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We give asymptotically exact values for the treewidth tw(G) of a random geometric graph G ∈ G(n, r) in [0,

√ n] 2 . More precisely, let r c denote the threshold radius for the appearance of the giant component in G(n, r). We then show that for any constant 0 < r < r c , tw(G) = Θ( log n log log n ), and for c being sufficiently large, and

Our proofs show that for the corresponding values of r the same asymptotic bounds also hold for the pathwidth and the treedepth of a random geometric graph.

Introduction

Let V be a set of n points in the square S n = [0,

√ n] 2 and r = r(n) a nonnegative real number. This choice of the square is only for convenience; by suitable scaling we could have chosen the square [0, 1] 2 and all the results would be still valid. We will identify each point with its position, that is, v ∈ V refers also to the geometrical position of v in S n .

The geometric graph G of V with radius r is the graph constructed by connecting two points of V if their Euclidean distance in S n is smaller than r. For any two points u, v ∈ S n we will denote by dist E (u, v) their Euclidean distance and by dist G (u, v) their distance in the graph G.

Then we define G(n, r) as the probability space of the geometric graphs of order n with radius r. A graph G chosen uniformly at random from G(n, r) will be called a random geometric graph and will be denoted by G ∈ G(n, r). Note that with probability one, no two vertices of G ∈ G(n, r) are placed in the same position.

Starting with the seminal paper of Gilbert [START_REF] Gilbert | Random plane networks[END_REF], random geometric graphs have in recent decades received a lot of attention as a model for large communication networks such as sensor networks. Network agents are represented by the vertices of the graph, and direct connectivity is represented by edges. For applications of random geometric graphs, we refer to Chapter 3 of [START_REF] Hekmat | Ad-hoc networks-fundamental properties and network topologies[END_REF], and for a survey of many theoretical results, we refer to Penrose's monograph [START_REF]Random geometric graphs[END_REF].

All our stated results are asymptotic as n → ∞. We use the usual notation a.a.s. to denote asymptotically almost surely, i.e. with probability 1 -o(1). It is well known that the property of the existence of a giant component of order Θ(n) undergoes a sharp threshold in G(n, r) (see e.g. [START_REF] Goel | Sharp thresholds for monotone properties in random geometric graphs[END_REF]), this is, there exists a constant value r c such that for any ε > 0, a.a.s. the largest component of G ∈ G(n, r c -ε) is of order O(log n), whereas in G ∈ G(n, r c + ε), a single component of order Θ(n) is present, while the others have order O(log n) (see [START_REF]Random geometric graphs[END_REF]Chapter 10]). The exact value of r c is not yet determined, but is known that c -≤ r c ≤ c + , where c -≈ 0.834 and c + ≈ 1.836 (see [START_REF]Random geometric graphs[END_REF], p.189). Moreover, simulation studies suggest that the exact value of r c ≈ 1.2 (see again [START_REF]Random geometric graphs[END_REF], p.189).

Since random geometric graphs have been heavily used for modeling communication networks, it is natural to analyze the expected complexity of different algorithms applied to this class. Courcelle's Theorem [START_REF] Courcelle | The monadic second-order logic of graphs. I. Recognizable sets of finite graphs[END_REF] states that any problem that can be expressed in monadic second order logic, can be solved in linear time for the class of graphs with bounded treewidth. This motivates the study of this parameter and other tree-like parameters on random geometric graphs. In this paper, we study the behavior of the treewidth and the treedepth on random geometric graphs.

The treewidth was introduced independently by Halin in [START_REF] Halin | S-functions for graphs[END_REF] and by Robertson and Seymour in [START_REF]Graph minors. II. Algorithmic aspects of tree-width[END_REF].

For a graph G = (V, E) on n vertices, we call (T, W) a tree decomposition of G, where W is a set of vertex subsets W 1 , . . . , W s ⊆ V , called bags, and T is a forest with vertices in W, such that 1. s i=1 W i = V .

2.

For any e = uv ∈ E there exists a set W i ∈ W such that u, v ∈ W i .

3. For any v ∈ V , the subgraph induced by the W i v is connected as a subgraph of T .

The width of a tree-decomposition is w(T, W) = max Observe that if G is a graph with connected components H 1 , . . . , H m , then

tw(G) = max 1≤i≤m tw(H i ) . (1) 
The concept of treedepth has been introduced under different names in the literature. In this paper we follow the definition given by Nešetřil and Ossona de Mendez as a tree-like parameter in the scope of homomorphism theory, where it provides an alternative definition of bounded expansion classes [START_REF] Nešetřil | Tree-depth, subgraph coloring and homomorphism bounds[END_REF]. For the sake of completeness, we note that the treedepth is also equivalent to the height of an elimination tree (used for instance in the parallel Cholesky decomposition [START_REF] Pothen | Handbook on data structures and applications[END_REF]). Furthermore, analogous definitions can be found using the terminology of rank function [START_REF] Nešetřil | On the order of countable graphs[END_REF], vertex ranking number (or ordered coloring) [START_REF] Jitender | On vertex ranking for permutation and other graphs[END_REF] or weak coloring number [START_REF] Kierstead | Orderings on graphs and game coloring number[END_REF].

We now give the precise definition of treedepth. Let T be a rooted tree. The height of T is defined as the number of vertices of the longest rooted path. The closure of T is the graph that has the same set of vertices and a pair of vertices is connected by an edge if one is an ancestor of the other in T . We say that the tree T is an elimination tree of a connected graph G if G is a subgraph of the closure of T . The treedepth of a connected graph G, td(G), is defined to be the minimum height of an elimination tree of G.

The definition of treedepth can also be extended to nonconnected graphs. If G is a graph with connected components H 1 , . . . , H m , td(G) = max 1≤i≤m td(H i ) .

(

Hence, if S ⊂ V (G) separates G into two subsets A and B, we have

td(G) ≤ |S| + max{td(A), td(B)} . (3) 
Observe that if H is a subgraph of G, then td(H) ≤ td(G) and tw(H) ≤ tw(G) .

Both parameters are closely connected: while the treewidth of a graph G is a parameter that measures the similarity between G and the class of trees in general, the treedepth of G measures how close G is to a star. In other words, the treedepth also takes into account the diameter of the tree we are comparing the graph with. The two parameters are related by the following inequalities: tw(G) ≤ td(G) ≤ (tw(G) + 1) log 2 n, both bounds being sharp (see [START_REF] Nešetřil | Tree-depth, subgraph coloring and homomorphism bounds[END_REF]). Note also that tw(G) ≥ ω(G) -1, where ω(G) denotes the size of the largest clique in G.

Results of the paper. In this paper we study the values of tw(G) and td(G) of a random geometric graph G ∈ G(n, r) for different values of r = r(n). In particular, we prove the following two main theorems: Remark 4. Other width parameters that are sandwiched between the treewidth and the treedepth clearly then also have the same asymptotic behavior in G(n, r). For instance, the pathwidth of a graph, introduced by Robertson and Seymour [START_REF] Robertson | Graph minors. I. Excluding a forest[END_REF], measures the similarity between a graph and a path. Since the pathwidth is well known to be bounded from below by the treewidth and bounded from above by the treedepth (see Theorem 5.3 and Theorem 5.11 of [START_REF] Sasak | Comparing 17 graph parameters[END_REF]), the former theorems imply that for those values of r = r(n) the pathwidth of the graph is of the same order.

Remark 5. Whereas intuitively it might be clear that around the threshold of the existence of a giant component there should be a jump for parameters like treewidth or treedepth in G(n, r), the orders of magnitude of these parameters are not so obvious (for us). Moreover, we point out that there are differences between G(n, r) and G(n, p): it is known that in the Erdős-Rényi random graph model G(n, p), as soon as the giant component appears, the graph has linear treewidth (see [START_REF] Lee | Rank-width of random graphs[END_REF]). In contrast to this, Theorem 2 shows that a random geometric graph with a linear number of edges containing a giant component only has treewidth Θ( √ n). This different behavior of the two models can be explained by their different expansion properties and the connection between balanced separators and treewidth (see Lemma 19 below). Classical random graphs have very good expansion properties, and thus it is difficult to find small separators of large sets of vertices. The geometric properties of the model G(n, r) imply the lack of large expanders. For this reason, in the latter case one can construct a tree decomposition with smaller bags. On the other hand, in the subcritical regime (with a linear number of edges, but before the existence of a giant component) the treedepth of G(n, p) is Θ(log log n) (see [START_REF] Perarnau | On the tree-depth of random graphs[END_REF]), whereas by Theorem 1, for random geometric graphs it is already Θ( log n log log n ). (In fact, a lower bound of this order is very easy, since the largest clique is of that order, and an upper bound of O(log n) is also easy, since O(log n) is an upper bound for the size of the largest component). Furthermore, in this range, in classical random graphs the treewidth is bounded by a constant (see [START_REF] Perarnau | On the tree-depth of random graphs[END_REF]), whereas our theorems show that in G(n, r) both treewidth and treedepth are asymptotically of the same order for a wide range of parameters r. The fact that for random geometric graphs the treedepth and treewidth are always asymptotically of the same order implies that G(n, r) is more similar to a star-shaped tree than to a path-shaped tree, which in general is not true for random graphs.

Poissonization. In order to simplify calculations, we will use the well-known idea of Poissonization (see [START_REF]Random geometric graphs[END_REF]Section 1.7]): let V be a set of points obtained as a homogeneous Poisson point process G(P 1 , r) of intensity 1 in S n . In other words, V consists of N points in the square S n chosen independently and uniformly at random, where N is a Poisson random variable of mean n. Exactly as in G(n, r), two points u, v ∈ V are connected by an edge if their Euclidean distance in S n is at most r. The main advantage of the Poisson point process is that the number of points of V that lie in any region A ⊆ S n of area a has a Poisson distribution with mean a; and the number of points of V in disjoint regions of S n are independently distributed. Moreover, by conditioning G(P 1 , r) upon the event N = n, we recover the original distribution of G(n, r). Therefore, since Pr(

N = n) = Θ(1/ √ n), any event holding in G(P 1 , r) with probability at least 1 -o(f n ) must hold in G(n, r) with probability at least 1 -o(f n √ n).
In particular, an event holding with probability 1 -o(n -1/2 ) in G(P 1 , r) holds a.a.s. in G(n, r). We make use of this property throughout the article, and perform the proofs of Theorem 1 and Theorem 2 for a graph G ∈ G(P 1 , r).

The paper is organized as follows. In Section 2 we define the cell graph of a geometric graph and give some properties of it. The proof of Theorem 1 is presented in Section 3. Whereas the lower bound follows from a standard argument using the clique number of G(n, r), the proof of the upper bound is more involved. In Section 4 we continue by proving Theorem 2. Finally, in Section 5 we conclude by mentioning some open problems.

2 Properties of Deterministic Geometric Graphs

The cell graph of a geometric graph

For any constant > 0, we tessellate S n into squares of sidelength called cells. For the sake of simplicity of the presentation, we assume that √ n/ is an integer for the values of considered in this paper. We use this tessellation to construct the cell graph C G ( ) of G: each nonempty cell will be represented by a vertex and two different vertices of C G ( ) will be joined if there exist two points of G in the corresponding cells that share an edge (see Figure 1, where the tessellation is omitted for clarity).

From now on, unless otherwise stated, we will call points the vertices of the geometric graph G and use the word vertex for the cells of C G ( ). The cell-graph C G ( ) simplifies the original geometric graph G while preserving the same structure. For any subgraph H of G we will denote its cell graph by C H ( ). Remark 6. Notice that C H ( ) is always a subgraph of C G ( ). Observe that, for any ≤ r/ √ 2, each nonempty cell contains points from exactly one connected component of G, since all the points inside a cell are connected. Thus, if ≤ r/ √ 2 there exists a natural bijection between the connected components of G and the connected components of C G ( ). We need another auxiliary graph, the grid graph L k a,b , defined as follows: its vertex set is

V (L k a,b ) = {(i, j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b} , and (i, j)(i , j ) ∈ E(L k a,b
) if and only if (i, j) = (i , j ) and max{|i -i |, |j -j |} ≤ k. Note that by construction, for a geometric graph G in S n with radius r we have the following relation (as subgraphs):

C G ( ) ⊆ L r/ √ n/ , √ n/ . (5) 
The following lemma bounds the maximal number of different connected subgraphs of a given size in L k a,b .

Lemma 7. The number of connected subgraphs of size s in L k a,b is at most O(ab(2k + 1) 4s ).

Proof. A connected subgraph is determined by a root v and any of its spanning trees, rooted at v. Observe that there are ab many ways to choose v ∈ V (L k a,b ). Moreover, the degree of a vertex in L k a,b is at most (2k + 1) 2 , since for any cell (i, j) there are at most (2k + 1) 2 cells (i , j ) such that max{|i -i |, |j -j |} ≤ k.

One can construct at most ((2k + 1) 2 ) 2s-3 ≤ (2k + 1) 4s walks of length 2s -2 that have both start and end points at v. In particular, these walks contain all the possible spanning trees rooted at v since a spanning tree has s -1 edges and each edge is traversed twice. Thus, the lemma follows.

Remark 8. Lemma 7 is certainly not tight. For the same problem on the integer lattice (each cell is connected to the four closest ones) the asymptotic growth is poly(s)λ s . However the exact value of λ is not yet known. The best known lower and upper bounds for λ are 3.980137 and 4.65, respectively (see [START_REF] Barequet | Counting polyominoes on twisted cylinders[END_REF][START_REF] Klarner | A procedure for improving the upper bound for the number of n-ominoes[END_REF]).

The following proposition bounds the treedepth of a strong product of a graph and a clique. Given two graphs G 1 and G 2 , the strong product

G = G 1 G 2 is defined as V (G) = V (G 1 ) × V (G 2 ) and (u 1 , u 2 )(v 1 , v 2 ) ∈ E(G) iff for i = 1, 2, either u i = v i or u i v i ∈ E(G i ). Denote by K t the complete graph on t vertices. Lemma 9. Let G = G 1 K t . Then td(G) ≤ t td(G 1 ) .
Proof. Let T 1 be a tree of height td(G 1 ) that embeds G 1 in its closure. Note also that K t is contained in the closure of a rooted path of order t, P t . Observe that T 1 P t is not a tree, but it contains a tree T , in whose closure T 1 P t is contained (see Figure 2). Indeed, T can be constructed in the following way: each vertex u ∈ V (T 1 ) is replaced by a path of order t (call these new vertices u 1 , . . . , u t ), and if there is an edge uv ∈ E(T 1 ), such that u is ancestor of v, then in T , u t is connected by an edge to v 1 (the depth of v 1 in T is exactly one more than the depth of u t ), see Figure 2. Note that T is a tree and its closure contains G as a subgraph. Since each vertex of G 1 is replaced by t vertices, td(G) ≤ t td(G 1 ). Observe also that for a geometric graph G,

G ⊆ C G ( ) K t , (6) 
where t is the maximum number of points inside a cell of the tessellation of length .

Since we can express the treedepth of G in terms of the treedepth of its cell graph and the latter one is a subgraph of L k a,b , the following proposition will be useful. Proof. We present an elimination tree for L k a,b in a recursive way. First, note that td(L k a,k ) = O(ka), since the treedepth of a graph is always smaller than its order. Let us compute now the treedepth of L k a,b . By removing the central copy of L k a,k in L k a,b , we disconnect the original graph and we get two copies of L k a,(b-k)/2 . Applying this recursively and using (3), we obtain

td(L k a,b ) ≤ O(ka) + td(L k a,(b-k)/2 ) ≤ • • • ≤ O(ka) + • • • + O(ka) log b + td(L k a,k ) = O(ka log b).
The following proposition will be very useful in the proof of Theorem 1, but can be applied to any sparse geometric graph. Proposition 11. Let H be a geometric graph of order m such that there are no more than t points inside each cell of length = r/ √ 2. Then, we have

td(H) = O max m log m , t(log m) 3 .
Proof. Throughout this proof all cells will have length = r/ √ 2. Notice that by Remark 6 the connected components of the cell graph C H ( ) are in one to one correspondence with the connected components in H. Thus, we may assume that H is connected. We will show an upper bound on td(H) by providing an elimination scheme for C H which then induces an elimination scheme for H.

Fix a vertex v ∈ V (C H ) corresponding to a cell of the tessellation. For any integer d ≥ 0, denote by V d the set of vertices in the cell graph, which are at L ∞ distance d in the underlying grid graph from v (see Figure 3).

Analogously, we define P d to be the set of points of H inside the cells of V d .

For the sake of convenience, we define

K = m (log m) 2 .
The idea of the proof is to find a separator S of H that contains at most O(K) points. This separator will split the graph into some smaller subgraphs. Using (3) and applying the same procedure recursively to the remaining parts, we will get an upper bound on td(H).

Let f be the largest integer for which

f -1 d=0 |P d | ≤ m 2 . (7) 
Let f 1 be the largest integer for which f 1 ≤ f and |P f 1 | ≤ K and f 2 be the smallest integer for which

f 2 ≥ f and |P f 2 | ≤ K. Since H contains m points, f 2 -f 1 ≤ m K = (log m) 2 .
Given a graph G and S ⊂ V (G), we will denote by G[S] the subgraph of G induced by S. We decompose of C H into the following subgraphs (see Figure 3):

C S = C H [V f 1 ∪V f 2 ] , C A = C H f 1 -1 d=0 V d , C L = C H   f 2 -1 d=f 1 +1 V d   and C B = C H   d≥f 2 +1 V d   ,
and we define accordingly

H S = H[P f 1 ∪P f 2 ] , H A = H f 1 -1 d=0 P d , H L = H   f 2 -1 d=f 1 +1 P d   and H B = H   d≥f 2 +1 P d   .
In the case |P f | ≤ K, we have f 1 = f 2 and C L and H L are graphs on zero vertices. Thus, suppose that this is not the case, and focus on C L . Since = r/ √ 2, by [START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF] we know that C L is a subgraph of at most 4 copies of L 2 a,b (see Figure 3), where a = (log m) 

= V f 1 ∪ V f 2 , we have td(H) ≤ |S| + max{td(H A ), td(H L ), td(H B )} ≤ 2K + max{td(H A ), O t(log m) 3 , td(H B )}, (8) 
since |S| ≤ 2K by definition of f 1 and f 2 . We recursively repeat this procedure for the two subgraphs H A and H B . By the choice of f in [START_REF] Gilbert | Random plane networks[END_REF], both subgraphs contain at most m/2 points. Hence, the recursion depth of our procedure is at most log 2 m = O(log m). This implies that

td(H) = O max K log m, t(log m) 3 = O max m log m
, t(log m) 3 .

Separators and cells

During the rest of the section we will consider a tessellation of length = r/4. Given S ⊆ S n a set of positive measure, we denote by vol(S) the area of S and by ∂S its boundary in the euclidean topology. We also use vol(∂S) to refer to the length of ∂S. We only consider sets S that are finite unions of discs, so that the length of the boundary is well defined.

For any set

A ⊆ V (H), let A = {x ∈ S n : min v∈A dist E (x, v) ≤ r 2 } ⊆ S n , and notice that ∂A = x ∈ S n : min v∈A dist E (x, v) = r
2 . We will use the fact that for any cell D and for any two elements

u, v ∈ D dist E (u, v) ≤ r 2 √ 2 . ( 9 
)
Also, we make use of the following isoperimetric inequality (see [START_REF] Oprea | Differential geometry and its applications[END_REF], Theorem 1.6.1): for any connected set of positive measure S ⊂ R 2 , vol(∂S) ≥ Ω( vol(S)) .

(

) 10 
This inequality can be extended to a nonconnected set S as follows: suppose that S is a union of disjoint connected sets S 1 , . . . , S m . Then, for each i = 1, . . . , m, we have vol(∂S i ) = Ω( vol(S i )), and thus

vol(∂S) = m i=1 vol(∂S i ) = m i=1 Ω( vol(S i )) = Ω( vol(S)), (11) 
where the last inequality follows from concavity of the square root function, that is for any x, y ≥ 0, we have

√ x + √ y ≥ √ x + y.

Denote by

• S n the interior of S n . We have the following lemma: Lemma 12. Let S ⊂ S n be a connected set. Then,

vol(∂S ∩ • S n ) = Ω(min{vol(∂S), vol(∂(S n \ S))}) .
Proof. Consider the complement of S, U = S n \ S. Let U 1 , . . . , U m denote the disjoint connected sets of U.

Let us focus on U i for some i ∈ [m]. Let V i = S n \ U i denote its complement. We will show that vol(∂U i ∩

• S n ) = Ω(min(vol(∂U i ), vol(∂V i ))
). Since U i and V i are connected sets that partition S n , either ∂U i ∩ • S n = ∂U i and we are done. Otherwise, there exist two points x and

y in ∂U i ∩ ∂S n such that ∂U i = C 1 ∪ C 2 , where C i is a connected simple curve with endpoints x and y, C 1 ⊆ ∂S n and C 2 ∩ ∂S n = {x, y}. Let C 3 = ∂S n \ C 1 and notice that ∂V i = C 2 ∪ C 3 and that C 1 ∪ C 3 = ∂S n . Let W i = U i if vol(C 1 ) ≤ vol(C 3 ) and W i = V i otherwise. This implies that vol(C 2 ) ≥ x -y 2 = Ω(min{vol(C 1 ), vol(C 3 )}). Using that vol(∂W i ) = vol(C 2 ) + min{vol(C 1 ), vol(C 3 )}, we have vol(∂W i ∩ • S n ) = vol(C 2 ) = Ω(min{vol(∂U i ), vol(∂V i )}).
Since each point in ∂S n belongs to at most one set U i , there is at most one set U i * such that vol(∂U i * ) ≥ vol(∂V i * ). If this is not the case, then we have vol(∂S ∩

• S n ) = m i=1 vol(∂U i ∩ • S n ) = m i=1 Ω(vol(∂U i )) = Ω(vol(∂U)). Otherwise, vol(∂S ∩ • S n ) = vol(∂U ∩ • S n ) = m i=1 vol(∂U i ∩ • S n ) = m i=1 Ω(min{vol(∂U i ), vol(∂V i )}) = Ω   vol(∂V i * ) + i =i * vol(∂U i )   = Ω(vol(∂S)) ,
where the last equality follows from

vol(∂V i * ) + i =i * vol(∂U i ) = vol(S) + i =i * vol(∂U i ∩ ∂S n ) .
The following lemma shows that for any separator S of a geometric graph H, we can find a large number of cells of length = r/4, whose points are entirely contained in S (see also Figure 4, left). Lemma 13. Let H be a connected geometric graph of order m and S ⊂ V (H) be a separator of H. Fix a connected component H 1 of H \ S and denote by A = V (H 1 ).

Consider a tessellation with side length = r/4. If vol(A) < cn for some c < 1, then there exists a set of cells D S of size d S , such that all points inside D S belong to S and

d S = Ω r -1 vol(A) . Proof. Define B = V (H) \ (S ∪ A), that is, B is the set of vertices of H that are contained neither in S nor in A.
Observe that for any pair of points v ∈ A and w ∈ B, we have dist E (v, w) ≥ r, since v and w belong to different connected components of H \ S. Let C = ∂A denote the boundary of A. By definition, all points in C lie at distance exactly r/2 from some point in A. Thus, they lie at distance at least r/2 from any point in B.

Let D S be the union of cells that have nonempty intersection with C. Let us point out that some of these cells may not contain any point of V (H). We will now show that d S = Ω(r -1 vol(A)).

By hypothesis of Lemma 13, vol(A) < cn for some constant c < 1, and thus by [START_REF] Hekmat | Ad-hoc networks-fundamental properties and network topologies[END_REF],

vol(C) = vol(∂A) = Ω( vol(A)) . (12) 
For any cell D ∈ D S we denote by C D = C ∩ D, the restriction of C to D. We will show that the length of C D is not too large by projecting the elements of C D onto ∂D, in such a way that the length of C D does not decrease by too much.

Let p : C D → ∂D the application that sends an element c ∈ C D ⊂ C being at distance r/2 from a point v ∈ A to the intersection of ∂D and the segment that joins c and v (see Figure 4, right). In case where there is more than one point of A at the same distance from c, p(c) chooses one of them arbitrarily. Using this upper bound for all cells D ∈ D S , we obtain

d S ≥ vol(C) max D∈D S vol(C D ) = Ω r -1 vol(A) .
Moreover, all points contained in D S belong to S: by ( 9), any point u contained in D S lies at distance at most r/(2 √ 2) from some element c ∈ C. However, all points of A ∪ B lie at distance at least r/2 from all the elements of C. Thus, u / ∈ A ∪ B, implying that u ∈ S.

We finish with some properties of the tessellation when choosing = r/4.

Lemma 14. Let H be a geometric graph with connected components H 1 , . . . , H t . Define A i = V (H i ) and consider a tessellation with = r/4. Then, for any cell D we have the following:

1. if there exists a point v ∈ A i such that v ∈ D, then D ⊂ A i .

2. there are at most 24 curves C i = ∂A i that intersect the cell.

Proof. For the first part, by [START_REF] Halin | S-functions for graphs[END_REF], for any u ∈ D,

dist E (u, v) < r 2 ,
and thus u ∈ A i .

For the second part, observe that if C i intersects D, then there must exist a point of v ∈ A i at distance at most r/2 from some point in D. There are at most 24 cells satisfying this criterion, namely the ones in the first and second neighborhood of D. Since all points of a cell belong to the same component (they are all connected), there are at most 24 different curves C i intersecting D.

Subcritical regime

In this section we compute the treedepth of a random geometric graph with 0 < r < r c , that is, below the existence of a giant component. By Theorem 10.3 of [START_REF]Random geometric graphs[END_REF], a.a.s. the order of each component is at most O(log n). In fact, by looking at Theorem 10.3 of [START_REF]Random geometric graphs[END_REF], it is easily seen that with probability at least 1 -o(n -3/2 ) the order of each component is O(log n).

We will use the following result several times: McDiarmid in [START_REF] Mcdiarmid | Random channel assignment in the plane[END_REF] proved that for any r = Θ(1) and G ∈ G(n, r), a.a.s.

ω(G) = Θ log n log log n . ( 13 
)
In fact, by looking at the proof of Lemma 5.3 in [START_REF] Mcdiarmid | Random channel assignment in the plane[END_REF], by choosing (in the notation of the proof given there) k 1 = k 1 (r) to be sufficiently large and k 2 = k 2 (r) to be sufficiently small, we can also easily see that with probability at least 1 -o(n -1/2 ) we have

ω(G) = Θ log n log log n , (14) 
and by looking at Lemma 4.4 and 5.3 in [START_REF] Mcdiarmid | Random channel assignment in the plane[END_REF], the same result holds for G(P 1 , r) as well (in fact, for Lemma 5.3, either the number of points of G(P 1 , r) is not in the set {n -C √ n log n, n + C √ n log n} for C large enough, which happens with probability o(n -1/2 ), or the respective lower and upper bounds for the number of points can be used in the calculations of Lemma 5.3, again by choosing k 1 large enough and k 2 small enough).

By [START_REF] Barequet | Counting polyominoes on twisted cylinders[END_REF], the order of the largest connected component implies a coarse upper bound, namely td(G) = O(log n) .

In order to find a better upper bound, more work is needed. First, we need the following simple lemma, whose proof is included for completeness.

Lemma 15. Let X be a random variable that follows a Poisson distribution with parameter λ.

Then, for any k ≥ 2λ, Pr(X ≥ k) ≤ 2 Pr(X = k).

Proof.

Pr(X ≥ k) = i≥k Pr(X = i) = i≥k e -λ λ i i! = e -λ λ k k! 1 + λ k + 1 + λ 2 (k + 1)(k + 2) + . . . ≤ e -λ λ k k! i≥0 λ k i = e -λ λ k k! 1 1 -λ k ≤ 2e -λ λ k k! = 2 Pr(X = k),
where the last inequality follows from the assumption k ≥ 2λ.

Let ν = ν(r) be a sufficiently large constant. For the sake of convenience, we define

T max = ν log n log log n and T = √ 2 log n log log n .
From now on, we consider in this section the cell graph C G ( ) of G ∈ G(P 1 , r) with = r/ √ 2 and write simply C G for C G ( ). Notice that all points inside a cell of C G form a clique. Hence, by [START_REF] Lee | Rank-width of random graphs[END_REF], by choosing ν = ν(r) sufficiently large, each cell contains less than T max points a.a.s. For this particular tessellation, we call a cell sparse if it contains less than T points, and dense otherwise.

Proposition 16. Let 0 < r < r c and let G ∈ G(P 1 , r). With probability at least 1 -o(n -1/2 ), every connected component H of G contains at most O(T max ) points in dense cells.

Proof. For any connected component H of G we will show that the probability that the number of points in dense cells of H is at least 2T max is o(n -3/2 ). Since there are clearly at most n connected components in G, by taking a union bound over all them, with probability 1-o(n -1/2 ) no component will have more than 2T max points in dense cells.

Let A i be the number of points in the cell i. Since we are using a Poisson point process of intensity 1, A i follows a Poisson distribution with parameter λ = r 2 /2. Denote by p = Pr(A i ≥ T ) the probability that cell A i is dense.

By Lemma 15,

(1 -O(T -1 )) e -λ √ 2πT eλ T T = Pr(A i = T ) ≤ p = Pr(A i ≥ T ) ≤ 2 Pr(A i = T ) ≤ 2e -λ √ 2πT eλ T T , (15) 
where we have used Stirling's formula

T ! = (1 + O(T -1 )) √ 2πT T e T .
To count the number of points lying in dense cells, we define the following random variable for each cell i ∈ V (C G ):

Y i = t if i
is dense and has t points inside, 0 otherwise.

Our aim is to show that

Y H = i∈V (C H ) Y i is at most O(T max ).
Notice that the probability that the cell i is sparse is 1 -p, while the probability of having T + j points is

Pr(A i = T + j) = (1 -O((T + j) -1 )) e -λ √ 2π(T +j) eλ T +j T +j ≤ ( eλ T ) T e -λ √ 2πT ( eλ T ) j ,
for any integer j ≥ 0. Using (15) we have

Pr(A i = T + j) ≤ 2p eλ T j .
These observations lead to the definition of the following independent random variable R i for each cell i ∈ V (C G ):

R i =      0 with probability 1 -2p, T + j
with probability 2p eλ T j for any j ≥ 1,

T with probability 2p 1 -eλ T -eλ .
First of all, observe that R i is a probability distribution. The random variables Y i and R i have similar distributions. In particular, each variable R i stochastically dominates the corresponding random variable Y i . Analogously, we define

R = i∈V (C H ) R i . Then, Pr(R ≥ j) ≥ Pr(Y ≥ j), (16) 
for any j ≥ 0. In particular, this also holds, if j = O(T max ).

Therefore, it is enough to compute an upper bound for Pr(R > 2T max ). Clearly, since r < r c , and all connected components are of order O(log n) with probability at least 1 -o(n -3/2 ), with the same probability in the cell graph C G the graph diameter of each component C H is at most K log n for some sufficiently large constant K = K(r). For the case where the graph diameter is bigger than K log n, Pr(R > 2T max ) can be easily bounded by o(n -3/2 ). For the case where it is smaller than K log n, we observe the following: given a cell from C H , all points that belong to H are contained in the box of cells of size (2K log n + 1) × (2K log n + 1) centered on the first cell. Let η > 0 such that (2K log n + 1) 2 ≤ η log 2 n.

Hence we have

Pr(R > 2T max ) ≤ o(n -3/2 ) + (2K log n+1) 2 m=1 S∈( η log 2 n m ) c i :i∈S i∈S c i ≥2Tmax Pr i∈S R i = c i , ( 17 
)
where m counts the number of dense cells in the distribution given by the R i , S is the set of dense cells and c i is the number of points inside the dense cell i ∈ S. There are at most η m (log n) 2m ways to choose the set S of size m and at most (T max ) m < (log n) m possible values for the c i .

Recall that the variables R i are independent and that Pr(R i = T + j) = 2p eλ T j for any

j ≥ 1. Therefore, Pr i∈S R i = c i = m i=1 2p eλ T c i -T . On the one hand, if m ≤ 2 √ log n, using (15), m i=1 2p eλ T c i -T ≤ m i=1 4 √ 2πT eλ T c i ≤ m i=1 eλ T c i ≤ (2e λ √ 2πT p) c i T ≤ (2e λ √ 2πT p) 2 √ log n .
(18) On the other hand, if m = 2 √ log n + j for some integer j ≥ 1,

m i=1 2p eλ T c i -T ≤ (2p) m = (2p) 2 √ log n (2p) j .
Therefore, by splitting the second part of ( 17) into two sums, we obtain

Pr(R > 2T max ) ≤ o(n -3/2 ) + 2 √ log n m=1 η m (log n) 3m (2e λ √ 2πT p) 2 √ log n + 2η(log n) 3 p 2 √ log n j≥1 2η(log n) 3 p j .
From the bounds on p in [START_REF] Mcdiarmid | Random channel assignment in the plane[END_REF], one can derive that η(log n) 3 p < 1/2, and the infinite sum of the second term above is bounded from above by one. Thus,

Pr(R > 2T max ) ≤ o(n -3/2 ) + 2 log n η(log n) 3 p(2e λ √ 2πT + 2) 2 √ log n = o(n -3/2 ) + exp log log n/2 + 2 log n (3 log log n + log p + O(log T )) .
Moreover, by [START_REF] Mcdiarmid | Random channel assignment in the plane[END_REF], we also have p ≤ 2e -λ √ 2πT eλ T T , and hence log p ≤ -(1

+ o(1))T log T ≤ - √ log n. Thus, Pr(R > 2T max ) < o(n -3/2 ) + exp {-(1 + o(1))2 log n} = o(n -3/2 ). ( 19 
)
By [START_REF] Mitsche | On the treewidth and related parameters of random geometric graphs[END_REF], this also implies that Pr(Y > 2T max ) = o(n -3/2 ), and by taking a union bound over all components, this implies that the probability of having a connected component with more than 2T max points inside dense cells is o(n -1/2 ).

Proof of Theorem 1. The lower bound on tw(G) follows easily from ( 14), which yields

td(G) ≥ tw(G) ≥ ω(G) -1 = Ω log n log log n .
For the upper bound, we construct an elimination tree for G. By (2) it suffices to bound from above the treedepth of each connected component. Let H be a connected component of G.

From Proposition 16, there are at most O(T max ) points in dense cells of H. We temporarily remove all these points, and add them at the end. Let H be the subgraph of H that remains after removing the points in the dense cells.

Observe that now, by definition of sparse, every cell of 

C

Supercritical regime

Fix now r = r(n) ≥ c, for some sufficiently large constant c. Recall that for any subset S ⊆ S n = [0,

√ n] 2 of positive measure, we denote by vol(S) the area of S. We need the following standard lemma (which is a simple application of Chernoff bounds for Poisson variables, see for example Theorem A.1.15 of [START_REF] Alon | The probabilistic method[END_REF]): Lemma 17. For any S ⊆ S n and any δ > 0, let |S| denote the number of points inside S. Then, we have:

1. With probability at least 1 -(e δ (1 + δ) -(1+δ)) ) vol(S) ≥ 1 -e -δ 2
3 vol(S) , |S| ≤ (1 + δ) vol(S).

With probability at least

1 -e -δ 2 2 vol(S) , |S| ≥ (1 -δ) vol(S).
We will use this lemma to show that there exist separating sets with few points, and consequently, give an upper bound on td(G).

Proposition 18. Let c be a sufficiently large constant, let r = r(n) ≥ c and let G ∈ G(P 1 , r).

With probability 1 -e -Ω(r √ n) , td(G) ≤ O(r √ n).
Proof. Consider the tessellation of S n into square cells of side length = r. Denote by D (i,j) the j-th cell in the i-th row, where

1 ≤ i, j ≤ a = √ n/r. Define X 1 1 = a i=1 D (a/2,i) ∪ a i=1 D (i,a/2) ,
and consider the set Y 1 1 ⊂ V (G), containing the points inside X 1 1 . Observe that Y 1 1 is a separator, since = r, and it splits the graph into 4 components (some of them might be empty),

G 1 2 , G 2 2 , G 3 
2 and G 4 2 . By (3), we have td(G)

≤ |Y 1 1 | + max 1≤j≤4 {td(G j 2 )} .
We then define analogously the sets X j 2 , for all G j 2 , and using (3), we continue iteratively. Let t denote the step where all sets X j t have size one (see Figure 5).

Figure 5: Construction of the sets X j i .

The treedepth of G will be bounded from above by the maximum number of points inside any of the possible sets of cells

X j 1 j 2 ...jt = X j 1 1 ∪ X j 2 2 ∪ • • • ∪ X jt t ,
where 1

≤ j i ≤ 4 i-1 . Observe that |X j i | ≤ a2 -(i-2) . The sets X j 1 j 2 ...jt = X j 1 1 ∪ X j 2 2 ∪ • • • ∪ X jt t
are not disjoint, but they all have the same size

|X j 1 j 2 ...jt | = t i=1 |X j i i | ≤ t i=1 a2 -(i-2) ≤ 4a.
Let Y j 1 j 2 ...jt denote the set of points in X j 1 j 2 ...jt . Thus, |Y j 1 j 2 ...jt | is a random variable following a Poisson distribution with mean at most 4ar 2 . By part 1 of Lemma 17 applied with δ = 1,

Pr |Y j 1 j 2 ...jt | ≥ 8ar 2 < e -4ar 2 /3 = e -Ω(r √ n) .
Moreover, there are at most

t i=1 4 i-1 = e O(t 2 )
sets of the form X j 1 j 2 ...jt . Observe also that, by construction, t = O(log a) = O(log n). Now, by a union bound over all sets, Pr ∃ j 1 , j 2 , . . . , j t :

|Y j 1 j 2 ...jt | > 8ar 2 ≤ e O(log 2 n)-Ω(r √ n) = e -Ω(r √ n) .
Thus, we have that the treedepth of G is at most

td(G) ≤ 8ar 2 = O(r √ n)
with probability at least 1 -e -Ω(r √ n) , finishing the proof.

For a lower bound on tw(G), we need the following link between the treewidth of a graph and the existence of a vertex separator with special properties. A vertex partition V = (A, S, B) is a balanced k-partition if |S| = k + 1, S separates A and B, and

1 3 (n -k -1) ≤ |A|, |B| ≤ 2 3 (n -k -1
). In this case, S is also called a balanced separator. The following result connecting balanced partitions and treewidth is due to Kloks [START_REF] Kloks | Treewidth[END_REF].

Lemma 19 ([13]). Let G be a graph on n vertices, and suppose that tw(G) ≤ k for some n ≥ k -4. Then G has a balanced k-partition.

From now on and until the end of the section, we consider the tessellation of S n into square cells of side length = r/4.

Recall that for any set A ⊂ V (H), we define A = {x ∈ S n : min v∈A dist E (x, v) ≤ r/2}. Observe that in a geometric graph, no direct relation exists between the size of A and the volume of A. In the case of a random geometric graph and for a set A of linear size, however, vol(A) can be bounded from below using the size of A, as the following lemma shows. Lemma 20. Let c be a sufficiently large constant and let r = r(n) ≥ c. Let G ∈ G(P 1 , r) and let α ∈ (0, 1). Then, with probability 1 -e -Ω(n) , for any set A ⊆ V (G) with |A| ≥ αn, there exists c(α) > 0, such that vol(A) ≥ c(α)n .

Proof. Set m = m(α) to be the smallest constant such that mλ is integer,

e -1 m ! m 2 m -1 + m (m -1) 2 ≤ α 8
and m ≥ 4e , which exists for any α > 0, since the left-hand side of the first condition tends to zero, when m → +∞.

Recall that the number of points inside a cell D follows a Poisson distribution with mean λ = r 2 /16. Suppose that D contains t ≥ 0 points. Define then Z D to be the following random variable:

Z D = t if t ≥ mλ , 0 otherwise,
and let Z = Z D be the sum of these random variables over all cells of the tessellation. We may consider r ≥ 4, since by hypothesis r ≥ c, for some c large enough. This implies that λ ≥ 1. By Stirling bounds and by calculating the derivative one can see that for any m ≥ 1 the function f (λ) = e -λ λ mλ (mλ)! is decreasing for λ ∈ [1, ∞), and thus

Pr(Z D = mλ) = e -λ λ mλ (mλ)! ≤ e -1 m ! . Also Pr(Z D = mλ + i) = e -λ λ mλ+i (mλ + i)! = e -λ λ mλ+(i-1) (mλ + (i -1))! • λ mλ + i ≤ 1 m Pr(Z D = mλ + (i -1)) ,
for any i ≥ 1. Hence,

E (Z D ) = t≥mλ t Pr(Z D = t) ≤ e -1 m ! i≥0 (mλ + i) m -i ≤ e -1 m ! m 2 λ m -1 + m (m -1) 2 ≤ αλ 4 ,
where the last inequality follows from the definition of m. Since λ = r 2 /16 and there are 16n/r 2 cells in the tessellation, we have = e -Ω(n) .

E (Z) ≤
Thus, with probability at least 1 -e -Ω(n) , there are at most αn/2 points of G contained in cells with at least mλ points, and thus with the same probability there are at least αn/2 points of A contained in cells with less than mλ points. Therefore, with this probability, there are at least Using the previous lemmata, we are able to provide a lower bound for tw(G).

Theorem 21. Let c be a sufficiently large constant, and let r = r(n) ≥ c. Let also G ∈ G(P 1 , r).

Then, tw(G) = Ω(r √ n) with probability at least 1 -e -Ω(r √ n) .

Before proving the theorem we sketch its proof. We are going to show that any balanced separator S of the giant component contains many points. Observe that if vol(S) is large then the probability of containing few points is exponentially small. We show that in general, any such separator has a large volume. Here we strongly use the condition that S is balanced. The conclusion will then follow by taking a union bound over all possible sets of cells that are candidates for a separator.

Proof. Fix γ > 0 to be a sufficiently small constant. Let H be the largest component of G. Note that for r ≥ c with c sufficiently large, by Theorem 3.3 of [START_REF] Penrose | A central limit theorem with applications to percolation, epidemics and boolean models[END_REF],

|V (H)| = Ω(n) ( 20 
)
with probability at least 1 -e -Ω(n) . We will for now assume deterministically that |V (H)| = Ω(n) holds and only in the end add the probability e -Ω(n) that |V (H)| = o(n) holds. By choosing c sufficiently large, to simplify calculations, we may even assume |V (H)| ≥ 0.9n. We will show that there exists no balanced separator of size γr √ n for H. Then, by Lemma 19, this implies that tw(H) ≥ γr √ n = Ω(r √ n), and by [START_REF] Alon | The probabilistic method[END_REF], tw(G) ≥ tw(H) = Ω(r √ n). For any balanced separator S ⊂ V (H) of H, denote by t be the number of connected components of the graph induced by S and let S 1 , . . . , S t denote the subsets inducing connected components within H. We may assume that S is minimal, and hence each component of S contains at least one point of H. Therefore we can assume that t ≤ γr √ n, as otherwise there is nothing to prove. We may assume that r ≤ 2 √ n, since for r = 2 √ n, G(P 1 , r) is already the complete graph. If S is a balanced separator of size at most γr √ n ≤ 2γn, there exist two not necessarily connected sets A, B ⊂ V (H) of size 1-2γ 3

|V (H)| ≤ |A|, |B| ≤ 2(1-2γ) 3 |V (H)|, such that H \ S contains no edges from A to B.
Since γ is a sufficiently small constant and |V (H)| ≥ 0.9n, |A|, |B| ≥ n/4. By Lemma 20, with probability at least 1 -e -Ω(n) , for all balanced separators S, vol(A) and vol(B) are linear in n. In particular, if β = c(1/4) is the constant provided by Lemma 20 for α = 1/4, we have

βn ≤ vol(A) ≤ (1 -β)n (21) 
with probability at least 1 -e -Ω(n) . Since vol(A) ≤ (1 -β)n, we can apply Lemma 13 to the separator S and each connected component of A separately. Thus, once again by concavity of the square root function, with probability at least 1 -e -Ω(n) , for all balanced separator S, there exist some constant η > 0 and a set of cells D S of size

d S = Ω r -1 vol(A) ≥ η √ n r ,
such that all points inside D S belong to S. Recall that some cells in D S may not contain any point. We will assume this deterministically for now and add the failure probability at the very end.

Now it suffices to show that for any balanced separator S and for any possible set of cells D S of size at least η √ n/r, there will be with high probability at least γr 

We will now show that with high probability no balanced separator that occupies more than η √ n/r cells contains less than r 2 32 d S points. We will do it by combining the inequality in ( 22) with a union bound over all separators S together with the corresponding sets of cells D S of size d S ≥ η √ n/r. By definition of the cell graph, D S has at most t connected components (some connected components of the graph induced by S can merge in D S ). We will assume that D S has exactly t connected components denoted by D S 1 , . . . , D St and with sizes d S 1 , . . . , d St .

Since r is a large constant, we may assume that r ≥ 4. Then, by setting a = b = 4 √ n/r ≤ √ n, k = 4 and s = d S j in Lemma 7, we conclude that there are at most n t 9 4(d S 1 +•••+d S t ) ≤ n t e 9d S ways to construct possible sets of cells D S corresponding to all balanced separators S with t components.

We have

Pr(∃S : S balanced, d S ≥ η √ n/r, |S| ≤ γr √ n) ≤ d S ≥η √ n/r t≤γr √ n d S 1 +•••+d S t =d S n t e 9d S e -r 2 d S /128 . (23) 
Using t nonnegative numbers, there are at most (d S ) t ≤ n t ways to add up to d S and thus, the right hand side of (23) can be bounded from above by

d S ≥η √ n/r t≤γr √ n n 2t e 9d S e -r 2 d S /128 . (24) 
Denote by C H , by C A and by C B the set of cells that contain at least one point of H, A and B, respectively. Recall that βn ≤ vol(A), vol(B) ≤ (1 -β)n. By Lemma 20, there exists an ε > 0 such that |C A |, |C B | ≥ εn/2r 2 with probability at least 1 -e -Ω(n) . Since C A and C B are disjoint, and C A ∪C B ⊆ C H \D S , we have |C H \D S | ≥ εn/r 2 with probability at least 1-e -Ω(n) . Once more, we will assume this deterministically for now and add the failure probability at the very end. Let ν be a small constant.

Our aim for the rest of the proof is to show that each summand can be bounded from above by an exponentially small term. We will do it by splitting the proof into 5 cases: . By part 2 of Lemma 14, there exist at most 24 different connected components A i of H, such that ∂A i intersects a given cell. Hence, by applying the isoperimetric inequality given in [START_REF] Hekmat | Ad-hoc networks-fundamental properties and network topologies[END_REF] over each component of S that touches the boundary of a small component of H,

d S ≥ 1 24 • n 1/4 √ log n √ νr 3 • ε r √ n log n = Ω n 3/4 r 1/2 √ log n .
The remaining calculations are as in Case 2.

• Since we use a tessellation with side length = r/4, there are at most 16n/r 2 cells. Hence, there are at most τ ≤ 16νr

√ n log n large components in C H \ D S . Observe that although the number of large components is small, there could be many connected components in D S 1 which could cause some problems in bounding [START_REF] Robertson | Graph minors. I. Excluding a forest[END_REF]. In order to deal with this problem we consider a tessellation of R 2 and extend the random geometric graph from S n to R Next, we will delete some cells from D S 2 to create D S 3 in order to reduce the number of connected components. Let H 1 , . . . , H ρ be the large connected components of H \(S ∪H 0 ). For every H i , let C H i denote its corresponding cells. We define its fill-up C H i as follows: By our argument we reduced the number of animals to consider from t to at most τ . Their sizes are now at most d S 3 , and at most d S 4 of them contain points. Thus, each summand of( 24) is bounded by n 2τ e 9d S 3 e -r 2 d S 4 /128 . Since τ ≤ νr √ n log n and d S 4 = Ω( √ n/r), and d S 4 = Ω(d S 3 ), similar arguments as in the Case 3 show that the summand is bounded from above by e -Ω(r √ n) , if r is at least a large constant.

a
We showed that each term of (24) can be bounded from above by min{e -Ω(r 2 d S ) , e -Ω(r √ n) } = e -Ω(r √ n) if d S (and also d S 1 , d S 2 , d S 3 , d S 4 as defined in Case 5) are of order Ω( √ n/r). Since all probabilities which we assumed deterministically throughout the proof hold with probability at least 1 -e -Ω(n) , we have together with [START_REF] Penrose | A central limit theorem with applications to percolation, epidemics and boolean models[END_REF] Having chosen γ sufficiently small such that γ ≤ η/32, the theorem follows.

Proof of Theorem 2. Theorem 2 follows directly by recalling that tw(G) ≤ td(G) and combining Proposition 18 with Theorem 21.

Conclusion

Given a random geometric graph G ∈ G(n, r) we showed that if 0 < r < r c , tw(G) = Θ( log n log log n ) and that if r ≥ c, for some sufficiently large c, tw(G) = Θ(r √ n). We conjecture that the latter can be extended to the whole supercritical regime, that is, we conjecture that for every r > r c , tw(G) = Θ(r √ n). This is a natural thing to expect since r c is already the threshold radius for the existence of a giant component. The conjecture is equivalent to the existence of a sharp threshold width of order o(1) at r = r c . We remark that the general result on sharp thresholds of monotone properties of [START_REF] Goel | Sharp thresholds for monotone properties in random geometric graphs[END_REF] implies only a sharp threshold width of order log 3/4 n. Our methods, however, require the knowledge of the exact threshold value r c of the appearance of the giant component in a random geometric graph, which at the moment is not known.
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 1 Figure 1: A random geometric graph and its corresponding cell graph
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 2 Figure 2: Embedding of the strong product.
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 10 Let L k a,b the grid graph defined as above and suppose that a ≤ b. Then td(L k a,b ) ≤ O(ka log b).

  2 and b = m, since f 2 -f 1 ≤ (log m) 2 and |P d | ≤ m for any d. By (3) and Proposition 10, we get td(C L ) ≤ O(4a) + td(L 2 a,b ) = O (log m) 3 . Moreover, H L ⊆ C L K t . Hence, by Lemma 9, td(H L ) = O t(log m) 3 .
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 3 Figure 3: Decomposition of C H
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 4 Figure 4: Cells of D S and the projection of C D .

  H contains at most T points. Denoting by m = |V (H )|, by Proposition 11 we have td(H ) = O max m log m , T (log m) 3 . Since, with probability at least 1 -o(n -3/2 ), m = O(log n), we have that for every component H of G, td(H ) = O(T max ) with probability at least 1 -o(n -1/2 ). Recall that adding a new point to H can increase the treedepth by at most one unit. Thus, td(H) ≤ td(H ) + O(T max ) = O(T max ), and therefore, using (1), we have td(G) = O log n log log n with probability at least 1 -o(n -1/2 ).
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 4 By Hoeffding bounds for unbounded random variables (the precise version we use here is Theorem 1 of [3], applied with X D = D = Z D , and thus S = T = Z, Y = P o(λ), m k = m = E (Z D ) for any k, and b = mλ -1, so that m(b) = m and the measure µ [m] is exactly our probability distribution of Z D , and x = 2E (Z)) Pr(Z > 2E (Z)) < inf h<x e -h2E(Z) E e hZ ≤ e -2E(Z) E e Z . Now, observe that e 2E(Z D ) ≥ e 2mλ Pr(Z D = mλ) ≥ e (2m-1)λ λ mλ (mλ)! and E e Z D = Pr(Z D = 0) + i≥0 e mλ+i Pr(Z D = mλ + i) ≤ 1 + e (m-1)λ λ mλ (Since by assumption on m, e/m ≤ 1/4, we have E e Z D ≤ 1 + 4 3 λ mλ (mλ)! e (m-1)λ ≤ 3 2 λ mλ (mλ)! e (m-1)λ . The random variables Z D are mutually independent. Thus, e 2E(Z) = e 2E(Z D ) > 2E (Z)) ≤ e -2E(Z) E e Z ≤

2

 2 different cells D that contain at least one point from A. By part 1 of Lemma 14, D ⊂ A, and vol(A) ≥ 8αn mr 2 • vol(D) = c(α)n with probability at least 1 -e -Ω(n) .

  √ n points inside such a set D S . Denote by Y D S the random variable counting the number of points inside such a D S . Since vol(D S ) = r 2 16 d S , by part 2 of Lemma 17 applied with δ = 1/2, we obtain Pr Y D S < r 2 32 d S ≤ e -r 2 128 d S .

2 .

 2 Consider the set of cells D S 2 ⊆ R 2 of size d S 2 defined as follows: a cell D belongs to D S 2 if either D ∈ D S 1 , or D ∈ R 2 \ • S n and intersects a large connected component of C H \ D S 1 . One can imagine D S 2 to be the extension of D S 1 to the tessellation of R 2 .

  Observe that t ≤ d S , since d S j ≥ 1 by definition. Therefore, n 2t e 9d S e -r 2 d S /128 ≤ n 2d S e 9d S e -r 2 d S /128 = e (2 log n+O(1)-r 2 /128)d S ≤ e -r 2 d S /256 , Note that for c sufficiently large, since c ≤ r, e 9d S < e r 2 d S /256 . Note also that e r 2 d S ≥ e ω(r 3/2 √ n(log n) 3/2 ) ≥ e ω( = e o(r 2 d S ) , and hence, n 2t e 9d S e -r 2 d S /128 ≤ e -r 2 d S /256 . H \ D S is contained in components (of the cell graph) of order at most Since |C H \ D S | ≥ εn/r 2 , there exists a constant ε ≤ ε such that ε n/r 2 cells of C H \ D S are in small components. As in the concavity argument of (11), d S is minimized if there are at most ε r

	• Case 1, r > 32 √ log n: since r ≥ 32 √ log n.		
	• Case 2, c ≤ r ≤ 32 √ Thus, since t ≤ γr √ n, we have n 2t = e 2t log n ≤ e 2γr log n and d S = ω( √ n(log n) 3/2 /r): √ √ n log n ≤ e 64γ √ n(log n) 3/2 We will therefore assume d S = O( √ n(log n) 3/2 /r) from now on.	n(log n) 3/2 ) .
			√	n log n νr 3	(call
	them small components):		
	√ log n components of order n	√	n log n νr 3

• Case 3, c ≤ r ≤ 32 √ log n and t ≤ νr √ n log n : If ν is small enough, we have n 2t < e 2νr √ n < e r 2 d S /512 . If r is sufficiently large, we have e 9d S < e r 2 d S /512 . Thus, in such case the summand in (24) is bounded from above by e -r 2 d S /256 . • Case 4, c ≤ r ≤ 32 √ log n, t > νr √ n log n and at least a constant fraction of the cells in C

  In this case, we focus only on the (sub)separator S 1 ⊆ S that separates these large components. Let D S 1 be the cells corresponding to S 1 (in the sense of Lemma 13), of size d S 1 . If there is one large component such that its intersection with ∂S n is larger than 1 2 vol(∂S n ), then we modify S 1 and remove the cells separating this large component from D S 1 . By definition, there can be only one component satisfying the previous condition.

	Case 5, c ≤ r ≤ 32 √ contained in components with at least log n, t > νr √ n log n and all but a o(1) fraction of cells in C H \ D S is √ n log n νr 3 cells (call them large components):

Denote by H 0 such a component (if it exists). Since S is a balanced separator of size at most 2γn, H \ (S ∪ H 0 ) has at least n/4 vertices in large connected components. Now, if we show that with high probability there are many points in S 1 , then the same holds for S. Note that since |C H \ D S | ≥ εn/r 2 and S 1 separates at least a constant fraction of the vertices of H, by Lemma 13 we still have d S 1 = Ω( √ n/r).

  cell D belongs to C H i if either D ∈ C H i or D belongs to a finite connected component of R 2 \ C H i . We construct D S 3 by removing the cells from D S 2 that intersect one of the C H i . Since there is just one infinite connected component in R 2 \ C H i , C H i does not contain holes. Hence, D S 3 has at most ρ ≤ τ connected components. Denote by D H 1 , . . . D Hρ the connected pieces of D S 3 corresponding to the boundaries of C H 1 , . . . , C Hρ , and let d H 1 , . . . d Hρ be their respective sizes. By Lemma 13, d H i = Ω(r -1 vol(H i )). Once more by part 2 of Lemma 14, there exist at most 24 different connected components of C H \ D S 3 whose boundary intersects a given cell, and therefore we have d S 3 = Ω( τ i=1 d H i ). Since ρ i=1 vol(H i ) ≥ min{vol(A), vol(B)} = Ω(n), by (10) and by concavity of the square root function, we have d S 3 = Ω( √ n/r). Now, consider D S 4 := D S 3 ∩ S n of size d S 4 . Note that D S 4 ⊆ D S . Since any large connected component H i of H \ (S ∪ H 0 ) satisfies vol(∂C H i ∩ ∂S n ) ≤ 1 2 vol(∂S n ), by Lemma 12, vol(∂C H i ∩

• S n ) = Ω(vol(∂C H i )),

and therefore d S 4 = Ω(d S 3 ).
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