, 

in the case of workflows 3 (Mascot/IRMa-hEIDI) and 4 (Mascot/Scaffold), it was possible to 

reach really low FDP values by increasing the stringency on the p-value, showing the 

efficiency of these data processing tools for the exclusion of FP. Altogether, it turns out that 

spectral count approaches were very efficient for detecting high levels of variations on 

relatively abundant proteins, but tends to fail to reach high sensitivity on the present dataset 

which includes a population with moderate fold change variations. Markedly, very low levels 

of FDP can be reached with appropriate filtering. 

Performances of MS intensity-based methods. Figure 3A shows the volcano plots from data 

obtained using different MS feature extraction tools (–log10(p-value) - calculated with the 

two-samples welch t-test from Perseus - plotted against the log2(fold change)). Conversely to 

what we observed with spectral-counting, the plots obtained with MS intensity-based 

techniques show that a large majority of UPS1 proteins quantified in the different pair-wise 

comparisons (green, red, and yellow populations) can be visually discriminated from the 

background of yeast proteins. While proteins with high signal levels and high theoretical fold 

changes were most often easily classified as variant (good p-values and high calculated fold 
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changes), it can be noticed that even the UPS1 proteins quantified in the comparison C can be 

segregated from background, although with a partial overlap. 

Here again we plotted different sensitivity-FDP curves by classifying the proteins either on 

their absolute fold change, on their welch t-test p-value, or by a combination of these criteria 

(setting up a fixed threshold for one of them and varying the other) (Sup data2B). In the case 

of MS intensity values obtained in our dataset, the fold change appeared to be generally a 

more efficient filter to discriminate TP from background than a simple statistical test based on 

the variance of the protein intensities. Indeed, the modified Welch t-test may produce a high 

number of FP hits on this particular dataset containing only three analytical replicates, finally 

leading to a high FDP after multiple testing. For example, on the MaxQuant LFQ dataset 

(workflow 7), filtering the proteins at a 0.05 cutoff only on the Welch p-value allowed to 

efficiently retrieve almost all UPS1 variant proteins (134 out of 144, e.g. 94% sensitivity), but 

with as many as 387 FP yeast proteins declared as variant (i.e. a final FDP of 74%).  On the 

other hand, correction of the p-values for multiple-testing with methods such as the 

Benjamini-Hochberg (BH) procedure can be used to limit the number of FP and control the 

final FDR, but at the cost of a much lower sensitivity. For example, applying this correction 

on the same dataset and filtering afterwards with a BH adjusted p-value cutoff of 0.05 led to 

only 3 FP yeast proteins, but the number of TP UPS1 proteins also dropped to 50 (i.e. a 

calculated final FDP of 6%, close to the desired theoretical value, but a sensitivity of only 

35%, see ref [30], Sup Table 1). Finally, combining fold change and Welch t-test p-value 

criteria emerged as the most discriminant approach, and allowed to reach good sensitivity 

with relatively low FDP. It has to be noticed that, unlike with the statistical t-test, setting a 

fold change threshold was quite sensitive to any shift in the population fold change 

distribution and to the optional normalization procedure applied in the workflows. Since some 

of the used methods contained a normalization step (e.g. MFPaQ or MaxQuant with the LFQ 
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metric) and others not (e.g. Skyline or MaxQuant based on summed peptide intensity values), 

we used a z-score to avoid possible discrepancies between quantitative data depending on 

their origin. This z-score reflects, for each protein, the distance between the protein fold 

change and the mean of the population fold changes, relative to the standard deviation of this 

population (see Experimental procedures for calculation of the z-score). The combination of 

z-score and p-value criteria gave efficient discrimination results, as shown in Sup data 2B. 

For example, in the case of the MaxQuant LFQ workflow, we obtained a sensitivity of 94% 

and a calculated FDP of 8% when combining a |z-score| threshold of 1 and a Welch t-test p-

value threshold of 0.05. 

Figure 3B shows the sensitivity-FDP curves obtained for the MS intensity based workflows 

by varying the welch t-test p-value filter, with a fixed |z-score| cut-off of 1. Altogether, it 

appeared that the tested label-free tools based on MS signal analysis have the potential to be 

globally very sensitive (detect a large proportion of the true variant UPS1 proteins), with 

sensitivity values up to 94% when setting a p-value of 0.05. Comparative results for the 

different software are shown in Table2 with sensitivity and FDP for this specific p-value. It 

has to be noticed however that all workflows produced still relatively elevated FDP values, 

that may be related to signal extraction errors by the softwares. The best compromise between 

sensitivity and FDP was obtained using the LFQ metric from MaxQuant [25] and the Top3 

metric from MFPaQ [24]. 

 

Use of the spiked standard dataset to highlight data processing problems and optimize the 

workflows. 

We next wanted to take advantage of this model dataset to identify quantification errors 

associated to the generation of false-negative (FN) and false-positive (FP) proteins, and 

illustrate a number of possible mistakes introduced by the different MS intensity based 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

20 

 

workflows. Protein quantification is a multi-step process, and possible errors associated to 

each of these steps may influence the final result. Obviously, processing steps based on 

peptide validation, grouping, and peptide-to-protein inference are important for final protein 

quantification. Sup data 3A illustrates a case where quantification based on non-specific 

peptides, shared between a stable yeast protein and a UPS1 variant protein (Ubiquitin-40S 

ribosomal protein S27a), compromised the result and led to classification of the spiked protein 

as a FN. Most of the time however, errors seem to take place at the signal extraction step 

itself. Sup data 3B shows a situation with overlapping isotopic patterns from several 

coeluting species, in which the MFPaQ software wrongly picked, in addition to the 

monoisopic peak of the correct peptide, the third and second isotope peaks from other species, 

as well as the monoisopic peak of a closely eluting isobaric peptide. Such errors could be 

avoided through a better recognition by the algorithms of peptide isotopic patterns. In 

addition, in the cases illustrated here, 16 peptides were correctly quantified for the protein, 

while signal extraction error occurred occasionally on a single peptide. Enabling the detection 

and elimination of outlier peptides with adequate testing procedures (option not enabled in 

that case) would alleviate such problems. Good alignment of LC-MS runs in retention time is 

also important for correct peak picking when cross assignment between runs is implemented. 

Some errors in Skyline could be attributed to wrong selection of a particular peptide in one of 

the runs in which the peptide was not sequenced by MS/MS, and in which XIC extraction was 

thus performed based on the RT of the peptide in another run (not shown). It must be noticed 

that tracking and eventually correcting these signal extraction errors is quite dependent on the 

software interface. To this respect, a software like MFPaQ offers a visualization interface that 

enables a rapid inspection of the XICs extracted for each peptide in the different conditions, 

and possibly unselects some of them to eliminate these peptides from the final quantification 

of the protein. However, it does not allow going back to raw MS data and correct for example 
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the selection of the integration area directly on the chromatogram. This in turn is possible in 

Skyline, which really offers an interactive interface to efficiently review the results and 

manually correct possible mistakes. We thus wanted to take advantage of this feature and 

evaluate whether manual validation of the entire dataset was practically possible and how 

efficient it could be to improve the quantitative results. It took around 15 hours to manually 

check all the peptide ions from the dataset and either validate or correct the integration of the 

corresponding XIC. Figure 4 shows the result of this exhaustive reviewing of the data on the 

accuracy of the quantitative result. While relatively time consuming, the manual correction 

clearly reduces the number of both false positive and false negative. The sensitivity was thus 

improved (from 88% using raw data to 97% after manual correction) and the FDP was 

significantly reduced (from 22% to around 9%) (sensitivity and FDP values calculated by 

filtering proteins based on a welch t-test p-value<0.05 calculated with the two-samples test 

from Perseus and |z-score|>1). In addition, the calculated fold changes were closer to the 

expected theoretical values. It appeared that most of the extraction errors generating false 

positive hits were related to low intensity signals, as illustrated in Figure 4. Finally, after 

manual correction, no more than 8 yeast proteins were classified as variant. Out of these 8 

false positive hits, 3 contained peptides that were clearly “contaminated” with UPS1 peptides, 

4 had very low intensity signals, and one of them was detected as variant while the expression 

profile of the related peptides did not follow that of UPS1 peptides. Altogether, these residual 

mistakes remaining after in-depth manual validation may reflect the minimal margin of error 

of the label-free, MS intensity-based quantification process, which may be difficult to reduce 

even by improving the automatic signal extraction algorithms of the software. 

 

Discussion 
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In this study, we generated a complex, spiked proteomic standard dataset, in which the ground 

truth is well characterized, and showed its utility for benchmarking label-free relative 

quantification computational workflows. Different protein standards have been used in the 

past to measure the performances of such software and data processing methods, ranging from 

simple mixtures of recombinant proteins, to complex cellular extracts spiked with a known 

amount of exogenous proteins. In the design of such a standard, it is important to be able to 

easily differentiate the spiked proteins from the background after the database search and 

identification process, in order to perform a correct classification of spiked (TP) and 

background (TN) molecules. The most straightforward approaches are either to apply some 

isotopic labeling on the background or the spiked samples, or to use sets of proteins from 

different species. Ideally, the number of spiked molecules should be large enough to provide a 

relevant statistical estimation of the sensitivity and FDP of the quantitative methods. 

Typically, samples can be spiked with recombinant purified proteins added in known 

quantities to the background, or with a much more complex sample, such as a biological 

extract from another species. In recent studies aiming at benchmarking software tools, such 

“double-proteome” samples have been used. For example, a mixture of lysates from human 

cells and from the Streptococcus pyrogenes bacterium at different ratios was used in a 

comparative study to show the performances of the OpenMS software [35]. Similarly, Cox et 

al used a complex digest of Hela cells, spiked with an E.coli digested cellular extract at two 

different amounts, creating a 3 fold variation of the E.coli proteins in the quantitative 

comparison [36]. In that later case, the spiked population represents a significant portion of 

the total sample (about one third of the identified proteins). Such a dataset may simulate 

particular biological experiments where a stimulation could for example induce a massive 

variation of the proteome, or some interaction proteomics experiments where a control is 

compared to an affinity purified sample containing many up-regulated proteins. However, 
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normalization of such datasets may be difficult, because the usual hypothesis underlying 

normalization procedures is that the major part of the protein population remains stable, and 

the median of the fold change distribution should be 1. On the other hand, spiking a proteome 

background with a calibrated set of recombinant purified proteins is statistically less 

representative, as the number of TP decreases, but allows to simulate easily a classical 

expression proteomics experiment, in which a very minor part of the proteome will undergo a 

fold change. The UPS1 commercial standard, containing an equimolar mixture of 48 purified 

human proteins, represents a convenient sample for a spiking scheme experiment, and offers 

already a significant number of TP that allows to get an estimation of the sensitivity and FDP 

of the computational methods.  

As software tools are expected to perform unequally depending on the fold change and 

amount of the spiked proteins, producing signals that will be more or less difficult to extract 

from the raw data according to their intensities, it is important to challenge them with 

different simulated variations. In a previous study, Cox et al spiked UPS1 in combination with 

the UPS2 standard, which contains the same proteins than UPS1, but distributed into 6 groups 

of decreasing concentration, spanning 5 orders of dynamic range [36]. By adding respectively 

these two standards into a background E.coli proteome, the authors simulated a situation 

where groups of proteins vary with different ratios, in a single pairwise comparison (6 

analytical runs corresponding to 2 conditions with 3 technical replicates). However, in that 

case, only a small number of proteins are representative of each ratio, and many highly diluted 

UPS2 proteins are hardly detectable, creating a significant set of proteins which are 

differentially expressed but not really quantifiable.  

In the present study, we chose to spike the UPS1 mixture at 9 different concentrations in a 

background yeast proteome, as described previously in Paulovich et al [6], and analyzed these 

samples in triplicate, resulting in a dataset of 27 runs. In order to artificially recreate a 
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simulated dataset containing TP with different intensities and fold change values, we 

performed several pairwise comparisons by label-free quantification, and then combined the 

quantitative outputs.This approach has the benefit to illustrate the performances of the 

computational and statistical methods in a more comprehensive way. As a proof of principle, 

we show here the results obtained by simulating 3 kinds of variations (comparisons A, B and 

C: detection in only one condition; high fold change; moderate fold change). In principle, 

more comparisons could be performed and gathered to better approximate the inherent 

complexity of the variations that take place in a real biological experiment. For example, we 

didn’t challenge here the software tools with comparisons involving only the more diluted 

spikes of the UPS1 concentration range, which would simulate variations of lower abundance 

proteins. Nevertheless, the different UPS1 spikes considered here could represent different 

types of biological samples, notably affinity purifications for large fold change analyses, or 

more classical proteome-wide analyses including moderate but significant expression fold 

change for some regulated proteins. 

While label-free methods are more and more used for quantification of complex protein 

mixtures in biological studies, they are sometimes still considered as less accurate and reliable 

than label-based approaches. In addition, while many software tools for label-free 

quantification have been developed and are available, it may be difficult for an unexperienced 

user to choose a particular workflow. Finally, the quality of the results may be influenced by 

the parameter settings and the user’s expertise with the programs. Consequently, test datasets 

are really needed to assess the performances of a given label-free workflow, adjust the 

parameters of a particular algorithm, and optimize post-processing methods such as missing 

value imputation, normalization, and statistical tests. The dataset presented here offers such 

possibilities, as illustrated on 8 different label-free pipelines which were objectively 

evaluated, and for which the number of FN and FP could be easily measured.  The results 
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obtained here show that label-free approaches are indeed efficient to detect variant proteins on 

the standard dataset. Globally, compared to signal extraction procedures, spectral counting 

workflows exhibited limited sensitivity (see Sup data 4A, showing overlaid ROC curves for 

both type of approaches). Even with lenient p-value cutoff, spectral count methods could only 

reach sensitivity levels up to 70-80%, mainly due to inefficiency to classify low abundance 

proteins with moderate fold change (comparison C). However, it must be noticed that they are 

easier to implement (shorter data processing time), and work quite well to sort out proteins 

with medium to high fold change (comparison A and B). Noticeably, they also proved to be 

quite specific, with the possibility to reach low level of FDP. Indeed, with data from such 

workflows, it was possible to set stringent filtering criteria and to almost completely avoid the 

detection of false positive yeast proteins, whereas this was much more difficult with MS 

intensity based methods (see below). Thus, as illustrated in Sup data 4B, at a given FDP level 

of e.g. 5%, spectral count approaches globally provided better sensitivity levels than MS 

intensity based approaches. In other words, if one is interested in the generation of a very 

“clean” and reduced list of differentially expressed proteins, the analysis of spectral count 

data with stringent filtering may represent a safe way to sort out very confident hits – 

probably with some compromise on sensitivity. Among spectral count workflows, coupling 

Mascot peptide identification with IRMa validation and hEIDI grouping and comparison 

ended up with the best compromise between sensitivity and FDP (Fig 2B). Indeed, even if 

retrieving the spectral count metric could per se be seen as a basic process which is not error-

prone, depending on the workflow used, some differences in FDP were observed at the same 

sensitivity levels. In fact, spectral count approaches are still dependent on the quality of 

peptide validation, selection and grouping, which may directly influence the performances of 

the different software tools tested here.  
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On the other hand, our results indicated that workflows based on signal extraction clearly 

have the potential to be globally very sensitive, and are effective in detecting large variations 

as well as accurately measuring moderate fold changes. Sensitivity levels up to 90-100% 

could be reached by relaxing filtering criteria. Thus, when admitting FDP levels higher than 

10%, such workflows outperformed spectral count methods for the classification of 

differentially expressed proteins in the dataset (Sup data 4B). They represent promising 

approaches to detect variations even on minor proteins expressed at low level in the sample, 

and/or showing subtle changes. However, it has to be noticed that at present, software tools 

based on MS intensity analysis still generate a significant number of FN and FP. The presence 

of false positive hits (type I error) associated to statistical tests in multiple comparisons is a 

well documented problem when using high-throughput analytical methods which enable the 

quantification of hundreds or thousands of species. When a large number of statistical tests 

are performed, the final proportion of false discoveries (FDP) is actually larger than the user-

specified p-value cutoff used for each individual test. Multiple testing correction procedures 

are classically used to adust the individual p-values of each gene or protein, and to control the 

final FDR, such as the Benjamini-Hochberg method. Interestingly, spiked datasets, such as 

the yeast-UPS1 dataset provided here, allow to experimentally measure this FDP rate as well 

as the associated sensitivity, and could represent a useful tool for optimization of statistical 

processing steps for proteomic data. The Benjamini-Hochberg adjustment, while very 

effective for controlling the final FDR of the process, appeared to be very conservative and 

reduced strongly the sensitivity of the workflows. In our hands, empiric filtering based on the 

combination of p-value and fold change (or z-score) cutoffs offered a more efficient 

compromise to obtain good sensitivity with relatively low levels of experimentally measured 

FDP, although this FDP was not formally controlled through the statistical process. Clearly, 

further studies will be needed to implement statistical methods allowing to control the FDR 
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rate when looking for differentially expressed proteins in proteomic experiments. For 

example, while we used here arbitrary, fixed fold- change and p-value cutoffs, other 

approaches have been described in which the fold-change cutoff can be modulated as a 

function of the t-test P-value, to increase sensitivity for a given FDR after Benjamini-

Hochberg correction [37]. Additionnally, pre-filtering can also be implemented to eliminate 

lowly abundant proteins which tend to give artificially high fold change values after spectral 

count quantification, and create false positives [37].  Finally, other statistical methods have 

bee proposed previously for microarray data in order to take into account a fold-change 

threshold of interest in a formal hypothesis test with FDR control [38-40]. 

The occurrence of FP and FN hits is also a problem that has to be tackled upstream of 

statistical processing, at the level of quantitative analysis and raw data processing tools, as 

these false hits are very often associated to signal extraction or matching problems (Sup data 

3). Indeed, extraction of peptide intensity values is a complex process based on MS peak 

picking, isotope pattern and chromatographic peak recognition, and association of peptide 

features with MS/MS identification results, which can be complicated by the frequent 

occurrence of overlapping peptides in the LC-MS space. In our comparison, the MaxQuant 

software performed the best when using the LFQ metric (Fig 3B). In MaxQuant, the data 

analysis starts from the detection of features in the LC-MS map, based on recognition of 

elution peaks and peptide isotope profiles. In contrast, the processing in MFPaQ and Skyline 

is based on direct XICs extraction, using as a starting point m/z and RT coordinates derived 

from MS/MS identification results. Our study indicates that the later approach can however 

also produce good results, as illustrated by the good sensitivity and FDP obtained from 

MFPaQ quantification. A higher number of false positive hits were obtained with Skyline, 

which could be attributed in most instances to the absence of realignment procedure in the 

version of Skyline used for this study, and incorrect retrieving of peptide signals at deviated 
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RT in some of the conditions. On the other hand, the interactive interface of Skyline allowed 

to efficiently check the signal extraction, and enabled an in–depth manual verification which 

clearly improved the final quantitative results, and particularly allowed to reduce the number 

of false-positive. The reduction of false-positive is an important challenge in label-free based 

discovery proteomic approaches, as it will directly influence the success of further validation 

steps, based on the selection of protein candidates from the first quantitative analysis. 

Although manual validation of the whole population of peptide ions, as performed in this 

study, is certainly overly long and impracticable in “real-life” biological studies, the ability to 

go back to the raw data for manual inspection of some specific proteins is probably an 

important feature for a label-free quantitative software. Indeed, the user can in this way really 

check the evidence for the differential expression of a protein, directly on the XIC and MS 

spectra of the different peptides. This manual verification can be performed on specific 

proteins that make biological sense (e.g. on some expected markers which would not be found 

as variants, due to signal extraction errors by the software, but also on new candidate proteins 

that will be subsequently selected for further validation studies, to ensure that these are not 

false positive). 

In summary, our study on the presented standard dataset indicates that 1/ the number of false-

positive hits from label-free quantitative analysis is still significant, even with the best 

performing workflows, 2/ that manual verification by the expert allows to reduce it, 

illustrating that there is still some margin of improvement for the automatic signal extraction 

step by label-free software, and 3/ that a residual number of errors remain inherently difficult 

to avoid, independently of the quality of the signal extraction procedure, particularly in the 

case of co-elution and overlapping peptide features, which would in turn require better 

resolution of both chromatographic and MS instruments. Ideally, label-free software should 

offer good performances in order to keep this number of FP relatively low, but also offer a 
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user-friendly interface allowing to efficiently going back to the raw data and check the MS 

signal extraction on all the peptides of a particular candidate protein. 

 

Conclusion 

As outlined in previous reports, benchmark datasets are really needed to evaluate software 

algorithms in mass spectrometry–based protein analysis, and should be made freely available 

[41]. All raw MS data generated from the spiked standard presented here have been deposited 

to the ProteomeXchange Consortium [42] via the PRIDE partner repository with the dataset 

identifier PXD001819, and quantitative outputs from the different workflows tested are given 

in ref [30], Sup Table 1. It must be noticed that all these results are dependent on the 

parameter settings used for each computational workflow, and to this respect, one main utility 

of this model dataset may be to help the users in optimizing the tuning and finding the best 

parameters for a particular tool. Additionally, we hope that such spiked datasets could be 

useful for developers in order to efficiently test algorithms and improve the extraction of 

intensity metrics for protein quantitation. Finally, post-processing steps such as possible 

normalization, imputation of missing values, and downstream statistical analysis will also 

strongly influence the results. The use of spiked datasets could be beneficial to objectively 

evaluate their performances and their ability to reduce the level of FP and correctly classify 

variant proteins in large-scale studies.  
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Tables 

 

Table1: LC-MS quantification workflows evaluated. Combinations of tools were used for 

peaklist creation, database search, validation and quantification, resulting in 8 different 

workflows based on either spectral counting or MS signal extraction procedures, as described 

in details in the Experimental methods. The software tools used for spectral count 

quantification were Scaffold, IRMa/hEIDI, MaxQuant and MFPaQ. In the case of MS 

intensity-based quantification, protein intensity metrics were obtained from MFPaQ, 

MaxQuant or Skyline. 

Workflow 

number 

Peaklist creation 

device 

Database searh 

engine 

Validation of 

identified 

proteins /spectral 

counting device 

MS signal extraction 

device 

Quantification 

method 

1 ExtractMSn Mascot MFPaQ   Spectral counting 

2 Andromeda Andromeda MaxQuant   Spectral counting 

3 Mascot Distiller Mascot IRMa/hEIDI   Spectral counting 

4 ExtractMSn Mascot Scaffold   Spectral counting 

5 ExtractMSn Mascot MFPaQ MFPaQ MS signal analysis 

6 Andromeda Andromeda MaxQuant MaxQuant (Intensity) MS signal analysis 

7 Andromeda Andromeda MaxQuant MaxQuant (LFQ) MS signal analysis 

8 Mascot Distiller Mascot Scaffold Skyline MS signal analysis 
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Table 2: FDP and TPR obtained on the spiked dataset for different quantitative workflows. 

Similar criteria were used for all workflows to classify proteins as variant (positive hits), i.e. 

|z-score|>1 and Welch t-test p-value<0.05. Human UPS1 proteins and yeast proteins verifying 

these criteria were counted respectively as True Positive and False Positive. False Discovery 

Proportion and True Positive Rate (sensitivity) were computed as described in the table. 

 

  MFPaQ 

(workflow 5) 

Maxquant 

Intensity 

(workflow 6) 

Maxquant 

LFQ 

(workflow 7) 

Skyline 

(workflow 8) 

True Positive 135 130 134 126 

False Positive 25 18 11 36 

FDP=FP/(FP+TP)*100 16% 12% 8% 22% 

TPR=TP/(TP+FN)*100 94% 90% 93% 88% 
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Figure legends 

Figure 1: Experimental design. A series of 9 yeast lysate samples spiked with growing 

concentrations of the Sigma UPS1 standard, was analyzed in triplicate by nanoLC-MS/MS 

mass spectrometry on a LTQ Velos-Orbitrap instrument. Different computational workflows 

were used to identify, validate, and quantify proteins based on spectral counting or MS signal 

analysis. In the present study, 3 different pairwise quantitative comparisons (A, B, and C) 

were performed between samples spiked with different amounts of UPS1, involving in each 

case the quantification of 6 raw files (2 conditions X 3 replicates), trying to mimic distinct 

biochemical situations. The 3 individual quantitative datasets containing protein abundance 

values were then gathered. This global quantitative dataset was generated for each data 

processing workflow, and identical downstream statistical processing methods were then 

applied for classification of variant proteins. 

Figure 2: Quantitative results obtained with spectral counting workflows.  

A/ Volcano plots (-log10(p-value) of the beta-binomial test versus protein log2(fold change)) 

are shown for the different software tools tested. The graphs illustrate the quantitative results 

for the UPS1 proteins quantified in each binary comparison (Green: comparison A, 

0,5fmol/µg versus 50fmol/µg, theoretical fold change 100; Red: comparison B, 5fmol/µg 

versus 50fmol/µg, theoretical fold change 10; yellow: comparison C, 12.5fmol/µg versus 

25fmol/µg, theoretical fold change 2). Grey dots correspond to yeast proteins quantified in all 

of these comparisons. Dotted lines represent a fixed p-value threshold of 0,001 and a fixed 

|log2(fold change)| threshold of 1.  

B/ For each spectral count workflow, proteins of the mixed dataset (comparison A+B+C) 

were classified as variant after application of different p-value thresholds combined to a fixed 

log2(fold change) threshold of 1. The number of true positives (TP) and false positives (FP) 
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was retrieved, and true positive rate (TPR or sensitivity = TP/144) was plotted as a function of 

false-discovery proportion (FDP=FP/(TP+FP)). 

Figure 3: Quantitative results obtained with MS feature extraction workflows 

A/ Volcano plots (-log10(p-value) of the Welch t-test versus protein welch t-test difference) 

are shown for the different software tools tested. As in Fig2, the graphs illustrate the 

quantitative results for the UPS1 proteins quantified in the different binary comparison A, B 

and C. Grey dots correspond to yeast proteins quantified in all of these comparisons. Dotted 

lines represent a fixed p-value threshold of 0.05 and a fixed |welch t-test difference| threshold 

of 1. 

B/ For each MS signal analysis workflow, proteins of the mixed dataset (comparison A+B+C) 

were classified as variant after application of different p-value thresholds combined to a fixed 

|z-score| threshold of 1. TPR (sensitivity)= TP/144) was plotted as a function of false-

discovery proportion (FDP=FP/(TP+FP)). 

Figure 4: Manual feature-extraction correction in Skyline. The graphs illustrate the log2(fold 

change) calculated from protein intensity values in each binary comparison (A, B, and C) as a 

function of protein intensity. Protein intensity values were calculated as the sum of all peptide 

area values extracted by Skyline for each protein, and fold changes were computed from the 

mean of triplicate protein intensity values for each spiked concentration point. Results were 

plotted either from the raw Skyline output, or after an extensive manual check of all the 

peptide ions from the dataset (leading to either validate or correct the integration of the 

corresponding XIC, or eliminate the peptide from quantification). UPS1 proteins quantified in 

each binary comparison are represented as indicated in the legend, yeast proteins are 

represented either as grey dots (non-variant, true negatives) or blue crosses (variant, false-

positives). Tables on the right indicate the number of proteins and peptides actually quantified 

in each case. Proteins were classified as variant after application of a p-value thresholds of 
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0,05 combined to a fixed  log2(fold change) threshold of 1. TPR (TP/144) and 

FDP(FP/(TP+FP)) are indicated after classification of the proteins individually for each 

binary comparison (A, B or C), or on the mixed dataset (comparison A+B+C). 

 

Supporting information available: This material is available free of charge via the Internet 

at http://pubs.acs.org.”  

Sup Table1: Quantitative data obtained from the 8 different workflows 

Sup data 1: Identification results. A series of 9 yeast lysate samples spiked with growing 

concentrations of the Sigma UPS1 standard, was analyzed in triplicate by nanoLC-MS/MS 

mass spectrometry on a LTQ Velos-Orbitrap instrument. Graphs indicate the average number 

of proteins, or the average number of UPS1 proteins, identified and validated in each different 

spiked sample, after data processing with ExtractMSn-Mascot-MFPaQ (workflows 1 and 5), 

Mascot Distiller-Mascot-Irma/Heidi (workflow 3), Mascot Distiller-Mascot-Scaffold 

(workflows 8) and Andromeda-MaxQuant (workflows 2, 6 and 7) 

Sup data 2: evaluation of  different filters to retrieve significantly variant proteins.  

A/ Spectral count workflows: sensitivity-FDP curves were plotted for the data obtained from 

the different workflows by varying either the log2(fold change) threshold (red) or the beta-

binomial test p-value threshold (blue). The fold change or p-value were used respectively as a 

unique criterion to classify the proteins (full line curves), or a combinations of these filters 

were applied to improve the classification (dotted line curves). 

B/ MS intensity-based workflows: sensitivity-FDP curves were plotted for the data obtained 

from the different workflows by varying either the welch t-test difference threshold (red), the 

z-score threshold (green) or the welch t-test p-value threshold (blue). The welch t-test 

difference, z-score or p-value were used respectively as a unique criterion to classify the 
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proteins (full line curves), or a combinations of these filters were applied to improve the 

classification (dotted line curves). 

Sup data 3: Examples of quantification errors in label-free software tools. 

A/ Protein quantification based on non-specific peptides. Upper panel: the Ubiquitin-40S 

ribosomal protein S27a protein from UPS1 (RS27A_HUMAN), contains a ubiquitin domain 

bearing strong homology with that of ubiquitin-containing proteins from the yeast background 

(RS27A_YEAST and RL402_YEAST). Colour code: grey: shared peptides between all three 

protein sequences; green: shared peptides between the two yeast proteins; blue and yellow: 

specific peptides for the two respective yeast proteins; red: specific peptide for the UPS1 

spiked protein. Lower panel: XIC extraction in MFPaQ for the comparison B (5fmol/µg 

versus 50fmol/µg). For shared peptides, both the yeast stable proteins and the spiked protein 

contribute to the signal, that consequently exhibits only a moderate decrease in the low-spike 

condition. For the UPS1 specific peptide, the 10-fold decrease is accurately measured on the 

XIC. The PAI calculated for the top 3 most intense peptide without elimination of non-

specific peptides leads to classification of the spiked protein as a false-negative. 

B/ Peptide signal error on an outlier peptide. The spiked UPS1 protein ANXA5_HUMAN 

was quantified with 16 peptides in MFPaQ. The XIC extraction for the comparison A 

(0.5fmol/µg versus 50fmol/µg) was correctly performed for all of them except for the ion at 

m/z 447.2398 attributed to the QEISAAFK peptide (Upper panel). Examination of the raw 

spectra in Xcalibur indicates that the software also picked consecutively for this m/z value the 

third and second isotope peaks from other species (1 and 2), as well as a closely eluting 

isobaric peptide (3). The signal most probably belonging to the QEISAAFK peptide was 

actually only found in the high-spiked condition (4), but was finally summed by the software 

with that of contaminating yeast species. Consequently the ANXA5_HUMAN protein was 

incorrectly quantified with a fold change of about 2.5. 
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C/ Three examples of peptides picked wrongly by Skyline 

This figure shows a visualization of results in Skyline corresponding to 3 yeast peptides 

(Panel A, B et C). XIC were extracted from raw data for samples spiked with 0.5, 5, 12.5, 25, 

50 fmol of UPS1 per µg of yeast background, respectively injected in triplicates. 

Panel A: Protein URA2, (sp|P07259,Yeast), peptide TTAVNVIR 

Panel B: Fimbrin (sp|P32599, Yeast), peptide LINDSVPDTIDTR 

Panel C: Flavohemoprotein (sp|P39676, Yeast), peptide ENFPAGLVSEYLHK 

A1, B1, C1: The left side shows wrong peak picking  

A2, B2, C2: The right side shows manually corrected integration. 

Each color (blue, purple and brown) corresponds to one precursor isotope (P, P+1 and P+2). 

In the chromatogram view (bottom left corner of the panel), vertical light blues lines indicate 

retention time of MS/MS spectra used to identify the peptide. 

In each case, the wrong peak picking is easily detected thanks to a non-homogeneous profile 

between replicates in the retention time windows (square with dashed line). 

Sup data 4: Comparison of spectral count versus intensity_based workflows. A/ Overlaid 

ROC curves for all workflows: proteins of the mixed dataset (comparison A+B+C) were 

classified as variant by filtering on the p-value thresholds, combined to a fixed |log2(fold 

change)| threshold of 1 for spectral-count workflows (1 to 4) and to a fixed |z-score| threshold 

of 1 for MS-intensity-based workflows (5 to 8). In each case, TPR (sensitivity)= TP/144 was 

plotted as a function of false-discovery proportion (FDP=FP/(TP+FP)). B/ Histograms 

indicate the sensitivity (TPR) level attained for a given value of FDP by the different 

workflows, based either on spectral counting (blue) or MS intensity analysis (orange). 
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Figure 2: Quantitative results 
obtained with spectral count 
workflows
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Figure 3: Quantitative results 
obtained with software tools 
based on MS feature 
extraction
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Graphical abstract 

Highlights 

o We provide a reference proteomic dataset, generated from a series of samples spiked

with different amounts of a mixture of recombinant proteins, to test label-free

quantitative methods

o We benchmarked several label-free workflows based either on spectral counting or on

peptide ions MS signal analysis

o We evaluated the performances of different bioinformatic pipelines for detection of

variant proteins with different absolute expression levels and fold change values




