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PREFACE

The starting point for these lectures is a course given in Paris between
January and March 2014 as part of Chaire Junior of the Fondation Sciences
Mathématiques de Paris. This book is designed for a graduate audience, inter-
ested in inverse problems and partial differential equations, and we have tried
to make it as self-contained as possible.

The analysis of hybrid imaging problems relies on several areas of the theory
of PDE together with tools often used to study inverse problems. The full de-
scription of the models involved, from the theoretical foundations to the most
current developments, would require several volumes and is beyond the scope
of these notes, which we designed of a size commensurate with a twenty hour
lecture course, the original format of the course. The presentation is limited to
simplified settings, so that complete results could be explained entirely. This al-
lows us to provide a proper course, instead of a survey of current research, but
it comes at the price that more advanced results are not presented. We have
tried to give references to some of the major seminal papers in the area in
the hope that the interested reader would then follow these trails to the most
current advances by means of usual bibliographical reference libraries.

The physical model most often encountered in this book is the linear
Maxwell system of equations. It is of foremost importance in the physics of
inverse electromagnetic problems. Compared to the conductivity equation
and the Helmholtz equation, the analysis of Maxwell’s system is much less
developed, and these lectures contain several new results which have been
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established while writing this book. In the chapter discussing regularity prop-
erties, we focus on the Maxwell system of equations in the time harmonic case.
Proofs regarding small volume inhomogeneities are given for Maxwell’s system
as well.

We introduce the inverse source problem from time-dependent boundary
measurements for the wave equation from the classical control theory point
of view, leaving aside many deep results related to the geometric control of
the wave equation or the Radon transform, or recent developments concern-
ing randomised data. Probabilistic methods are not used, random media are
not considered, compressed sensing and other image processing approaches
are not mentioned. All these questions would certainly be perfectly natural in
this course, but would require a different set of authors. For many of these
questions, we refer the reader to the relevant chapters of the Handbook of
Mathematical Methods in Imaging [192] for detailed introductions and refer-
ences.

The authors have benefited from the support of the EPSRC Science & Inno-
vation Award to the Oxford Centre for Nonlinear PDE (EP/EO35027/1), and
also of the ERC Advanced Grant Project MULTIMOD-267184. G. S. Alberti ac-
knowledges support from the ETH Zürich Postdoctoral Fellowship Program as
well as from the Marie Curie Actions for People COFUND Program. Y. Capde-
boscq would like to thank the Fondation Sciences Mathématiques de Paris and
the Laboratoire Jacques-Louis Lions for the remarkable support provided dur-
ing his time spent in Paris in 2013-2014.

The authors would like to thank the anonymous referee. The manuscript
review and the many helpful suggestions it contained have brought us to clarify
and improve the presentation of several chapters.
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CHAPTER 1

INTRODUCTION

The inverse problems we discuss are the non-physical counterparts of physics
based direct problems. A direct problem is a model of the link from cause to
effect, and in this course we shall focus on direct problems modelled by partial
differential equations where the effects of a cause are uniquely observable, that
is, well posed problems in the sense of Hadamard: from an initial or boundary
condition, there exists a unique solution, which depends continuously on the
input data [109].

Inverse problems correspond to the opposite problem, namely to find the
cause which generated the observed, measured result. Such problems are al-
most necessarily ill-posed (and therefore non physical). As absolute precision
in a measure is impossible, measured data are always (local) averages. A field is
measured on a finite number of sensors, and is therefore only known partially.
One could say that making a measure which is faithful, that is, which when
performed several times will provide the same result, implies filtering small
variations, thus applying a compact operator to the full field. Reconstructing
the cause from measurements thus corresponds to the inversion of a compact
operator, which is necessarily unbounded and thus unstable, except in finite
dimension. Schematically, starting from A, a cause (the parameters of a PDE,
a source term, an initial condition), which is transformed into B , the solution,
by the partial differential equation, and then into C , the measured trace of the
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solution, the inversion from C to B is always unstable, whereas the inversion
of B to A may be stable or unstable depending on the nature of the PDE,
but B ! A is often less severely ill posed than C ! B .

As a first fundamental example, let us consider the electrical impedance
tomography (EIT) problem, also known as the Calderón problem in the math-
ematics literature.

1.1. The electrical impedance tomography problem

1.1.1. Measurements on the exterior boundary: the Calderón problem. —
Let � � �

d be a Lipschitz connected bounded domain, where d � 2 is the
dimension of the ambient space.

We consider a real-valued conductivity coefficient � 2 L1(�), satisfying

(1.1) ��1 � �(x) � � for almost every x 2 �
for some constant � > 0.

Definition 1.1. — The Dirichlet to Neumann map is

�� : H
1=2(@�) �! H�1=2(@�); h��';  i =

Z
�
�ru 	 rvdx;

where v 2 H1(�) is such that v @� =  and u 2 H1(�) is the weak solution of

² �div(�ru) = 0 in � ;

u = ' on @� :

We need to “prove” this definition, because it apparently depends on the
choice of the test function v: Given v1; v2 2 H1(�) with the same trace, namely
v1 � v2 2 H10 (�), from the definition of weak solution we haveZ

�
�ru 	 r(v1 � v2) dx = 0;

thus this definition is proper.

COURS SPÉCIALISÉS 25



1.1. THE ELECTRICAL IMPEDANCE TOMOGRAPHY PROBLEM 3

More explicitly, ��' = �ru 	 � @� , and so �� maps the applied electric po-
tential ' into the corresponding outgoing current �ru	� @� . The inverse prob-
lem in EIT consists of the reconstruction of � from voltage-current measure-
ments on @�. In the case when all possible combinations (';��') are avail-
able, in the mathematics literature, this inverse problem is called the Calderón
problem.

Problem 1.2 (Calderón problem). — Determine if the map

� 7�! ��
is injective and, in this case, study the inverse �� 7! �.

The injectivity of this map was proved in general in dimension 2 (see [36]).
In higher dimension, it is established under additional regularity hypotheses
on � [66], [125], [202], with uniqueness for � 2 C1 obtained recently in [110]
and for less regular conductivities in [111], [78]. Even though the map is in-
jective, the stability of the problem is very poor. It is known to be unstable in
general, and furthermore, with the a priori additional assumption that � 2 Cm ,
m � 2, the best possible stability estimate is

k�1 � �2kL1(�) � C
�
log

�
1 + k��1 ���2k�1H1=2;H�1=2

Ð���
;

for some � 2 (0; 1) depending on d, see [152]; thus, only a very coarse recon-
struction is possible. To fix ideas, if C = 1 and � 
 1, a 1 ppm precision leads
to an approximation error of 7%, whereas a 1 ppq (one per thousand million
of millions) precision leads to an approximation error of 3%.

Remark 1.3. — The general impedance tomography problem considers
matrix-valued conductivities, corresponding to anisotropic media. In such
generality, � is not injective.

1.1.2. The inverse problem with internal data. — The above discussion high-
lights that absolute impedance measurements, without any prior knowledge of
the conductivity, do not seem practical. Since the biological information deliv-
ered by the knowledge of the conductivity map is very valuable for a diagnostic
point of view (as shown by the large number of publications on this topic in
biology and medicine journals), other modalities to measure the conductivity

SOCIÉTÉ MATHÉMATIQUE DE FRANCE



4 CHAPTER 1. INTRODUCTION

have been explored. Before we describe some of these hybrid approaches, let
us make the following observation.

Proposition 1.4. — Let � 2 L1(�) satisfy (1.1) and ui 2 H1loc(�) be weak solu-
tions, for i = 1; : : : ; d, of

div(�rui) = 0 in � :

Suppose additionally that in an open subdomain �0 b �, � 2 H1(�0) and for each
ui 2 H2(�0) \W 1;1(�0), i = 1; : : : ; d, and that

(1.2) det(ru1; : : : ;rud) � C a.e. in �0

for some C > 0. Then

r log � = �[ru1; : : : ;rud]�1
264 div(ru1)...
div(rud)

375 a.e. in �0:

In particular, � is known (explicitly) up to a constant multiplicative factor provided that
rui are known in �0 .

Proof. — Suppose first that � 2 C1(�0); then u1; : : : ; ud 2 C1(�0) by elliptic
regularity. An explicit calculation immediately yields r� 	 rui+��ui = 0 in �0 ,
and in turn

r log � 	 rui = ��ui in �0:
In more compact form, by (1.2) this may be rewritten as

r log � = �[ru1; : : : ;rud]�1
264 div(ru1)...
div(rud)

375 in �0:

We conclude by density of smooth functions in Sobolev spaces.

This result is local, and stability with respect to the derivatives of u1; : : : ; ud
can be read explicitly. Approximation errors do not spread. Let us now con-
sider the case when only only one datum (instead of d) is available. It is clear
that this cannot be enough in general: if � is a function of x0 = (x1; : : : ; xd�1)
and ud = xd , then the above approach gives only

@d log � = 0;

COURS SPÉCIALISÉS 25
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which is satisfied by any � independent of xd . In general, given any C3(�d) gra-
dient field ru such that m � jruj � M for some m;M > 0, there always exists a
C1 isotropic conductivity � such that div(�ru) = 0, as it is shown in [65]. On
the other hand, uniqueness is granted if � is known on the boundary, at the
cost of following gradient flows, provided that a positive Jacobian constraint is
satisfied by other, non-measured, gradient fields.

Proposition 1.5. — Let � 2 C1(�) satisfy (1.1) and ui 2 C1(�) be weak solutions,
for i = 1; : : : ; d, of

div(�rui) = 0 in � :

Suppose that for some nested open subdomains �0 b e� b �, (u1; : : : ; ud) defines a C1

diffeomorphism from e� to V , so that in particular

(1.3) det(ru1; : : : ;rud) � C in e�
for some C > 0. Suppose that ud 2 C2( e�), and that � is known on @�0 . Then � is
uniquely determined by rud in �0 .

Proof. — For x0 2 @�0 , consider the following dynamical system (the gradient
flow)

dX

dt
(t; x0) = rud

�
X(t; x0)

Ð
; t � 0;

X(0; x0) = x0:

As (u1; : : : ; ud) is a C1 diffeomorphism on e�, given y 2 �0 there exists x0
in @�0 and t0 2 � such that X(t0; x0) = y and X(t; x0) 2 e� for all t 2 [0; t0].
Now consider

f(t) = log �
�
X(t; x0)

Ð
:

We have, from the same computation as before,

f 0(t) = r log � 	 rud = �div �rud�X(t; x0)ÐÐ;
in other words

log �(y)� log �(x0) = �
Z t0

0
div

�rud�X(t; x0)ÐÐdt:
SOCIÉTÉ MATHÉMATIQUE DE FRANCE



6 CHAPTER 1. INTRODUCTION

As we see from these two examples, determinant constraints on the gradient
fields naturally arise when we wish to use internal gradients to reconstruct the
conductivity.

1.2. Some hybrid problem models

The main thread of these lectures is the analysis of the so-called hybrid in-
verse problems, which are a particular type of inverse problem using internal
data coming from the use of coupled-physics phenomena. The gradient fields
discussed above are an example of such internal data. In general, the inversion
from internal data turns out to be more direct and stable than the correspond-
ing reconstruction from boundary measurements.

The phenomenon used in many of these methods is the dilatation of solids
and liquids due to a change of temperature. These phenomena are well known
in the physics and mathematics literatures; the appearance of waves in heated
fluids or heated elastic bodies was studied by Duhamel (1797–1872). The use-
fulness of these phenomena for measurement purposes was noted in the me-
chanics literature in 1962 [121]. In the conclusion of that article, they write

From the above considerations it appears that as a result of the action of the
thermal shock a modified elastic wave and an electromagnetic wave prop-
agate in an elastic medium; there occurs also the radiation of the electro-
magnetic wave into the vacuum. Besides a manifest theoretical interest in
describing the coupled phenomena occurring in an elastic body, the solution
obtained is of essential value for the measurement technique.

The term (and the concept) of thermoacoustic imaging appeared in the
physics and radiology literature in 1981 [60], and microwave thermoelastic imag-
ing was introduced a few years later [143]. The field then expanded greatly,
and seems destined to become a clinically used imaging modality in the not so
distant future.

From a practical point of view, these hybrid methods are interesting because
they allow measurements that either acoustic imaging or electromagnetic imag-
ing modalities alone would not permit. The electromagnetic radiations (used
at low intensity and at not ionising frequency) transmit poorly in biological
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tissues, but the heating effect they produce depends directly on the electrical
properties of the tissues. The connection between the electrical properties of
tissues and their healthiness is well documented; in particular, cancerous tis-
sues are much more conductive, whereas, from an acoustic point of view, they
are mostly an aqueous substance, and the contrast with neighbouring healthy
tissues is not so important. Thus the stronger pressure waves emitted by the
electromagnetic heating allow, if their origin is traced back, to distinguish bi-
ologically relevant information with the millimetre precision of the acoustic
waves. In other words, the high resolution of acoustic measurements is com-
bined with the high contrast of electromagnetic waves, in order to obtain re-
constructions with high resolution as well as high contrast.

Magnetic resonance electrical impedance tomography, originally intro-
duced in the biomedical imaging literature [194] and as a mathematical
problem soon after [214], uses magnetic resonance imaging to measure elec-
trical currents generated by the EIT apparatus. Acousto-electric tomography
was introduced in [218], reintroduced as ultrasound current source density
imaging in [175], and independently described in the mathematical literature
under other names during the same period [24], [25]. Here, the ultrasounds
are focused to act as the external source of dilatation, whereas the resulting
change in the conductivity is measured with usual electrical leads.

The elastic properties of tissues are equally of great practical interest. Not
much was available outside of palpation to assess the hardness of tissues until
the appearance of hybrid imaging methods, such as sonoelasticity [139] and
magnetic resonance elastography [168]. Several other hybrid elastic imaging
modalities are currently being developed, see [179] for a review.

Hybrid imaging is not limited to these fields. We refer to [24], [212], [42],
[128], [29] for additional methods and further explanations on some of the
models (briefly) described below.

In most hybrid imaging modalities, the reconstruction is performed in two
steps. First, internal measurements are recovered inside the domain of interest.
These data usually take the form of a functional depending on the unknowns
of the problem in a very nonlinear way, also through the solutions of the PDE
modelling the direct problem. In a second step, the unknown coefficients have
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to be reconstructed. We present below a few examples of hybrid inverse prob-
lems, which will be studied in detail in the second part of the book. In order to
study these imaging methods rigorously, a number of mathematical questions
must be answered. We will highlight some of them, which will be the focus of
the first part of these lectures.

1.2.1. Magnetic resonance electric impedance tomography – current density
impedance imaging. — In these modalities, the magnetic field generated by
artificially induced electric currents is measured with a magnetic resonance
imaging (MRI) scanner. Either one or all components of the magnetic field H

are measured. We speak of magnetic resonance electric impedance tomography
(MREIT) in the first case and of current density impedance imaging (CDII) in the
latter. Here we consider only CDII.

In the setting of the linear Maxwell system of equations8<:
curlE = i!H in � ;

curlH = �i(!"+ i�)E in � ;

E � � = '� � on @� ;

in a first step the internal magnetic field H generated by the boundary value
' is measured with an MRI scanner. In a second step, the electric permittivity "

and the conductivity � have to be reconstructed from the knowledge of several
measurements of Hi corresponding to multiple boundary illuminations 'i .
We shall see that this step requires linearly independent electric fields: this
condition corresponds to the Jacobian constraint for the electric potentials.

We also study the scalar approximation in the limit ! ! 0, namely the
conductivity equation. More precisely, taking ! = 0 in the above system allows
us to write E = ru for some electric potential u, since by the first equation E is
irrotational (provided that � is simply connected). Thus, the second equation
yields

�div(�ru) = 0 in � :

Moreover, the second equation allows us to measure the internal current den-
sity via

J = �ru = curlH in �
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from the knowledge of the internal magnetic field. If multiple measurements
are performed, then we measure Ji = �rui for several applied boundary volt-
ages. In a second step, the unknown conductivity has to be reconstructed from
the knowledge of the currents Ji . Except for the factor �, this problem is very
similar to the one considered in x1.1.2, where the internal data simply con-
sisted of the gradient fields rui . It is therefore expected that the Jacobian con-
straint (1.2) will play an important role in the inversion. (In fact, in the three
dimensional case, only two linearly independent gradients will be needed.)

To summarise, this hybrid problem consists of the following two steps:

. The reconstruction of the magnetic field H (and hence of J ), from MRI
data.

. The reconstruction of � from the knowledge of the internal current den-
sities Ji (or directly from Hi in the case of Maxwell’s system).

1.2.2. Acousto-electric tomography. — The main feature of coupled-physics,
or hybrid, inverse problems is the use of two types of waves simultaneously.
Acousto-electric tomography (AET) belongs to a class of hybrid problems in
which the first type of wave is used to perturb the medium while the second
wave is used to make measurements. In AET, ultrasound waves are used to
perturb the domain, while electrical measurements are taken via the standard
EIT setup discussed in the previous section. Physically, the pressure change
caused by the ultrasounds will modify the density of the tissue, which in turn
affects the electric conductivity. The availability of the electrical measurements
in both the unperturbed and perturbed case allows one to obtain internal data,
as we now briefly discuss.

Ultrasounds may be used in different ways to perturb the domain. Depend-
ing on the particular experimental configuration, different reconstruction
methods need to be used in order to obtain the internal data. However, at least
in theory, these data are independent of the particular setting: they consist in
the pointwise electrical energy

(1.4) H(x) = �(x)
þþru(x)þþ2; x 2 � ;

where � is the conductivity and u the electric potential.
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We consider only the case of focused ultrasonic waves. Focusing an ultra-
sonic wave on a small domain Bx centred around a point x will change the
conductivity in Bx , in a quantifiable way. For a fixed applied boundary po-
tential, the corresponding current can be measured on @�. These measure-
ments are performed in the unperturbed situation, namely when the ultra-
sound waves are not used, and in the perturbed case. When we compute the
cross-correlation of these measurements on @�, we expect it to reflect local
information of the conductivity near x.

The precise connection between cross-correlation and local quantities needs
to be clarified. With an integration by parts it is possible to express the cross-
correlation of the boundary measurements with a local expression of ux � u

near x, where ux is the electrical potential created in the perturbed case.
Assuming that the size of the perturbation is small, we may write an asymp-
totic expansion of ux � u near x. At first order, such an expansion yields the
internal data given in (1.4). More generally, using multiple measurements, it is
possible to recover

Hij(x) = �(x)rui(x) 	 ruj(x); x 2 � :

In the quantitative step of AET, the unknown conductivity � has to be re-
constructed from these measurements. Note that

Hij = Si 	 Sj;
where Si =

p
�rui is nothing other than the interior current density Ji con-

sidered in CDII, up to a factor
p
� . We shall show that if the Jacobian con-

straint (1.2) is satisfied, then it is possible to recover Si , i = 1; : : : ; d, from
the knowledge of their pairwise scalar products. Then, the conductivity can be
recovered with a method similar to the one used in CDII.

To sum up, the two step inverse problem in AET consists of

. extracting localised information about the unperturbed gradient field
ru from the knowledge of ux and u on the boundary, by using a local
asymptotic expansion;

. and in reconstructing the conductivity � from these internal data.
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1.2.3. Thermoacoustic tomography. — Thermoacoustic tomography (TAT) is
a hybrid imaging modality where electromagnetic waves are combined with ul-
trasounds [208]. As discussed above, part of the electromagnetic radiation is
absorbed by the tissues, and hence transformed into heat. The increase in tem-
perature causes an expansion of the medium, which in turn creates acoustic
waves. In TAT, waves in the microwave range are usually used to illuminate the
medium.

If we consider the problem in a bounded domain � with Dirichlet boundary
conditions, the acoustic pressure p satisfies8>>><>>>:

c(x)2�p� @2ttp = 0 in �� (0; T );
p(x; 0) = H(x) in � ;

@t p(x; 0) = 0 in � ;

p = 0 on @�� (0; T );
where c is the sound speed of the medium and H is the absorbed electromag-
netic energy. The available measured data is the quantity

@� p(x; t); x 2 �; t 2 [0; T ];
which is obtained via acoustic sensors positioned on a part of the boundary
� � @�. In a first step, from these measurements the initial source H has
to be reconstructed. This is the typical observability/control problem for the
wave equation: we wish to recover the initial condition from boundary mea-
surements of the solution over time. The reconstructed internal data take the
form

H(x) = �(x)
þþu(x)þþ2; x 2 � ;

where � is the spatially varying conductivity of the medium and u is the (scalar)
electric field and satisfies the Helmholtz equation²

�u+ (!2 + i!�)u = 0 in � ;

u = ' on @� :

In this context, this PDE should be seen as a scalar approximation of the full
Maxwell system.
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In a second step, the unknown conductivity � has to be reconstructed from
the knowledge of H . Multiple measurements, corresponding to several bound-
ary illuminations 'i , can be taken. When compared to the previous hybrid
problems considered, the internal energy H = �juj2 has a different structure,
as it does not involve gradient fields. However, similar ideas to those used be-
fore can be applied and � can be uniquely and stably recovered provided that
a generalised Jacobian constraint is verified.

Without going further in this discussion, we see that this hybrid problem
contains two consecutive inverse problems:

. A hyperbolic source reconstruction problem for the wave equation, to
derive H = �juj2 from the measured pressure data.

. An elliptic problem with internal data, to recover � from the knowledge
of the electromagnetic power densities Hi = �juij2 .

1.2.4. Dynamic elastography. — In contrast to the previous model, shear wave
elastography (or acoustic radiation force impulse, or supersonic shear imag-
ing) usually uses sources that induce shear waves. Such waves travel slowly, and
therefore on the time-scale of the shear waves, the terms that would be cap-
tured by a displacement which is the gradient of a potential are negligible (in
a time averaged sense, or equivalently in filtered Fourier sense) as the ratio of
the propagation speed is

p
�=� 
 22, where � and � are the Lamé parame-

ters, � being the shear modulus. Assuming that the source is generated by a
single frequency mechanical wave, the model is then (after a Fourier transform
in time)

div(�rus) + �!2us = 0;

(see e.g. [154], [153], [203], [102]). The shear wave displacement can be re-
covered by different methods. If a magnetic resonance imager is used, us is
delivered (almost) directly by a careful synchronisation of the frequency of the
imaging magnetic field and currents with that of the shear wave [168]. In other
modalities, the shear wave behaves as a stationary source for the acoustic waves;
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1.2. SOME HYBRID PROBLEM MODELS 13

reconstructing the source of these acoustic waves then leads to the reconstruc-
tion of the variations of us from external measurements (the so called ultra-
sound Doppler effect) [107], [179]. The two embedded problems are in this
case:

. A hyperbolic source reconstruction problem for a wave equation, to de-
rive us from the measured acoustic data (this step being avoided in the
case of MRE measurements).

. An elliptic inverse problem with internal data, to recover � and � from
the knowledge of the displacement us .

1.2.5. Photoacoustic tomography. — Photoacoustic tomography (PAT) is a
particular instance of thermoacoustic tomography where high frequency elec-
tromagnetic waves (lasers) are used instead of low frequency ones (micro-
waves) [208]. Thus, the physical coupling and the model coincide with the
ones discussed above for TAT. The only difference is in the form of the inter-
nal data, which in PAT are

H(x) = �(x)�(x)u(x); x 2 � ;

where � is the Grüneisen parameter, � is the light absorption and u is the light
intensity.

In a first step, H has to be recovered from the acoustic measurements on
part of @�: this can be achieved exactly as in TAT. In a second step, we need
to reconstruct the light absorption � from the knowledge of several internal
data Hi = ��ui . In the diffusion approximation for light propagation, u satis-
fies the second-order elliptic PDE

�div(Dru) + �u = 0 in � ;

and the reconstruction becomes an elliptic inverse problem with internal data.
Thus, the inversion will be similar to those related to the modalities discussed
before.
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1.3. Selected mathematical problems arising from these models

The five examples surveyed above are different in terms of the physical phe-
nomena involved, both with respect to the output measured quantities and
with respect to the input generating sources. At the level of mathematical mod-
elling, they share several similarities.

The observability of the wave equation often arises. In thermoacoustic tomog-
raphy, ultrasound elastography and photoacoustic tomography, the first step
corresponds to the reconstruction of the initial condition of a wave equation
in a bounded domain from the knowledge of its solution measured on the
boundary over time.

The physical quantities involved in the above examples are typically under-
stood to be defined pointwise, and the formal computations performed be-
come meaningful thanks to regularity estimates. The models involved for the
“second step” are either quasistatic or time harmonic problems, for which el-
liptic regularity theory can be applied.

This leads one to wonder how general such developments are, and to in-
vestigate what happens when the apposite assumptions are violated by a per-
turbation. Small volume inclusions are an example of such perturbation. In the
context of elliptic boundary value problems, a small inclusion actually appears
in the derivation of the acousto-electric model. In the context of the wave
equation, controlling the influence of a defect is related to deriving a scatter-
ing estimate.

Another common feature is the appearance of positivity constraints. For all
these methods to provide meaningful data, the internal measurements ob-
tained during the first step must be non zero. The key issue is that these data,
whether it is an internal heating by the Joule effect or compression waves or
electrical currents, are only indirectly controlled by the practitioner, who im-
poses a boundary condition (or an incident field) outside the medium. The
question is therefore whether one can indeed guarantee certain non-vanishing
conditions (e.g. a Jacobian as in (1.2)) independently of the unknown parame-
ters by an appropriate choice of the boundary conditions.
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1.4. Outline of the following chapters

Let us now briefly discuss the content of this book. In Part I, we focus on the
rigorous exposition of some mathematical tools which prove useful to address
the mathematical challenges mentioned in the previous section. In Part II, we
apply these methods to various hybrid imaging modalities.

The focus of Chapter 2 is the observability of the wave equation. We prove
the observability inequality under certain sufficient conditions on the domain
and on the sound speed due to Lions, and discuss the link with the Hilbert
uniqueness method. All the material presented here is classical, but the expo-
sition follows the point of view of inverse problems, from the uniqueness of the
reconstruction of the initial condition to the possible practical implementation
of the inversion.

We shall use either Maxwell’s system or some scalar approximation of this
system as a model for the underlying physics. In Chapter 3, we study the regu-
larity theory for the linear time-harmonic Maxwell system. We prove both W 1; p

and C0;� estimates for the electromagnetic fields under natural, and sometimes
minimal, assumptions on the coefficients. Only interior regularity estimates are
derived for simplicity. Most of the material presented in this chapter is new,
and relies on the application of standard elliptic regularity theory results to
the vector and scalar potentials of the electromagnetic fields obtained by the
Helmholtz decomposition.

These regularity results find applications also in the study of small volume
perturbations for Maxwell’s system, which is carried out in Chapter 4 (as a
corollary, we derive the well-known result for the conductivity equation, needed
in acousto-electric tomography). The strategy used for the regularity of the
electromagnetic fields carries over to this case: it turns out that the problem can
be simplified to considering coupled elliptic equations for the potentials. We
can then apply methods developed for the conductivity problem. The results
presented here have been known for a few years, in a less general setting. The
approach presented here shortens the proof significantly.

In Chapter 5, we present some results on scattering estimates for the
Helmholtz equation in two and three dimensions. We consider the particular
case of a single ball scatterer in a homogeneous medium, and derive estimates
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for the near and far scattered field. The dependence of these estimates on the
radius and on the contrast of the inclusion and on the operating frequency
of the incident field will be explicit. These results were not stated in this form
previously, but the ingredients of their proofs were already known. The proofs
presented here simplify the original arguments.

The last three chapters of Part I present four different techniques for the
boundary control of elliptic PDE in order to enforce certain non-zero con-
straints for the solutions, such as a non-vanishing Jacobian, as discussed above.

The focus of Chapter 6 is the Jacobian constraint for the conductivity equa-
tion. We first review some extensions of the Radó-Kneser-Choquet theorem for
the conductivity equation in two dimensions, and give a self-contained proof
of the result. A quantitative version of this result is derived by a compactness
argument. Next, we show that the result is not true in dimensions higher than
two by means of a new explicit counter-example. More precisely, it is proven
that for any boundary value there exists a conductivity such that the Jacobian
of the corresponding solutions changes its sign in the domain. This construc-
tive result was recently obtained in dimension three, and it is extended here to
the higher dimensional case. A new corollary of this result for finite families of
boundary conditions is also provided.

In Chapter 7, we discuss two other techniques for the construction of bound-
ary conditions so that the corresponding solutions to certain elliptic PDE satisfy
some predetermined, non-vanishing constraints inside the domain: the com-
plex geometric optics (CGO) solutions and the Runge approximation prop-
erty. Except for the proof of the existence and regularity of CGO solutions
and the unique continuation property for elliptic PDEs, the exposition is self-
contained and reviews known results related to these topics. Applications to
the constraints arising from hybrid imaging are discussed.

Another method for the construction of suitable boundary values is dis-
cussed in Chapter 8, and is based on the use of multiple frequencies. As
such, this technique is applicable only with frequency-dependent, or time
harmonic, PDE. The advantage over the methods discussed in the previous
chapter lies in the explicit construction of the boundary values, often inde-
pendently of the unknown parameters. A self-contained exposition of this
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approach is presented in this chapter. For simplicity, we restrict ourselves to
the simpler case of the Helmholtz equation with complex potential.

Chapter 9 and Chapter 10 are grouped into Part II of these lectures, where
the various results and methods introduced in Part I are put to use.

Chapter 9 is the first chapter of Part II and deals with the first step of the
hybrid inverse problems introduced in Section 1.2. The physical aspects of
these modalities are only mentioned, and not analysed in detail. The focus of
the chapter is on the application of the mathematical tools introduced before,
in particular of the observability of the wave equation discussed in Chapter 2
and of the small inclusion expansions (Chapter 4), in order to obtain the in-
ternal data.

The reconstruction of the unknown parameters from the internal data for
these hybrid modalities is discussed in Chapter 10 . The focus is on explicit in-
version methods, based on the non-vanishing constraints for PDEs, which were
presented in Chapters 6, 7, 8. The issue of stability is considered precisely in
one case, and only mentioned for the other modalities. Since these reconstruc-
tion algorithms always require differentiation of the data, carefully designed
regularisation or optimisation schemes are needed for their numerical imple-
mentation. This fundamental aspect is not considered here, and the reader is
referred to the extensive literature on the topic.

We depart from the theorem/proof formalism in Part II. The derivations of
the relevant physical quantities in Chapter 9 are in some cases reasoned rather
than proved. While the content of Chapter 10 could be written in the format
used in the first part of the book, we felt it could distract the reader from
the purpose of this last part, which is to explain reconstruction methods in a
straightforward manner, and highlight how various tools developed in Part I
are used.
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PART I

MATHEMATICAL TOOLS





CHAPTER 2

THE OBSERVABILITY OF THE WAVE EQUATION

2.1. Introduction

This chapter briefly discusses what was described in the previous chapter as
a hyperbolic source reconstruction problem for the wave equation. Namely, we
focus on the following PDE,8><>:

c�2 @tt p� �p = 0 in (0; T )�� ;

p(0; x) = A(x) in � ;

@t p(0; x) = 0 in � ;

which, as we saw, arises in thermoacoustic, photoacoustic and ultrasound elas-
tography models. The inverse problem at hand is: given a measure over a cer-
tain duration of a pressure related quantity on @�, or on a part of @�, re-
cover the initial pressure p(x; 0), that is, A(x). The function c(x) represents
the sound velocity, which may vary spatially.

Note that, in this form, this problem is not well posed: the boundary condi-
tion is missing. If one assumes that the pressure wave propagates freely outside
of � into the whole space, this problem is profoundly connected with the gen-
eralised Radon transform. We refer the reader to [127] and [199] to explore
this question. We will present another point of view, discussed in [26], [130],
[116], and consider the problem in a confined domain, and assume that on
the boundary (of the soft tissues), the pressure is either reflected (Neumann)
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or absorbed (Dirichlet). In this last case, the boundary condition is

p = 0 on (0; T )� @� ;

and what is measured is the outgoing flux @� p on a part of the boundary
� � @�. More precisely, this inverse problem may be formulated as follows.

Problem 2.1. — Let p be the weak solution of

(2.1)

8>>><>>>:
c�2 @tt p� �p = 0 in (0; T )�� ;

p(0 ; �) = A in � ;

@t p(0 ; �) = 0 in � ;

p = 0 on (0; T )� @� ;

where c is a positive function defined on �. Supposing that the trace of @� p

is measured on an open subset � of @� for all t 2 (0; T ), find the initial
condition A in �.

The sound velocity could itself be considered an unknown of the problem:
we will not discuss this aspect here. The observability and the boundary control
of the wave equation is a sub-subject of the analysis of PDE in itself; we will
not attempt to provide a full review of the many advances on this question.
We refer to the celebrated classic texts [189], [144], [145], [126], [133] for a
general presentation, and to the survey paper [94] for more recent advances
and references to (some of) the authoritative authors in this field. The purpose
of this chapter is to describe briefly some of the classical results regarding this
problem.

2.2. Well-posedness and observability

In this chapter, � � �
d is a bounded domain with C2 boundary @�

and d � 2. Unless otherwise stated, the function spaces used in this chapter
consist of real-valued functions. The model problem we consider is

(2.2)

8>>><>>>:
c�2 @tt '� �' = 0 in (0; T )�� ;

'(0 ; �) = '0 in � ;

@t'(0 ; �) = '1 in � ;

' = 0 on (0; T )� @� ;

which corresponds to Problem 2.1 when '0 = A and '1 = 0.
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Let us first recall the appropriate functional analysis context for this prob-
lem. The following result is classical. Under slightly stronger assumptions,
it can be found in [95, Chapter 7.2].

Proposition 2.2. — Let c 2 W 1;1(�;�+) be such that log c 2 W 1;1(�) and T > 0.
. For every '0 2 H10 (�) and '1 2 L2(�) there exists a unique weak solution
' 2 L2(0; T ;H10 (�)); with @t ' 2 L2(0; T ;L2(�)), of (2.2). Furthermore,
we have ' 2 C([0; T ];H10 (�)) \ C1([0; T ];L2(�)).

. If we define the energy of the system by

E(t) = 12

Z
�
c�2

�
@t '(t; x)

Ð2
+
þþr'(t; x)þþ2 dx; t 2 (0; T );

then E(t) = 12
R
�
c�2'21 + jr'0j2 dx; t 2 (0; T ):

Remark 2.3. — In view of this result, problem (2.1) is well posed for any T > 0,
c 2 W 1;1(�) with min� c > 0, and A 2 H10 (�).

Recall that our measured data is a normal derivative on the boundary.
The trace of the derivative of a H10 (�) function is a priori defined only in
H�1=2(@�). However, in our case it turns out that it is in L2(@�). This result
is associated to several names in the literature, namely Rellich, Pohozaev, and
Morawetz, and is detailed in the following lemma.

Lemma 2.4. — Let c 2 W 1;1(�) be such that min� c > 0, T > 0 and � be an open
subset of @�. The map

D� : H
1
0 (�)� L2(�) �! L2

�
(0; T )� �Ð; ('0; '1) 7�! @� ';(2.3)

where ' is the solution of (2.2), is continuous.

A proof of this lemma is given at the end of the chapter for the reader’s
convenience.

Corollary 2.5. — Under the hypotheses of Lemma 2.4, the map

d� : H
1
0 (�) �! L2((0; T )� �); A 7�! @� p;

where p is the solution of (2.1), is continuous.
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This result completes the study of the direct problem associated to (2.1).
The corresponding inverse problem, namely Problem 2.1, consists of the re-
construction of A from @� p. In order to achieve this we need more, namely
that d� is in fact injective with bounded inverse for T large enough. More
generally, we consider the invertibility of the map D� .

Definition 2.6. — The initial value problem (2.2) is observable at time T from �
if there exists a constant C > 0 such that for any ('0; '1) 2 H10 (�) � L2(�),
the solution ' of (2.2) satisfies the observability inequality

(2.4) k'1kL2(�) + k'0kH10 (�) � Ck@� 'kL2((0;T )��):

Remark 2.7. — If the initial value problem (2.2) is observable at time T from �,
then the map d� is invertible with bounded inverse: A is uniquely and stably
determined by the boundary data @� p on (0; T )� �. This solves Problem 2.1.

It is natural to ask for which �, �, c and T condition (2.4) holds. This ques-
tion was answered completely in generic smooth domains in [53], [68], where
it is shown that exact controllability and geometric controllability (see [155],
[156]) are equivalent. An informal definition of geometric controllability is
that every ray of geometric optics that propagates in � and is reflected on its
boundary @� should meet � in time less than T at a non diffractive point.
The exact definition of geometric control on generic domains is beyond the
scope of these lectures. We present a stronger sufficient condition, due to Li-
ons [145], [146].

Theorem 2.8. — Under the hypotheses of Lemma 2.4, if there exists x0 2 �
d such that

(2.5)
ý
x 2 @� : (x� x0) 	 � > 0

� � �
and 1 > 2k(r(log c) 	 (x� x0))+kL1(�); then, for all times

T > T0 =
2 supx2� jx� x0j 	 kc�1kL1(�)

(1� 2k(r(log c) 	 (x� x0))+kL1(�))
,

the system (2.2) is observable at time T from �.
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x0

Γ

Ω

Figure 2.1. A sufficient boundary portion � when rc = 0.

Proof. — Let ' be the solution of (2.2) with initial conditions '0 and '1 . By
Proposition 2.2, for every t 2 [0; T ] we have

(2.6) 1
2

Z
�

�
c�2(@t ')2 + jr'j2Ðdx = E0 =

1
2

Z
�
(c�2'21 + jr'0j2)dx:

Testing (2.2) against ', we obtain

(2.7)
Z
�
c�2 @t ''

þþþT
0
dx =

Z
(0;T )��

�
c�2(@t ')2 � jr'j2Ðdtdx:

The method of proof is similar to the one we use later for the proof of
Lemma 2.4. We test c�2 @tt ' against (x� x0) 	 r' and obtainZ

(0;T )��
c�2 @tt '(x� x0) 	 r'dtdx =

Z
�
@t '

�
c�2(x� x0) 	 r'

Ð þþþT
0
dx(2.8)

� 1
2

Z
(0;T )��

c�2(x� x0) 	 r
�
(@t ')

2Ðdtdx
=

Z
�
@t '

�
c�2(x� x0) 	 r'

Ð þþþT
0
dx

� 1
2

Z
(0;T )��

(x� x0) 	 r
�
c�2(@t ')2

Ð
dtdx

+ 12

Z
(0;T )��

rc�2 	 (x� x0)(@t ')
2 dtdx:
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26 CHAPTER 2. THE OBSERVABILITY OF THE WAVE EQUATION

Note that @t' = 0 on (0; T ) � @� as ' = 0 on (0; T ) � @�. Performing an
integration by parts and then using (2.7), we have

� 12
Z
(0;T )��

(x� x0) 	 r
�
c�2(@t ')2

Ð
dtdx(2.9)

=
1

2
d

Z
(0;T )��

c�2(@t ')2 dtdx

= 12

Z
(0;T )��

c�2(@t ')2 dtdx+
1

2
(d� 1)

Z
(0;T )��

jr'j2 dtdx

+
1

2
(d� 1)

Z
�
c�2 @t ''

þþþT
0
dx:

Testing ��' against (x� x0) 	 r', we have

�
Z
(0;T )��

�'(x� x0) 	 r'dtdx = �
Z
(0;T )� @�

(@� ')
2ð(x� x0) 	 �

Ł
dtd�

+

Z
(0;T )��

r' 	 r�(x� x0) 	 r'
Ð
dtdx

= �
Z
(0;T )� @�

(@� ')
2ð(x� x0) 	 �

Ł
dtd�

+

Z
(0;T )��

jr'j2 dtdx+ 12
Z
(0;T )��

(x� x0) 	 r
�jr'j2Ðdtdx;

which yields in turn

�
Z
(0;T )��

�'(x� x0) 	 r'dtdx = � 12
Z
(0;T )� @�

(@� ')
2ð(x� x0) 	 �

Ł
dtd�

� 1
2
(d� 2)

Z
(0;T )��

jr'j2 dtdx:
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Therefore, by (2.8) and (2.9), since ��'+ c�2 @tt ' = 0 in �, we obtain

1
2

Z
(0;T )� @�

(@� ')
2ð(x� x0) 	 �

Ł
dtd�(2.10)

= 12

Z
(0;T )��

�
c�2(@t ')2 + jr'j2Ðdtdx

�
Z
(0;T )��

(r log c) 	 (x� x0)c
�2(@t ')2 dtdx

+

Z
�
c�2 @t '

�
(x� x0) 	 r'+ 1

2
(d� 1)'Ð þþþT

0
dx:

Thanks to the conservation of energy (2.6), we can bound the first two terms
from below, namely

1
2

Z
(0;T )��

(c�2(@t ')2 + jr'j2(2.11)

� 2�(r log c) 	 (x� x0)
Ð
c�2(@t ')2)dtdx

� TE0
�
1� 2���(r log c) 	 (x� x0)

Ð
+

��
L1(�)

�
:

Let us focus on the last term in (2.10). For every � > 0 we haveþþþ Z
�
c�2 @t '

�
(x� x0) 	 r'+ 1

2
(d� 1)'Ðdxþþþ

� kc�1kL1(�)
��
2

Z
�
c�2(@t ')2 dx

+
1

2�

Z
�

þþ(x� x0) 	 r'+ 1
2
(d� 1)'þþ2 dx�:
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By expanding the second square and integrating by parts we obtain

1
2

Z
�

þþ(x� x0) 	 r'+ 12(d� 1)'
þþ2 dx

= 12

Z
�

þþ(x� x0) 	 r'
þþ2 dx+ 12 Z

�

1
2(d� 1)(x� x0) 	 r('2)dx

+ 12

Z
�

1
4(d� 1)2'2 dx

= 12

Z
�

þþ(x� x0) 	 r'
þþ2 dx� 1

8(d
2 � 1)

Z
�
'2 dx

� sup
x2�

jx� x0j2
�
E0 � 1

2

Z
�
c�2(@t ')2 dx

�
:

We balance both terms with � = supx2� jx� x0j and obtainZ
�
c�2 @t '

�
(x� x0) 	 r'+ 12(d� 1)'

Ð þþþT
0
dx(2.12)

� �2kc�1kL1(�)E0 sup
x2�

jx� x0j;

= �
�
1� 2��(r log c 	 (x� x0))+

��
L1(�)

�
T0E0

and combining (2.10), (2.11) and (2.12) we obtain

1
2

Z
(0;T )� @�

(@� ')
2ð(x� x0) 	 �

Ł
dtd�

�
�
1� 2k�r log c 	 (x� x0)

Ð
+
kL1(�)

�
(T � T0)E0;

which gives our result. Indeed, by (2.5) we haveZ
(0;T )� @�

(@� ')
2ð(x� x0) 	 �

Ł
dtd� �

Z
(0;T )��

(@� ')
2[(x� x0) 	 �]dtd�

� sup
x2�

jx� x0j
Z
(0;T )��

(@� ')
2 dtd�;

and

E0 =
1
2

Z
�

�
c�2'21 + jr'0j2

Ð
dx � C 0�k'1k2L2(�) + k'0k2H10 (�)

Ð
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for some C 0 > 0 depending only on kckL1(�) and �. As a consequence,
we have

k@� 'kL2((0;T )��) � C
�k'1kL2(�) + k'0kH10 (�)

Ð
with C = C 00pT=T0 � 1 for some C 00 > 0 depending only on kckL1(�) ,
kc�1kL1(�) and �. This concludes the proof.

Remark 2.9. — If we apply Lions’ � condition (2.5) in a ball of radius R

with c � 1, and choose x0 to be its centre, we find the minimal time to control
from the full boundary T0 = 2R, which is in agreement with the Geometric
Control Condition. In general, for a constant velocity, we see that a sufficient
portion of a ball is more than half of its boundary (pushing x0 towards infinity);
this also agrees with the sharp condition as it captures all radially bouncing rays.

Remark 2.10. — The second part of the sufficient condition, namely

1 > 2
���r log c 	 (x� x0)

Ð
+

��
L1(�);

is relevant only for variable velocities c. It is not optimal, but it is used fre-
quently as an explicit criterion on c. More refined conditions using Carleman
estimates can be found in [92]. Bounds on rc and smoothness assumptions
on c cannot be removed completely; if c is discontinuous, even on a single
interface, localisation phenomena may occur, and the observability inequality
fails, see [149]. In the same paper, counter-examples to observability are also
provided for c 2 C1 with a large norm.

If we look at the delicate term in (2.10), namelyZ
(0;T )��

�r(log c) 	 (x� x0)
Ð
c�2(@t ')2 dtdx;

we see that it involves a combination of three quantities: a typical length-scale,
represented by x � x0 ; the gradient (and by extension the jump) of the veloc-
ity c in a given direction; and the time derivative of '. Loosely speaking, the
sufficient observability condition says that provided that the variations are not
too large (in a good direction) compared to the domain size and the speed
of propagation of the wave, observability reduces to the case of the constant
coefficient equation. Thus, with respect to the variable velocity, Theorem 2.8
can be interpreted as a stability under small perturbation result.
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2.3. On the relation with the Hilbert Uniqueness Method

In the previous section, we have established a setting in which Problem 2.1
(and more generally the inverse problem associated to (2.2)) is well-posed.
If system (2.2) is observable at time T from �, consider the functional

(2.13) I('a; 'b) := 12

Z T

0

Z
�
(@� u� @� ')

2 d�dt;

where ('a; 'b) 2 H10 (�) � L2(�) and u is the solution of (2.2) with initial
data ('a; 'b), namely

(2.14)

8>>><>>>:
c�2 @tt u� �u = 0 in (0; T )�� ;

u(0 ; �) = 'a in � ;

@t u(0 ; �) = 'b in � ;

u = 0 on (0; T )� @� :

By Lemma 2.4 and Theorem 2.8, we have

c�1
�k'1 � 'bkL2(�) + k'0 � 'akH10 (�)

Ð
� I('a; 'b) � C

�k'1 � 'bkL2(�) + k'0 � 'akH10 (�)
Ð

for some positive constant C independent of '0; '1; 'a and 'b . Thus, the de-
termination of the initial conditions ('0; '1) of (2.2) may be performed by a
minimisation procedure of the functional I . Introducing the adjoint problem

(2.15)

8>>><>>>:
c�2 @tt  � � = 0 in (0; T )�� ;

 (T ; �) =  0 in � ;

@t  (T ; �) =  1 in � ;

 = v on (0; T )� @� ;
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we see that if  0 =  1 = 0 and v = �� @� ', we have(1), thanks to (2.14)
and (2.15) and after an integration by parts,

�
Z T

0

Z
�
@� '@� ud�dt = ��

c�2 @t  (0 ; �); 'a
Þ
H�1(�)�H10 (�)

+

Z
�
 (0 ; �)c�2'bdx:

Noting that

I('a; 'b) = 12

Z T

0

Z
�
(@� u)

2 d�dt

�
Z T

0

Z
�
@� '@� ud�dt+

1
2

Z T

0

Z
�
(@� ')

2 d�dt;

as
RT
0

R
�
(@� ')

2 d� is fixed, we re-write the minimisation problem as

min
('a;'b)2H10 (�)�L2(�)

1
2

Z T

0

Z
�
(@� u)

2 d�dt(2.16)

� �
c�2 @t  (0 ; �); 'a

Þ
H�1(�)�H10 (�)

+

Z
�
 (0 ; �)c�2'bdx;

where u 2 L2(0; T ;H10 (�)) is the unique weak solution of (2.14) and  

solves (2.15). This problem is precisely the minimisation problem appearing
in the Hilbert Uniqueness Method of Lions [145], [146]. We refer to the
extensive literature on that problem for effective numerical schemes and more
details.

Note that, since �� @� ' 2 L2((0; T ) � @�), problem (2.15) is set in a space
that is too large for the classical theory to apply. In order to make sense
of (2.15), we look for transposition (or dual) solutions.

1. Recall that the duality product is

ha; bi
H�1(�)�H10 (�)

=

Z
�
r�(��0)�1aÐ 	 rbdx;

where �0 : H
1
0 (�) ! H�1(�) is the Laplace operator with homogeneous Dirichlet boundary

conditions on �.
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To this aim, we consider now

(2.17)

8>>><>>>:
c�2 @tt '� �' = f in (0; T )�� ;

'(0 ; �) = 0 in � ;

@t '(0 ; �) = 0 in � ;

' = 0 on (0; T )� @� ;

with f 2 L1((0; T );L2(�)) – and for the sake of brevity we will admit that
Proposition 2.2 and Lemma 2.4 can be suitably adapted to problem (2.17).

Proposition 2.11. — Let c 2 W 1;1(�;�+) be such that log c 2 W 1;1(�)
and T > 0.

. Given  0 2 L2(�),  1 2 H�1(�) and v 2 L2((0; T )� @�), problem (2.15)
has a unique solution  2 C([0; T ];L2(�)) \ C1([0; T ];H�1(�)), defined in
the sense of transposition.

. More precisely, for every f 2 L1((0; T );L2(�)) there holdsZ
(0;T )��

 f dtdx�
Z
�
 0c

�2 @t '(T ; �)dx+
�
 1; c

�2'(T ; �)
Þ
H�1(�)�H10 (�)

= �
Z
(0;T )� @�

v @� 'dtdx;

where ' is the solution of (2.17). Furthermore,

k kL1((0;T );L2(�)) + k@t  kL1((0;T );H�1(�))

� C
�
kvkL2((0;T )� @�) + k 0kL2(�) + k 1kH�1(�)

�
for some C > 0 depending only on �, T and k log ckW 1;1(�) .
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Remark 2.12. — In order to understand the reason for this definition, let us
formally integrate by parts the differential equation satisfied by ' against  :

�
Z
(0;T )��

f  dtdx =

Z T

0

Z
�
(�'� c�2 @tt ') dxdt

=

Z T

0

Z
@�
(@� ' � @�  ')d�dt+

Z T

0

Z
�
� 'dxdt

+

Z T

0

Z
�
c�2 @t '@t  dxdt+

Z T

0

Z
�
@t (�c�2 @t ' )dxdt:

Using the boundary conditions satisfied by  and ' and the differential equa-
tion satisfied by  , this implies

�
Z
(0;T )��

f  dtdx =

Z
(0;T )� @�

@� 'vdtd�

+

Z T

0

Z
�
c�2(@tt  '+ @t '@t  )dxdt�

Z
�
[c�2 @t ']T0 dx

=

Z
(0;T )� @�

@� 'vdtd�+

Z
�
c�2['@t  �  @t ']

T
0 dx;

which is the identity we introduced in the definition of  .

Proof. — In this proof, C will change from line to line, and depend at most
on �, T and k log ckW 1;1(�) . Consider the map

L : L1((0; T );L2(�))�H10 (�)� L2(�) �! �

defined by

f 7�!
Z
�
c�2 0 @t '(T ; �)dx

�
Z
(0;T )� @�

v @� 'dtd�� �
 1; c

�2'(T ; �)
Þ
H�1(�)�H10 (�)

:

By (a variant of) Proposition 2.2, there holdsZ
�
c�2

�
@t '(T ; �)

Ð2
+
þþr'(T ; �)þþ2 dx � Ckfk2

L1((0;T );L2(�))
:
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Thus, in particular,þþþ Z
�
c�2 0 @t '(T ; �)dx�

�
 1; c

�2'(T ; �)
Þ
H�1(�)�H10 (�)

þþþ
� CkfkL1((0;T );L2(�))

�k 0kL2(�) + k 1kH�1(�)
Ð
:

By (a variant of) Lemma 2.4 we obtainZ
(0;T )� @�

v @� 'dtd� � CkvkL2((0;T )� @�) 	 kfkL1((0;T );L2(�));

thus altogether

L(f) � C
�
kvkL2((0;T )� @�) + k 0kL2(�) + k 1kH�1(�)

�
:

Hence, the Riesz representation theorem shows that there exists a unique  

in L1((0; T );L2(�)) such that

L(f) =

Z
(0;T )��

f  dtdx;

which satisfies

k kL1((0;T );L2(�)) � C
�
kvkL2((0;T )� @�) + k 0kL2(�) + k 1kH�1(�)

�
:

A density argument then shows that  belongs to

C
�
[0; T ];L2(�)) \ C1([0; T ];H�1(�)

Ð
:

Indeed, let (vn;  0;n;  1;n) 2 C1((0; T )� @�)� C1(�)2 be such that

vn ! v in L2((0; T )� @�);  0;n !  0 in L2(�);  1;n !  1 in H�1(�):

Then the solution  n of (2.15) with data (vn;  0;n;  1;n) is smooth and satisfies

k nkC([0;T ];L2(�)) � C
�
kvnkL2((0;T )� @�) + k 0;nkL2(�) + k 1;nkH�1(�)

�
:

By linearity,  n is a Cauchy sequence: passing to the limit we obtain that  

belongs to C([0; T ];L2(�)). The second estimate is similar.

Corollary 2.13. — Let c 2 W 1;1(�;�+) be such that log c 2 W 1;1(�)
and T > 0. Given v 2 L2((0; T ) � @�), there exists a unique transposition
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solution U 2 C([0; T ];L2(�)) \ C1([0; T ];H�1(�)) of

(2.18)

8>><>>:
c�2 @tt U � �U = 0 in (0; T )�� ;

U(T ; �) = 0 in � ;

@t U(T ; �) = 0 in � ;

U = ��v on (0; T )� @� ;

given by Proposition 2.11. Furthermore, if p is the solution of (2.1), there holds

(2.19)
Z
(0;T )��

@� pvdtd� = hc�2 @t U(0 ; �); AiH�1(�)�H10 (�):

Remark 2.14. — Identity (2.19) shows that the dual solution U plays the role
of a probe in practice: varying v and solving a direct problem to compute
@t U(0 ; �), we measure different moments of A.

Proof. — Proposition 2.11 does prove the existence of a unique transposition
solution U , as problem (2.15) is of the same form as problem (2.18). Since U

belongs to C([0; T ];L2(�)) \ C1([0; T ];H�1(�)), we may integrate it by parts
against p, the weak solution of (2.1) in (0; T )��. Formally, we have

0 =

Z
(0;T )��

(�U � c�2 @tt U)p� (�p� c�2 @tt p)U dtdx

=

Z
(0;T )� @�

(@� Up� U @� p)dtd�� :

Z
�
c�2 @t Up� @t pU dxjT0

= �
Z
(0;T )��

v @� pdtd�+

Z
�
c�2 @t U(0 ; �)pdx:

As all terms in the final identity are well defined when @� p; v 2 L2((0; T )� @�),
A 2 H10 (�) and c�2 @t U(0 ; �) 2 H�1(�), the conclusion is established by a
density argument.

2.4. Proof of Lemma 2.4

The goal of this section is to provide a proof of the following lemma.
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Lemma 2.4. — Let c 2 W 1;1(�) be such that min� c > 0, T > 0 and � be an open
subset of @�. The map

D� : H
1
0 (�)� L2(�) �! L2

�
(0; T )� �Ð; ('0; '1) 7�! @� ';(2.3)

where ' is the solution of (2.2), is continuous.

Proof. — It is sufficient to consider the case � = @�. As the boundary of �
is C2 , there exists a function h 2 C1(�;�d) such that h = � on @� (see
e.g. [126]). Testing (2.2) against h 	 r' formally, we obtainZ

(0;T )��
c�2 @tt 'h 	 r'+ r' 	 r(h 	 r')dtdx(2.20)

=

Z
(0;T )� @�

(@� ')
2 dtd�:

Write

I1 =

Z
(0;T )��

c�2 @tt 'h 	 r'dtdx; I2 =

Z
(0;T )��

r' 	 r(h 	 r')dtdx;

and proceed to bound both integrals. We have

I1 =

Z T

0
@t

Z
�
c�2 @t 'h 	 r'dxdt�

Z T

0

Z
�
c�2h 	 r(12(@t ')2)dxdt

=

Z
�
c�2 @t 'h 	 r'dxjT0 +

Z T

0

Z
�
div(c�2h)12(@t ')

2 dxdt:

Considering both terms on the right-hand side, we findþþþ Z
�
c�2 @t 'h 	 r'dx

þþþT
0

þþþ � 4kc�1kL1(�) 	 khkC1(�) sup
t2[0;T ]

E(t);

þþþ Z
(0;T )��

div(c�2h)12(@t ')
2 dtdx

þþþ � �
2kr log ckL1(�) + 1

Ð 	 khkC1(�)T sup
t2[0;T ]

E(t);

where we set khkC1(�) = khkL1(�) + krhkL1(�) , and therefore

(2.21) jI1j � C
�
kc�1kL1(�); kr log ckL1(�); T; khkC1(�)

�
sup

t2[0;T ]
E(t):
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Let us now turn to I2 : expanding the integrand we find

I2 =

Z
(0;T )��

@j' @jhi @i'+ @i'hj @ij'dtdx;

where we have used Einstein’s summation convention, according to which re-
peated indices (in this case both i and j) are implicitly summed over. The first
term of the right-hand side is also bounded by the system’s energy, sinceþþþ Z

(0;T )��
@j' @jhi @i'dtdx

þþþ � C(d)khkC1(�)T sup
t2[0;T ]

E(t):

As for the second term, integrating by parts once more we obtainZ
(0;T )��

@i'hj @ij'dtdx = � 12
Z
(0;T )��

div(h)jr'j2 dtdx+ 12
Z T

0

Z
@�
(@� ')

2 d�dt;

therefore

(2.22)
þþþI2 � 1

2

Z T

0

Z
@�
(@� ')

2 d�dt
þþþ � C

�
d; T; khkC1(�)

Ð
sup

t2[0;T ]
E(t):

Combining (2.20), (2.21) and (2.22), we obtain

1
2

Z
(0;T )� @�

j@� 'j2 dtd� � C
�
d; k log ckW 1;1(�); T; khkC1(�)

Ð
sup

t2[0;T ]
E(t);

as announced.
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CHAPTER 3

REGULARITY THEORY FOR MAXWELL’S EQUATIONS

3.1. Introduction

The focus of this chapter is the regularity of weak solutions to the time
harmonic Maxwell equations

(3.1)
²
curlE = i!�H + K in � ;

curlH = �i	E + J in � ;

where � � �
3 is a bounded domain, ! 2 � is the frequency, � and 	 are the

electromagnetic parameters in L1(�;�3�3), K and J are the current sources
in L2(�;�3) and the weak solutions E;H 2 H(curl;�) are the electric and
magnetic fields, respectively, where

H(curl;�) := fu 2 L2(�;�3) : curl u 2 L2(�;�3)g:

In other words, E and H only have a well-defined curl, but not a full gradient.
A natural regularity question is whether E and H have full weak derivatives
in L2 , namely E;H 2 H1 . This step is unnecessary for second-order elliptic
equations in divergence form, as it is implicit in the weak formulation.

The second question we would like to address is the Hölder continuity of the
solutions. This is a classical topic for elliptic equations, thanks to the De Giorgi-
Nash-Moser theorem and to the Schauder estimates for the Hölder continuity
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of the derivatives. The continuity of the solutions is of importance to us, as
internal data have to be interpreted pointwise.

Without further smoothness assumptions on the coefficients, the solutions
need to be H1 , nor Hölder continuous. We focus on low (and sometimes
optimal) additional regularity assumptions, as the electromagnetic parame-
ters may not be smooth in practice. If the coefficients are isotropic and con-
stant, smoothness of the solutions follows from the following inequality due to
Friedrichs [97], [106]

kukH1(�) � C
�kdiv ukL2(�) + k curl ukL2(�) + ku� �kH1=2( @�)

Ð
:

The H1 regularity of electromagnetic fields for anisotropic Lipschitz coeffi-
cients was considered in [210], and Hölder regularity with isotropic complex
Lipschitz coefficients was shown in [217]. Both papers make use of the scalar
and vector potentials of the electric and magnetic fields. A different approach
based on a different formulation of (3.1) in terms of a coupled elliptic system
and on the Lp theory for elliptic equations was considered in [12], where H1

and Hölder regularity was proved with complex anisotropic, possibly non sym-
metric, W 1;3+� coefficients.

In this chapter, we present a method that combines these two approaches.
Namely, we apply the Lp elliptic theory to the equations satisfied by the scalar
and vector potentials. We show that H1 regularity is granted with W 1;3 coeffi-
cients whereas Hölder regularity always holds provided the coefficients them-
selves are Hölder continuous. This last result was proved in [8] and is optimal.
Without additional regularity assumptions on the coefficients, our approach
allows for a proof of higher integrability properties for the fields, thanks to the
Gehring’s lemma.

In order to understand why these results and the corresponding assump-
tions are natural, it is instructive to consider the case when ! = 0 and K � 0.
Since 	 = !" + i�, for ! = 0 system (3.1) simply reduces to the conductivity
equation

�div(�rq) = div J in � ; E = rq in � :

In this case, the H1 and C0;� regularity for E corresponds to the H2 and C1;�

regularity for the scalar potential q , respectively. In view of classical elliptic
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regularity results (in particular, the Lp theory for elliptic equations with VMO
coefficients and standard Schauder estimates), q 2 H2 if � 2 W 1;3 and q 2 C1;�

provided that � 2 C0;� , with ad hoc assumptions on the source J .
The aim of this chapter is to show that this argument may be extended to

the general case, for any frequency ! 2 �. As mentioned above, this is achieved
by using the Helmholtz decomposition, namely

E = rq + curl�:
We show that the vector potential � is always more regular that the scalar
potential q . This allows us to reduce the problem to a regularity analysis for q ,
exactly as above in the case ! = 0, by using the elliptic PDE satisfied by q . This
argument is applied simultaneously for E and H .

For simplicity, only interior (local) regularity will be discussed in this work;
global regularity may be obtained by a careful analysis of the boundary condi-
tions [12], [8]. We will focus on the case when � and 	 enjoy the same regular-
ity. The general case is more involved, and can be addressed using Campanato
estimates [217], [12], [8].

This chapter is structured as follows. In section 3.2 we discuss some prelimi-
nary results on elliptic regularity theory. Section 3.3 contains the main regular-
ity theorems for Maxwell’s system. The results on the H1 and W 1; p regularity
are new. Further, as far as the authors are aware, the higher integrability re-
sult for the electric and magnetic fields (a consequence of Gehring’s lemma)
has not been reported in the literature before. Even though the focus of this
chapter is regularity of weak solutions, in Section 3.4 we recall classical results
on well-posedness for the Dirichlet problem associated to (3.1) for the sake of
completeness.

3.2. Preliminaries

The theory for second order elliptic equations is completely established in
the Hilbert case, namely for p = 2. For a uniformly elliptic tensor �, the diver-
gence form equation

�div(�ru) = div F in �
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admits a unique solution in W 1;20 (�;�) for a fixed F 2 L2(�;�3): this sim-
ply follows by the Lax–Milgram theorem. For p > 2, whether F 2 Lp implies
u 2 W 1; p depends on the regularity of �. Without further assumptions on �,
this is not the case. Continuity of � is sufficient [197], but not necessary. The
weaker assumption � 2 VMO(�) is sufficient, where the space VMO con-
sists of functions with vanishing mean oscillations, namely of those functions f
such that

lim
jQj!0

1

jQj
Z
Q

þþþf � 1

jQj
Z
f dt

þþþdx = 0
for all cubes Q. In these notes, we only use that W 1;d(�) and C(�) are con-
tinuously embedded in VMO, where d is the dimension [62]. In this chapter,
d = 3.

Lemma 3.1 (see [37]). — Let � � �3 be a bounded domain and take �0 b �.
Let � 2 VMO(�;�3�3) be such that

(3.2) 2��1j
j2 � 
 	 (�+ �T )
; j�j � � a.e. in � :

Take F 2 Lp(�;�3) for some p 2 [2;1) and let u 2 H1(�;�) be a weak solution of

�div(�ru) = div F in �:

Then u 2 W
1; p
loc (�;�) and

kukW 1; p(�0) � C
�kukH1(�) + kFkLp(�)

Ð
for some C > 0 depending only on �, �0 , � and k�kVMO(�) .

We shall also need an H2 regularity result for elliptic equations. The stan-
dard formulation given in many textbooks on PDE [95], [103], [104], [206]
requires Lipschitz coefficients. Using Lemma 3.1, we provide here an improved
version, assuming W 1;3 regularity for the coefficients.

Lemma 3.2. — Let � � �3 be a bounded domain and take �0 b �. Given � 2
W 1;3(�;�3�3) satisfying (3.2) and f 2 L2(�;�), let u 2 H1(�;�) be a weak
solution of

�div(�ru) = f in �:
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Then u 2 H2loc(�;�) and

kukH2(�0) � C
�kukH1(�) + kfkL2(�)

Ð
for some C > 0 depending only on �, �0 , � and k�kW 1;3(�) .
Proof. — For simplicity, we prove the result in the simpler case of isotropic
coefficient and by using the strong form of the equation. The general case can
be proved substantially in the same way, by passing to the weak formulation
and using the standard difference quotient method [95], [103]. In this proof
we write C for any positive constant depending on �, �0 , � and k�kW 1;3(�)
only.

Let �00 be a smooth subdomain such that �0 b �00 b � and v 2 H10 (�;�)

satisfy �v = f . Without loss of generality, assume that � is smooth. Indeed,
if � is not smooth, introduce another smooth intermediate subdomain �000 ,
such that �00 b �000 b �, in lieu of � in what follows. Standard H2 es-
timates for elliptic equations [105, Theorem 8.12] give v 2 H2(�;�) with
kvkH2(�) � CkfkL2(�) . Thus, the Sobolev embedding theorem yields

(3.3) kvkW 1;6(�) � CkfkL2(�):
The equation for u becomes �div(�ru) = div(rv) in � : In view of Lemma 3.1
we have u 2 W 1;6loc (�;�) and

kukW 1;6(�00) � C
�kukH1(�) + krvkL6(�)

Ð
:

Hence by (3.3) we obtain

(3.4) kukW 1;6(�00) � C
�kukH1(�) + kfkL2(�)

Ð
:

Next, note that the equation for u can be restated as

��u = ��1r� 	 ru+ ��1f in �00:

Applying again standard H2 estimates we obtain that u 2 H2(�0;�) and

kukH2(�0) � C
�kukH1(�00) + k��1r� 	 rukL2(�00) + k��1fkL2(�00)

Ð
� C

�kukH1(�) + k��1r�kL3(�00)krukL6(�00) + kfkL2(�00)
Ð

� C
�kukH1(�) + kukW 1;6(�00) + kfkL2(�)

Ð
:

Inserting (3.4) in this last estimate provides the result.
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As it is central to our argument, we remind the reader of a fundamental tool,
known as Meyers’ theorem [157], which we choose to present as a consequence
of Gehring’s lemma [100]; see also [61]. The following quantitative version is
proved in [118].

Lemma 3.3 (Gehring’s lemma). — Let � = Q0 be a cube. Given 1 < p < 1; let
w; g 2 Lp(�) be non-negative functions and C > 0 such that for all cubes Q such that
Q 2Q �, there holds�Z

Q
wp

�1=p � C
�Z
2Q
w
�
+
�Z
2Q
gp
�1=p

:

Then, for each 0 < � < 1 and p < s < p+ p�1
10d+p4pCp

we have�Z
�Q0

ws
�1=s � 102d

�d=s(1� �)d=p

h� Z
Q0

wp
�1=p

+
�Z

Q0

gs
�1=s i

:

The following corollary follows from a covering argument.

Corollary 3.4. — Let � be a bounded connected open set in �
3 . Given 1 < p < 1;

let w; g 2 Lp(�) be non-negative functions and C > 0 such that for all cubes Q such
that Q 2Q �, there holds�Z

Q
wp

�1=p � C
�Z
2Q
w
�
+
�Z
2Q
gp
�1=p

:

Then, for each �0 b � and each p < s < p+ p�1
10d+p4pCp

we have�Z
�0
ws
�1=s � C(� ;�0; s; p)

h� Z
�
wp

�1=p
+
�Z
�
gs
�1=si

:

This result implies local higher integrability estimates for solutions of second
order elliptic systems with heterogeneous coefficients. We give below one such
estimate which is sufficient for our purposes.

Theorem 3.5 (Meyers’ theorem). — Let � � �
3 be a bounded domain. Let A

in L1(�;�3�3) be a symmetric matrix such that for every 
 2 �3

(3.5) ��1j
j2 � 
 	 �Re(A(x))
Ð � �j
j2 almost everywhere in �
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for some � > 0. Given q > 2, g 2 Lq(�;�3) and f 2 Lp(�;�3) with p = 3q
q+3

,

let u 2 H1(�;�) be a weak solution of

(3.6) � div(Aru) = �div(g) + f in � :

Then there exists s > 0 depending only on � and � such that if q � s + 2 then
ru 2 Lsloc(�;�

3) and for each �0 b � there holds

krukL2+s(�0) � C(� ;�0;�)
�kukH1(�) + kgkLq(�) + kfkLp(�)

Ð
:

Proof. — Note that we may assume without loss of generality that f � 0.
Indeed, let B be an open ball containing � , of radius the diameter of �.
Extend f by zero outside �, and define  f 2 H10 (B;�) as the unique solu-
tion of

�� f = f in B :

Applying Lemma 3.1 to the partial derivatives of f , we find  f 2 W
2;p
loc (B;�),

and

kr fkW 1; p(�) � C(�)kfkLp(B) = C(�)kfkLp(�):

Thanks to the Sobolev embedding theorem, it follows that r f 2 Lq(�;�3).
We may therefore assume f � 0, replacing g by g + r f .

If we integrate (3.6) against �u�2 , where 0 � � � 1 is a smooth compactly
supported function in �, we obtain

(3.7) Re
�� div(Aru); �u�2Þ

H�1(�);H10 (�)
�

þþþ�� div(g); �u�2ÞH�1(�);H10 (�)

þþþ;
and

Re
��div(Aru); �u�2Þ

H�1(�);H10 (�)
=

Z
�
Re(A)r(u�)	r(u�)�

Z
�
Re(A)r�	r�juj2:

This implies, thanks to (3.5),

Re
�� div(Aru); �u�2Þ

H�1(�);H10 (�)
(3.8)

� ��1kr(u�)k2
L2(�)

��kr�k2L1(�) 	 k��uk2L2(�);
where �� := �supp � denotes the characteristic function of the support of �.
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Applying Young’s inequality, on the right-hand side of (3.7) we obtainþþ�� div(g); �u�2Þ
H�1(�);H10 (�)

þþ(3.9)

� 1

2�
kr(u�)k2

L2(�)
+ 12kr�k2L1(�) 	 ku�k2L2(�)

+ 12(� + 1)k��gk2L2(�):
Using the lower bound (3.8) and the upper bound (3.9) in inequality (3.7) we
obtain

kr(u�)k2
L2(�)

� C(�)
�
kr�k2L1(�) 	 k��uk2L2(�) + k��gk2L2(�)

�
:

Given any cube Q in � such that Q  2Q  �, let dQ be the length of
its edges. Take � to be such that � � 1 on Q, supported on 2Q, and such
that dQkr�kL1(�) is bounded by a universal constant. Note that we can safely

replace u by u� R
2Q

u in the above inequality. Then, we have shown

kruk2
L2(Q)

� C(�)
� 1
d2Q

���u� Z
2Q
u
���2
L2(2Q)

+ kgk2
L2(2Q)

�
:

Recall that W 1;6=5(2Q) is continuously embedded in L2(2Q), and���u� Z
2Q
u
���
L2(2Q)

� dQCkrukL6=5(2Q); u 2 W 1;6=5(2Q);

where C is a universal constant; the dependence on dQ follows from a scaling

argument(2). Writing w = jruj 65 we have obtainedZ
Q
w5=3 � C(�)

h� Z
2Q

w
�5=3

+

Z
2Q

�
g6=5

Ð5=3i
which in turns implies�Z

Q
wr
�1=r � C(�)

h Z
2Q

w +
�Z
2Q

�
g6=5

Ðr�1=ri
;

with r = 53 . The result now follows from Corollary 3.4.

2. This inequality is the usual Poincaré-Sobolev inequality in the unit cube Q1 centred at the
origin, and u 2 W 1;6=5(2Q) can be written u(x) = v((x� x0)=dQ) with v 2 W 1;6=5(Q1), where x0
is the centre of Q.
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We also use the following estimate. Even though only the case p = 2 will be
used in these notes, we state a general version for completeness.

Lemma 3.6 (see [106], [34]). — Let � � �
3 be a bounded simply connected and

connected domain with a connected boundary @� of class C1;1 . Take p 2 (1;1)
and F 2 Lp(�;�3) such that curl F 2 Lp(�;�3), div F 2 Lp(�;�) and either
F 	 � = 0 or F � � = 0 on @�. Then F 2 W 1; p(�;�3) and

kFkW 1; p(�) � C
�k curl FkLp(�) + kdiv FkLp(�)

Ð
for some C > 0 depending only on � and p.

The last preliminary lemma we need is the Helmholtz decomposition for L2

vector fields.

Lemma 3.7 (see [34, Theorem 6.1], [33, Section 3.5]). — Let � � �3 be a
bounded simply connected and connected domain with a connected boundary @� of
class C1;1 and take F 2 L2(�;�3).

1) There exist q 2 H10 (�;�) and � 2 H1(�;�3) such that

F = rq + curl� in � ;

div � = 0 in � and � 	 � = 0 on @�.

2) There exist q 2 H1(�;�) and � 2 H1(�;�3) such that

F = rq + curl� in � ;

div � = 0 in � and �� � = 0 on @�.

In particular, we have ��� = curlF in �. In both cases, there exists C > 0 depending
only on � such that

k�kH1(�) + krqkL2(�) � CkFkL2(�):
When applied to electromagnetic fields, this decomposition leads to the

following systems.

Corollary 3.8. — Let � � �3 be a bounded simply connected and connected domain
with a connected boundary @� of class C1;1 . Let E;H 2 H(curl;�) be weak solu-
tions of Maxwell’s system (3.1). There exist qE 2 H10 (�;�), qH 2 H1(�;�) and
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�E;�H 2 H1(�;�3) such that

(3.10) E = rqE + curl�E; H = rqH + curl�H;
and

(3.11)

8<:
���E = i!�H + K in � ;

div �E = 0 in � ;

�E 	 � = 0 on @� ;

8<:
���H = �i	E + J in � ;

div �H = 0 in � ;

�H � � = 0 on @� :

Moreover, there exists C > 0 depending only on � such that

(3.12)
��(�E;�H)��H1(�)2 + ��(rqE;rqH)��L2(�)2 � C

��(E;H)��
L2(�)2

:

We have now collected all the necessary ingredients to state and prove the
main results of this chapter.

3.3. The main results

We consider weak solutions E;H 2 H(curl;�) to

(3.13)
²
curlE = i!�H + K in � ;

curlH = �i	E + J in � :

Throughout this section, we make the following assumptions:
. � � �3 is a bounded simply connected and connected domain with a

connected boundary @� of class C1;1 ;
. the frequency ! belongs to �;
. 	 = !" + i� is the admittivity of the medium, � 2 L1(�;�3�3) and

"; � 2 L1(�;�3�3) are the magnetic permeability, electric permittivity and
conductivity, respectively. We will assume that they satisfy suitable uniform el-
lipticity properties, namely there exists � > 0 such that for all 
 2 �3

(3.14)

8><>:
2��1j
j2 � 
 	 (�+ �T )
;

��1j
j2 � 
 	 "
;
j�j+ j"j+ j�j � � a.e. in �;

. in the case ! = 0, we also assume that for every 
 2 �3

(3.15) ��1j
j2 � 
 	 �
 a.e. in �;
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that divK = 0 in � and that the following equation holds:

(3.16) � div(�H) = 0 in � :

It is worth observing that the topological assumptions on � are not restrictive,
since regularity is a local property. In the following, for p 2 (1;1) we shall
make use of the space

W 1; p(div;�) :=
ý
F 2 Lp(�;�3) : div F 2 Lp(�;�)

�
;

equipped with the canonical norm. For p = 2, we set

H(div;�) := W 1;2(div;�):

We start with the interior H1 regularity result.

Theorem 3.9. — Take �0 b � and ! 2 �. Let

� 2 W 1;3(�;�3�3) and "; � 2 W 1;3(�;�3�3)

satisfy (3.14) (and (3.15) if ! = 0). Take J ; K 2 H(div;�) (with divK = 0
if ! = 0). Let (E;H) 2 H(curl;�)2 be a weak solution of (3.13) (augmented
with (3.16) if ! = 0). Then (E;H) 2 H1loc(�;�

3)2 and��(E;H)��
H1(�0)2 � C

���(E;H)��
L2(�)2

+ kJkH(div;�) + kKkH(div;�)
�

for some C > 0 depending only on �, �0 , �, j!j and k(�; 	)kW 1;3(�)2 .

Proof. — With an abuse of notation, in the proof several positive constants
depending only on �, �0 , �, j!j and k(�; 	)kW 1;3(�)2 will be denoted by C .

Let �00 be a smooth domain such that �0 b �00 b �. Using the decom-
positions (3.10) given in Corollary 3.8 and applying Lemma 3.2 to (3.11) we
obtain

(3.17)
��(�E;�H)��H2(�00)2 � C

�k(E;H)kL2(�)2 + k(J ; K)kL2(�)2
Ð
;

which, by the Sobolev embedding theorem, yields

(3.18)
��(�E;�H)��W 1;6(�00)2 � C

�k(E;H)kL2(�)2 + k(J ; K)kL2(�)2
Ð
:
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Taking the divergence of the equations in (3.13) and inserting the decomposi-
tions (3.10) yields

(3.19)
² � div(�rqH) = div(� curl�H � i!�1K) in � ;

� div(	rqE) = div(	 curl�E + iJ) in � :

(In the case ! = 0, by (3.16) the system reads

(3.20)
² � div(�rqH) = div(� curl�H) in � ;

� div(�rqE) = div(� curl�E + J) in � ;

and the same argument given below applies.) To prove our claim, we must ex-
hibit an H2 estimate of qH and qE . Expanding the right-hand sides of the above
equations, and using Einstein summation convention, which is that repeated
indices are implicitly summed over, we obtain

� div(�rqH) = @i�ij(curl �H)j + �ij @i(curl �H)j � i!�1 divK in �00;

� div(	rqE) = @i	ij(curl �E)j + 	ij @i(curl �E)j + i div J in �00:

Applying Lemma 3.2 and the Sobolev embedding theorem we obtain qE; qH 2
H2loc(�;�) and��(qE; qH)��H2(�0)2 � C

�
k(qE; qH)kH1(�)2+k(�E;�H)kH2(�00)2+k(J ; K)kH(div;�)2

�
:

Thanks to (3.12) and (3.17) we have��(qE; qH)��H2(�0) � C
�k(E;H)kL2(�)2 + k(J ; K)kH(div;�)2

Ð
:

The conclusion follows by combining the last inequality with (3.10) and (3.17).

The following result provides local C0;� estimates, see [8].

Theorem 3.10. — Take � 2 (0; 1=2], �0 b � and ! 2 �. Let

� 2 C0;�(�;�3�3) and "; � 2 C0;�(�;�3�3)

satisfy (3.14) (and (3.15) if ! = 0). Take J ; K 2 C0;�(�;�3) (with divK = 0
if ! = 0). Let (E;H) 2 H(curl;�)2 be a weak solution of (3.13) (augmented
with (3.16) if ! = 0). Then (E;H) 2 C0;�(�;�3)2 and��(E;H)��

C0;�(�0 )2 � C
�k(E;H)kL2(�)2 + k(J ; K)kC0;�(�)2

Ð
for some C > 0 depending only on �, �0 , �, j!j and k(�; 	)kC0;�(�)2 .
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Proof. — By (3.18), we have that curl�E; curl�H 2 L6loc(�;�
3). Therefore,

by Lemma 3.1 applied to (3.19) ((3.20) if ! = 0) we obtain that rqE;rqH
belongs to L6loc(�;�

3); therefore thanks to (3.10) we have E;H 2 L6loc(�;�
3).

Differentiating the systems (3.11) we obtain for every i = 1; 2; 3

(3.21) � �(@i�E) = @i(i!�H + K); ��(@i�H) = @i(�i	E + J):

Thus, Lemma 3.1 yields �E;�H 2 W 2;6loc (�). By the Sobolev embedding theo-
rem, this implies �E;�H 2 C1;1=2(�;�3). As a consequence, classical Schauder
estimates [105], [103] applied to (3.19) ((3.20) if ! = 0) yield rqE;rqH 2
C0;�(�;�3), which in turn imply that (E;H) 2 C0;�(�;�3)2 . The correspond-
ing norm estimate follows from all the norm estimates related to the regularity
results used in the argument.

Let us underline that the regularity assumptions on the coefficients given in
the result above are optimal.

Remark 3.11. — Let � = B(0; 1) be the unit ball and take � 2 (0; 1). Let

f 2 L1�
(�1; 1);�Ð n C��(�1; 1);�Ð

such that ��1 � f � � in (�1; 1). Let " be defined by "(x) = f(x1). Choosing
J = (�i!; 0; 0) 2 C0;�(�;�3), observe that E(x) = (f(x1)�1; 0; 0) and H � 0
are weak solutions in H(curl;�)2 to

curlH = i!"E + J in � ; curlE = �i!H in � ;

such that E =2 C0;�(�;�3). This shows that interior Hölder regularity cannot
hold if " is not Hölder continuous, even in the simplified case where " depends
only on one variable.

Let us now turn to local W 1; p estimates for E and H .

Theorem 3.12. — Take p > 3, �0 b � and ! 2 �. Let

� 2 W 1; p(�;�3�3) and "; � 2 W 1; p(�;�3�3)

satisfy (3.14) (and (3.15) if ! = 0). Take J ; K 2 W 1; p(div;�) (with divK = 0
if ! = 0). Let (E;H) 2 H(curl;�)2 be a weak solution of (3.13) (augmented
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with (3.16) if ! = 0). Then E;H 2 W
1; p
loc (�;�

3) and

k(E;H)kW 1; p(�0)2 � C
�k(E;H)kL2(�)2 + k(J ; K)kW 1; p(div;�)2

Ð
for some C > 0 depending only on �, �0 , �, j!j and k(�; 	)kW 1; p(�)2 .

Proof. — By the Sobolev embedding theorem and Theorem 3.10 we have
E;H 2 L

p
loc(�;�

3). Thus, Lemma 3.1 applied to (3.21) yields

�E;�H 2 W
2;p
loc (�;�

3):

Moreover, arguing as in the proof of Theorem 3.10 we obtain that (rqE;rqH)
belongs to C(�;�3)2 . Differentiating (3.19) gives the elliptic equations

� div(�r(@iqH)) = div((@i�) curl�H + �@i curl�H � i!�1 @iK + @i�rqH)
in � ;

� div(	r(@iqE)) = div((@i	) curl�E + 	@i curl�E + i @iJ + @i	rqE) in � :

If ! = 0, (3.20) has to be considered instead, and the term div(i!�1 @iK) van-
ishes. Lemma 3.1 applied to these equations yields rqE;rqH 2 W

1; p
loc (�;�

3),

and we obtain as desired E;H 2 W
1; p
loc (�;�

3). The corresponding norm es-
timates follow by applying all of the norm estimates related to the regularity
results used in the argument.

Remark 3.13. — Arguing as in Remark 3.11, we see that the regularity assump-
tions on the coefficients are minimal.

Finally, in the general case when "; � and � are merely L1 let us show that E
and H are in L2+�loc (�) for some � > 0.

Theorem 3.14 (Meyers’ theorem for Maxwell’s equations). — Take �0 b � and
! 2 �. Let

� 2 L1(�;�3�3) and "; � 2 L1(�;�3�3)

satisfy (3.14) (and (3.15) if ! = 0). Take J ; K 2 L2(�;�3) (with divK = 0
if ! = 0). There exist � > 0 depending only on � and � and C > 0 depending only
on �, �0 , � and j!j such that the following is true.
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Let (E;H) 2 H(curl;�)2 be a weak solution of (3.13) (augmented with (3.16)
if ! = 0). If J 2 L2+�(�;�3) then E 2 L2+�loc (�;�

3) and

kEkL2+�(�0) � C
�k(E;H)kL2(�)2 + kJkL2+�(�) + kKkL2(�)

Ð
;

and if K 2 L2+�(�;�3) then H 2 L2+�loc (�;�
3) and

kHkL2+�(�0) � C
�k(E;H)kL2(�)2 + kJkL2(�) + kKkL2+�(�)

Ð
:

Proof. — We follow the first steps of the proof of Theorem 3.9. We write

E = rqE + curl�E and H = rqH + curl�H
using the Helmholtz decomposition given in Corollary 3.8 . Let �00 be a
smooth domain such that �0 b �00 b �. In view of (3.18) we have��(curl �E; curl�H)��L6(�00)2 � C

�k(E;H)kL2(�)2 + k(J ; K)kL2(�)2
Ð
;

for some C > 0 depending only on �, �0 , � and j!j. Thus, it remains to
show that qE and qH are in W 1;2+�(�0) for some � > 0. This is an immediate
consequence of Theorem 3.5 applied to (3.19) ((3.20) if ! = 0).

Remark 3.15. — The proofs of these regularity results highlight the very differ-
ent roles played by the vector potentials � and the scalar potentials q in the
Helmholtz decompositions

E = rqE + curl�E; H = rqH + curl�H:
In all the cases previously considered, �E or �H are more regular than qE
and qH . As far as the C0;� (0 < � < 1

2 ) estimates are concerned, we obtain di-
rectly that �E and �H are in fact in C1;1=2 , which in turn implies that curl�E
and curl�H are in C0;

1
2 . Regarding the W 1; p result, we obtain that the vec-

tor potentials are in fact in C2;� , so that curl�E and curl�H are in C1;� , a
much smaller space than W 1; p . In the Meyers’ theorem for Maxwell’s equa-
tions, Sobolev embeddings show that curl�E; curl�H are in L6 , which is a
much higher integrability than the one of rqE and rqH in general.

The regularity results we established depend essentially on proving regular-
ity results for the scalar potentials, namely rqE and rqH . We did so by using the
elliptic equations they satisfy. As a consequence, as mentioned in Section 3.1,
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the crucial aspects of the study of the general case corresponding to a non-
zero frequency ! 2 � are substantially equivalent to those in the case of the
conductivity equation, corresponding to the case ! = 0.

As we shall see in Chapter 4, the same phenomenon occurs when studying
asymptotic estimates of the solutions due to small inclusions in the parameters:
the leading order effect will be expressed in terms of scalar potentials, and the
vector potentials will affect only the higher order terms.

3.4. Well-posedness for Maxwell’s equations

For completeness and future reference in Chapter 4, we recall classical well-
posedness results for Maxwell’s system of equations. The reader is referred to
[211], [138], [198], [163], [4] for full details.

Consider problem (3.1) augmented with Dirichlet boundary conditions

(3.22)

8<:
curlE = i!�H + K in � ;

curlH = �i(!"+ i�)E + J in � ;

E � � = '� � on @� ;

where J ; K 2 L2(�;�3), ' 2 H(curl;�) and �; "; � 2 L1(�;�3�3) and satisfy

(3.23)

(
��1jj2 �  	 �; ��1jj2 �  	 ";  2 �

3;

k(�; "; �)kL1(�;�3�3)3 � �; � = �T ; " = "T ; � = �T

for some � > 0 and either

(3.24) � = 0 in � ;

or

(3.25) ��1jj2 �  	 �;  2 �
3:

Remark 3.16. — By the Fredholm theory, if the problem is not well-posed, then
there exists E;H 2 H(curl;�) such that8><>:

curlE = i!�H in � ;

curlH = �i(!"+ i�)E in � ;

E � � = 0 on @� ;

see [211], [198], [4].
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The main well-posedness result in the non conductive case reads as follows.

Proposition 3.17. — Let � � �
3 be a bounded and C1;1 domain and �; "; �

in L1(�;�3�3) be such that (3.23) and (3.24) hold true. There exists a discrete set
of eigenvalues � � �+ such that if ! 2 �+ n � then for any J ; K 2 L2(�;�3) and
' 2 H(curl;�) problem (3.22) admits a unique solution (E;H) 2 H(curl;�)2 and

k(E;H)kH(curl;�)2 � C
�k'kH(curl;�) + k(J ; K)kL2(�)2

Ð
for some C > 0 depending only on �, ! and �.

The main well-posedness result in the dissipative case reads as follows.

Proposition 3.18. — Let � � �3 be a bounded and C1;1 domain, ! > 0 and
�; "; � in L1(�;�3�3) be such that (3.23) and (3.25) hold true. Then for any J ; K
in L2(�;�3) and ' 2 H(curl;�) problem (3.22) admits a unique solution (E;H)
in H(curl;�)2 and

k(E;H)kH(curl;�)2 � C
�k'kH(curl;�) + k(J ; K)kL2(�)2

Ð
for some C > 0 depending only on �, ! and �.

The case ! = 0 is somehow peculiar since additional assumptions are re-
quired on the sources: it is considered in the following result.

Proposition 3.19. — Let � � �3 be a bounded simply connected and connected do-
main with a connected boundary @� of class C1;1 . Let �; "; � 2 L1(�;�3�3) be such
that (3.23) and (3.25) hold true. Take J ; K 2 L2(�;�3) and ' 2 H(curl;�) with
divK = 0 in � and K 	 � = curl' 	 � on @�. Then, the problem

(3.26)

8>>>>>><>>>>>>:

curlE = K in � ;

curlH = �E + J in � ;

div(�H) = 0 in � ;

E � � = '� � on @� ;

(�H) 	 � = 0 on @� ;

admits a unique solution (E;H) 2 H(curl;�)2 and

k(E;H)kH(curl;�)2 � C
�k'kH(curl;�) + k(J ; K)kL2(�)2

Ð
for some C > 0 depending only on � and �.
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Proof. — In what follows various positive constants depending only on �
and � will be denoted by C . WriteeE = E � ' and eK = K � curl':
By Lemma 3.7, it is enough to look for solutions E;H 2 H(curl;�) of the formeE = rqE + curl�E; H = rqH + curl�H;
with qE 2 H10 (�;�), qH 2 H1(�;�), �E;�H 2 H1(�;�3) and �H � � = 0

on @�. Set 	E = curl�E , assuming momentarily the existence of such a vector
potential. Since qE is constant on @� we have

	E � � = eE � �� rqE � � = 0 on @� :

Moreover, div	E = div curl�E = 0 in � and curl	E = curl eE = eK from the
first equation of (3.26). Thus Lemma 3.6 shows that curl�E 2 H1(�;�3) and

(3.27) k curl�EkH1(�) � C
�kKkL2(�) + k curl'kL2(�)

Ð
:

The existence of 	E follows from the fact that div eK = 0 in � and eK 	 � = 0
on @� [106, Chapter 1, Theorem 3.6]. Moreover, by [106, Chapter 1, The-
orem 3.5], one has 	E = curl�E for some �E 2 H1(�;�3) such that
div �E = 0 in � and �E 	 � = 0 on @�. Thus, curl�E is now uniquely
determined, and the first and fourth equations of (3.26) are automatically
satisfied.

The second equation of (3.26) implies that qE satisfies

(3.28)
² �div(�rqE) = div(� curl�E + �'+ J) in � ;

qE = 0 on @� :

The Lax–Milgram theorem provides existence and uniqueness of qE 2 H10 (�),
with the norm estimate

kqEkH1(�) � C(k curl�EkL2(�;�3) + k(J ; ')kL2(�)2):
As a consequence, by using the estimate on curl�E obtained above we have

kqEkH1(�) � C
�k'kH(curl;�) + k(K ; J)kL2(�)2

Ð
;

kEkH(curl;�) � C
�k'kH(curl;�) + k(K ; J)kL2(�)2

Ð
:
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Inserting H = rqH + 	H with 	H = curl�H into the second equation
of (3.26) we have

div	H = 0 in � ; curl	H = �E + J in � :

Moreover, since �H � � = 0 on @�, by [163, equation (3.52)] we have

	H 	 � = (curl�H) 	 � = div
@�
(�H � �) = 0 on @� :

We apply Lemma 3.6 and deduce that curl�H 2 H1(�;�3) and

k curl�HkH1(�) � Ck�E + JkL2(�) � C
�k'kH(curl;�) + k(K ; J)kL2(�)2

Ð
:

The existence of 	H follows from [106, Chap. 1, Theorem 3.5], since
div(�E + J) = 0 in �. Moreover, by [106, Chapter 1, Theorem 3.6], 	H =

curl�H for some �H in H1(�;�3) such that div �H = 0 in � and �H � � = 0

on @�. The second equation of (3.26) is now automatically satisfied, and
curl�H is uniquely determined.

The third and fifth equations of (3.26) now imply that qH satisfies² �div(�rqH) = div(� curl�H) in � ;

��rqH 	 � = � curl�H 	 � on @� :

Thus, standard elliptic theory immediately yields existence and uniqueness for
this problem in H1(�;�)=� with the norm estimate

krqHkL2(�) � Ck curl�HkL2(�):

As a consequence, by using the estimate on curl�H obtained above we have

krqHkL2(�) � C
�k'kH(curl;�) + k(K ; J)kL2(�)2

Ð
;

kHkH(curl;�) � C
�k'kH(curl;�) + k(K ; J)kL2(�)2

Ð
:

This concludes the proof.
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Remark 3.20. — Consider the particular case when K = 0 and ' = rv for some
v 2 H1(�;�). By (3.27) we can write E = ru where u = qE + v 2 H1(�;�),
since curl�E = 0. Moreover, by (3.28) the electric potential u is the unique
solution to ² �div(�ru) = div J in � ;

u = v on @� :

In other words, as already mentioned above, the case ! = 0 in Maxwell’s system
corresponds to the conductivity equation.
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CHAPTER 4

PERTURBATIONS OF SMALL VOLUME FOR MAXWELL’S
EQUATIONS IN A BOUNDED DOMAIN

4.1. Introduction

Consider time-harmonic electromagnetic fields E and H travelling
in a medium � with permittivity " 2 L1(�;�3�3) and permeability
� 2 L1(�;�3�3). Both " and � are symmetric and positive definite ma-
trix valued functions. According to Maxwell’s system of equations (see (3.1)
with � = 0), they verify

curlE = i!�H; curlH = �i!"E in � :

Suppose that at frequency !, when a boundary condition is imposed on one
of the fields, say

E � � = '� � on @� ;

the problem is well posed. If the medium is perturbed – by a focused pressure
wave for example – or if the coefficients present defects within the domain,
in a small set D such that D b � and jDj � j�j, the physical parameters can
be written

�D = e� �D + (1� �D)�; "D = e" �D + (1� �D)";

where e� and e" are the permeability and the permittivity within the inclusion D ,
respectively. The electromagnetic fields then become ED and HD , satisfying

curlED = i!�DHD; curlHD = �i!"DED in � ; ED � � = '� � on @� :
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The effect of these defects can be measured on the boundary of the domain.
Indeed, writing

BD =

Z
@�
(ED � �) 	HD d� and B =

Z
@�
(E � �) 	H d�;

an integration by parts shows that

(4.1) BD � B = i!

Z
D
(e� � �)H 	HD � (e" � ")E 	 ED dx:

In other words, from external boundary difference measurements, localised
information on the defects is available. A heuristic approximation, the so-called
Born approximation, is then to consider that ED 
 E and HD 
 H and to
linearise the dependence on D by writing

BD � B 
 i!
Z
D
(e� � �)H 	H � (e" � ")E 	 Edx:

In particular, if the defect is localised near x0 2 � this yields

BD � B

jDj 
 i!
��e�(x0)� �(x0)

Ð
H(x0) 	H(x0)�

�e"(x0)� "(x0)
Ð
E(x0) 	 E(x0)

�
;

leading (not unlike what we saw in Chapter 1) to an internal density informa-
tion. It turns out that this heuristic argument is not correct except when e" � "

and e� � � are also small, leading to a small amplitude and small volume frac-
tion approximation. The correct first order expansion, without assumptions
on the smallness of the amplitude of the defects, involves polarisation tensors.
The derivation of this approximation is the subject of this chapter.

Using the regularity results obtained in Chapter 3, we derive the leading or-
der term in jDj of the asymptotic expansion of �D(ED � E) and �D(HD �H),
for general internal inclusions bounded in L1 on a measurable set D located
within �, when the background medium parameters " and � are sufficiently
smooth (namely, C0;� or W 1; p with p > 3). Several expansions of this type
are available in the literature, for conductivity, elasticity, cavities, and electro-
magnetic fields [96], [164], [165], [79], [23], [31, 108]. The existing results
for Maxwell’s system are somewhat less general [23], [108], and use a slightly
different approach – which typically requires a constant background medium.
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The method used here was first introduced in [73] for the conductivity prob-
lem, which corresponds to the case ! = 0. An additional ingredient is the
Helmholtz decomposition of the fields. We prove that the essential features
of the problem are captured by the elliptic equations satisfied by the scalar
potentials, for which the method of [73] can be applied.

4.2. Model, assumptions, and preliminary results

Let us now consider the problem in full generality, using the notation of
Section 3.1. Suppose � is a simply connected and connected domain with
a connected boundary @� of class C1;1 , and let E;H 2 H(curl;�) be the
solutions of

(4.2)

8><>:
curlE = i!�H + K in � ;

curlH = �i	E + J in � ;

E � � = '� � on @� ;

where ! 2 �, K ; J 2 L2(�;�3), ' 2 H(curl;�), 	 = !" + i� and � 2
L1(�;�3�3) and "; � 2 L1(�;�3�3) are symmetric tensors such that for
all 
 2 �3 there holds

(4.3)

8>><>>:
��1j
j2 � 
 	 (Re�)
; ��1j
j2 � 
 	 "
;
j�j+ j"j+ j�j � � a.e. in � ;

� = �T ; " = "T ; � = �T a.e. in �

for some � > 0.
If ! = 0, we assume additionally that for every 
 2 �3

(4.4) ��1j
j2 � 
 	 �
 a.e. in � ;

divK = 0 in � and K 	 � = curl' 	 � on @� and we also impose the following
two equations

(4.5)
²
div(�H) = 0 in � ;

(�H) 	 � = 0 on @� :

We suppose that the map (J ; K ; ') 7! (E;H) is well defined and continuous,
namely that (4.2) is well posed. More precisely, we assume that for any K ; J
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in L2(�;�3) and ' 2 H(curl;�) (such that divK = 0 in � and K 	� = curl'	�
on @� if ! = 0), the solution (E;H) 2 H(curl;�)2 satisfies

(4.6) k(E;H)kH(curl;�)2 � C0
�k(K ; J)kL2(�)2 + k'kH(curl;�)

Ð
for some C0 > 0. Sufficient conditions for this problem to be well posed are
given in Section 3.4. Typically, well-posedness holds for ! outside a discrete set
of values (not containing 0) or if � is real and � is strictly positive.

Consider now that defects are present within the medium, namely the elec-
tromagnetic fields satisfy

(4.7)

8><>:
curlED = i!�DHD + K in � ;

curlHD = �i	DED + J in � ;

ED � � = '� � on @� ;

(augmented with

(4.8)

(
div(�DHD) = 0 in � ;

(�DHD) 	 � = 0 on @� ;

if ! = 0), where

�D = �(1� �D) + e��D; 	D = 	(1� �D) + e	 �D in � ;

where �D is the characteristic function of a measurable set D located within �,e	 = !e" + i e� , e� 2 L1(�;�3�3) and e"; e� 2 L1(�;�3�3) are symmetric and
satisfy (4.3) (and (4.4) if ! = 0). We suppose that the inclusion D is not
close to the boundary, namely D � �0 for some smooth connected and simply
connected subdomain �0 of � such that �0 b �.

Let us show that this perturbed problem is also well-posed, provided that jDj
is sufficiently small.

Lemma 4.1. — Under the above assumptions, there exists d0 > 0 depending only on �,
�0 , �, C0 and j!j such that when

(4.9) jDj � d0
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problem (4.7) (augmented with (4.8) if ! = 0) admits a unique solution, which
satisfies

k(ED;HD)kH(curl;�)2 � C
�k(K ; J)kL2(�)2 + k'kH(curl;�)

Ð
for some C > 0 depending only on �, �0 , �, C0 and j!j. Furthermore, there exist
� > 0 depending only on � and �, and C > 0 depending only on �, �0 , �, C0
and j!j such that when J ; K 2 L2+�(�;�3) then

k(ED;HD)� (E;H)kH(curl;�)2 � CjDj �
4+2�

�k(K ; J)kL2+�(�)2 + k'kH(curl;�)
Ð
;

where (E;H) is the solution of (4.2) (augmented with (4.5) if ! = 0).

Proof. — Note that when Proposition 3.17 applies, we know that the number of
resonant frequencies ! for which (4.7) is not well-posed is a discrete set. The
issue at hand regarding well-posedness is thus the behaviour of the resonances
when jDj ! 0. Furthermore, by Remark 3.16, for a given ! it is sufficient to
establish uniqueness when J = K = ' = 0 to establish well-posedness for any
other J ; K and '.

With an abuse of notation, several positive constants depending only on �,
�0 , �, C0 and j!j will be denoted by C . Assume that (ED;HD) 2 H(curl;�)2

is a solution of (4.7) (augmented with (4.8) if ! = 0). According to Theo-
rem 3.14, there exists � > 0 depending only on � and � such that when
J ; K 2 L2+�(�;�3) we have

k(ED;HD)kL2+�(�0)2(4.10)

� C
�k(ED;HD)kL2(�)2 + k(K ; J)kL2+�(�)2 + k'kH(curl;�)

Ð
:

Set WD = ED � E and QD = HD � H . The pair (WD;QD) 2 H(curl;�)2 is a
solution of 8><>:

curlWD = i!�QD + i! �D(e� � �)HD in � ;

curlQD = �i	WD � i�D(e	 � 	)ED in � ;

WD � � = 0 on @� :

Thus, using well-posedness for problem (4.2), namely estimate (4.6), we find

k(WD;QD)kH(curl;�)2 � C
�k! �D(e� � �)HDkL2(�) + k�D(e	 � 	)EDkL2(�)

Ð
� Ck(�DHD; �DED)kL2(�0)2 :
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Hence, by Hölder’s inequality and (4.10), we obtain

k(WD;QD)kH(curl;�)2 � CjDj �
4+2� 	 k(ED;HD)kL2+�(�0)2(4.11)

� CjDj �
4+2�

�
k(ED;HD)kL2(�)2
+ k(K ; J)kL2+�(�)2 + k'kH(curl;�)

�
:

Consider now the case when J = K = ' = 0. Then (4.11) is simply

k(ED;HD)kH(curl;�)2 � CjDj �
4+2� 	 k(ED;HD)kH(curl;�)2 :

Thus, when

(4.12) jDj � (C + 1)�(4+2�)=�;
we find k(ED;HD)kH(curl;�)2 = 0. As a consequence, problem (4.7) is also well
posed when (4.12) holds. In particular,

k(ED;HD)kH(curl;�)2 � C
�k(K ; J)kL2(�)2 + k'kH(curl;�)

Ð
:

Moreover, (4.11) implies

k(ED;HD)� (E;H)kH(curl;�)2 � CjDj �
4+2�

�k(K ; J)kL2+�(�)2 + k'kH(curl;�)
Ð
;

which concludes the proof.

This preliminary result confirms that this is a perturbation problem, since
ED and HD converge strongly to E and H in H(curl;�), with at least the
rate dictated by the built-in higher integrability of Maxwell’s system. Without
additional structural information on � and 	, the exact rate of convergence
may vary [59], leaving little hope for a general result for the first order term.
However, much more can be said when � and 	 are known to be smoother,
without further assumptions on e� and e	 .

4.3. Main results

Let pED 2 H1(�;�) be solution of

(4.13)
² �div(	DrpED) = div(�D(e	 � 	)E) in � ;

pED = 0 on @� ;
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and let pHD 2 H1(�;�) be solution of

(4.14)
² �div(�DrpHD ) = div

�
�D(e� � �)H

Ð
in � ;

�DrpHD 	 � = 0 on @� :

The potential pDE is uniquely determined, while pDH is determined up to a mul-
tiplicative constant.

Theorem 4.2. — Assume that (4.3), (4.6) and (4.9) (and (4.4) if ! = 0) hold, and
that additionally

(4.15) �; 	 2 C0;�(�;�3�3) and K ; J 2 C0;�(�;�3)

for some � 2 (0; 12] (with divK = 0 in � if ! = 0). Take ' 2 H(curl;�) (such
that K 	 � = curl' 	 � on @� if ! = 0), and define

M� = k'kH(curl;�) + k(J ; K)kC0;�(�)2 :
The solution (ED;HD) 2 H(curl;�)2 to (4.7) (augmented with (4.8) if ! = 0)
admits the following expansion

ED = E + rpED + RE
D in � ;

HD = H + rpHD + RH
D in � ;

where the remainder terms RE and RH are bounded by

kRE
DkL2(�) + kRH

D kL2(�) � CjDj 12+� 	 ��max �je� � �j; je	 � 	jÐ��
L1(D) 	M�;

for some � > 0 depending only on � and � and some C > 0 depending only on �,
�0 , �, C0 , k(�; 	)kC0;�(�)2 and j!j.

Remark 4.3. — Assumption (4.15) may be relaxed. It is sufficient to assume
the regularity of the parameters and of the sources in �1 , for some smooth
domain �1 such that �0 b �1 � �.

Any other choice of boundary conditions for pED and PH
D would lead to

similar results; the above boundary conditions were chosen in order to make
the analysis as simple as possible. Note that the magnetic potential pHD is always
independent of the frequency; this is true of the electric potential pED only
when � = e� � 0.
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Under slightly stronger assumptions on the regularity of the coefficients and
of the source terms, we can make this decomposition even more explicit. Let

P
	
D = [rp1	;rp2	;rp3	] 2 L2(�;�3�3); P

�
D = [rp1�;rp2�;rp3�] 2 L2(�;�3�3)

be the matrix valued maps defined as follows. For k = 1; 2; 3, let pk	 2 H1(�;�)

be solution of

(4.16)
² �div(	Drpk	) = div(�D(	D � 	)ek) in � ;

pk	 = 0 on @� ;

and for k = 1; 2; 3, let pk� 2 H1(�;�) be solution of

(4.17)
² �div(�Drpk�) = div(�D(�D � �)ek) in � ;

�Drpk� 	 � = 0 on @� ;

where [e1; e2; e3] = I3 is the 3� 3 identity matrix.

Theorem 4.4. — Assume that (4.3), (4.6) and (4.9) (and (4.4) if ! = 0) hold,
and that additionally

(4.18) �; 	 2 W 1; p(�;�3�3) and K ; J 2 W 1; p(div;�)

for some p > 3 (with divK = 0 in � if ! = 0). Take ' 2 H(curl;�) (such that
K 	 � = curl' 	 � on @� if ! = 0), and set

Mp = k'kH(curl;�) + k(J ; K)kW 1; p(div;�)2 :
The solution (ED;HD) 2 H(curl;�)2 to (4.7) (augmented with (4.8) if ! = 0)
admits the following expansion

ED = (I3 + P
	
D)E +

eRE
D in � ;

HD = (I3 + P
�
D )H +

eRE
D in � ;

where the remainder terms eRE and eRH are bounded by

k(eRE
D;

eRH
D )kL2(�0)2 � CjDj 12+���max �je� � �j; je	 � 	jÐ��

L1(D)Mp ;

for some � > 0 depending only on �, � and p and some C > 0 depending only on �,
�0 , �, C0 , k(�; 	)kW 1; p(�)3 and j!j.
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Remark 4.5. — The matrix valued functions I3+P
	
D and I3+P

�
D (once rescaled

by jDj, and passing to the limit as jDj ! 0) are called polarisation tensors. They
are independent of the electric field imposed, and depend only on D , e	 , 	,e� and �. The above boundary conditions on @� were chosen for simplicity,
but in the scaled limit the dependence on � and on the boundary values
disappears.

Their analytic expression can be derived for several basic geometries, see e.g.
[158], [67], [31], [204]. For example, when D is a ball, and 	; e	 2 C0;�(�;�)

(namely, they are scalar, real valued and Hölder continuous), then

I3 + P
	
D =

3	

2	+ 	D
I3
�
1 + O(jDj�)Ð in �

for some � > 0. This is the Claussius–Mossotti, or the Maxwell–Garnett for-
mula, see e.g. [79], [158, 73].

For general shapes, P	
D (and mutatis mutandis P

�
D ) satisfies a priori bounds,

known as Hashin–Shtrikman bounds in the theory of composites (see [166],
[158]). In particular, when 	; e	 2 C0;�(�;�) there holds

tr
�
P
	
D(x)

Ð � jDj
�
d� 1 + 	(x)e	(x)��1 + o(1)

Ð
in D;

tr
�
(P

	
D(x))

�1Ð � jDj
�
d� 1 + e	(x)

	(x)

��
1 + o(1)

Ð
in D;

see [147], [74].

Thus P	
DE is not a term that can be neglected as it always contributes to the

leading order term. We can write the following expansions, which clarify the
difference between this approach and the Born approximation.

Corollary 4.6. — Assume that the hypotheses of Theorem 4.4 hold true. For every �
in L1(�0;�3) we haveZ

D
(e	 � 	)ED 	�dx =

Z
D
(e	 � 	)(I3 + P

	
D)E 	�dx+ O

�jDj1+�k�kL1(D)Ð;Z
D
(e� � �)HD 	�dx =

Z
D
(e� � �)(I3 + P

�
D )H 	�dx+ O

�jDj1+�k�kL1(D)Ð:
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In particular, if D is a ball centred in x0 , if 	, e	 , � and e� are scalar and Hölder
continuous functions and if � is Hölder continuous, then for some � > 0

1

jDj
Z
D
(e	 � 	)ED 	�dx = 3	(x0)(e	(x0)� 	(x0))

2	(x0) + e	(x0) E(x0) 	�(x0) + O
�jDj�Ð;

1

jDj
Z
D
(e� � �)HD 	�dx = 3�(x0)(e�(x0)� �(x0))

2�(x0) + e�(x0) H(x0) 	�(x0) + O
�jDj�Ð:

Proof. — By Theorem 4.4, writeZ
D
(e	 � 	)ED 	�dx =

Z
D
(e	 � 	)(I3 + P

	
D)E 	�+ (e	 � 	)eRE

D 	�dx:

Applying the Cauchy–Schwarz inequality, we findþþþ Z
D
(e	 � 	)eRE

D 	�dx
þþþ � ke	 � 	kL1(D) 	 jDj

1
2 	 ��eRE

D

��
L2(�)

	 k�kL1(D)
= O

�jDj1+�k�kL1(D)Ð:
The second identity is similar.

We conclude this section by observing that by considering the particular
case ! = 0, we obtain the expansion related to the conductivity equation. This
case has been widely studied, see e.g. [30], [79], [73], [171].

Theorem 4.7. — Let �, �0 and D be as above. Let � 2 W 1; p(�;�3�3) and e� 2
L1(�;�3�3) satisfy (4.4) for some p > 3, and set

�D = �+ (e� � �)�D:

For v 2 H1(�;�) and f 2 Lp(�;�), let u; uD 2 H1(�;�) be the solutions to² �div(�ru) = f in � ;

u = v on @� ;

² �div(�DruD) = f in � ;

uD = v on @� :

Then we have the expansion

ruD = (I3 + P�
D)ru+ rD in � ;

where the remainder term rD is bounded by

krDkL2(�0) � CjDj 12+�ke� � �kL1(D)
�kvkH1(�) + kfkLp(�)

Ð
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for some � > 0 depending only on �, � and p and some C > 0 depending only on �,
�0 , � and k�kW 1; p(�) . In particular, for every � 2 L1(�0;�3) we haveZ

D
(e� � �)ruD 	�dx =

Z
D
(e� � �)(I3 + P�

D)ru 	�dx+ O
�jDj1+�k�kL1(D)Ð;

and, if D is a ball centred in x0 , if � and e� are scalar and Hölder continuous functions
and if � is Hölder continuous, then for some � > 0

1

jDj
Z
D
(e� � �)ruD 	�dx = 3�(x0)(e�(x0)� �(x0))

2�(x0) + e�(x0) ru(x0) 	�(x0) + O
�jDj�Ð:

Proof. — In view of Proposition 3.19 and Remark 3.20, this result is a conse-
quence of Theorem 4.4 and Corollary 4.6, with the identifications E = ru
and ED = ruD .

4.4. Proofs of Theorems 4.2 and 4.4

In order to prove these results, we consider the difference between the per-
turbed and the unperturbed (or background) problems, namely

(WD;QD) = (ED � E;HD �H) 2 H(curl;�)2:

The pair (WD;QD) satisfies

(4.19)

8><>:
curlWD = i!�DQD + i! �D(�D � �)H in � ;

curlQD = �i	DWD � i�D(	D � 	)E in � ;

WD � � = 0 on @� :

Problem (4.19) has two source terms, generated by E and H . We first notice
that at leading order the two fields are decoupled. Write

(WD;QD) = (W
E
D ;Q

E
D) + (W

H
D ;QH

D)

where

(4.20)

8><>:
curlWE

D = i!�DQ
E
D in � ;

curlQE
D = �i	DWE

D � i�D(	D � 	)E in � ;

WE
D � � = 0 on @� ;
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and

(4.21)

8><>:
curlWH

D = i!�DQ
H
D + i! �D(�D � �)H in � ;

curlQH
D = �i	DWH

D in � ;

WH
D � � = 0 on @� :

The following result shows that WD can be identified with WE
D , whereas QD

can be identified with QH
D as a first approximation in jDj.

Lemma 4.8. — Under the assumptions of Theorem 4.2, there exists a constant C > 0

depending only on �, �0 , �, C0 , k(�; 	)kC0;�(�)2 and j!j, and a constant � > 0
depending only on � and � such that

k(WD;QD)kH(curl;�)2 � CjDj 12 	 ��max �je� � �j; je	 � 	jÐ��
L1(D) 	M�;

and

(4.22)

( kWD �WE
D kL2(�)2 � CjDj 12+� 	 ke� � �kL1(D) 	M� ;

kQD � QH
DkL2(�) � CjDj 12+� 	 ke	 � 	kL1(D) 	M� :

Proof. — With an abuse of notation, several positive constants depending only
on �, �0 , �, C0 , k(�; 	)kC0;�(�)2 and j!j will be denoted by C .

By Lemma 4.1 applied to (4.19), we have

k(WD;QD)kH(curl;�) � C
�k�D(e� � �)HkL2(�) + k�D(e	 � 	)EkL2(�)

Ð
:

In view of (4.6) and (4.15), Theorem 3.10 yields (E;H) 2 C0;�(�0;�
3)2 and

(4.23) k(E;H)kC0;�(�0)2 � C
�k'kH(curl;�) + k(J ; K)kC0;�(�)2

Ð
= CM� :

Using Hölder’s inequality, these two estimates imply

k(WD;QD)kH(curl;�)2 � CjDj 12 	 ��max �je� � �j; je	 � 	jÐ��
L1(D)M�;

as announced.

We prove (4.22) using a variant of the so-called Aubin–Nitsche (or Céa) du-
ality argument in numerical analysis. Consider the adjoint problem associated
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to (4.7), with respect to L2(�;�3)2 , namely

(4.24)

8<:
curlXD = i �!��DTD + B in � ;

curl TD = �i �	DXD + A in � ;

XD � � = 0 on @� ;

with A; B 2 L2(�;�3). Note that problem (4.24) is well posed whenever prob-
lem (4.7) is well posed (Remark 3.16), and so by Lemma 4.1 we have

(4.25) k(XD; TD)kH(curl;�)2 � Ck(A; B)kL2(�)2 :
By an integration by parts, we have the duality identityZ

�
ED 	 Adx�

Z
�
HD 	 Bdx(4.26)

=

Z
�
K 	 TD dx�

Z
�
J 	 XD dx�

Z
@�
('� �) 	 TD d�;

for any solution (ED;HD) 2 H(curl;�)2 of (4.7) and any solution (TD; XD) 2
H(curl;�)2 of (4.24). If we apply this identity to (4.20), that is, K = 0 and
J = i�D(	D � 	)E , and (4.24) with A = 0 and B = QE

D , we obtain

(4.27) kQE
Dk2L2(�) = �

Z
�
i�D(	D � 	)E 	 XD dx:

In addition, (4.25) and Theorem 3.14 applied to (4.24) yield

kXDkL2+�(�0) � CkQE
DkL2(�)

for some � > 0 depending only � and � as introduced before. Combining
this estimate with (4.27), and using Hölder’s inequality, we obtain

kQE
Dk2L2(�) � Ck	D � 	kL1(D) 	 kEkL2(D) 	 kQE

DkL2(�) 	 jDj
�
4+2� ;

which, in view of (4.23), provides

kQE
DkL2(�) � CjDj 12+ �

4+2� 	 k	D � 	kL1(D) 	M�;

as desired. Using the same method, we apply the identity (4.26) to (4.21)
and (4.24) with A = WH

D and B = 0 and we obtain

kWH
D kL2(�) � CjDj 12+ �

4+2� 	 k�D � �kL1(D) 	M� :
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It turns out that the dominant parts of WE
D and QH

D are their non rotational
components, as already anticipated in Remark 3.15.

Lemma 4.9. — Under the assumptions of Lemma 4.8, and with the same notations,
there exists C > 0 depending only on �, �0 , �, C0 , k(�; 	)kC0;�(�)2 and j!j such
that

kED � E � rpEDkL2(�) � CjDj 12+� 	 kmax(je� � �j; je	 � 	j)kL1(D) 	M� ;

kHD �H � rpHD kL2(�) � CjDj 12+� 	 kmax(je� � �j; je	 � 	j)kL1(D) 	M� ;

where pED and pHD satisfy (4.13) and (4.14).

Proof. — With an abuse of notation, several positive constants depending only
on �, �0 , �, C0 , k(�; 	)kC0;�(�)2 and j!j will be denoted by C .

Decompose WE
D into its gradient and rotational parts as described in

Lemma 3.7 (Helmholtz decomposition), namely

WE
D = rqED + curl�ED;

where qED 2 H10 (�;�) and �ED 2 H1(�;�3). Setting 	E
D = curl�

E
D , from the

definition of WE
D (4.20) and the fact that qED is constant on @� we find8><>:

curl	E
D = i!�DQ

E
D in � ;

div	E
D = 0 in � ;

	E
D � � = 0 on @� ;

which by Lemmata 3.6 and 4.8 implies

(4.28) k curl�EDkH1(�) � CkQE
DkL2(�) � CjDj 12+� 	 k	D � 	kL1(D) 	M� :

Taking the divergence of the second identity in (4.20) and recalling the defi-
nition of pED we find

� div(	DrqED) = div
�
�D(	D � 	)E + 	D curl�

E
D

Ð
in � ;

� div �	DrpED) = div(�D(	D � 	)E
Ð

in � ;

therefore (
�div �	Dr(qED � pED)

Ð
= div(	D curl�

E
D) in � ;

qED � pED = 0 on @� :
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As a consequence, by (4.28) we obtain

krqED � rpEDkL2(�) � Ck curl�EDkL2(�) � CjDj 12+� 	 k	D � 	kL1(D) 	M� :

Thus, the conclusion follows by (4.22) and (4.28).
The justification of the expansion of H is entirely similar, and only the study

of the boundary conditions is different. More precisely, write

QH
D = rqHD + curl�HD ;

with qHD 2 H1(�;�) and �HD 2 H1(�;�3) such that �HD �� = 0 on @�. Setting
	H

D = curl�
H
D , from the definition of QH

D in (4.21) we find8><>:
curl	H

D = �i	DWH
D in � ;

div	H
D = 0 in � ;

	H
D 	 � = 0 on @� ;

where the boundary condition follows from [163, equation (3.52)] and the fact
that �HD �� = 0 on @�, since 	H

D 	� = div @�(�HD ��) = 0 on @�. Lemmata 3.6
and 4.8 yield

(4.29) k curl�HD kH1(�) � CkWH
D kL2(�) � CjDj 12+� 	 k�D � �kL1(D) 	M� :

Using the first identity in (4.21) and the fact that �DQH
D 	 � = 0 on @� by [163,

equation (3.52)], we find( �div ��Dr(qHD � pHD )
Ð
= div(�D curl�

H
D ) in � ;

��Dr(qHD � pHD ) 	 � = �D curl�
H
D 	 � on @� :

As a consequence, by (4.29) we obtain

krqHD � rpHD kL2(�) � Ck curl�HD kL2(�) � CjDj 12+� 	 k�D � �kL1(D) 	M� :

Thus, the conclusion follows by (4.22) and (4.29).

Lemma 4.9 was the missing piece in the the proof of Theorem 4.2. To con-
clude the proof of Theorem 4.4, we need to show how regularity allows for a
separation of scales. This is the purpose of this final lemma.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE



74 CHAPTER 4. SMALL INCLUSIONS FOR MAXWELL’S EQUATIONS

Lemma 4.10. — Under the assumptions of Theorem 4.4, there exists �0 > 0 depending
only on � and p such that

krpED � P
	
DEk � Cke	 � 	kL1(D) 	 jDj

1
2+�

0 	Mp ;

krpHD � P
�
DHk � Cke� � �kL1(D) 	 jDj

1
2+�

0 	Mp ;

for some C > 0 depending only on �, �0 , �, C0 , k(�; 	)kW 1; p(�)2 and j!j.

Proof. — Several positive constants depending only on �, �0 , �, C0 , j!j and
k(�; 	)kW 1; p(�)2 will be denoted by C . We use Einstein summation convention
(repeated indices are implicitly summed over).

Let �1 be a smooth subdomain such that �0 b �1 b �. Theorem 3.12
yields (E;H) 2 W 1; p(�1;�

3)2 and

(4.30) k(E;H)kW 1; p(�1)2 � C
�k'kH(curl;�) + k(J ; K)kW 1; p(div;�)2

Ð
= CMp :

Testing (4.16) against pk	 , integrating by parts and using ellipticity we obtain

(4.31) krpk	kL2(�) � Cke	 � 	kL1(D) 	 jDj
1
2 :

While this estimate is optimal for the gradient, it can be improved for the
potential itself, using the Aubin–Nitsche duality argument. In detail, let z

in H10 (�;�) be the solution of

(4.32) � div(	Drz) = pk	 in � :

Thanks to Theorem 3.5 (with q = 6 and p = 3q
q+3 = 2), we have that rz enjoys

higher integrability in �0 , namely

(4.33) krzkL2+�(�0) � Ckpk	kL2(�):

Moreover, testing (4.32) against pk	 and comparing it with (4.16) tested
against �z , we obtain

kpk	k2L2(�) =
Z
�
rz 	 	Dr pk	dx =

Z
�0

rz 	 �D(	� 	D)ek dx:
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Thanks to Hölder’s inequality, this yields

kpk	k2L2(�) � ke	 � 	kL1(D) 	 jDj
1
2+

�
4+2� 	 krzkL2+�(�0)

� Ckpk	kL2(�) 	 ke	 � 	kL1(D) 	 jDj
1
2+

�
4+2� ;

using (4.33) in the second step. We have obtained that

(4.34) kpk	kL2(�) � Cke	 � 	kL1(D) 	 jDj
1
2+

�
2�+4 :

The Gagliardo–Nirenberg–Sobolev inequality (see e.g. [95, Chapter 5.6]) then
shows that (4.31) and (4.34) imply in particular that

(4.35) kpk	k
L
2p
p�2 (�)

� Ckrpk	k
3
p

L2(�)
	 kpk	k

1� 3p
L2(�)

� Cke	 � 	kL1(D) 	 jDj
1
2+�

0
;

where �0 = �
4+2�(1� 3

p ). The same arguments when applied to pED show that

krpEDkL2(�) � Cke	 � 	kL1(D) 	 jDj
1
2 	 kEkL1(�1)(4.36)

� Cke	 � 	kL1(D) 	 jDj
1
2 	Mp ;

and, in turn,

(4.37) kpEDk
L
2p
p�2 (�)

� Cke	 � 	kL1(D) 	 jDj
1
2+�

0 	Mp :

We shall now make use of (4.35) and (4.37) to conclude.
Let � 2 C1(�) be a cut-off function such that � = 1 in �0 and

supp � � �1 . We wish to show that

(4.38) k�(rpED � P
	
DE)kL2(�) � Cke	 � 	kL1(D) 	 jDj

1
2+

�0
2 	Mp ;

as it establishes our claim with respect to the electric field. The estimate on
the magnetic field may be derived in a similar way, the only relevant difference
lies in the Neumann boundary conditions in place of the Dirichlet boundary
conditions, but it does not cause additional difficulties. We will focus therefore
on (4.38), and more precisely we shall show that

(4.39) w = pED � pk	Ek 2 H10 (�);

satisfies

(4.40) k�rwkL2(�) � Cke	 � 	kL1(D) 	 jDj
1
2+

�0
2 	Mp :
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Indeed (4.40) implies (4.38), as thanks to (4.30) and (4.35) we have

k�(rw � (rpED � P
	
DE))kL2(�) = k�pk	rEkkL2(�)

� CkrEkkLp(�1)
	 kpk	kL2p=(p�2)(�) � Cke	 � 	kL1(D) 	 jDj

1
2+�

0 	Mp :

Thanks to Hölder’s inequality, and estimates (4.35) and (4.37) we have

kwkL2p=(p�2)(�1) � kpEDkL2p=(p�2)(�)+ kpk	kL2p=(p�2)(�)	 kEkkL1(�1)(4.41)

� Cke	 � 	kL1(D) 	Mp 	 jDj
1
2+�

0
;

whereas from (4.31) and (4.36) we obtain

krwkL2(�1) � krpEDkL2(�) + krpk	kL2(�) 	 kEkkL1(�1) + kpk	rEkkL2(�1)(4.42)

� Cke	 � 	kL1(D) 	Mp 	 jDj
1
2 :

Using the ellipticity of 	D , we find

k�rwk2
L2(�)

� 2kr(�w)k2
L2(�)

+ 2kwr�k2
L2(�)

� C
�þþþ Z

�
	Dr�w 	 r(�w)dx

þþþ+ kwr�k2
L2(�)

�
� C

�þþþ Z
�
	Drw 	 r(�2w)dx

þþþ+ kwr�k2
L2(�)

+ k�rwkL2(�)kwr�kL2(�)
�
;

In other words, we have

k�rwkL2(�) � C
�þþþ Z

�
	Drw 	 r(�2w)dx

þþþ 12 + kwr�kL2(�)
�
:

Thus, thanks to (4.41), we find that proving (4.40) reduces to showing that

(4.43)
þþþ Z
�
	Drw 	 r(�2w)dx

þþþ � Cke	 � 	k2L1(D) 	M2p 	 jDj1+�0 :
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Using (4.13) and (4.16) we find

�
Z
�
	Drw 	 r(�2w)dx

=

Z
�
div(	DrpED)�2w � div(	Drpk	)Ek�2wdx

+

Z
�
	D p

k
	rEk 	 r(�2w)dx�

Z
�
	DrEk 	 rpk	(�2w)dx

=

Z
�
��2w div(�D(	D � 	)Ekek)dx

+

Z
�
�2wEk div(�D(	D � 	)ek)dx

+

Z
�
	D p

k
	rEk 	 r(�2w)dx�

Z
�
	DrEk 	 rpk	(�2w)dx

=

Z
�
��2w�D(	D � 	)ekrEk dx

+

Z
�
	D p

k
	rEk 	 r(�2w)dx�

Z
�
	DrEk 	 rpk	(�2w)dx:

To conclude we bound each of the right-hand side terms. Using Hölder’s in-
equality, (4.30) and (4.41), we findþþþ Z

�
�2w �D(	D � 	)ekrEk dx

þþþ � Cke	 � 	kL2(D) 	 kwkL2p=(p�2)(�1)	 krEkkLp(�1)

� Cke	 � 	k2L1(D) 	M2p 	 jDj1+�0 ;
and this bound agrees with (4.43). Using Hölder’s inequality, (4.30), (4.35),
(4.41) and (4.42), we obtainþþþ Z

�
	D p

k
	rEk 	 r(�2w)dx

þþþ � Ckpk	kL2p=(p�2)(�)	 krEkkLp(�1)
	 kwkH1(�1)

� Cke	 � 	k2L1(D) 	M2p 	 jDj1+�0 ;
which is also the expected bound. Finally, using Hölder’s inequality, (4.30),
(4.31) and (4.41) we findþþþ Z

�
	DrEk 	 rpk	(�2w)dx

þþþ � Cke	 � 	k2L1(D) 	M2p 	 jDj1+�0

which concludes the proof of (4.43).
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CHAPTER 5

A CASE STUDY OF SCATTERING ESTIMATES

5.1. Introduction

In Chapter 2, we mentioned that observability properties for the wave equa-
tion in inhomogeneous media were connected to the regularity properties of
the parameters. In Chapter 3, we showed that some regularity of the coeffi-
cients were required to derive Wm;p estimates for the electromagnetic fields in
general. In practical applications, the observed medium is not perfect: small
defects may occur. In Chapter 4, we detailed how the first order terms of the
expansion in terms of the volume of such defects are obtained, for a given
frequency (or more generally for frequencies within a give range, away from
the eigenvalues of the boundary value problem). The first order expansion
obtained for the perturbation of the electromagnetic energy was a product of
the difference in the coefficients, that is, e" � " for the electric field and e� � �

for the magnetic field, the frequency !, and the volume of the inclusion jDj.
It is natural to wonder what the limits of such asymptotic regimes are, namely
when ! or e" � " are very large compared to the volume. In the case of a dia-
metrically small inclusion and when ! = 0, it is known that the corresponding
expansions are in fact uniform with respect to the contrast [171].

An educated guess, extrapolating from the results of the previous chapter, is
that if the contrast between the defects and the background medium, the size
of the inclusion, and the time-dependent oscillation of the fields are sufficiently
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small, the effect of the defects is negligible. The purpose of this chapter is to
quantify precisely this statement on a simple model, namely the following time-
harmonic Helmholtz equation

�u+ !2q2u = 0 in �
d;

with d = 2 or 3, where q takes two values,

q(x) =

²
a when jxj < ";

1 otherwise,

with a; " > 0. This model can be derived from the acoustic wave equation:
writing c = q�1 and U(x; t) = u(x)ei!t; U is a solution of

@tt U � c2�U = 0 in �
d:

Alternatively, in dimension 2, it also corresponds to the transverse electric
mode of Maxwell’s system for an isotropic dielectric parameter " = q2 in a
magnetically homogeneous medium.

We are interested in scattering estimates, that is, in evaluating how much u

departs from the solution of the homogeneous problem ui for q � 1 every-
where (no defects), when u and ui are close to each other at infinity. The scat-
tering wave equation writes

(5.1)

(
�u+ !2q2u = 0 in �

d;

u� ui satisfies the radiation condition.

The last statement of (5.1) precisely means that, writing u = ui+ us for jxj > ",
us satisfies

(5.2) lim
r!1 r

1
2 (d�1)

� @ us

@ r
(x)� i!us(x)

�
= 0 with r = jxj;

and this condition holds uniformly for every direction x=jxj 2 �d�1 . This con-
dition is known as the Sommerfeld radiation condition, and it characterises
uniquely the radiative nature of the scattered field us , see [82], [170], [122]
for a proof of the well-posedness of (5.1)–(5.2). The solution u is the unique
weak solution in H1loc(�

d).
Scattering estimates correspond to free space problems, when boundary

conditions are not present, or are deemed far enough away so that they do

COURS SPÉCIALISÉS 25
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not affect the problem at hand. In the present case, the Helmholtz equation
presents the added advantage of having no eigenmodes (or resonances), thus
any ! > 0 may be considered.

It is very well known that, for fixed ! and a, the scattered field decays as
jxj ! 1; for example for an incident field ui = exp(i! 	 x), with  2 �d�1 ,
there holds [82], [122]

u = ui +
exp(i!jxj)
jxj 12 (d�1)

u1
� x

jxj ; ; !) + O(jxj� 12 (d+1)
�
;

where u1 , the legacy of the inclusion at infinity, is called the far field pattern,
or scattering amplitude. The dependence of this asymptotic on the contrast a
and on the frequency of the incident field is not straightforward. It is also clear
that such an expansion is of little use in the near field, that is, close to the
inclusion. The purpose of this chapter is to provide quantitative estimates for
any contrast, any frequency and at arbitrary distances for u�ui . In presence of
a lossy layer (when q has an imaginary part), estimates for all frequencies have
been obtained in [172].

This is very difficult in general, but the particular case we are considering
has been studied for well over a century: the Bessel functions are solutions of
this problem obtained by separation of variables in polar (or spherical) coor-
dinates. These functions have been studied extensively, and their asymptotic
properties are well known [176, Chapter 10]. Much less is known regarding
uniform estimates of these functions (historically, the emphasis was centred
around their numerical approximation, which has become less crucial in mod-
ern times): this is still the topic of on-going investigations. While our analysis
uses these functions in an essential manner, and most of this chapter is centred
around properties of Bessel functions, they do not appear in our final results,
which do not require any knowledge of the shibboleth of Bessel functions to
be stated.

The results presented in this chapter mostly stem from [75], [76], [72]
and [122], to which we refer the readers for additional and more complete
results.
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5.2. Main results

In what follows, ui 2 H1loc(�
d;�) will refer to a solution of

�ui + !2ui = 0 in �
d;

whereas us 2 H1loc(�
d;�) is defined as the unique solution of

(5.3)

8>><>>:
�(ui + us) + !2q2(ui + us) = 0 in �d;

lim
r!1 r

1
2 (d�1)

� @ us

@ r
(x)� i!us(x)

�
= 0

uniformly for all x=jxj 2 �d�1:

The definition of the norms used is recalled in Section 5.4. Given a Banach
space H of functions defined on �d�1 and a function f defined on �d , with
an abuse of notation we shall denote��f(jxj = R)

��
H
:= kfRkH; R > 0;

where fR is the function defined by fR(x) = f(Rx) for x 2 �d�1 .

Our first result quantifies the regime for which local estimates hold.

Theorem 5.1. — For all s � 0, a > 0, R � " and ! > 0 such that
max(a; 1)!" � 1, there holds��us(jxj = R)

��
Hs+1=3� (�d�1) � 3ja� 1j!"

� "

R

� 1
2 (d�1) 	 ��ui(jxj = ")

��
Hs�(�d�1)

:

This result shows the local character of the perturbation for moderate fre-
quencies, that is max(a; 1)! � "�1 : the perturbation is controlled by the norm
of the incident field on the obstacle. Note that the contrasting extremes, a ! 0
or a large, lead to very different estimates: the norm of the scattered field is
controlled uniformly for 0 < a < 1, and for all frequencies lower that "�1 .
This is consistent with general Morrey–Campanato estimates established for
Helmholtz equation in [180] with a variable index q(x). Such estimates re-
quire a growth condition on q to hold: in particular, they hold when rq 	 x is
non-negative. When a < 1, the discontinuous index q(r) which jumps from a

to 1 at r = " is the limit of a sequence of smooth monotonously radially increas-
ing indexes qn(r) equal to a until "� 1

n and 1 when r � ". On the other hand,
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when a > 1, [180] gives no insight on what the estimate should be, while The-
orem 5.1 introduces a restriction on the frequency depending on the contrast
factor a.

While this book was being reviewed, we were made aware of [159], where
the case when a � 1 is addressed, for star shaped domains, using a method
based on Morawetz multipliers.

Our second result reads as follows.

Theorem 5.2. — For any s � 0, a > 0, R � max(1; a)" and ! > 0 there holds��us(jxj = R)
��
Hs�(�d�1)

� 3
�max(a; 1)"

R

� 1
2 (d�1)�

1 + !"max(a; 1)
Ð

sup
0���max(1;a)"

��ui(jxj = �)
��
Hs�(�d�1)

:

Remark. — For a slightly sharper estimate, see Lemma 5.12.

Example 5.3. — When s = 0, d = 2 and ui = exp(i!x 	 ), with jj = 1, the
estimate given by Theorem 5.1 implies that for all R � " and !"max(a; 1) � 1,
there holds ��us(jxj = R)

��
H
1
3� (�1)

� Cja� 1j!"
r

"

R
,

where C is some universal constant, whereas the estimate given by Theorem 5.2
shows that for all R � max(a; 1)" and all ! > 0,��us(jxj = R)

��
H0� (�1)

� C

r
max(a; 1)"

R

�
1 + !max(a; 1)"

Ð
;

with the same universal constant C .

Theorems 5.1 and 5.2 provide estimates for all distances R � " and all
frequencies ! outside of the inclusion when a � 1. A near field region is not
covered when a > 1: no estimate is provided when " � R < a" and a!" > 1.
The following result illustrates why general estimates are not attainable.

Theorem 5.4. — Let ui = exp(i!x 	 ); with jj = 1: For every a > 1 and
" � R < a", there is a sequence of frequencies (!n)n2� such that the corresponding
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scattered field usn satisfy

(5.4)
��usn(jxj = R)

��
Hs�(�d�1)

> C exp
� 2
5
n
�
1�

p
R=a"

Ð 3
2
Ð
(1 + n2)

1
2 s�C

for all s 2 � and n 2 �, where C > 0 is a universal constant. The sequence (!n)n2�
is not unique; there exist two intertwined sequences (!+n )n2� and (!�

n )n2� satisfying

	 	 	 < !�
n < !+n < !�

n+1 < !+n+1 < 	 	 	
such that (5.4) holds for any !n 2 (!�

n ; !
+
n ).

This result shows that no scattering estimates such as the ones given by
the previous theorems hold uniformly in !, even for arbitrarily large negative
Sobolev norms, as this only has a polynomial effect, dwarfed by the exponential
dependence on the frequency. This is a quasi-resonance phenomenon, which
can be shown to exist for most incident waves: the choice of an incident plane
wave was made for convenience.

Remark 5.5. — This quasi-resonance phenomenon is localised around specific
frequencies. If small intervals around these frequencies are removed (and such
excluded frequency bands can be chosen so that their total measure tend to
zero with ") broadband estimate can be derived, see [75], [72], [76].

Further discussions of quasi-resonances, or quasi-modes, can be found
in [181], [159].

For simplicity, the above estimates exclude the radial mode, which has spe-
cific features in two dimensions. A radial mode estimate can be found in [75],
[72], [76], and together with Theorem 5.1 leads to the following result.

Theorem 5.6. — For any s 2 �, R � " and ! > 0, if

!"max(1; a) < min
�1
2
;

1p
(3� d) log(max(1; a)) + 1

�
then

(5.5)
��us(jxj = R)

��
Hs+1=3

�
�d�1

Ð � 3ja� 1j!"
� "

R

� 1
2 (d�1)��ui(jxj = ")

��
Hs(�d�1):
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5.3. Bessel functions and solution of the transmission problem

5.3.1. The two-dimensional case. — Given a function f 2 C0(�2;�), its re-
striction to the circle jxj = R can be written as

fR(�) := f
�
R(cos �; sin �)

Ð
=

X
n2�

cn(R)e
in�;

where (jxj; �) are the polar coordinates centred at the origin. Thanks to
Plancherel’s identity,��f(jxj = R)

��2
L2(�1)

= kfRk2L2(�1) =
Z
�1

þþf(R(cos �; sin �))þþ2 d�(�) = 1X
n=�1

þþcn(R)þþ2:
For r 2 [0;1) and n 2 �, we write Jn(r) for the non singular Bessel func-

tion of order n: that is, the bounded solution of

(5.6) r
d

dr

�
r
dy

dr

�
+ (r2 � n2)y = 0;

normalised near r = 0 by

Jn(r) �
� r
2

�n 1

�(n+ 1)
	

The solutions of (5.6) that are linearly independent of Jn(r) are propor-
tional to

Yn(r) + � Jn(r);

for some � 2 �. Near the origin, we have

Y0(r) � 2
�
log r and Yn(r) � � 1

��(n)

�2
r

�n
:

The Hankel function of order n is

H
(1)
n (r) = Jn(r) + iYn(r):

It is the only normalised solution of (5.6) such that x 7! H
(1)
n (jxj) exp(in arg(x))

satisfies the Sommerfeld radiation condition (5.2). The function H
(1)
n (r) ad-

mits a Laurent series expansion, and can be extended to all n 2 � and
r 2 � n f0g. We will only use it for real arguments.
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Proposition 5.7 (see [122]). — Given f 2 L2(�1), ! > 0 and R > 0 such that
Jn(!R) 6= 0 for all n 2 �, there exists a unique solution u 2 C2(B(0; R)) of

�u+ !2u = 0 in B(0; R);
such that

lim
jxj!R

ku(jxj ; �)� fkL2(S1) = 0
and it is given by

u(x) =
1X

n=�1
�n

Jn(!jxj)
Jn(!R)

ein arg(x);

where �n is the n-th Fourier coefficient of f . The series converges uniformly on compact
subsets of B(0; R).

Note that J�n(r) = (�1)n Jn(r) and Y�n(r) = (�1)nYn(r), and for n � 0 the
function r 7! Jn(r) is positive on (0; n] [176]; in particular, !R < 1 guarantees
that Jn(!R) 6= 0 for all n 2 �. In the sequel, we will write

u(x) =
1X

n=�1
cn Jn(!jxj)ein arg(x);

with suitable coefficients cn . Since Bessel functions of the first kind are
bounded in n and r , þþ Jn(r)þþ < � 2

1 + n2 + r2

� 1
6
;

(see Landau [132]) this series is uniformly convergent on compact subsets

of �2 when
P jcn jn� 13 < 1.

Proposition 5.8 (see [122]). — Given ! > 0; R > 0 and f 2 L2(�1), there exists a
unique radiating (or scattering) solution v 2 C2

�
�2 n B(0; R)Ð of

�v + !2v = 0 in �
2 n B(0; R);

satisfying (5.2) such that
lim
jxj!R

��v(jxj ; �)� f
��
L2(�1)

= 0:

Furthermore, v admits an expansion of the form

v(x) =
1X

n=�1
�n

H
(1)
n (!jxj)

H
(1)
n (!R)

ein arg(x);

where �n is the n-th Fourier coefficient of f . The series converges uniformly on compact
subsets of �2 n B(0; R).
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5.3.2. The three dimensional case. — The solutions of the radial equation
arising from a separation of variables in the Helmholtz equation are the spher-
ical Bessel functions, given by

jn(r) =

r
2

�r
Jn+12
(r); yn(r) =

r
2

�r
Yn+12

(r); h
(1)
n (r) = jn(r) + iyn(r):

With the same notation used in the two-dimensional case, we denote by fR the
function defined on �2 by fR() = f(R).

Proposition 5.9 (see [122]). — Given f 2 L2(�2), ! > 0 and R > 0 such that
jn(!R) 6= 0 for all n 2 �, there exists a unique solution u 2 C2(B(0; R)) of

�u+ !2u = 0 in B(0; R);

such that
lim
jxj!R

��u(jxj ; �)� f
��
L2(�2)

= 0:

It is given by

u(x) =
1X
n=0

nX
m=�n

�n;m
jn(!jxj)
jn(!R)

Y m
n

� x

jxj
�
;

where �n;m = (f; Y m
n )L2(�2) are the coefficients of f relative to its expansion in spherical

harmonics.

Similarly, for radiating solutions, we have the following result.

Proposition 5.10 (see [122]). — Given ! > 0, R > 0, and f 2 L2(�2), there exists
a unique solution u 2 C2

�
�3 n B(0; R)Ð of

�v + !2v = 0 in �
3 n B(0; R);

satisfying (5.2) such that

lim
jxj!R

��v(jxj ; �)� f
��
L2(�2)

= 0:

It is given by

v =
1X
n=0

nX
m=�n

�n;m
h
(1)
n (!jxj)
h
(1)
n (!R)

Y m
n

� x

jxj
�
;

where �n;m = (f; Y m
n )L2(�2) . Moreover, this series converges uniformly on compact subsets

of �3 n B(0; R).
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5.3.3. Bessel representation formula for the solution of (5.1). — We look for
a solution of problem (5.1) by writing

u(x) = ut(x)
�
1�H(jxj � ")

Ð
+
�
us(x) + ui(x)

Ð
H
�jxj � "

Ð
;

where H is the Heaviside function, which is nought on (�1; 0) and equal
to one on [0;1). Since ut and ui are non singular, they admit an expan-
sion of the form given by Proposition 5.7 when d = 2 (resp. Proposition 5.9
when d = 3) whereas us is radiating and admits an expansion given by Propo-
sition 5.8 when d = 2 (resp. Proposition 5.10 when d = 3). Since u and ru 	 x
are continuous at jxj = ", writing

ui(x) =
X
n2�

cn Jn(!jxj)ein arg(x);�
resp. ui(x) =

X
n2�

nX
m=�n

cn;mjn(!jxj)Y m
n

� x

jxj
��

we obtain that the scattered field us is given by

us(x) =
X
n2�

Rn(!"; a)cnH
(1)
n (!jxj)ein arg(x)(5.7) �

resp. us(x) =
X
n2�

nX
m=�n

rn(!"; a)cn;mh
(1)
n (!jxj)Y m

n

� x

jxj
��

(5.8)

with Rn : (0;1)� (0;1) �! � ;

(r; �) 7�! �Re
�
H
(1)0
n (r) Jn(r�)� �J 0n(�r)H

(1)
n (r)

Ð
H
(1)0
n (r) Jn(r�)� �J 0n(�r)H

(1)
n (r)

,

and rn = Rn+12
.

Notation. — Given n 2 �, we use the notation

�n = jnj+ 12(d� 2);
where d = 2 or 3 is the dimension of the ambient space. Given S � �, we note

�S = ý
n 2 � : 9p 2 S s.t. n = p or n = �p�:
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Lemma 5.11 (see [75]). — Given � 2 [1;1); � > 0, and r � min(�; ��), there
holds

jR�(r; �)H
(1)
� (r)j

j J�(r)j <
2r

�1=3
j�� 1j:

Lemma 5.11 is the last preliminary result used to proved Theorem 5.1.

Proof of Theorem 5.1. — Our approach is to choose a representation of the in-
cident field which makes the quantity��ui(jxj = ")

��
Hs�(�d�1)

appear more readily. Let us suppose d = 2 first. Under the form

ui(x) =
X
n2�

cn Jn(!jxj)ein arg(x);

the norm of interest does not have a simple expression, in terms of the se-
quence cn . On the other hand, if we could write

ui(x) =
X
n2�

�n
Jn(!jxj)
Jn(!")

ein arg(x);

then we would have��ui(jxj = ")
��2
Hs�(�d�1)

=
X

n2�nf0g
(1 + n2)sj�nj2:

We therefore divide the indices into two categories: the favourable ones,

N" =
ý
n 2 � n f0g : !max(a; 1)" � j0�n;1

�
;

where j0�;1 2 (�;1) is the first positive zero of r ! J 0�(r); and the others,

M" = � n N":

Note that N" is larger than M" , which is finite, for any given jxj and !. It is
nevertheless the good set, as when n 2 N" then J�n(!") > 0; we thus can apply
Proposition 5.7 and find that

ui(x) =
X

n2�N"

�n
Jn(!jxj)
Jn(!")

ein arg(x) +
X

n2�M"

cn Jn(!jxj)ein arg(x):
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Following the same approach when d = 3 and applying Proposition 5.9 we
find that the incident field ui admits a representation of the form

ui(x) =
X
n2N"

nX
m=�n

�n;m
jn(!jxj)
jn(!")

Y m
n

� x

jxj
�
+

X
n2M"

nX
m=�n

cn;mjn(!jxj)Y m
n

� x

jxj
�
:

This leads to the following norm representation, valid in both dimensions,

(5.9)
��ui(jxj = r)

��2
Hs�(�d�1)

=
�"
r

�d�2 X
n2N"

(1 + n2)s j��nj2 	
þþþ J�n(!r)
J�n(!")

þþþ2
+

X
n2M"nf0g

(1 + n2)sjc�nj2
� 2
�!r

�d�2þþ J�n(!r)þþ2;
with the notation j��nj2 = j��nj2 + j�nj2 when d = 2 and j�nj2 = Pn

m=�n j�n;mj2
when d = 3 (similarly for jc�nj2 and jcnj2).

We have assumed that !"max(1; a) � 1. Then !"max(1; a) � j0�n;1 for all n,
and M" = f0g. Therefore thanks to (5.7) and (5.8), we have for R � ",

��us(jxj = R)
��2
Hs+1=3� (�d�1) =

� "

R

�d�2 X
n2N"

(1+n2)s+
1
3 j��nj2	

þþþR�n(!"; a)H
(1)
�n (!R)

J�n(!")

þþþ2:
For all n 2 �nf0g, r 7! r

þþH(1)�n (r)
þþ2 is a decreasing function (see [209, 13.74]);

since " � R, this implies in particular

(5.10)
þþR�n(!"; a)H

(1)
�n (!R)

þþ2 � "

R

þþR�n(!"; a)H
(1)
�n (!")

þþ2:
Thanks to Lemma 5.11, the bound (5.10) shows in turn thatþþþR�n(!"; a)H

(1)
�n (!R)

J�n(!")

þþþ2 < "

R

� 2!"
�n1=3

ja� 1j
�2 � "

R

4(!")2

�n2=3
(a� 1)2;

for all n 2 N": This implies that��us(jxj = R)
��2
Hs+1=3� (�d�1) � C2(!")2

� "

R

�d�1
(a� 1)2 X

n2N"

(1 + n2)sj��nj2

= C2(!")2
� "

R

�d�1
(a� 1)2��ui(jxj = ")

��2
Hs�(�d�1)

;

with C � 2maxn2��((1 + n2)=�n
2)
1
3 < 3; which is the announced bound.
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Having in mind that on the ball centred at the origin of radius R we have

(5.11)
Z
BR

f dx =

Z R

0

�Z
�d�1

f(r�)d�
�
rd�1 dr;

we define, for all R > 0

kfk2
L2(0;R;Hs�(�d�1))

:=

Z R

0

��f(jxj = r)
��2
Hs�(�d�1)

rd�1 dr:

In order to prove Theorem 5.2, we are going to show a slightly stronger result.

Lemma 5.12. — For all R � max(1; a)", ! > 0 and s � 0 there holds

kus(jxj = R)k2
Hs�(�d�1)

� 8
� "

R

�d�1��ui(jxj = ")
��2
Hs�(�d�1)

+ 3!2
"max(a; 1)

Rd�1 kuik2
L2(0;max(1;a)";Hs�2=3� (�d�1))

:

Proof of Theorem 5.2. — Remark that

kuik2
L2(0;max(1;a)";Hs�2=3� (�d�1))

� kuik2
L2(0;max(1;a)";Hs�(�d�1))

=

Z max(1;a)"
0

��ui(jxj = r)
��2
Hs�(�d�1)

rd�1 dr

� sup
0�r�max(1;a)"

��ui(jxj = r)
��2
Hs�(�d�1)

(max(1; a)")d

d
,

therefore Lemma 5.12 implies that��us(jxj = R)
��2
Hs�(�d�1)

� 8
�max(a; 1)"

R

�d�1
sup

0�r�max(1;a)"

��ui(jxj = r)
��2
Hs�(�d�1)

�
1 + !2"2 max(a; 1)2

Ð
;

which establishes our claim.

The proof of Lemma 5.12 is based on the following lemma.

Lemma 5.13 (see [75]). — For all r > 0 and � > 0 there holdsþþR�n(r; �)
þþ � 1:
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For all � > 0 and r > 0 such that 0 � max(�; 1)r � j0�n;1 there holds

(5.12)
jR�n(r; �)H

(1)
�n (r)j

j J�n(r)j
� 243 ;

where j0�n;1 2 (�n;1) is the first positive zero of r ! J 0�n(r).

Proof of Lemma 5.12. — We adopt the notations used in the proof of Theo-
rem 5.1. Namely we write

(5.13)
��ui(jxj = r)

��2
Hs�(�d�1)

=
�"
r

�d�2 X
n2N"

(1 + n2)s j��nj2 	
þþþ J�n(!r)
J�n(!")

þþþ2
+

X
n2M"nf0g

(1 + n2)sjc�nj2
� 2
�!r

�d�2þþ J�n(!r)þþ2;
where N" = fn 2 � n f0g : !max(a; 1)" � j0�n;1g and M" = � n N": Thanks
to (5.7) and (5.8), we have for R � ",��us(jxj = R)

��2
Hs�(�d�1)

=
X
n2N"

(1 + n2)sj��nj2 	
þþþR�n(!"; a)H

(1)
�n (!R)

J�n(!")

þþþ2� "

R

�d�2
;

+
X

n2M"nf0g
(1 + n2)s jc�nj2

� 2

�!R

�d�2 þþR�n(!"; a)H
(1)
�n (!R)

þþ2:
For all n 2 � n f0g, r 7! rjH(1)�n (r)j2 is a decreasing function; thus, using " � R

we have þþR�n(!"; a)H
(1)
�n (!R)

þþ2 � "

R
	 þþR�n(!"; a)H

(1)
�n (!")

þþ2; n 2 N";

and using max(a; 1)" � R we have for n 2 M" n f0g
þþR�n(!"; a)H

(1)
�n (!R)

þþ2 � "max(a; 1)

R
	 þþR�n(!"; a)H

(1)
�n (!max(a; 1)")

þþ2;
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which yield��us(jxj = R)
��2
Hs�(�d�1)

�
� "

R

�d�1 X
n2N"

(1 + n2)s j��nj2 	
þþþRn(!"; a)H

(1)
�n (!")

J�n(!")

þþþ2
+

"max(a; 1)

Rd�1
X

n2M"nf0g
(1 + n2)sjc�nj2

� 2
�!

�d�2þþH(1)�n (!max(a; 1)")
þþ2;

where in the second sum we used that jR�n(!"; a)j � 1 (Lemma 5.13). Thanks
to Lemma 5.13 we haveX

n2N"

(1 + n2)s j��nj2 	
þþþR�n(!"; a)H

(1)
�n (!")

J�n(!")

þþþ2(5.14)

� 283 X
n2N"

(1 + n2)s j��nj2 � 8
��ui(jxj = ")

��2:
On the other hand, Lemma 5.14 below shows that for all n 2 M"þþH(1)�n (!max(a; 1)")

þþ2 � 3!2(1 + n2)�
2
3

Z max(1;a)"
0

þþ J�n(!r)þþ2rdr:
As a consequence, we haveX

n2M"nf0g
(1 + n2)s jc�nj2

� 2
�!

�d�2þþH(1)�n (!max(a; 1)")
þþ2(5.15)

� 3!2 X
n2M"nf0g

(1 + n2)s�
2
3 jc�nj2

� 2
�!

�d�2 Z max(1;a)"
0

þþ J�n(!r)þþ2rdr
= 3!2

Z max(1;a)"
0

X
n2M"nf0g

(1 + n2)s�
2
3 jc�nj2

� 2
�!r

�d�2þþ J�n(!r)þþ2rd�1 dr
� 3!2kuik2

L2(0;max(1;a)";Hs�2=3� (�d�1))
:

Combining (5.14) and (5.15) we have obtained��us(jxj = R)
��2
Hs�(�d�1)

� 8
� "

R

�d�1��ui(jxj = ")
��2
Hs�(�d�1)

+ 3!2 	 "max(a; 1)
Rd�1 kuik2

L2(0;max(1;a)";Hs�2=3� (�d�1))
;

as announced.
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Lemma 5.14. — For any � > 0, provided that !� � j0�n;1 , we haveþþH(1)�n (!�)
þþ2 � 3!2(1 + n2)�

2
3

Z �

0

þþ J�n(!r)þþ2rdr :
Proof. — We compute that

(5.16) !2
Z �

0

þþ J�n(!r)þþ2rdr � Z j0�n;1

0

þþ J�n(r)þþ2rdr =
�
j0�n;1

Ð2 � �n
2

2

þþ J�n(j0�n;1)þþ2;
where the last identity follows from the differential equation satisfied by Bessel
functions. More precisely, given s > 0, as ws =

p
r J�n(sr) satisfies

�w00
s (r) +

�2n � 1
4

r2
ws(r) = s2ws(r);

we find (s2 � 1)w1ws = w00
1ws � w00

s w1 . Thus, by an integration by parts we have
that for � > 0Z �

0
w21 dr = lims!1

Z �

0
w1ws dr

= lim
s!1
(s2 � 1)�1(w0

1ws � w0
s w1)

þþ�
0

= lim
s!1
(s2 � 1)�1�w0

1(�)ws(�)� w0
s(�)w1(�)

Ð
:

For � = j0�n;1 , since J 0�n(j
0
�n;1
) = 0, this becomesZ j0�n;1

0

þþ J�n(r)þþ2rdr = lim
s!1

sj0�n;1
1� s2

J�n(j
0
�n;1
)J 0�n(sj

0
�n;1
):

Taking the limit as s ! 1, by (5.6) we obtain (5.16). When r � �n , there holds
�
p
r2 � �n2 jH(1)�n (r)j2 � 2 (see [209, 13.74]). As a consequence, as j0�n;1 > �n ,

we have

(5.17)
þþH(1)�n (!�)

þþ2 � 2
�

�
(j0�n;1)

2 � �n
2Ð� 12 :

Combining (5.16) and (5.17) we findþþH(1)�n (!�)
þþ2 � !2C�n

Z �

0

þþ J�n(!r)þþ2rdr;
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with C� =
4
�(

�
j0�;1

Ð2 � �2)�
3
2 j J�(j0�;1)j�2: The final estimate for the constant C�n

follows from known bounds on zeros of Bessel functions. For all � � 1,þþ J�(j0�;1)þþ > C1�
� 13 (see [132]);

j0�;1 > �+ C2�
1
3 (see [176, 10.21.40])

with explicit positive constants C1 and C2 . This yields in turn the upper bound

4

�

�
(j0�n;1

Ð2 � �n
2Ð� 32 þþ J�n(j0�n;1)þþ�2 < 3(1 + n2)�

2
3 ;

which concludes our argument.

Let us now turn to lower bound estimates, in the case of a contrast greater
than one. This phenomenon is due to the different behaviour of j J�n(�nr)j,
corresponding to the incident field, and jH(1)�n (�nr)j, corresponding to the scat-
tered field, for r < 1.

Lemma 5.15 (see [75]). — For all � � 1 and r < 1 there holdsþþ J�(�r)þþ � 1

2�
1
3

exp
�� �(1� r)

3
2
Ð
;

þþH(1)� (�r)
þþ � q

3
5
	 1
�
1
3

exp
� 2
5
�(1� r)

3
2
Ð
:

Proof. — It is shown in [75, Appendix A] that

g := r 7! log J�(�r) and k := r 7! � log jY�(�r)j
satisfy, for all 0 < r < 1,

g0(r) � �

r
1

r2
� 1 and k0(r) � 2

5
g0(r) :

Note that
R1
r

p
1=t2 � 1dt > (1� r)

3
2 for 0 < r < 1, and therefore

J�(�r) < J�(�) exp(��(1� r)
3
2 ) <

1

2�
1
3

exp(��(1� r)
3
2 );

þþH(1)� (�r)
þþ � jY�(�r)j >

þþY�(�)þþ exp � 25 �(1� r)
3
2
Ð
>
q
3
5
	 1
�
1
3

exp
� 2
5
�(1� r)

3
2
Ð
;

as desired.
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The previous lemma shows that if, for a frequency less than n, an incident
wave of the amplitude J�n(!r) is scattered with a reflection amplitude of or-
der 1, the scattered field will be extremely large compared to the incident
field, almost like a resonance phenomenon: we can call such frequencies quasi-
resonances. Quasi-resonances exist, as explained by the following lemma.

Lemma 5.16 (see [75]). — For any � > 1 and any � > 1, there exists N0 2 �� such
that for all n � N0 , there exists r = r(n; �; �) 2 (�n=�; �=��n) such that

(5.18) Im
�
H
(1)0
n (r) Jn(r�)� �J 0n(�r)H

(1)
n (r)

�
= 0;

and therefore

R�n(r(n; �; �); �) = �1:

We are now in a position to prove Theorem 5.4.

Proof of Theorem 5.4. — We consider only the two dimensional case, the three
dimensional case is similar. For an incident wave ui(x) = exp(i!x 	 
), with
j
j = 1, we have from the Jacobi–Anger expansion, writing x 	 
 = jxj cos �

ui(x) = J0(!jxj) + 2
1X
n=1

in Jn(!jxj) cos(n�);

thus ��us(jxj = R)
��2
Hs�(�1)

= 4
X
n>0

(1 + n2)s
þþRn(!"; a)H

(1)
n (!R)

þþ2:
Given " � R < a", let � =

p
a"=R, � = a and n > N0 where N0 is defined

in Lemma 5.16. Choose

!n = "�1r(n; a; �) 2
� n

a"
, n
a"
�
�
;

where r is defined in Lemma 5.16. Then,

(5.19)
��usn(jxj = R)

��
Hs�(�1)

� 2(1 + n2)
1
2 s
þþH(1)n (!nR)

þþ:
As !nR < n��1 < n, Lemma 5.15 shows that

(5.20)
þþH(1)n (!nR)

þþ > exp� 2
5
n
�
1�

p
R=a"

Ð 3
2

�q
3
5
n�

1
3 :
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Combining (5.19) and (5.20) we obtain��usn(jxj = R)
��
Hs�(�1)

> C exp
�
2
5
n
�
1�

p
R=a"

Ð 3
2

�p
1 + n2

s� 13 ;

for some absolute constant C > 0, as announced. To conclude the proof, note
that while (5.18) has only one solution in the given range, x 7! R�n(x; a) is
continuous, therefore there is an open interval (!�

n ; !
+
n ) contained in ( na" , n

a"�)

where jR�n(x; �)j � 1
2 . Therefore for any ! 2 (!�

n ; !
+
n ) we have��us(jxj = R)

��
Hs�(�1)

� (1 + n2)
1
2 s
þþH(1)n (!R)

þþ:
The rest of the proof follows, with a final lower bound reduced by 12 .

We conclude this section by showing how Theorem 5.6 follows from the
estimates given in [75], [76] and Theorem 5.1.

Proof of Theorem 5.6. — When d = 2, the estimate provided in [75], [76] (using
our notation convention) is that if a < 1 and !" < y0;1 then��us(jxj = R)

��2
Hs+1=3(�d�1) �

�
3ja� 1j!"Ð2� "

R
kui�jxj = "

Ðk2
Hs�(�d�1)

+
1

2�

�
3jui(0)j!"jH(1)0 (!R)j

Ð2�
;

whereas when a > 1 and !" < min(12 ;
1

a
p
log a+1

) then��us(jxj = R)
��2
Hs+1=3(�d�1) �

�
3ja� 1j!"Ð2� "

R

��ui(jxj = ")
��2
Hs�(�d�1)

+
1

2�

�
8 jui(0)j 	 !" 	 jH(1)0 (!R)j

Ð2�
;

where y0;1 
 0:89. As
p
x jH(1)0 (x)j �

p
2=�, this implies that when !" < 1

2
we have

1

2�

�
8!" jH(1)0 (!R)j

Ð2
=

"

R
	 8!"
�2

<
"

R
J0(
1
2)
2;

and since��ui(jxj = ")
��2
Hs(�d�1) =

��ui(jxj = ")
��2
Hs�(�d�1)

+
þþui(0)þþ2 J0(!");

>
��ui(jxj = ")

��2
Hs�(�d�1)

+
þþui(0)þþ2 J0(12)2;

the result follows.
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5.4. Appendix on the Hs�(�d�1) norms used in this chapter

The ambient space is �d , with d = 2 or d = 3.

When d = 2, given a function f 2 C0(�2), its restriction to the circle jxj = R

can be written
f
�jxj = R

Ð
=

X
n2�

cn(R)e
in arg(x);

where (jxj; �) are the polar coordinates centred at the origin. Thanks to
Plancherel’s identity,��f(jxj = R)

��2
L2(�1)

=

Z
�1

f2(R�)d�(�) =
1X

n=�1

þþcn(R)þþ2:
We write Hs(�1) for the Sobolev space of order s on the circle, endowed with
the norm ��f(jxj = R)

��2
Hs(�1)

=
1X

n=�1
(1 + n2)s

þþcn(R)þþ2:
For simplicity, we will focus on estimates of the non radial component of the
scattered field, and will therefore use the norm��f(jxj = R)

��
Hs�(�1)

=
���f(jxj = R)� 1

j�1j
Z
�1

f
�jxj = R

Ð
d�

���
Hs(�1)

:

When d = 3; the above notations have a natural extension using spherical
harmonics instead of Fourier coefficients. Given any f 2 C0(�3), its restriction
to the circle jxj = R can be decomposed in terms of the spherical harmonics
(see e.g. [176] for definition and properties) in the following way

f
�
R

x

jxj
�
=

1X
n=0

nX
m=�n

cn;m(R)Y
m
n

� x

jxj
�
;

where cn;m(R) =
�
f(jxj = R); Y m

n

Ð
L2(�2)

; and�
f(jxj = R); Y m

n

Ð
Y m
n

� x

jxj
�
= (2n+ 1)

Z
�2

f(R by )Pn� x

jxj 	by�ds(by );
where Pn is the n-th Legendre polynomial. The Sobolev spaces Hs(�2) norms
are given by ��f(jxj = R)

��2
Hs(�2)

=
1X
n=0

(1 + n2)s
þþcn(R)þþ2;
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with the notation jcn(R)j2 := Pn
m=�n jcn;m(R)j2; and��f(jxj = R)

��
Hs�(�2)

=
���f�jxj = R

Ð� 1

j�2j
Z
�2

f
�jxj = R

Ð
d�

���
Hs(�2)

:
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CHAPTER 6

THE JACOBIAN OF SOLUTIONS TO THE
CONDUCTIVITY EQUATION

6.1. Introduction

The focus of this chapter is the study of the critical points of the solutions to

(6.1)
² �div(aru) = 0 in � ;

u = ' on @� ;

where � � �
d is a bounded Lipschitz domain, for d � 2. We are interested

in finding conditions on ' so that u does not have interior critical points,
namely ru(x) 6= 0 for all x 2 �, or, more generally, conditions on d boundary
values '1; : : : ; 'd so that the corresponding solutions u1; : : : ; ud to (6.1) satisfy

(6.2) det
ðru1 	 	 	 rudŁ(x) > 0;

for every x 2 �. This constraint is related to the local invertibility of the map

(u1; : : : ; ud) : � �! �
d:

The ambient space dimension is the most important parameter. In two
dimensions, complex analysis tools can be used to tackle the problem.
When a � 1, the theory of harmonic mappings [91] provides a positive answer
to this question, through the Radó-Kneser-Choquet theorem [184], [123],
[81]. In particular, if '1 and '2 are suitably chosen, then det[ru1 ru2] > 0
in �. A brief discussion of this theorem is given in Section 6.2. The proofs
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are omitted, since this result will follow as a corollary of the non-constant
coefficient case.

The Radó-Kneser-Choquet theorem was extended to the non-constant coef-
ficient case in dimension two by several authors [15], [16], [14], [19], [54],
[20] using PDE methods. Proving positivity of the Jacobian corresponds to the
absence of critical points of solutions to (6.1) with suitable boundary values '.
In order to visualise this phenomenon, suppose that u has a critical point in x0 .
By the maximum principle, u cannot be a local minimum or maximum, and
has to be a saddle point. In other words, u has oscillations around x0 , and these
oscillations propagate to the boundary of the domain. Thus, ' needs to have,
at least, two alternating minima and maxima. On the contrary, when ' is cho-
sen without such oscillations, e.g. ' = x1 when � is convex, the corresponding
solution cannot have interior critical points. A self-contained exposition of this
theory for smooth coefficients, namely assuming that a is Hölder continuous,
is the content of Section 6.3.

When a is only measurable, the gradient of u is defined almost every-
where, and the Jacobian constraint is not defined pointwise. It is possible to
enforce (6.2) almost everywhere in �, provided that the boundary conditions
are suitably chosen, see [19]. This result is stated and discussed in Section 6.4;
the proof is omitted.

The situation is completely different in higher dimensions, where results of
this type do not hold [134], [64]. A sketch of the counter-examples is presented
in Section 6.5. The presentation follows and extends [77], where the construc-
tion given in [64] was used to prove that, for any choice of three boundary val-
ues, there exists a conductivity such that the corresponding Jacobian vanishes
at some point of the domain. In other words, suitable boundary conditions
cannot be determined a priori independently of a when the dimension of the
ambient space is three or higher.

6.2. The Radó-Kneser-Choquet theorem

This section deals with the two-dimensional case with constant isotropic co-
efficient, namely a � 1. This particular situation is of no interest for imaging
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and inverse problems, but is mathematically relevant because it opened the way
for the results in the general case. For this reason, we have decided to present
the main results but to omit their proofs. For full details we refer the interested
reader to [91], which we follow in this brief survey.

The problem under consideration is to find conditions on two boundary val-
ues '1 and '2 so that det[ru1ru2](x) 6= 0 for all x 2 �, where ui is defined by

(6.3)
²
�ui = 0 in � ;

ui = 'i on @� :

In order to be consistent with the literature, throughout this section we shall
use the complex notation, with the identification � = �2 , z = x1 + ix2 ,
� = '1 + i'2 and f(z) = u1(x) + iu2(x).

Thanks to the Cauchy-Riemann equations, the quantity we are interested in
is nothing else than the Jacobian of the harmonic function f : �! �, namely

(6.4) Jf(z) = det
ðru1(x) ru2(x)Ł:

We restrict ourselves to study the case where � = B(0; 1) is the disc centred
in 0 with radius 1. The main result of this section reads as follows.

Theorem 6.1 (Radó-Kneser-Choquet theorem). — Let D � � be a bounded convex
domain whose boundary is a Jordan curve @D . Let �: @B(0; 1)! @D be a homeomor-
phism of @B(0; 1) onto @D and f be defined as²

�f = 0 in B(0; 1),

f = � on @B(0; 1) :

Then Jf(z) 6= 0 for all z 2 B(0; 1).

Usual proof(s) for this result consist of two steps:

1) If Jf(z) = 0 for some z 2 B(0; 1) then �1ru1(z)+ �2ru2(z) = 0 for some
�i 2 �. Thus, it is helpful to consider the function u = �1u

1 + �2u
2 , which is

harmonic in B(0; 1) with boundary value �1'1 + �2'2 and satisfies ru(z) = 0.

2) If u is a real-valued harmonic function in B(0; 1) such that u @� takes any
value at most twice then u has no critical points in B(0; 1), namely ru(z) 6= 0
for all z 2 �.
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We shall not detail the derivation of these steps here. We refer the reader
to Section 6.3, where similar arguments are used to obtain the corresponding
result in the non-constant coefficient case.

It is worth mentioning how this result can be read in terms of harmonic
mappings. A univalent (one-to-one) mapping f : � ! � is a harmonic map-
ping if its real and imaginary parts are harmonic in �. Under the assumptions
of Theorem 6.1, the function f is locally univalent by the inverse mapping the-
orem, and the argument principle for harmonic functions [2] gives that f is
globally univalent. Therefore, f is a harmonic mapping of B(0; 1) onto D .

Conversely, Lewy’s theorem asserts that if f is locally univalent in D then
Jf(z) 6= 0 for all z 2 D [140]. The local univalency of f is equivalent to the
non-vanishing property of the Jacobian of f .

In the next section we shall generalise Theorem 6.1 and consider the case
with an arbitrary anisotropic elliptic tensor a 2 C0;�(�;�2�2) in a convex
bounded domain � � �2 .

6.3. The smooth case

Let � � �2 be a convex bounded domain with Lipschitz boundary and
a 2 C0;�(�;�2�2) satisfy the uniform ellipticity condition

(6.5) ��1jj2 � a 	  � �jj2;  2 �
2;

and the regularity estimate

(6.6) kakC0;�(�) � �;
for some � 2 (0; 1) and � > 0. Let us recall the main notation. Given two
boundary values '1; '2 2 H1(�;�) let ui 2 H1(�;�) be the weak solutions to² �div(arui) = 0 in � ;

ui = 'i on @� :

As before, we look for suitable boundary conditions (independent of a) such
that

det
ðru1(x) ru2(x)Ł 6= 0; x 2 � :
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Note that classical elliptic regularity theory [104] gives ui 2 C1loc(�;�), and so
the problem is well-posed.

An answer to this problem for a general choice of the boundary values is
given in [54]. Roughly speaking, it is sufficient that � = ('1; '2) maps @� onto
the boundary of a convex domain. This condition is clearly a generalisation of
the assumption in Theorem 6.1. For brevity, we shall consider here only the
simplest choice for �, namely the identity mapping. That is, we set

'1 = x1; '2 = x2:

The main result reads as follows.

Theorem 6.2. — Let � � �
2 be a bounded convex Lipschitz domain and a

in C0;�(�;�2�2) satisfy (6.5). For i = 1; 2 let ui 2 H1(�;�) be the unique
solutions to ² �div(arui) = 0 in � ;

ui = xi on @� :

Then det
ðru1(x) ru2(x)Ł 6= 0, x 2 � .

Remark 6.3. — Once this result is established, it is possible to prove that in fact
there holds

det
ðru1(x) ru2(x)Ł > 0; x 2 � :

Indeed, for t 2 [0; 1] define at = ta + (1 � t)I , where I is the 2 � 2 identity
matrix. Clearly, at still satisfies (6.5). Denote

	t = det
ðru1t ru2t Ł;

where uit is given by ² �div(atruit) = 0 in � ;

ui = xi on @� :

By Theorem 6.2 there holds

(6.7) 	t(x) 6= 0; t 2 [0; 1]; x 2 � :
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By standard elliptic regularity (see Lemma 8.5), the map t 7! uit 2 C1(�) is
continuous, and so the map t 7! 	t(x) is continuous for every x 2 �. There-
fore, combining 	0 = det[rx1 rx2] = 1 with (6.7) yields

det[ru11(x)ru21(x)] > 0; x 2 � :

The claim is proved as ui1 = ui .

A similar proof can be given by using the Brouwer degree. See [54] for
details.

Remark 6.4. — In fact, it can be proved that the non-zero constraint above
holds up to the boundary [54], [20], namely

det[ru1(x) ru2(x)] > 0; x 2 � :

As in the outline of the proof of Theorem 6.1, the main step of the proof
of this theorem is the study of the absence of critical points of solutions to the
conductivity equation with suitable boundary conditions. Namely, can we find
conditions on the boundary value ' such that the corresponding solution u to² �div(aru) = 0 in � ;

u = ' on @� ;

does not have interior critical points, that is, ru(x) 6= 0 for all x 2 �? The
answer is positive, and the conditions are related to the number of oscillations
of ' @� , as we mentioned in x6.1. This theory has an almost independent
history, see [15, 16] and [14] which we follow in this exposition.

The study of this problem is based on a local asymptotic expansion of u in
terms of homogeneous polynomials. We state here the version of this result
given in [193, Theorem 7.4.1], and the reader is referred to [114], [58], [69],
[187], [113] for related results.

Proposition 6.5. — Let � � �
2 be a bounded Lipschitz domain and let a

in C0;�(�;�2�2) satisfy (6.5). Let u 2 C1loc(�;�) be a non-constant weak so-
lution to

�div(aru) = 0 in � :
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For any x0 2 � there exist n 2 � and A 2 �2 n f0g such that as x ! x0

(i) u(x) = u(x0) + �n+1
�
cos((n+ 1)�); sin((n+ 1)�)

Ð 	 A+ o(�n+1);

(ii) ru(x) = 12(n+ 1)�n
�
cos(n�) sin(n�)

� sin(n�) cos(n�)
½
A+ o(�n);

where we have used the notation x� x0 = �(cos �; sin �).

We call n the multiplicity of x0 as a critical point. In particular, x0 is a critical
point of u if and only if n � 1. Note that every critical point of u has finite
multiplicity (which is also a consequence of the unique continuation property
[193, Theorem 7.3.1]).

As a corollary, it is possible to prove the discreteness of the interior critical
points of u and to study the level set of u near a critical point.

Proposition 6.6. — Assume that the hypotheses of the previous proposition hold.

1) The interior critical points of u are isolated.

2) Take x0 and n as before. In a neighbourhood of x0 the level line fx : u(x) = u(x0)g
is made of n+ 1 arcs intersecting with equal angles at x0 .

Proof. — 1) By contradiction, suppose that we have x`; x0 2 � such that
x` ! x0 and ru(x`) = ru(x0) = 0. Applying Proposition 6.5, part (ii), in x0
we obtain for some n 2 �� and A 2 �2 n f0g as ` ! 1

0 = ru(x`) = 12(n+ 1)�n`
�
cos(n�`) sin(n�`)

� sin(n�`) cos(n�`)
½
A+ o(�n` );

where x` � x0 = �`(cos �`; sin �`). Up to a subsequence, assume that �` ! �0
for some �0 2 [0; 2�]. Taking the limit as ` ! 1 yields�

cos(n�0) sin(n�0)

� sin(n�0) cos(n�0)
½
a = 0;

this implies A = 0, a contradiction.

2) By Proposition 6.5, part (i), we have as x ! x0

u(x) = u(x0) + �n+1
�
cos((n+ 1)�); sin((n+ 1)�)

Ð 	 A+ o(�n+1);
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where x� x0 = �(cos �; sin �). Observing that the setý
x0 + �(cos �; sin �) : (cos((n+ 1)�); sin((n+ 1)�)) 	 A = 0�

is made of n+ 1 arcs intersecting with equal angles at x0 concludes the proof.

We are now ready to study the absence of critical points for solutions to the
equation �div(aru) = 0. Several versions of this result can be found in [15],
[16], [14].

Proposition 6.7. — Let � � �
2 be a simply connected bounded Lipschitz domain and

a 2 C0;�(�;�2�2) satisfy (6.5). Let ' 2 H1(�;�) be such that @� can be split into
two arcs on which respectively ' is a non-decreasing and non-increasing function of the
arc-length parameter. Let u 2 H1(�;�) be the weak solution to² �div(aru) = 0 in � ;

u = ' on @� :

If u is not constant, then ru(x) 6= 0, x 2 � .

Proof. — By contradiction, suppose that x(0) 2 � is a critical point of u.
By Proposition 6.6, part 2), in a neighbourhood U of x(0) the level line
fx 2 � : u(x) = u(x(0))g is made of n + 1 arcs intersecting with equal angles
at x(0) for some n � 1. More precisely, By Proposition 6.5, part (i), the set
fx 2 U : u(x) > u(x(0))g is made of n+ 1 connected components U+` , namely

ý
x 2 U : u(x) > u(x(0))

�
=

n+1[
`=1

U+` :

Moreover, the components U+` alternate with the corresponding connected
components U�

` of fx 2 U : u(x) < u(x(0))g. Write now fx 2 � : u(x) > u(x(0))g
as the union of its connected components:ý

x 2 � : u(x) > u(x(0))
�
=

[
j2J
�+j

Let j1; j2 2 J be such that U+1 � �+j1 and U+2 � �+j2 . By the maximum principle,

the maximum that u attains in �+j1 must be attained at some x(1) 2 @�, and
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x(0)

Ω+
j1

Ω+
j2

x(1)

x(2)

Ai

Figure 6.1. The level sets of u.

in particular u(x(1)) > u(x(0)). Similarly, there exists x(2) 2 @� \ �+j2 such
that u(x(2)) > u(x(0)). See Figure 6.1.

Let us now write @� = A1 [ A2 as the union of the two arcs starting and
terminating at x(1) and x(2) . We claim that Ai \ fx 2 @� : u(x) < u(x(0))g 6= ?

for i = 1; 2. This contradicts the assumptions on '; as u(x(1)) > u(x(0)) and
u(x(2)) > u(x(0)), and the proof is concluded.

It remains to show that Ai \ fx 2 @� : u(x) < u(x(0))g 6= ? for i = 1; 2.
By contradiction, assume that Ai \ fx 2 @� : u(x) < u(x(0))g = ? for some

i = 1; 2. Since �+j1 is connected by arcs, there exists a path P1 � �+j1 connecting

x(0) and x(1) . Similarly, there exists P2 � �+j2 connecting x(0) and x(2) . Con-
sider now the domain D surrounded by the boundary @D = Ai[P1[P2 . By con-
struction, since the components U+` and U�

` alternate around x(0) , there exists
` = 1; : : : ; n + 1 such that U�

` � D . However, as u(x) � u(x(0)) for all x 2 @D ,
by the maximum principle we obtain u(x) � u(x(0)) for all x 2 D , a contradic-
tion.

We are now ready to prove Theorem 6.2. It remains to study the first step of
the outline of the proof of Theorem 6.1, namely to show how to apply Propo-
sition 6.7 to the case of the determinant of the gradients of two different solu-
tions.
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Proof of Theorem 6.2. — By contradiction, assume there exists x(0) 2 � such
that det[ru1(x(0)) ru2(x(0))] = 0. Thus

�1ru1(x(0)) + �2ru2(x(0)) = 0
for some �i 2 � with �21 + �22 > 0. Therefore the function u := �1u

1 + �2u
2

satisfies ru(x(0)) = 0 and² �div(aru) = 0 in � ;

u = �1x1 + �2x2 on @� :

As � is convex we claim that the function (�1x1+�2x2) @� satisfies the assump-
tions of Proposition 6.7. Indeed, since convexity is preserved by linear transfor-
mations, without loss of generality we can assume �1 = 1 and �2 = 0, so that
the boundary condition becomes '(x) = x1 . Let x(1); x(2) 2 @� be such that
'(x(1)) � '(x) � '(x(2)) for every x 2 @�. Since � is convex, ' is respectively
a non-decreasing and non-increasing function of the arc-length parameter on
the two arcs connecting x(1) and x(2) , and the claim is proved. Further, note
that � is simply connected. By Proposition 6.7, we obtain ru(x(0)) 6= 0, a
contradiction.

Theorem 6.2 shows how to construct solutions to the conductivity equation
satisfying the constraintþþdet[ru1(x) ru2(x)]þþ > 0; x 2 � :

For the applications to hybrid inverse problems, it will be useful to have a
quantitative version of this result. This is the content of the following corollary
(see [20] for a global result).

Corollary 6.8. — Let � � �
2 be a bounded convex Lipschitz domain, �0 b � and

a 2 C0;�(�;�2�2) satisfy (6.5) and (6.6). For i = 1; 2 let ui 2 H1(�;�) be defined
as the unique solutions to ² �div(arui) = 0 in � ;

ui = xi on @� :

Then
þþdet[ru1(x) ru2(x)]þþ � C for all x 2 �0 , for some C > 0 depending only

on �, �0 , � and �.
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Note that in view of Remark 6.3, the absolute value in the above inequality
can be omitted.

Remark 6.9. — Under the assumption a 2 C0;1 , it is possible to give an explicit
expression for the constant C [17, Remark 3].

Proof. — We argue by contradiction. If such a constant C did not exist, we
would be able to find a sequence an 2 C0;�(�;�2�2) of tensors satisfying (6.5)
and (6.6) such that the corresponding solutions uin to² �div(anruin) = 0 in � ;

uin = xi on @�

verify

(6.8) min
�0

þþdet[ru1n ru2n]þþ �!n 0:
Let xn 2 �0 be a point where such a minimum is attained. Up to a subsequence,
we can suppose that xn ! ex for some ex 2 �0 � �. By the Ascoli–Arzelà
theorem, the embedding C0;� ,! C0;�=2 is compact. Thus, up to a subsequence,
we have that an ! ea in C0;�=2(�;�2�2) for some ea 2 C0;�=2(�;�2�2) satisfying
(6.5) and keakC0;�=2(�;�2�2) � C(�)�.

Let eui be the unique solution to² �div(ea r eui) = 0 in � ;eu = xi on @� :

By looking at the equation satisfied by uin � eui and standard elliptic regularity
theory [104] we find that kuin � euikC1(�) ! 0. Hence��det[ru1n ru2n]� det[reu1 reu2]��

C0(�)
! 0:

Then, assumption (6.8) implies

jdet[reu1 reu2](ex)j � jdet[reu1 reu2](ex)� det[reu1 reu2](xn)j
+ jdet[reu1 reu2](xn)� det[ru1n ru2n](xn)j
+ jdet[ru1n ru2n](xn)j ! 0;

which shows that jdet[reu1 reu2](ex)j = 0 in contradiction to Theorem 6.2.
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6.4. The general case

When the coefficient a of the equation �div(arui) = 0 is not assumed to
be Hölder continuous, the problem becomes more complicated. Indeed, ui

may not be continuously differentiable, and so the gradients of solutions may
not have meaningful pointwise values. Therefore, the inequality

det
ðru1(x) ru2(x)Ł > 0

has to be studied almost everywhere in �. The first natural attempt is approx-
imating the irregular a with smooth tensors and using Theorem 6.2. Unfor-
tunately, taking the limit transforms the strong inequality above into a weak
inequality almost everywhere.

Proposition 6.10. — Let � � �
2 be a bounded convex Lipschitz domain and a

in L1(�;�2�2) satisfy (6.5). For i = 1; 2 let ui 2 H1(�;�) be defined as the
unique weak solutions to ² �div(arui) = 0 in � ;

ui = xi on @� :

Then det[ru1 ru2] � 0 almost everywhere in � .

Proof. — The proof is based upon a standard regularisation argument, and
only a sketch will be provided.

Using mollifiers, it is possible to show that there exist an 2 C1(�;�2�2)
satisfying (6.5) such that an ! a in Lp for every p < 1 and almost everywhere.
Thanks to Meyers’ theorem [157] – see Chapter 3 and Theorem 3.14 – we see
that the corresponding solutions uin of² �div(anruin) = 0 in � ;

uin = xi on @� ;

converge to ui in W 1;2(�;�). Hence, up to a subsequence, ruin converges
to rui almost everywhere. As a consequence, the result follows taking the
limit in

det
ðru1n(x) ru2n(x)Ł > 0 x 2 � ;

which is a consequence of Theorem 6.2 and Remark 6.3.
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Unfortunately, this result is of no practical use in the applications we have
in mind, where non-zero quantities are needed. A much better result would be
an inequality of the type

det[ru1 ru2] > 0 almost everywhere in �:

This result was proved in [19].

Theorem 6.11. — Let � � �
2 be a simply connected bounded convex Lipschitz do-

main, �0 b � and a 2 L1(�;�2�2) satisfy (6.5). For i = 1; 2 let ui 2 H1(�;�)

be defined as before. Then

det[ru1 ru2] > 0 almost everywhere in �:

More precisely, log det[ru1 ru2] 2 BMO(�0) .

Here, BMO is the space of functions with bounded mean oscillations.
Namely, a function f 2 L1loc(�

0;�) is in BMO(�0) if

sup
Q��0

1

jQj
Z
Q

þþþf � 1

jQj
Z
Q
f dy

þþþdx < 1;

where the sup is taken over all the squares Q contained in �0 .
This theorem extends a well-known result for quasi-conformal map-

pings [185]. The proof is based on the ideas used in the previous section
adapted to the non-smooth case via the concept of geometrical critical
points [14]. The details are omitted, since a detailed presentation of the proof
would require a separate chapter and would go beyond the scope of this book.

6.5. Absence of quantitative Jacobian bounds in three and higher dimensions

The Radó-Kneser-Choquet theorem and its generalisations to non-constant
conductivities completely fail in three dimensions. Lewy’s theorem is no longer
true: there exists a harmonic homeomorphism of the unit three-dimensional
sphere �3 into itself such that its Jacobian vanishes at some point. Further-
more, there exists a self-homeomorphism of �2 such that the Jacobian of its
harmonic extension vanishes at some point, see e.g. [215], [134], [64], [20]
and [11] for the study of critical points.
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Figure 6.2. Sketch of the periodic set. The various colours were
added for readability, to highlight which elements correspond to the
same tori, once the cell is repeated periodically. The set Q is the union
of all the rings.

In fact, using a result coming from the theory of homogenisation, it is pos-
sible to show that there is no good choice of boundary condition even locally.
This result originally appeared in [77] in dimension three: we detail here a
d-dimensional version (d � 3), which is almost identical, and present some
corollaries of this result.

Let � � �
d be a Lipschitz bounded domain, for d � 3. Let Y = [0; 1]3

denote the unit cube, and a3 be a piecewise constant Y -periodic function de-
fined by

(6.9) a3(y) = (�� 1)�Q(y) + 1; y 2 Y;

where �Q is the characteristic function of Q. The set Q is made of rotations
and translations of a scaled copy of the tori (that is, circular annuli whose
cross-section is a disk), with cubic symmetry. An illustration of one such Q is
given in Figure 6.2.
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This type of construction was originally introduced in [64]; the variant pre-
sented here was introduced in [63] (see also [120]). The value of � will be
determined later. If d � 4, let ad be a piecewise constant 1-periodic function
such that in [0; 1] we have

ad(t) = (�� 1) �[0; 12 )(t) + 1; t 2 [0; 1]:
The constant � > 0, which depends on � only, will also be determined later.
Consider now the (0; 1)d -periodic conductivity a 2 L1(�d;�) given by

(6.10) a(y1; : : : ; yd) = a3(y1; y2; y3)
dY

i=4

ad(yi); y 2 [0; 1]d:

For n 2 � and i = 1; : : : ; d let uin 2 H1(�;�) be the solution of

(6.11)
² �div(a(nx)ruin) = 0 in � ;

uin = 'i on @� ;

for some '1; : : : ; 'd 2 H1=2(@�;�). Set Un = (u1n; : : : ; u
d
n) and ' = ('1; : : : ; 'd).

Note that Un is bounded in H1(�;�)d independently of n, namely

kUnkH1(�)d � C(� ; �; �)k'kH1=2( @�)d :
Therefore, up to a subsequence, Un * U� weakly in H1(�;�)d . It turns out
that the whole sequence converges, and U� satisfies a constant coefficient PDE.
This is a so-called homogenisation result [56], [167], [22]. To state this result,
we need to introduce an auxiliary periodic problem.

Definition 6.12. — The periodic corrector matrix P 2 L2
�
(0; 1)d;�d�d

Ð
is given by

Pij =
@
@ yi

j , where 
 is the solution of8><>:

�div(ar
) = 0 in �
d;

y 7! 
(y)� y is in H1#
�
(0; 1)d

Ð
;R

(0;1)d

(y)dy = 0 :

Here, the space H1#
�
(0; 1)d

Ð
contains all (0; 1)d -periodic functions in H1loc(�

d;�d).

Note that because of the structure of a, we have

(6.12) 
j(y1; : : : ; yd) = j(y1; y2; y3); j = 1; 2; 3;
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where  2 H1(Y ;�3) is the solution of the three dimensional corrector prob-
lem, namely 8><>:

�div(a3r) = 0 in �
3;

y 7! (y)� y is in H1# (Y );R
Y
(y)dy = 0 ;

and 
j(y1; : : : ; yd) = f(yj) for j > 3, where f 2 H1((0; 1);�) is given by

�
ad f

0 Ð0 = 0; f(1) = f(0) + 1;

Z 1
0
f(t)dt = 0:

Explicitly this gives

(6.13) Pij(y) = f 0(yj)�ij =
2�

1 + �
	 1

ad(yj)
�ij ; j > 3 and 1 � i � d;

and overall Pij is block-diagonal with a 3�3 block for 1 � i; j � 3, and diagonal
for i; j > 3.

Theorem 6.13 (see [56], [167], [22]). — The sequence Un = (u
1
n; : : : ; u

d
n) defined

by (6.11) converges to U� weakly in H1(�;�d), where U� satisfies² �div(A�rU�) = 0 in � ;

U� = ' on @� :

The constant matrix A� is given by

(6.14) A� =
Z
(0;1)d

a(y)P (y)dy;

where P is the corrector matrix given in Definition 6.12. Furthermore

(6.15) rUn � P (nx)rU� �! 0 strongly in L1loc(�):

In the case at hand, the matrix A� has a specific form. Let us write for
convenience (y1; y2; y3) = y 0 . Inserting the explicit formula (6.13) in (6.14) we
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find that for d � j > 3,

A�
ij = �ij

Z
(0;1)d

a3(y
0 )

dY
`=4

ad(y`)
2�

1 + �
	 1

ad(yj)
dy1 	 	 	 dyd

= �ij
2�

1 + �

�Z
Y
a3(y

0 )dy 0
��Z 1

0
ad(t)dt

�d�4
= �ij

2�

1 + �

�
(�� 1)jQj+ 1Ð� 12(�+ 1)Ðd�4:

Note that (6.12) shows that when j � 3 and 4 � i, A�
ij = 0. Furthermore,

for 1 � i; j � 3

A�
ij =

Z
Y
a3(y

0 )
@

@ yi
j(y)

dY
`=4

ad(y`)dy

=
�Z

Y
a3(y

0 )
@

@ yi
j(y

0)dy 0
�� 1
2(�+ 1)

Ðd�3
:

Because of the cubic symmetry satisfied by a3 , and the periodicity of 1 � y1 ,Z
Y
a3(y

0 )
@

@ yi
1(y

0)dy 0 = �1i a
�
3:

Furthermore, the cubic symmetry of a3 also implies thatZ
Y
a3(y

0 )
@

@ y1
1(y

0)dy 0 =
Z
Y
a3(y

0 )
@

@ y2
2(y

0)dy 0 =
Z
Y
a3(y

0 )
@

@ y3
3(y

0)dy 0 :

As a consequence, A� is diagonal and

� 1
2(�+ 1)

Ð4�d
A�
ii =

8<:
�+1
2 a�3 when 1 � i � 3;
2�
1+�

�
(�� 1)jQj+ 1Ð when 3 < i � d:

Since P is the solution of a minimisation problem, one can establish that

a�3 =
Z
Y
a3(y)P11(y)dy <

Z
Y
a3(y)dy = (�� 1)jQj+ 1:

Therefore, for any � > 0, there exists a unique � � 1 such that

(6.16)
�+ 1

2
a�3 =

2�

1 + �

�
(�� 1)jQj+ 1Ð:

With this choice of � (as a function of �), we find that A� is a multiple of the
identity matrix.
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We then choose � so that the periodic corrector matrix P has a positive
determinant on a part of Y , and a negative determinant on another part. Such
a choice is possible as it was shown in [64] in the case d = 3 – it readily applies
in higher dimensions because of the structure of the matrix P .

Lemma 6.14 (see [64, Theorem 3]). — There exist �0 > 0, � > 0; Y+ and Y� open
subsets of Y n Q both of positive measure 2� such that

det P � 2� in Y+ and det P � �2� in Y�:

We therefore fix � according to Lemma 6.14 (and � according to (6.16)).
In view of Theorem 6.13 we have that Un , the solution of

(6.17)
² �div �a(nx)rUnÐ = 0 in � ;

Un = ' on @� ;

satisfies

(6.18) rUn �! P (nx)rU� in L1loc(�);

where U� satisfies

(6.19)
² ��U� = 0 in � ;

U� = ' on @� :

Note that the asymptotic behaviour of rUn given by (6.18) depends on two
independent factors: P , whose determinant changes sign locally and was con-
structed independently of � and ', and rU� , the harmonic lift of the bound-
ary condition ' in �. It is clear that the variations of the sign of det(rUn)
cannot be fully controlled by the boundary condition, which only acts on U� .
The main result of this section is a quantitative version of this statement.

Theorem 6.15 (see [77]). — Let �0 b � be a smooth domain. Given � > 0, x0 2 �0

such that B�(x0) � �0 and � > 0 let

Ad(x0; �; �) :=
ý
' 2 H1=2(@�;�d) : det(rU�) � �k'kd

H1=2( @�)
in B�(x0)

�
;

where U� is the harmonic extension of ' given by (6.19). There exist n, depending only
on �, �, �0 and �, a universal constant � > 0 and two open subsets B+ and B�
of B�(x0) such that

jB+j � �
þþB�(x0)þþ and jB�j � �

þþB�(x0)þþ;
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and for all ' 2 Ad(x0; �; �), there holds

det(rUn)(x) � ���k'kd
H1=2( @�)

in B�;

det(rUn)(x) � ��k'kd
H1=2( @�)

in B+;

where Un is the solution of (6.17).

Remark. — The pathological conductivity used here was constructed to be
piecewise constant, but a standard mollification argument allows us to consider
a smooth approximation of a instead to construct similar counterexamples.

To prove this result we need a quantitative convergence estimate in lieu
of (6.18).

This follows from a regularity result. Since the conductivity 	 is piecewise
constant (and therefore piecewise smooth), and the set Q has C1 smooth
boundaries (and therefore C1;� smooth boundaries), the regularity results
[142], [141] show that Un is also piecewise C1;� for some � > 0, up to the
boundary of the set Q in �0 . In fact, this provides uniform W 1;1 estimates
for Un , independently of n (see [141]). This result has been then successfully
expanded to provide error estimate results for Un , see [55], [148].

Lemma 6.16 (see [141, Theorem 3.4], [55, Theorem 3.6] or [148, Theo-
rem 4.2]). — There exists a constant C > 0 depending only on �, �0 , Q, � and �

such that

krUnkL1(�0) � Ck'kH1=2( @�);
kP (nx)kL1(�0) � C ;

krUn � P (nx)rU�kL1(�0) � C
k'kH1=2( @�)

n1=3
	

Proof of Theorem 6.15. — In �0 , we have

det(rUn) = det
�
P (nx)rU�Ð+ Rn = det

�
P (nx)

Ð
det(rU�) + Rn;

with

kRnkL1(�0) � C
��rUn � P (nx)rU���

L1(�0)

� �krUnkL1(�0) + kP (nx)rU�kL1(�0)
Ðd�1

;
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and thanks to Lemma 6.16,

kRnkL1(�0) � C
k'kd

H1=2( @�)

n1=3
	

Let B� = fx 2 B(x0; �) : nx 2 Y�+�dg: For n large enough, jB�j � �jB(x0; �)j.
Thanks to Lemma 6.14, we have �det(P (nx)) � 2� in B� , therefore

�det(rUn) � 2�det(rU�)� C

n1=3
k'kd

H1=2( @�)
:

With ' 2 Ad(x0; �; �), this implies

�det(rUn) �
�
2��� C

n1=3

�
k'kd

H1=2( @�)
� ��k'kd

H1=2( @�)
;

for n1=3�� � C .

The next corollary highlights that even locally no set of boundary conditions
can be chosen a priori, that is, independently of the unknown conductivity, to
enforce a positivity constraint on the Jacobian. The periodic conductivity a is
equal to a3 given by (6.9), with � chosen appropriately as above, with the same
cubic symmetry.

Definition 6.17. — Given � � �
3 a smooth bounded domain, and '1; '2; '3

in H1=2(@�;�), we say that the harmonic extension of ('1; '2; '3) has maximal
rank in � if the solution of²

�U� = 0 in � ;

U� = ('1; '2; '3) on @� ;

is such that detrU�(z) 6= 0 for some z 2 �.

Clearly, a choice of boundary values '1; '2 and '3 whose harmonic exten-
sion does not have maximal rank in � will never be suitable for our purposes,
since the Jacobian constraint is not satisfied even for the trivial conductiv-
ity a � 1.

Corollary 6.18. — Let � � �
3 be a Lipschitz bounded domain, and �0 b � be a

smooth subdomain. Take '1; : : : ; 'N in H1=2(@�;�) for some N 2 �
� . For every

" > 0 there exists n 2 � such that the following is true.
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For every open ball B" � �0 of radius ", there exists x1 2 B" such that

max
1�i;j;k�N

þþþdet �[rui(x1);ruj(x1);ruk(x1)]Ðþþþ � ";

where ui is the solution of ²
div(a(nx)rui) = 0 in � ;

ui = 'i on @� :

Furthermore, for every open ball B" � �0 of radius " and every 1 � i; j; k � N such
that the harmonic extension of ('i; 'j ; 'k) has maximal rank in � there exists x2 2 B"
such that

det
�
[rui(x2);ruj(x2);ruk(x2)]

Ð
= 0:

Proof. — Let �00 be a smooth domain such that �0 b �00 b �. Following the
proof of Theorem 6.15, for any 1 � i; j; k � N , we have

(6.20) det
�rUn(x)Ð = det �P (nx)Ðdet �rU�(x)

Ð
+ Rn(x); x 2 �00;

where Un = (ui; uj ; uk) and²
�U� = 0 in � ;

U� = ('i; 'j ; 'k) on @� ;

with

(6.21)
þþRn(x)

þþ � C

n1=3
and

þþdet(rU�(x))
þþ � C for all x 2 �00;

for some C > 0 depending only on maxi k'ikH1=2( @�) . Therefore, for any

n � n0 =
�2
"
C
�3
;

we have

(6.22)
þþRn(x)

þþ � 1
2"; x 2 �00:

Let fB(xp ; 13")g1�p�P be a finite cover of �0 with balls of radius 13" such that
B(xp ;

1
3")\�00 6= ?. Let S denote the set of all triples (i; j; k) 2 f1; : : : ; Ng3 such

that the harmonic extension of ('i; 'j ; 'k) has maximal rank in �, namely

S =
ý
(i; j; k) 2 f1; : : : ; Ng3 : detrU�(z) 6= 0 for some z 2 ��:
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Since detrU� is analytic in � for every (i; j; k), for every p = 1; : : : ; P there
exists zp 2 B(xp ;

1
3") \�00 such that detrU�(zp) 6= 0 for every (i; j; k) 2 S . By

continuity, for every p there exists a ball B(zp ; �p) � B(xp ;
1
3")\�00 with �p > 0

and a constant cp > 0 such that for any (i; j; k) 2 S

detrU�(x) detrU�(zp) � cp ; x 2 B(zp ; �p):

Note that we may choose a common radius � > 0 and lower bound c > 0 for
this finite collection of balls, namely

(6.23) detrU�(x) detrU�(zp) � c; (i; j; k) 2 S; x 2 B(zp ; �):

By Lemma 6.14, there exists a universal constant � > 0, and two open balls,
B+; B� � Y n Q, such that

(6.24) inf
y2B+
det P (y) � 2�; sup

y2B�
det P (y) � �2�:

As a consequence, there exists an open ball B0 � Y such that

(6.25) sup
y2B0

jdet P (y)j � "

2C
	

Let n1 = (C2=c�)3 , so that by (6.21) for every n � n1 we haveþþRn(x) detrU�(z)
þþ � c�; x; z 2 �00:

Thus, in view of (6.23) and (6.24), for all n � n1 , (i; j; k) 2 S , p = 1; : : : ; P and
x 2 B(zp ; �) we have

(6.26)

8><>:
inf
y2B+

�
det P (y)

Ð
detrU�(x) detrU�(zp)� jRn(x) detrU�(zp)j � �c;

sup
y2B�

�
det P (y)

Ð
detrU�(x) detrU�(zp) + jRn(x) detrU�(zp)j � ��c:

For n 2 � and p = 1; : : : ; P , let

Bn
+(p) =

ý
x 2 B(zp ; �) : nx 2 B+ + �

3�;
Bn
�(p) =

ý
x 2 B(zp ; �) : nx 2 B� + �3

�
;

Bn
0(p) =

ý
x 2 B(zp ; �) : nx 2 B0 + �

3�:
Choose n � max(n0; n1) large enough so that Bn

+(p) 6= ?, Bn�(p) 6= ? and
Bn
0(p) 6= ? for all 1 � p � P . We will now show that n is an appropriate choice

to satisfy the claims of the corollary.
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Given a ball B" � �0 of radius ", there exists at least one p 2 f1; : : : ; Pg such
that B(xp ; 13") � B" . Pick any x1 2 Bn

0(p) � B" . If (i; j; k) 2 S , thanks to (6.20),
(6.22) and (6.25) there holdsþþdet(rUn(x1))þþ � þþdet(P (nx1))þþ 	 þþdet(rU�(x1))

þþ+ þþRn(x1)
þþ � ":

If (i; j; k) 62 S then by (6.20) and (6.22) we haveþþdet(rUn(x1))þþ = þþRn(x1)
þþ � 1

2" � ";

and so the first part of the statement follows.

Turning to the second statement of the corollary, given (i; j; k) 2 S , choose
x+ 2 Bn

+(p) and x� 2 Bn�(p). By construction, there exists a continuous path
	 : [0; 1]! B(zp ; �) such that 	(0) = x+ , 	(1) = x� and n	(t) 2 (Y n Q) + �3
for every t 2 [0; 1]. Thus, the function

g : t 7�! detrUn
�
	(t)

Ð
detrU�(zp);

is continuous. Further, in view of (6.26) it satisfies g(0) � �c and g(1) � ��c.
By the intermediate value theorem, there exists x2 2 B(zp ; �) � B" such that
det(rUn(x2)) detrU�(zp) = 0. Thus, by (6.23), we have det(rUn(x2)) = 0,
as desired.
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CHAPTER 7

COMPLEX GEOMETRIC OPTICS SOLUTIONS AND THE
RUNGE APPROXIMATION PROPERTY

7.1. Introduction

In Chapter 6 we studied the boundary control of d solutions to the conduc-
tivity equation

(7.1) � div(arui) = 0 in � � �
d;

in order to enforce a non-vanishing Jacobian constraint inside the domain. We
saw that some generalisations of the Radó-Kneser-Choquet theorem completely
solved the problem in two dimensions. Moreover, we exhibited a counter-
example indicating that such a result cannot hold in more than two dimensions
without a priori information concerning the conductivity a.

In any dimension, similar results cannot be obtained with solutions of equa-
tions of the form

(7.2) div(arui) + qui = 0 in � ;

for some unknown q 2 L1(�), q � 0 almost everywhere. Indeed, one fun-
damental ingredient of the proof of those results was the maximum principle,
which does not hold in general for PDE of this type.

This chapter is devoted to the discussion of two possible strategies that have
been used to overcome these issues: complex geometric optics (CGO) solu-
tions and the Runge approximation property. These two techniques are very
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different but both are based on a common idea, namely approximating so-
lutions of (7.1) (or (7.2)) by solutions to constant coefficient equations, for
which explicit solutions can be constructed. These approaches can be applied
provided that the oscillations of the parameters of the equations are known to
be bounded a priori .

Consider for simplicity the conductivity equation (7.1) with scalar coefficient
a in three dimensions. In the constant case, that is, with a = 1, we are left with
the Laplace equation

��ui = 0 in � :

The starting point of the CGO approach consists of taking solutions to this
equation of the form u�(x) = e

�	x for some � 2 �3 such that � 	 � = 0 (where
�1 	 �2 := (Re �1 	 Re �2 � Im �1 	 Im �2) + i(Re �1 	 Im �2 + Im �1 	 Re �2)),
namely harmonic complex plane waves, as it was done in the seminal paper
of Calderón [70]. With suitable choices for the parameter �, it is possible to
satisfy the desired condition jdet[ru1ru2ru3]j > 0. It remains to show that
the solutions in the general case with non-constant coefficients can be approxi-
mated by the solutions u� as j�j ! 1. This result was originally proved in [202]
and mainly applied to inverse boundary value problems [207]. Regularity esti-
mates adapted to hybrid problems were derived in [49]. CGO solutions have
been widely used in hybrid imaging techniques to exhibit solutions satisfying
several local non-zero constraints [205], [49], [41], [46], [27], [124], [161],
[42], [160], [40], [51], [28], [48], [43]. A detailed discussion of this strategy
is presented in Section 7.2, omitting the existence and regularity results for
the CGO solutions.

Let us now turn to the Runge approximation approach. It is enough to
choose the functions ui = xi as solutions in the constant coefficient case. With
this choice there holds

det[ru1 ru2 ru3] = det[e1 e2 e3] = 1;

and so the desired constraint is satisfied everywhere. By the Runge approxi-
mation property, it is possible to construct solutions to the non-constant co-
efficient PDE which approximate xi in a given small ball inside the domain.
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By covering the domain � with a finite number of these small balls the de-
sired constraint is enforced globally. The Runge approximation property for
PDE dates back to the 1950s, [150], [136]. It was applied to hybrid imaging
problems in [51], which we follow in the presentation given in Section 7.3 (see
also [43], [162], [48]). The main advantages of this approach over the CGO
approach are:

1) It is applicable with any second order elliptic equation, and in particular
with anisotropic leading order coefficients, while CGO solutions can be
constructed only with isotropic coefficients;

2) While the CGO estimates require high regularity assumptions on the
coefficients, the Runge approximation property holds provided that the
PDE enjoys the unique continuation property;

3) Since any solutions to the constant coefficient case can be approximated,
more general non-zero constraints can be satisfied.

However, there is a price to pay. While the CGO solutions give a non-vanishing
Jacobian globally inside the domain for a single (complex) choice of the
boundary conditions, by using the Runge approximation property the con-
straint under consideration holds only locally in fixed small balls. Therefore,
many different boundary conditions must be used to cover the whole domain.
Moreover, the CGO solutions are explicitly constructed (depending on the
coefficients), while the Runge approximation approach only gives a theoretical
existence result of suitable boundary conditions.

7.2. Complex geometric optics solutions

7.2.1. Harmonic complex plane waves. — The starting point of the CGO ap-
proach is always the Laplace equation

��u = 0 in � :

The CGO solutions are approximations in the non-constant coefficient case to
the harmonic complex plane waves of the form u�(x) = e

�	x for some � 2 �3

such that � 	 � = 0. These are harmonic functions in the whole space, since

�u�(x) = div(�e
�	x) = � 	 � e�	x = 0; x 2 �

d:
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Let us now explain why these solutions are of interest for us. As it was shown
in [40], suitable choices of the parameter � allow to satisfy the constraint
jdet[ru1 ru2 ru3]j > 0: Indeed, take �1 = t(e1 + ie2) and �2 = t(e3 + ie1) for
some t > 0 and consider the solutions u1 = Re u�1 , u

2 = Im u�1 and u3 = u�2 .
A direct calculation gives

J(x) := det
ðrRe u�1 r Im u�1 ru�2

Ł
(x)(7.3)

= t2 et(2x1+x3+ix1) det[e1 e2 �2] = t3 et(2x1+x3+ix1):

We have obtained the condition jJ(x)j > 0. We have used two real solutions
and one complex solution. However, only real solutions (and real illumina-
tions) can be considered in practice. In order to overcome this problem, it is
enough to choose the real solutions u3;1 = Re u�2 and u3;2 = Im u�2 . Since u1

and u2 are real, there holds

Re J = det
ðru1 ru2 ru3;1Ł; Im J = det

ðru1 ru2 ru3;2Ł:
Therefore, since jJ(x)j > 0 everywhere, we obtain the decomposition

� = �1 [�2;
where we have set � j = fx 2 � : jdet[ru1 ru2 ru3;j](x)j > 0g.

Thus, in the harmonic case we can construct suitable illuminations whose
corresponding solutions to the Laplace equation deliver a non-vanishing Ja-
cobian everywhere, in the sense made precise above. It remains to show that
these solutions can be approximated in the general case with non-constant
coefficient.

7.2.2. The main result. — Let � � �
d be a bounded Lipschitz domain and,

as in [42], we consider the elliptic equation² �div(aru) + qu = 0 in �;

u = ' on @� ;

where a 2 W 2;1(�;�), q 2 L1(�;�) and a satisfies the uniform ellipticity
condition

(7.4) ��1 � a � � almost everywhere in �:
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After the so-called Liouville change of unknown v =
p
au, we see that v satisfies

��v +
��pap

a
+

q

a

�
v = 0 in � :

As a consequence, setting q0 = �
p
ap
a
+ q

a and considering the coefficient q0 as

defined on the whole space �
d and with compact support, it is sufficient to

study the problem for the simplified Schrödinger-type equation

(7.5) � �v + q0v = 0 in �
d:

In this form, it is clear that the case with q0 6= 0 can be considered as a lower
order perturbation of the Laplace equation, for which we constructed simple
solutions, the harmonic complex plane waves of the form e�	x . Thus, it is nat-
ural to seek solutions to (7.5) as perturbations of these plane waves, namely of
the form

(7.6) v�(x) = e
�	x�1 +  �(x)

Ð
; x 2 �

d

for some � 2 �d such that � 	 � = 0, where  � is an error term, due to the
presence of the perturbation q0 . The functions v� are called complex geometric
optics solutions. Existence and regularity of these solutions are guaranteed
provided that the coefficient q0 is smooth enough.

Theorem 7.1 (see [202, 49]). — Take � 2 �� , � > 0, � 2 �d with � 	 � = 0 and let
q0 2 Hd=2+�+�(�d;�) be compactly supported. There exists � > 0 such that if j�j � �

there exists  � 2 Hd=2+�+1+�(�d;�) such that v� defined as in (7.6) is a solution
to (7.5). Moreover, for some C > 0,

(7.7) k �kC�(�) �
C

j�j 	

The (complete) proof of this result is much beyond the scope of these notes.
Not only does this result guarantee the existence of CGO solutions, but fur-
thermore it gives the approximation property (7.7). This is the property we
referred to at the beginning of this chapter: in view of (7.6), as j�j ! 1,
the CGO solutions approach the harmonic plane waves of the form e�	x . As
observed in x7.2.1, harmonic plane waves can be used to satisfy local non-zero
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constraints. Therefore, CGO solutions can be used to enforce the same non-
zero constraints in the general case, with non-constant coefficients, as discussed
in detail below.

7.2.3. Boundary control to enforce non-zero constraints

7.2.3.1. The Jacobian of solutions to the conductivity equation. — Inspired by Chap-
ter 6, we first consider the conductivity equation in three dimensions,

(7.8)
² �div(arui) = 0 in � ;

ui = 'i on @� ;

where � � �
3 is a bounded domain of class C1;� and a satisfies (7.4), and look

for real boundary values '1 , '2 and '3 such that jdet[ru1 ru2 ru3]j > 0 at
least locally in �. The main result reads as follows.

Theorem 7.2 (see [40]). — Let � � �
3 be a bounded C1;� domain and

a 2 H3=2+3+�(�3;�) satisfy (7.4). There exists an open set of boundary condi-
tions ('1; : : : ; '4) 2 C2(�;�)4 such that

(7.9)
þþdet ðru1 ru2 ru3Ł(x)þþ+ þþdet ðru1 ru2 ru4Ł(x)þþ > 0; x 2 � ;

where ui is the unique solution to (7.8).

Before proving this result, some comments are in order:
. By Sobolev embedding, the coefficient a belongs to C3(�;�). As an-

nounced in the introduction, regularity of the coefficient is required for this
method to work.

. Compared to the results given in Chapter 6, when d = 3, four different
boundary values have to be taken and the non-degeneracy condition only holds
locally for three fixed solutions (see x6.5). However, we have the following
decomposition

� = �1 [�2;
where we have set � j = fx 2 � : jdet[ru1 ru2 ru2+j](x)j > 0g.

. Theorem 7.2 applies to (a mollified version of) the sequence of mi-
crostructures a(n�) introduced in Section 6.5, for any n > 0. However,
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Theorem 6.15 indicates that the number of connected components in �1

and �2 will increase with n, and the positive lower bound will decrease with n.

Proof. — Without loss of generality, we can assume that a = 1 outside of a ball
containing �. In the notation of Theorem 7.1, this implies that q0 = �

p
~a=

p
~a

belongs to H5=2+�(�3;�), so that all the assumptions of the theorem are satis-
fied with � = 1.

As in x7.2.1, set �1 = t(e1 + ie2) and �2 = t(e3 + ie1) for some t > 0. In view
of Theorem 7.1, for t big enough and ` = 1; 2 there exist solutions u�` to (7.8)
in �

3 such that

u�`(x) = a�
1
2 e�`	x

�
1 +  �`(x)

Ð
; x 2 �

3:

Differentiating this identity, and taking into account (7.7) and that a 2 C1(�),
we obtain for ` = 1; 2 as t ! 1

ru�`(x) = a�
1
2 e�`	x

�
�` + O(1)

Ð
; x 2 � ;

where the constant hidden in the O symbol is independent of x and t. As
in x7.2.1, it remains to calculate the Jacobian of the map (Re u�1 ; Im u�1 ; u�2).
Arguing as in (7.3), a straightforward computation shows that for every x 2 �

J(x) := det
ðrRe u�1 r Im u�1 ru�2

Ł
(x) = t3e t(2x1+x3+ix1)

�
1 + O(t)

Ð
:

Choosing now t big enough so that jO(t)j � 1
2 we obtainþþdet ðrRe u�1 r Im u�1 ru�2

Ł
(x)

þþ > 0; x 2 � :

Taking real and imaginary parts yields for every x 2 �þþdet ðrRe u�1 r Im u�1 rRe u�2
Ł
(x)

þþ+ þþdet[rRe u�1 r Im u�1 r Im u�2
Ł
(x)

þþ > 0:
Hence (7.9) is immediately verified setting

'1 = Re u�1 @�; '2 = Im u�1 @�; '3 = Re u�2 @�; '4 = Im u�2 @� :

Finally, standard elliptic regularity theory [104] ensures the continuity of the
map ' 2 C2(�;�) 7! u 2 C1(�;�), so that (7.9) still holds true for an open
set of boundary values in C2(�;�)4 near '1 = Re u�1 @� , '2 = Im u�1 @� ,
'3 = Re u�2 @� and '4 = Im u�2 @� .
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7.2.3.2. The Schrödinger equation. — Let � � �
d be a bounded C1;� domain

for d = 2 or d = 3. We consider here the Schrödinger equation

(7.10)
² ��ui + qui = 0 in � ;

ui = 'i on @� ;

where q 2 L1(�;�) is such that

(7.11) 0 is not an eigenvalue of (�� + q) in � :

A more general second order elliptic equation with non-constant leading order
term could be considered as well, as in x7.2.2. We omit this generalisation
which would make the exposition slightly more involved. Such an extension
will not be needed in the applications discussed in Part II.

We look for d + 1 (complex) boundary conditions 'i such that the corre-
sponding solutions to the above equation satisfy for every x 2 �þþu1(x)þþ > 0;(7.12a) þþdet ðru2 	 	 	 rud+1Ł(x)þþ > 0;(7.12b) þþþdet h u1 			 ud+1

ru1 			 rud+1
ii
(x)

þþþ > 0:(7.12c)

The use of complex boundary values allows each of these conditions to be sat-
isfied in the whole domain. Should only real boundary conditions be allowed,
real and imaginary parts would have to be taken, as it was done previously in
the case of the Jacobian constraint for the conductivity equation. In such a case,
the above constraints would be satisfied only locally in the domain (as in (7.9)).

These constraints are motivated by the hybrid problems we shall discuss in
Part II, and should be satisfied simultaneously. They somehow complete the
Jacobian constraint given in (7.12b), which has been previously considered.

In particular, (7.12a) refers to the availability of one non-vanishing solu-
tion. This is certainly the simplest constraint one could think of, and naturally
appears in several hybrid problems where the internal data depend on the so-
lutions ui and not on their gradients. The reason why this constraint did not
appear in the study of the conductivity equation is evident: the maximum prin-
ciple gives it for free, provided that the boundary value has a constant sign.
On the other hand, this condition cannot be taken for granted for solutions
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of (7.10). Indeed, this PDE models wave phenomena, and as such its solu-
tions typically have an oscillatory behaviour. The third constraint (7.12c) is an
“augmented” Jacobian: it requires the availability of d + 1 independent mea-
surements.

We now prove that the above constraints are satisfied in the whole do-
main � by suitable CGO solutions.

Theorem 7.3. — Let � � �
d be a bounded C1;� domain for d = 2 or d = 3 and let

q 2 Hd=2+1+�(�d;�) satisfy (7.11). There exists an open set of boundary conditions
('1; : : : ; 'd+1) 2 C2(�;�)d+1 such that the constraints in (7.12) are verified for
every x 2 � , where ui is the unique solution to (7.10).

Proof. — Without loss of generality, we assume that q = 0 outside of a ball
containing �, so that all the assumptions of Theorem 7.1 are satisfied for q0 = q

and � = 1. Set now

�1 =
1
2 t(e1 + ie2); �i = t(ei�1 + iei); i = 2; d; �d+1 = t(ed + ie1):

Note that �i 	 �i = 0 and that j�ij � t=
p
2 for every i = 1; : : : ; d + 1. Thus, in

view of Theorem 7.1, for every i and for t big enough there exist solutions u�i
to ��u+ qu = 0 in �d such that

u�i(x) = e
�i	x�1 +  �i(x)

Ð
; x 2 �

3;

where the error functions  �i 2 C2(�d) satisfy the bounds k �ikC1(�) � C t�1

for some positive constant C > 0. There holds

u�i(x) = e
�i	x�1 + O(t�1)

Ð
; x 2 � ;(7.13)

ru�`(x) = e�i	x
�
�i + O(1)

Ð
; x 2 � ;(7.14)

where the O symbols hide constants that are independent of x and t.

We start with the first constraint (7.12a). We have ju�1(x)j = e
1
2 tx1 j1+O(t�1)j

by (7.13), and choosing t big enough yields

(7.15)
þþu�1(x)þþ � 1

2 e
1
2 tx1 > 0; x 2 � :
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Similarly, turning to the second constraint (7.12b), using (7.14) we obtain
that for every x 2 �

det[ru�2 	 	 	 ru�d+1](x) = e(�2+			+�d+1)	x
�
det[ �2 	 	 	 �d+1] + O(td�1)

Ð
:

A direct calculation shows that det[ �2 	 	 	 �d+1] = td(1�(�i)d), and as a result

det
ðru�2 	 	 	 ru�d+1Ł(x) = tde(�2+			+�d+1)	x

�
1� (�i)d + O(t�1)

Ð
:

Thus, since j1� (�i)dj � p
2, choosing t big enough yields

(7.16)
þþdet ðru�2 	 	 	 ru�d+1

Ł
(x)

þþ > 0; x 2 � :

We now consider constraint (7.12c). Using (7.13) and (7.14), we readily com-
pute for x 2 �

det
hu�1 			 u�d+1
ru�1 			ru�d+1

i
(x) = e(�1+			+�d+1)	x det

h
1+O(t�1) 			 1+O(t�1)
�1+O(1) 			 �d+1+O(1)

i
= tde(�1+			+�d+1)	x

�
det

h
1 			 1

�1=t 			 �d+1=t
i
+ O(t�1)

�
:

Using that �2 = 2�1 and subtracting twice the first column to the second col-
umn of [ 1 			 1

�1=t 			 �d+1=t] we have

det
h
1 �1 			 1

�1=t 0 			 �d+1=t

i
= 12 t

�d det[�1 �3 	 	 	 �d+1]
= 12 t

�d det[ �2 	 	 	 �d+1] = 12
�
1� (�i)dÐ:

And again choosing t big enough yields

(7.17)
þþþdet h u�1 	 	 	 u�d+1

ru�1 	 	 	 ru�d+1
i
(x)

þþþ > 0; x 2 � :

In view of (7.15), (7.16) and (7.17) the constraints in (7.12) are verified
for every x 2 � setting 'i = u�ij @� for every i, since by (7.11) this implies
ui = u�i in �. A standard elliptic regularity theory argument (as in the proof
of Theorem 7.2) ensures that (7.12) still holds true for an open set of boundary
values in C2(�;�)d+1 near ('i = u�i @�

)i .
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7.3. The Runge approximation property

7.3.1. The main result. — Let � � �
d be a Lipschitz bounded domain. We

consider the elliptic boundary value problem(3)

(7.18)
²
Lu := �div(aru) + qu = 0 in � ;

u = ' on @� ;

where q 2 L1(�;�) and a 2 L1(�;�d�d) satisfy

(7.19a)
²
��1jj2 � a 	  � �jj2;  2 �

d;

jqj � �; almost everywhere in �

for some � > 0 and

(7.19b) T a = a in � :

We assume that the problem is well-posed, that is,

(7.19c) 0 is not an eigenvalue for the operator L in H10 (�;�).

We start with the definition of the Runge approximation property [136].

Definition 7.4. — We say that L satisfies the Runge approximation property if
for any Lipschitz simply connected domain �1 b � and any u 2 H1(�1;�)

such that Lu = 0 in �1 there exists a sequence un 2 H1(�;�) such that

1) Lun = 0 in � , and

2) unj�1 ! u in L2(�1;�).

The Runge approximation property holds true provided that the operator L
satisfies the unique continuation property. The latter is a classical result in
elliptic PDE theory.

Lemma 7.5 (Unique continuation property [21]). — Let � � �
d be a Lipschitz

connected bounded domain, � � @� be an open non-empty portion of @�, and a

3. This is not specific to this model: any elliptic PDE with complex coefficients could be con-
sidered. We restrict ourselves to this simpler case to avoid technicalities. For the general case, the
reader is referred to [136], [51].
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in L1(�;�d�d) and q 2 L1(�;�) satisfy (7.19). If d � 3, assume that a is
Lipschitz continuous. Let u 2 H1(�;�) be a solution to Lu = 0 in �. If

u = 0 and aru 	 � = 0 on �;

then u = 0 in �.

Remark 7.6. — In the particular case where a is isotropic, when d � 3 the
assumption on the Lipschitz continuity of a may be reduced to a 2 W 1;d(�;�)

[213], in view of the equivalence of the uniqueness of the Cauchy problem
with the weak unique continuation property [173].

The proof of this result goes beyond the scopes of this book. We now verify
that the Runge approximation property follows from the unique continuation
property for the model we consider.

Theorem 7.7 (Runge approximation). — Let � � �
d be a Lipschitz bounded domain,

a 2 L1(�;�d�d) and q 2 L1(�;�) satisfy (7.19). If d � 3, assume that a

is Lipschitz continuous. Then L defined in (7.18) satisfies the Runge approximation
property.

Proof. — Without loss of generality, assume that � is connected. Take �1 b �
as in Definition 7.4 and u 2 H1(�1;�) such that

(7.20) Lu = 0 in �1:

Set F = fv �1 : v 2 H1(�;�); Lv = 0 in �g. Suppose by contradiction that the
Runge approximation property does not hold. By the Hahn–Banach theorem,
there exists a functional g 2 L2(�1;�)

� such that g(u) 6= 0 and g(v) = 0 for
all v 2 F . In other words, there exists g 2 L2(�1;�) such that (g; u)L2(�1) 6= 0
and (g; v)L2(�1) = 0 for all v 2 F .

Consider now the extension by zero of g to �, which by an abuse of notation
is still denoted by g . Let w 2 H1(�;�) be the unique solution to²

Lw = g in � ;

w = 0 on @� :
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Fix now ' 2 H1=2(@�;�) and let v 2 H1(�;�) be the unique solution to²
Lv = 0 in � ;

v = ' on @� :

By definition of g there holds (g; v)L2(�) = 0. Thus, integration by parts shows
that

0 = �(v; g)L2(�) = (Lv; w)L2(�) � (v; Lw)L2(�) =
Z
@�
(arw 	 �)'d�:

Since the above identity holds for all ' 2 H1=2(@�;�), we obtain arw 	 � = 0
on @�. Observe now that w is solution to Lw = 0 in � n�1 such that w = 0
and arw 	 � = 0 on @�. In view of Lemma 7.5 we have w = 0 in � n �1 ,
therefore w = 0 and arw 	 � = 0 on @�1 . As a result, by integrating by parts
we obtain Z

�1

gudx =

Z
�1

(Lw)udx

=

Z
�1

�div(arw)u+ quwdx

=

Z
�1

arw 	 ru+ quwdx+

Z
@�1

uarw 	 �d�

=

Z
�1

�div(aru)w + qwudx+

Z
@�1

waru 	 �d�

=

Z
�1

(Lu)wdx = 0;

where the last identity follows from (7.20). This contradicts the assumptions
on g , since (g; u)L2(�1) 6= 0, and the proof is concluded.

We have seen that under quite general regularity assumptions on the coef-
ficients, the Runge approximation property always holds. As a consequence,
any local solution to Lu = 0 can be approximated by restrictions of global so-
lutions in the L2 norm. However, in view of the applications to the non-zero
constraints we are interested in, we shall need a stronger norm.

Definition 7.8. — Take � 2 (0; 1). We say that L satisfies the strong Runge
approximation property if for any smooth simply connected domains �2 b
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�1 b � and any u 2 H1(�1;�) \ C1;�(�1;�) such that Lu = 0 in �1 there
exists a sequence un 2 H1(�;�) \ C1;�(�1;�) such that

1) Lun = 0 in � , and
2) unj�2 ! u �2 in C1;�(�2;�).

Under suitable regularity assumptions, the strong Runge approximation
property is an immediate consequence of the Runge approximation property
and of standard elliptic regularity.

Corollary 7.9. — Assume that the hypotheses of Theorem 7.7 hold true. Take � 2 (0; 1)
and suppose that a 2 C0;�(�;�d�d). Then L satisfies the strong Runge approximation
property.

Proof. — Take �2 b �1 b � and u as in Definition 7.8. In view of Theo-
rem 7.7, L satisfies the Runge approximation property. Namely, there exists a
sequence un 2 H1(�;�) of solutions to Lun = 0 in � such that unj�1 ! u

in L2(�1;�). Since L(un � u) = 0 in �1 , standard elliptic regularity [103,
Theorem 5.20] gives un 2 C1;�(�1;�) and

kun � ukC1;�(�2) � Ckun � ukL2(�1) ! 0;
as desired.

It is worth observing that, by classical elliptic regularity theory, the regularity
assumptions on the coefficients are minimal.

Definition 7.8 and Corollary 7.9 easily extend to the higher regularity case.
This would allow to consider constraints depending on higher derivatives of u.

7.3.2. Application of the Runge approximation to internal non-zero constraints
enforced via boundary control. — This approach is based on approximating
locally the solutions to the constant coefficient case by means of the (strong)
Runge approximation property.

In order to do this, consider the constant coefficient differential operator
defined by

Lx0 = �div �a(x0)r�Ð
for x0 2 �. Note that, being of lower-order, the term in q is unnecessary.
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By using the (strong) Runge approximation property, it is possible to ap-
proximate local solutions to Lx0u0 = 0 in B(x0; r) for some small r > 0 with
global solutions u to Lu = 0 in �.

Proposition 7.10. — Assume that the hypotheses of Corollary 7.9 hold true and take
� > 0, �0 b � and u0 2 C1;�(�;�). There exists r > 0 depending on �, �0 , �, �,
kakC0;�(�) , ku0kC1;�(�) and � such that for any x0 2 �0 if Lx0u0 = 0 in B(x0; r)

then there exists 'x0;� 2 H1=2(@�;�) such that

kux0;� � u0kC1(B(x0;r)) � �;

where ux0;� is the solution of ²
Lux0;� = 0 in � ;

ux0;� = 'x0;� on @� :

This result follows from the strong Runge approximation property and stan-
dard elliptic regularity results. More precisely, we first approximate u0 in the
ball B(x0; 2r) by a local solution u1 to Lu1 = 0, for r small enough. Then,
u1 can be locally approximated in B(x0; r) by a global solutions thanks to the
strong Runge approximation. The details of the proof, although fairly simple,
are quite technical, and so are presented in x7.3.3 below.

This result can be extended to the higher regularity case. The case �0 = �
could be handled as well, but would require additional technicalities to deal
with the case when x0 2 @� [51].

We now apply this result to the boundary control of elliptic PDE to enforce
non-zero constraints.

7.3.2.1. The Jacobian of solutions to the conductivity equation. — As a natural gen-
eralisation of Chapter 6 and x7.2.3.1, we first consider the conductivity equa-
tion in d � 2 dimensions with anisotropic coefficient. Consider problem

(7.21)
² �div(arui) = 0 in �;

ui = 'i on @� ;

where � � �
d is a Lipschitz bounded domain and a 2 C0;1(�;�d�d) satisfies

(7.19a) and (7.19b), and look for solutions such that jdet[ru1 	 	 	 rud]j > 0
at least locally in �. The main result reads as follows.
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Theorem 7.11 (see [43]). — Let � � �
d be a Lipschitz bounded domain, �0 b �

and suppose that a 2 C0;1(�;�d�d) satisfy (7.19a) and (7.19b). Then there
exist N = N(� ;�0;�; kakC0;1(�)) 2 �

� , r = r(� ;�0;�; kakC0;1(�)) > 0,

x1; : : : ; xN 2 �0 and '
j
i 2 H1=2(@�;�), i = 1; : : : ; d, j = 1; : : : ; N such that

�0 �
N[
j=1

B(xj; r) and det
ðru1(j) 	 	 	 rud(j)

Ł � 1
2 in B(xj; r);

where ui(j) 2 H1(�;�) is the unique solution to (7.21) with boundary condition '
j
i .

Remark 7.12. — A comparison of Theorem 7.11 and Theorem 7.2, where CGO
solutions were used, leads to the following observations:

. The regularity requirements in Theorem 7.11 are lower than in Theo-
rem 7.2.

. The conductivity a in Theorem 7.11 is matrix-valued and not scalar
valued.

. In Theorem 7.2, exactly four boundary conditions are used when d = 3,
while this result requires 3N boundary values where N can be determined
a priori but may not be small. In other words, here the constraint is not
satisfied globally, but merely in small balls of fixed radius covering the
subdomain �0 .

This result is based on Proposition 7.10, which allows us to approximate
solution of PDE with variable coefficients by solutions of PDE with constant
coefficients: a wide variety of constraints can be tackled by the same approach.

Proof. — We consider the d solutions to the constant coefficient case defined
by ui0 = xi , for i = 1; : : : ; d. These are solutions to the constant coefficient
equation in any point of the domain, namely for any x0 2 �0

Lx0u
i
0 = �div �a(x0)rxiÐ = 0 :

Hence, by Proposition 7.10, for any � > 0 there exists r� > 0 depending
on �, �0 , �, kakC0;1(�) and � and 'ix0;� 2 H1=2(@�;�) such that one has
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kuix0;� � xikC1(B(x0;r�)) � �, where uix0;� is defined by² �div(aruix0;�) = 0 in � ;

ui = 'ix0;� on @� :

Then
��ruix0;� � ei��C0(B(x0;r�)) � �, and we obtainþþdetðru1x0;� 	 	 	 rudx0;�

Ł� detðe1 	 	 	 ed
Łþþ � 1

2 in B(x0; r�);

provided that � is chosen small enough. As a result

(7.22)
þþdetðru1x0;� 	 	 	 rudx0;�

Łþþ � 1
2 in B(x0; r�):

Since �0 � S
x02�0 B(x0; r�), by compactness there exist x1; : : : ; xN 2 �0 such

that �0 � SN
j=1 B(xj; r�). Thanks to (7.22), choosing '

j
i = 'ixj ;� concludes the

proof.

7.3.2.2. Application to the Schrödinger equation. — We apply here the Runge ap-
proximation to the problem considered in x7.2.3.2. More precisely, let � � �

d

be a Lipschitz bounded domain for some d � 2 and consider

(7.23)
² �div(arui) + qui = 0 in � ;

ui = 'i on @� ;

where a 2 C0;1(�;�d�d) and q 2 L1(�;�) satisfy (7.19).

We look for solutions ui satisfying the constraints given in (7.12). The Runge
approximation approach allows to satisfy these conditions locally in the interior
of the domain �. The main result, which can be found in [51] in a different
form, reads as follows.

Theorem 7.13. — Let � � �
d be a Lipschitz bounded domain for some d � 2,

�0 b � and suppose that a 2 C0;1(�;�d�d) and q 2 L1(�;�) satisfy (7.19).
Then there exist

N = N(� ;�0;�; kakC0;1(�)) 2 �� ; r = r(� ;�0;�; kakC0;1(�)) > 0 ;
x1; : : : ; xN 2 �0, '

j
i 2 H1=2(@�;�), i = 1; : : : ; d+ 1, j = 1; : : : ; N ,
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such that
�0 �

N[
j=1

B(xj; r)

and for every j = 1; : : : ; N and x 2 B(xj; r) we haveþþu1(j)(x)þþ � 1
2

,(7.24a) þþdet ðru2(j) 	 	 	 rud+1(j)
Ł
(x)

þþ � 1
2

,(7.24b) þþþdet h u1(j) 			 ud+1(j)
ru1(j) 			 rud+1(j)

i
(x)

þþþ � 1
2

,(7.24c)

where ui(j) 2 H1(�;�) is the unique solution to (7.23) with boundary condition '
j
i .

Compared to Theorem 7.3, Theorem 7.11 presents the advantages and
shortcomings described in Remark 7.12.

Proof. — The proof of this theorem is based on Proposition 7.10 and follows
the same strategy of the proof of Theorem 7.11. For x0 2 �0 , we consider
problem (7.23) with the leading order coefficient frozen in x0 , and without
the zero-th order term, namely

Lx0 = �div �a(x0)r�Ð:
Consider now the d+1 solutions to this PDE defined by u10 = 1 and ui0 = xi�1 ,
for i = 2; : : : ; d+ 1. These are solutions to the constant coefficient equation in
the whole domain, namely Lx0u

i
0 = 0. Hence, by Proposition 7.10, for any � > 0

there exists r� > 0 depending on �, �0 , �, kakC0;1(�) and � and 'ix0;� 2
H1=2(@�;�) such that ��uix0;� � ui0

��
C1(B(x0;r�))

� �;

where uix0;� is defined by² �div(aruix0;�) + quix0;� = 0 in �;

ui = 'ix0;� on @� :

In particular, we have for every i = 2; : : : ; d+ 1��u1x0;� � 1��C0(B(x0;r�)) � �;
��ru1x0;���C0(B(x0;r�)) � �;

��ruix0;� � ei��C0(B(x0;r�)) � �;
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thus for every x 2 B(x0; r�)þþu1x0;�(x)� 1þþ � 1
2

,þþþdet ðru2x0;� 	 	 	 rud+1x0;�

Ł
(x)� detðe1 	 	 	 edŁþþþ � 1

2
,

þþþdet h u1x0;� 	 	 	 ud+1x0;�

ru1x0;� 	 	 	 ru
d+1
x0;�

i
(x)� det

h1 u2x0;� 	 	 	 ud+1x0;�

0 e1 	 	 	 ed
iþþþ � 1

2
,

provided that � is chosen small enough. As a result, for every x 2 B(x0; r�)

(7.25)

þþu1x0;�þþ � 1
2

,þþþdet ðru2x0;� 	 	 	 rud+1x0;�

Ł
(x)

þþþ � 1
2

,

þþþdet h u1x0;� 	 	 	 ud+1x0;�

ru1x0;� 	 	 	 ru
d+1
x0;�

i
(x)

þþþ � 1
2 :

Since �0 � S
x02�0 B(x0; r�), by compactness there exist x1; : : : ; xN 2 �0 such

that �0 � SN
j=1 B(xj; r�). We conclude the proof by choosing '

j
i = 'ixj ;� thanks

to (7.25).

7.3.3. Proof of Proposition 7.10. — The proof of Proposition 7.10 is based on
the strong Runge approximation property and on the elliptic regularity theory.
We prove below the regularity estimate we need. The result is classical, but the
proof is given to show that the relevant constant does not depend on the size
of the domain.

Lemma 7.14. — Take s 2 (0; 1], � 2 (0; 1) and x0 2 �
d . Take

q 2 L1(B(x0; s);�) ; a 2 C0;�(B(x0; s);�
d�d) such that (7.19a) holds ;

F 2 C0;�(B(x0; s);�
d) ; f 2 L

d
1�� (B(x0; s);�).

Let u 2 H1(B(x0; s);�) be the unique solution to²
(Lu =)� div(aru) + qu = div F + f in B(x0; s);

u = 0 on @B(x0; s):
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Then u 2 C1;�(B(x0; s);�) and

kukC1;�(B(x0;s)) � C
�kFkC0;�(B(x0;s)) + kfkLd=(1��)(B(x0;s))

Ð
for some C > 0 depending on �, � and kakC0;�(B(x0;s)) .

Proof. — Without loss of generality we set x0 = 0. In order to obtain the inde-
pendence of C of the radius s, we transform the problem in Bs := B(0; s) into
a problem defined in the unit ball B1 . Consider the map 	s : B1 ! Bs , x 7! sx.
Given a function g 2 C0;�(Bs), the Hölder semi-norm of g � 	s can be written
in terms of the semi-norm of g as follows:

jg � 	sjC0;�(B1) := sup
x;y2B1
x 6=y

jg(	s(x))� g(	s(y))j
jx� yj�(7.26)

= sup
x;y2B1
x6=y

jg(	s(x))� g(	s(y))j
j	s(x)� 	s(y)j� 	 jsx� syj�

jx� yj�

= s� sup
x;y2Bs
x6=y

jg(x)� g(y)j
jx� yj� = s�jgjC0;�(Bs):

Similarly, if g 2 C1;�(Bs) there holds

kg � 	skC1;�(B1)(7.27)

= kg � 	skC0(B1) + kr(g � 	s)kC0(B1) + jr(g � 	s)jC0;�(B1)
= kgkC0(Bs) + skrg � 	skC0(B1) + s jrg � 	sjC0;�(B1)
= kgkC0(Bs) + skrgkC0(Bs) + s1+� jrgjC0;�(Bs)
� s1+�kgkC1;�(Bs):

Consider now v = u � 	s . A straightforward computation shows that v is the
solution to² �div �(a � 	s)rvÐ+ s2(q � 	s)v = s div

�
F � 	s � F (0)

Ð
+ s2(f � 	s) in B1;

v = 0 on @B1:
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Standard Schauder estimates for elliptic equations (see Corollary 8.35 and the
following remark in [104]) applied to this problem give that v 2 C1;�(B1) and

kvkC1;�(B1) � C
�
skF � 	s � F (0)kC0;�(B1) + s2kf � 	skLd=(1��)(B1)

�
for some C > 0 depending on �, � and kakC0;�(B(x0;s)) . Therefore, by (7.27)
there holds

kukC1;�(Bs) � C
�
s��kF � 	s � F (0)kC0;�(B1) + kfkLd=(1��)(Bs)

�
;

where we have also used the identity kf � 	skLd=(1��)(B1) = s��1kfkLd=(1��)(Bs) .
Now note that in view of (7.26) we have

kF � 	s � F (0)kC0;�(B1) =
��F � 	s � F (0)

��
C0(B1)

+ jF � 	sjC0;�(B1)

= sup
x2B1

jF (	s(x))� F (	s(0))j
jxj� jxj� + jF � 	sjC0;�(B1)

� 2jF � 	sjC0;�(B1) = 2s�jF jC0;�(Bs):
Combining the last two inequalities we obtain

kukC1;�(Bs) � C
�jF jC0;�(Bs) + kfkLd=(1��)(Bs)

Ð
for some C > 0 depending on �, � and kakC0;�(B(x0;s)) , as desired.

We are now in a position to prove Proposition 7.10.

Proof of Proposition 7.10. — Several positive constants depending on �, �0 , �,
�, kakC0;�(�) and ku0kC1;�(�) will be denoted by the same letter C . During the
proof, we shall need the following inequality:

Given g 2 C0;�(B(x0; s)) for some s 2 (0; 1] we have

kg � g(x0)kC0;�=2(B(x0;s))(7.28)

= kg � g(x0)kC0(B(x0;s)) + sup
x;y2B(x0;s)

x 6=y

jg(x)� g(y)j
jx� yj� 	 jx� yj 12 �

� sup
x2B(x0;s)

jg(x)� g(x0)j
jx� x0j� 	 jx� x0j� + (2s)

1
2 �jgjC0;�(B(x0;s))

� eC s 12 �jgjC0;�(B(x0;s)) for some absolute constant eC > 0.
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The proof is split into two steps. In the first step, we approximate u0 with
local solutions to the non-constant coefficient PDE. In the second step, we ap-
proximate these solutions with global solutions using the Runge approximation
property.

Step 1. — Given x0 2 �0 and for s 2 (0;min(dist(@� ;�0); 1)) suppose that
Lx0u0 = 0 in B(x0; s). Let us 2 H1(B(x0; s)) be the solution to the following
problem ²

Lus = 0 in B(x0; s);

us = u0 on @B(x0; s):

Let us show that us ! u0 in a suitable Hölder norm as s ! 0. Consider the
difference vs = us � u0 , that is, the unique solution to the problem²

Lvs = �div �(a� a(x0)
Ðru0) + qu0 in B(x0; s);

vs = 0 on @B(x0; s):

In view of Lemma 7.14 there holds

kvskC1;�=2(B(x0;s)) � C
���(a� a(x0))ru0

��
C0;�=2(B(x0;s))

+ kqu0kLd=(1��=2)(B(x0;s))
�
:

Let us analyse the first factor on the right-hand side: in view of (7.28) there
holds��(a� a(x0))ru0

��
C0;�=2(B(x0;s))

� C
��a� a(x0)

��
C0;�=2(B(x0;s))

	 kru0kC0;�=2(B(x0;s))
� Cs�=2jajC0;�(B(x0;s)) � Cs�=2:

Similarly we have

kqu0kLd=(1��=2)(B(x0;s)) � Ck1kLd=(1��=2)(B(x0;s)) � Cs1��=2:

Combining the last three inequalities we obtain

kus � u0kC1;�=2(B(x0;s)) � C s�=2:

Hence there exists es > 0 depending on �, �0 , �, �, kakC0;�(B(x0;s)) , ku0kC1;�(�)
and � such that

(7.29) ku~s � u0kC1;�=2(B(x0;~s)) �
1
2�:
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Step 2. — By Corollary 7.9, L satisfies the strong Runge approximation prop-
erty, which we apply to u~s with �2 = B(x0;

1
2es) and �1 = B(x0;es) (see Def-

inition 7.8). There exists a sequence un 2 H1(�;�) \ C1;�(B(x0;es);�) such
that Lun = 0 in � and

kun � u~skC1;�(B(x0;~s=2)) �!n 0:
As a consequence, there exists n such that

kun � u~skC1;�(B(x0;~s=2)) �
1
2�:

Hence, by (7.29) we obtain

kun � u0kC1(B(x0;~s=2)) � �:

Setting r = 12es and 'x0;� = un @� concludes the proof.
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CHAPTER 8

USING MULTIPLE FREQUENCIES TO ENFORCE
NON-ZERO CONSTRAINTS ON SOLUTIONS OF

BOUNDARY VALUE PROBLEMS

8.1. Introduction

In Chapter 6 and Chapter 7 we reviewed several techniques designed to
ensure that the solutions of boundary value problems satisfy prescribed inte-
rior local non-zero constraints. In Chapter 6, we considered the conductivity
equation

�div(arui) = 0 in � ;

and the Jacobian constraintþþdet ðru1 	 	 	 rudŁþþ � C > 0:

We showed that, if d = 2, it is possible to enforce the above condition for any a

simply by choosing the boundary values x1 and x2 , provided that � is convex.
This method makes strong use of the fact that we are in two dimensions and
of the maximum principle. It cannot be generalised to higher dimensions (see
Section 6.5) or to Helmholtz-type equations.

In Chapter 7, we presented two methods that can be used to overcome these
issues, the complex geometric optics solutions and the Runge approximation
property. These approaches can successfully be used in any dimension with
more general problems of the type

div(arui) + qui = 0 in � ;
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and for several types of constraints. However, they have a common drawback:
the suitable boundary conditions may not be constructed a priori, indepen-
dently of the coefficients. This is clearly a serious issue in inverse problems,
where the parameters of the PDE are unknown.

This chapter focuses on a different approach to this problem based on the
use of multiple frequencies. As such, this method is applicable only with fre-
quency dependent problems. We consider the second-order elliptic PDE

(8.1)
²
div(arui!) + (!2"+ i!�)ui! = 0 in � ;

ui! = 'i on @� ;

where a 2 C0;�(�;�d�d) is a uniformly elliptic tensor and "; � 2 L1(�;�+).
The case � � 0 could be considered as well [3], [5], but the presence of real
eigenvalues makes the analysis slightly more involved: in this book we have de-
cided to deal only with the simpler case � > 0. This Helmholtz-type equation
is a scalar approximation of Maxwell’s system, with a being the inverse of the
magnetic permeability, " the electric permittivity and � the electric conductiv-
ity.

In addition to the Jacobian constraint

(8.2)
þþþdet ðru2! 	 	 	 rud+1!

Łþþþ � C > 0

discussed in the previous chapters, we consider here the two conditions

(8.3) ju1!j � C > 0;
þþþdet h u1! 			 ud+1!

ru1! 			 rud+1!

iþþþ � C > 0:

These constraints are motivated by the reconstruction methods of some hybrid
imaging inverse problems discussed in Part II. They previously appeared in
Chapter 7.

The key of this method is the availability of multiple frequencies in an ad-
missible range � = [Kmin; Kmax], for some 0 < Kmin < Kmax . In other words,
we assume that we have access to measurements at several frequencies in a
fixed range. For example, in thermoacoustic tomography the set � denotes
the microwave range for electromagnetic waves. The reason why allowing for
several frequencies makes enforcing the above constraints simpler is very in-
tuitive: the zero level sets related to the constraints move when the frequency
changes, provided that the boundary conditions are suitably chosen.
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u1
ω

u1
0

−π π

1

−1

(a) '1(��) = 1, '1(�) = 1

u1
ω

u1
0

−π π

1

−1

(b) '1(��) = �1, '1(�) = 1

Figure 8.1. The multi-frequency approach in 1D. For a fixed bound-
ary value '1 , the solutions to (8.1) with a � " � 1 and � � 0 are
plotted for several frequencies !.

It is instructive to consider the one dimensional case to visualise this phe-
nomenon (see Figure 8.1). For simplicity, take � = (��; �), a � " � 1 and
� � 0 and consider only the constraint ju1!j > 0. For a fixed boundary value '1
and a fixed frequency ! 2 �, the corresponding solution u1! necessary cancels
in �, provided that ! is bigger than the first Dirichlet eigenvalue. Fix now
'1(��) = '1(�) = 1 as in Figure 8.1(A): the zeros move when the frequency
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changes. In this case, it would be sufficient to choose '1 with two different fre-
quencies in � in order to have the constraint satisfied everywhere for at least
one solution. On the other hand, if the boundary value �'1(��) = '1(�) = 1

is chosen as in Figure 8.1(B), we have that u1!(0) = 0 for all !. In other words,
in x = 0 the constraint will never be satisfied, no matter how many frequencies
are selected.

In order to understand why the first choice for '1 gives the desired
behaviour while the second one does not, it is useful to look at the so-
lution u10 to (8.1) with the frequency ! set to nought. In the first case
('1(��) = '1(�) = 1, Figure 8.1), we have u10(x) = 1 for every x 2 �: u10
satisfies the constraint ju1!j > 0 everywhere in �. On the other hand, in the
second case (�'1(��) = '1(�) = 1, Figure 8.1), we have u10(x) = x=� for
every x 2 �: u10 does not satisfy the constraint in x = 0. Thus, it seems that the
behaviour of the zeros for positive frequencies depends on the zero-frequency
case. More precisely, if the constraint is satisfied in ! = 0 then the zeros
should move when the frequency changes, as desired.

The reduction to the zero-frequency case allows us to simplify the problem
substantially. Indeed, when ! = 0, problem (8.1) becomes the conductivity
equation ² �div(arui0) = 0 in � ;

ui0 = 'i on @� :

We can rely on Chapter 6 for guidance in this case. The constraint ju10j > 0
can be easily satisfied in any dimension by choosing '1 � 1, since this im-
plies u10 � 1 (as in Figure 8.1). The Jacobian constraint (8.2) can be addressed
in two dimensions thanks to the results of Chapter 6. In three dimensions, as-
suming that a is (close to) a constant matrix, it is enough to choose 'i � xi�1
for i = 2; 3; 4, so that ui0 � xi�1 , and so det[ru20ru30ru40] � 1. Note that, also
in three dimensions, we have no conditions on " and �, since they disappear
from the PDE when ! = 0. Finally, choosing '1 � 1, the last constraint in (8.3)
is an immediate consequence of the Jacobian condition.

Once the required constraints are satisfied in ! = 0, it remains to show that
these properties transfer to the range of frequencies �. This is done quanti-
tatively: the frequencies and the lower bound C are determined a priori, and
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depend on the parameters of the PDE only through their a priori bounds. The
proof is based on a quantitative version of the unique continuation theorem
for holomorphic functions.

This method was introduced by the first author in a series of papers
[3], [6], [5], where the extension to Maxwell’s system is considered as well.
Ammari et al. [32] generalised this technique to the conductivity equation
with frequency-dependent complex coefficients; Robin boundary conditions
were considered in [10]. See [13], [7] for other works on this subject.

This chapter is structured as follows. The main assumptions and results are
discussed in Section 8.2, and the proofs are detailed in Section 8.3. An impor-
tant tool is a quantitative unique continuation lemma for holomorphic func-
tions, which is proved in Section 8.4.

8.2. Main results

Let � � �
d be a C1;� bounded domain for some � 2 (0; 1) and with d = 2

or d = 3. We consider the Dirichlet boundary value problem

(8.4)
² �div(arui!)� (!2"+ i!�)ui! = 0 in � ;

ui! = 'i on @� ;

where a 2 C0;�(�;�d�d) satisfies

(8.5) ��1jj2 � a 	  � �jj2;  2 �
d;

and the regularity estimate

(8.6) kakC0;�(�) � �
for some � > 0 and "; � 2 L1(�;�) satisfy

(8.7) ��1 � "; � � � almost everyhere.

According to Lemma 8.5, for 'i 2 C1;�(�;�) the above problem admits a
unique solution ui! 2 H1(�;�). Moreover, by elliptic regularity theory, we have
ui! 2 C1;�(�;�). This property is fundamental for us: it allows us to take point-
wise values of the solutions and of their gradients.

Let � = [Kmin; Kmax] be the admissible range of frequencies, for some
0 < Kmin < Kmax . At the core of this method is the possibility of choosing
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Figure 8.2. The admissible range and the set of frequencies K(n) .

multiple frequencies ! 2 . The easiest way to choose them is with a uniform
sampling of . For n 2 , n � 2, let K(n) be the uniform sampling of of
cardinality n, namely

(8.8) K(n) =
n
Kmin +

`� 1
n� 1(Kmax � Kmin) : ` = 1; : : : ; n

o
;

(see Figure 8.2).

Let us state the main result of this chapter in the two-dimensional case.
Thanks to the theory discussed in Chapter 6, there is no restriction on the
leading order term a, other than (8.5) and (8.6).

Theorem 8.1. — Let � � 2 be a C1;� bounded convex domain for some � 2 (0; 1)
and take �0 b �. Assume that a 2 C0;�(�; 2�2) and "; � 2 L1(�; ) satisfy
(8.5), (8.6) and (8.7) for some � > 0. Choose

'1 = 1; '2 = x1 and '3 = x2:

There exist C > 0 and n � 2 depending only on �, �0 , �, � and and an open
cover

�0 =
[

!2K(n)
�!

such that for every ! 2 K(n) and x 2 �! we have

ju1!(x)j � C ;
þþdet ðru2! ru3!

Ł
(x)

þþ � C ;
þþþdet hu1! u2! u3!

ru1! ru2! ru3!

i
(x)

þþþ � C ;

where ui! is given by (8.4).
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The above result does not extend trivially to the three-dimensional case, in
view of what we saw in Section 6.5. However, in the case when a is a constant
matrix, the dimensionality restriction disappears.

Theorem 8.2. — Let � � �
d be a C1;� bounded domain for some � 2 (0; 1) and

d = 2 or d = 3. Assume that a 2 �
d�d and "; � 2 L1(�;�) satisfy (8.5), (8.6) and

(8.7) for some � > 0. Choose

'1 = 1; '2 = x1; : : : ; 'd+1 = xd:

There exist C > 0 and n � 2 depending only on �, � and � and an open cover

� =
[

!2K(n)
�!

such that for every ! 2 K(n) and x 2 �! we haveþþu1!(x)þþ � C;
þþdet ðru2! 	 	 	 rud+1!

Ł
(x)

þþ � C;
þþþdet h u1! 			 ud+1!

ru1! 			 rud+1!

i
(x)

þþþ � C;

where ui! is given by (8.4).

A simple example when d = 2 and n = 2 is showed in Figure 8.3. Some
comments on these results are in order.

Remark 8.3. — In view of standard Schauder estimates, Theorem 8.2 holds
true also in the case when a is a small C0;� perturbation of a constant tensor.
If we consider only the constraint ju1!j � C , this assumption can be removed,
since the function u10 � 1 is always a solution to the zero-frequency PDE.

It remains an open question whether Theorem 8.2 holds true for any a

if d = 3. In [7], it was proven that, under certain assumptions, for any a it is
possible to satisfy the weaker constraint jru!j > 0 by using multiple frequencies
and a fixed generic boundary condition.

It is natural to wonder whether the above results hold true for any
boundary conditions. The answer is no, as it can be seen in Figure 8.1
in the 1D case. More precisely, the odd boundary value '1 such that
(�1)'1(��) = '1(�) = 1, gives u1!(0) = 0 for every !, and so the first
constraint cannot be enforced with this boundary condition, no matter how
many frequencies are selected. Similarly, the even boundary value '2 such
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Z1

Z2 U1

U2
Ω

Figure 8.3. The multi-frequency approach when d = 2. Considering
for simplicity only the constraint ju1!(x)j � C , let Z` = fx 2 � :
u1!`
(x) = 0g be the corresponding nodal set and U` be a sufficiently

small neighbourhood of Z` . Set �!` = � n U` , so that ju1!`
j � C in

�!` for some C > 0. We show here an example where two frequencies
suffice, namely � = �!1 [ �!2 . A more complicated example is
shown in Figure 8.4.

that '2(��) = '2(�) = 1, gives ru2!(0) = 0 for every !, and so the second
constraint cannot be enforced.

Similar examples where the zero-level sets do not move when the frequency
changes can be constructed in any dimension. For instance, as far as the first
constraint is concerned, consider the case d = 2, � = B(0; 1), a � " � 1 and
� � 0 and choose the boundary value '1(x) = x1 . In polar coordinates (�; �),
the corresponding solution is

u1!(�; �) =
J1(!�)

J1(!)
cos �;

where J1 is the Bessel function of the first kind of order 1. Therefore, u1!
vanishes on the axis fx 2 � : x1 = 0g for every !.
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It is intuitive to see that these examples are pathological. Indeed, such
choices of the boundary conditions exploit particular symmetries of the do-
main and of the coefficients. For generic boundary conditions, this patholog-
ical behaviour does not occur, and the multi-frequency method can be ap-
plied [7].

While the number of required frequencies n is in theory determined a priori,
it would be desirable to have a reasonable estimates on how many frequen-
cies are needed in practice. If the coefficients of the PDE are real analytic,
then almost any choice of d + 1 frequencies in �d+1 gives the required con-
straints [13]. Examples of this result in dimension one and two can be seen in
Figures 8.1 and 8.4, respectively. It follows from these examples that d + 1 is
an optimal bound; namely, d frequencies may not suffice. However, in any di-
mension there are cases when two frequencies are sufficient, as in the situation
depicted in Figure 8.3. An analytic example of this behaviour is given by the
solutions

u!(�; �) =
J0(!�)

J0(!)
; � � 0; � 2 [0; 2�);

to the constant coefficient case in � = B(0; 1) � �
2 written in polar coordi-

nates, with associated boundary value ' � 1. Since these solutions are radial,
the zero level sets of u! consist of circles around the origin that move when
the frequency changes. Therefore, the nodal sets for different frequencies are
not intersecting as in Figure 8.4, and two frequencies are sufficient.

Remark 8.4. — This method does not use the particular structure of this PDE
or of the constraints considered here. Consequently the same approach works
in the case � � 0, with Maxwell’s equations or with other constraints, as long
as these are satisfied for a particular frequency, e.g. ! = 0 [32], [5], [6].

Before moving to the proofs of these results, let us compare them with those
discussed in Chapter 7.

. The regularity assumptions on the parameters (a 2 C0;� and "; � 2 L1)
are much lower than the assumptions needed for the CGO approach (a 2 C3

and "; � 2 C1) and the same as those related to the Runge approximation
if d = 2. It is worth noting that the regularity assumed here is minimal if we
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Z1

Z2

Z3

Ω

Figure 8.4. An example where three frequencies are needed in two
dimensions. For simplicity, only the constraint ju1!(x)j � C is consid-
ered. The same notation of Figure 8.3 is used.

want to satisfy the constraints everywhere. Indeed, the assumptions given here
are motivated by the relevant elliptic regularity estimates, which are known to
be optimal. In particular, if a is not Hölder continuous, the gradient of ui! may
not be well-defined everywhere.

. The main advantage of this approach is in the explicit construction of
simple boundary conditions, independently of a (if d = 2) and of " and �.

. The main disadvantage is the need of multiple frequencies, and so this
approach can be applied only with frequency-dependent PDE. Even though
they are determined a priori and independently of the parameters, many more
measurements may be needed when compared to other methods.

. As mentioned in the previous section, the proof of these theorems is based
on a reduction to the zero-frequency case, where the constraints can be easily
enforced. This feature is shared also with the approaches based on CGO and
the Runge approximation, which are based on a reduction to the Laplace equa-
tion or to a constant-coefficient PDE, respectively.
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8.3. Proofs of the main results

We start with the well-posedness and regularity of (8.4); the result is classical.

Lemma 8.5. — Let � � �
d be a C1;� bounded domain for some � 2 (0; 1) and

d 2 f2; 3g. Assume that a 2 C0;�(�;�d�d) and "; � 2 L1(�;�) satisfy (8.5),
(8.6) and (8.7) for some � > 0. There exist �; C > 0 depending only on �, �, �
and Kmax such that the following is true. Set

E� =
ý
z 2 � : jRe zj < Kmax + 1; j Im zj < �

�
:

For every ! 2 E� , ' 2 C1;�(�;�), F 2 C0;�(�;�d) and f 2 L1(�;�) the
problem ² �div(aru)� (!2"+ i!�)u = f + div F in � ;

u = ' on @�,

admits a unique solution u 2 H1(�;�). Moreover, u 2 C1;�(�;�) and

kukC1;�(�;�) � C
�
kfkL1(�;�) + kFkC0;�(�;�d) + k'kC1;�(�;�)

�
:

For ' 2 C1;�(�;�) and ! 2 E� let u'! be the unique solution to² �div(aru'!)� (!2"+ i!�)u'! = 0 in � ;

u
'
! = ' on @� .

Note that by the previous result we have

(8.9) ku'!kC1;�(�;�) � Ck'kC1;�(�;�)
for some C > 0 depending only on �, �, � and Kmax .

As we have already pointed out in Section 8.1, at the core of this approach
is the holomorphicity of the map ! 2 E� 7! u

'
! 2 C1(�;�).

Proposition 8.6. — Let � � �d be a C1;� bounded domain for some � 2 (0; 1) and
d 2 f2; 3g. Assume that a 2 C0;�(�;�d�d) and "; � 2 L1(�;�) satisfy (8.5),
(8.6) and (8.7) for some � > 0. Take ' 2 C1;�(�;�), Kmax > 0 and let � > 0 be
as in Lemma 8.5. The map

E� �! C1(�;�); ! 7�! u
'
!
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is holomorphic. Moreover @!u
'
! 2 C1(�;�) is the unique solution to

(8.10)
² �div(ar(@!u'!))� (!2"+ i!�)@!u'! = (2!"+ i�)u'! in � ;

@!u
'
! = 0 on @� .

Proof. — Fix !0 2 E� : we shall prove that ! 2 E� 7! u
'
! 2 C1(�;�) is holo-

morphic in !0 . Let R > 0 be such that the complex ball B(!0; R) � E�
and take h 2 B(0; R) � �. By Lemma 8.5, the above problem is well-posed
with ! = !0 + h. By construction we have

�div(aru'!0+h)�
�
(!0+h)

2"+i(!0+h)�
Ð
u
'
!0+h

= �div(aru'!0)�(!20"+i!0�)u
'
!0 ;

and u
'
!0+h

= u
'
!0 on @�. Setting vh = (u

'
!0+h

� u
'
!0)=h we obtain² �div(arvh)� (!20"+ i!0�)vh = (2!0"+ i�)u

'
!0+h

in � ;

vh = 0 on @� .

Lemma 8.5 and (8.9) give

(8.11) kvhkC1;�(�;�) � C
��(2!0"+ i�)u'!0+h��L1(�;�) � C1k'kC1;�(�;�)

for some C1 > 0 depending only on �, �, � and Kmax .

Defining @!u
'
!0 as in (8.10) and setting rh = vh � @!u

'
!0 we obtain² �div(arrh)� (!20"+ i!0�)rh = (2!0"+ i�)hvh in � ;

rh = 0 on @� .

Arguing as above, Lemma 8.5 and (8.11) yield

krhkC1(�;�) � Cjhj 	 k(2!0"+ i�)vh 	 kL1(�;�) � C2 k'kC1;�(�;�) 	 jhj
for some C2 > 0 depending only on �, �, � and Kmax . In other words,

lim
h!0

u
'
!0+h

� u
'
!0

h
= @!u

'
!0 in C1(�;�).

This shows that the map

E� �! C1(�;�); ! 7�! u
'
!

is holomorphic in !0 , and that the first derivative with respect to !

solves (8.10), as desired.
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Choose now the d+ 1 boundary values
'1 = 1; '2 = x1; : : : ; 'd+1 = xd;

(as in Theorems 8.1 and 8.2). In order to study the constraints considered in
this chapter, we use the following notation.

For j = 1; 2; 3 define the maps �j : E� ! C0(�;�) by

�1! = u1!; �2! = det[ru2! 	 	 	 rud+1! ]; �3! = det
h
u1! 			 ud+1!

ru1! 			 rud+1!

i
;

where � > 0 is given by Lemma 8.5. As an immediate consequence of the
previous result we obtain the following

Lemma 8.7. — There exists C > 0 depending only on �, �, � and Kmax such that
for every j = 1; 2; 3 and ! 2 E�

1) the map �j : E� ! C0(�;�) is holomorphic;

2) k�j!kC0(�;�) � C and

3) k@!�j!kC0(�;�) � C .

Proof. — Part 1 follows immediately from the holomorphicity of the maps

E� �! C1(�;�) ! 7�! ui!

proven in Proposition 8.6, since composition of holomorphic functions is holo-
morphic. Part 2 follows from (8.9), and Part 3 follows from (8.9) and the esti-
mate

(8.12) k@!ui!kC1(�;�) � C(� ; �;�; Kmax);

which is a consequence of (8.9) and of Lemma 8.5 applied to (8.10).

We first prove that the constraints can be satisfied in every point x of the
domain for some frequency !x 2 �. For simplicity, we carry out the proofs
of the two theorems at the same time. Thus, in the case of Theorem 8.2, we
let �0 = �.

Proposition 8.8. — Assume that the assumptions of either Theorem 8.1 or of Theo-
rem 8.2 hold true. For every x 2 �0 and j = 1; 2; 3 there exists ! 2 � such thatþþ�j!(x)þþ � C

for some C > 0 depending only on �, �0 , �, � and �.
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Proof. — Let us first study the values of the maps �j for ! = 0. Since '1 = 1,
we have u10 � 1 independently of the dimension. Therefore

�10 � 1 and �30 � �20:

If a is not constant and d = 2, by Corollary 6.8 we have

j�20(x)j � C0; x 2 �0

for some C0 2 (0; 1] depending only on �, �0 , � and �. If a is constant,
since ui0 � xi�1 for i = 2; : : : ; d + 1 we have �20 � 1. To summarise the above
discussion, we have proved thatþþ�j0(x)þþ � C0; j = 1; 2; 3; x 2 �0:

For x 2 �0 define gx : E� ! � by gx(!) = �1!(x)�
2
!(x)�

2
!(x). We haveþþgx(0)þþ � C30 ; x 2 �0;

and by Lemma 8.7 part 2 we have

sup
E�

jgxj � D

for some D > 0 depending only on �, �, � and �. Moreover, in view of
Lemma 8.7 part 1, gx is holomorphic. Thus, by Proposition 8.9 there exists
! 2 � such that þþ�1!(x)�2!(x)�2!(x)þþ = þþgx(!)þþ � C

for some C > 0 depending only on �, �0 , �, � and �. The result immediately
follows from Lemma 8.7 part 2.

We have proven that the required constraints can be satisfied in every point
of the domain. This would still require an infinite number of frequencies to
enforce the constraints everywhere in the domain. A relatively standard com-
pactness argument allows us to show that in fact a finite number of frequency
is sufficient, concluding the argument.

Proof of Theorems 8.1 and 8.2. — Several positive constants depending only
on �, �0 , �, � and � will be denoted by C1; C2; : : : .
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8.3. PROOFS OF THE MAIN RESULTS 163

In view of Proposition 8.8, for every x 2 �0 and j = 1; 2; 3 there exists
!x 2 � such that þþ�j!x(x)

þþ � C1:

By Lemma 8.7 part 3, we have that the partial derivative with respect to ! of �j!
is bounded by above, namely j@!�j!j � C2 . Therefore, the above inequality with
a different constant C3 holds also in a neighbourhood of !x , whose size is
independent of x. More precisely, there exists Z > 0 depending only on �,
�0 , �, � and � such that for every x 2 �0 and j = 1; 2; 3

(8.13)
þþ�j!(x)þþ � C3; ! 2 [!x � Z; !x + Z] \�:

Write

� =
P[

p=1

Ip \�; Ip =
ð
Kmin + (p� 1)Z; Kmin + pZ

Ł
;

for some P 2 � depending only on Z and �. Recall that the set of frequencies
K(n) is defined by

K(n) =
n
Kmin +

`� 1
n� 1(Kmax � Kmin) : ` = 1; : : : ; n

o
:

Since the distance between two consecutive frequencies in K(n) goes to zero
as n ! 1 and the size of Ip is equal to Z , it is possible to choose n big enough
(depending on Z and �) so that K(n) intersects Ip for every p = 1; : : : ; P .
We can thus write !(p) 2 K(n) \ Ip .

Fix now x 2 �0 . Since the set [!x � Z; !x + Z] has size 2Z and the sets Ip ,
of size Z , cover �, there exists px = 1; : : : ; P such that Ipx � [!x � Z; !x + Z].
Therefore !(px) 2 [!x � Z; !x + Z] \�, and thanks by (8.13) we obtain

(8.14)
þþ�j!px

(x)
þþ � C3; j = 1; 2; 3:

Define now for ! 2 K(n)

�! =
ý
x 2 �0 : j�j!(x)j > 1

2C3; j = 1; 2; 3
�
:

The desired constraints are satisfied in �! by definition of �j with the con-
stant 12C3 . Moreover, by (8.14) we have

�0 =
[

!2K(n)
�!;

as desired. This concludes the proof of the theorems.
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8.4. Quantitative unique continuation for holomorphic functions

We need the following quantitative version of the unique continuation prop-
erty.

Proposition 8.9. — Take �; C0; D > 0 and 0 < Kmin < Kmax . Set

� = [Kmin; Kmax] and E =
ý
z 2 � : jRe zj < Kmax + 1; j Im zj < �

�
:

There exists C > 0 such that for every holomorphic function g : E 7! � with
supE jgj � D and jg(0)j � C0 we have

max
�

jgj � C:

Proof. — By contradiction, assume there exists a sequence (gn)n2� of holo-
morphic functions on E such that for every n

sup
E

jgnj � D;(8.15)

jgn(0)j � C0;(8.16)

lim
n!1max�

jgnj = 0:(8.17)

By (8.15) and Montel’s theorem [201, Chapter 8, Theorem 3.3] there exists
a subsequence, still denoted by gn , and a holomorphic function g : E 7! �

such that gn ! g uniformly on every compact subsets of E . As a consequence,
in view of (8.16) and (8.17) we have jg(0)j � C0 > 0 and g(z) = 0 for every
z 2 �, which contradicts the unique continuation theorem for holomorphic
functions.
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HYBRID INVERSE PROBLEMS





CHAPTER 9

THE COUPLED STEP IN HYBRID INVERSE PROBLEMS

This part of the book focuses on hybrid inverse problems. Typically, the
reconstruction in hybrid imaging techniques is split into two steps.

. The coupled step. — By combining two different types of waves, some inter-
nal data are reconstructed inside the domain from the direct measurements
(usually taken on the boundary of the domain considered). The physical real-
isations of this combination are different for each modality; the mathematical
techniques employed to reconstruct the internal data from the measurements
vary accordingly. The internal data do not provide values for the unknown
parameter explicitly; it measures it indirectly by providing the value of a con-
glomerate expression involving other quantities, such as the solutions of the
direct problem.

. The quantitative step. — The quantitative step is devoted to the reconstruc-
tion of the unknown parameter(s) from the measured internal data. Unlike
the coupled step, this is a solely mathematical step which often involves the
study of the PDE governing the problem to obtain uniqueness, stability and, in
some situations, explicit reconstruction formulae.

This chapter is devoted to the presentation of the coupled step of the hy-
brid inverse problems introduced in Chapter 1. This chapter does not contain
theorems or propositions; some of the tools introduced in Part I of this book
find their application here in an informal way. The quantitative step will be the
focus of Chapter 10 .
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9.1. Magnetic resonance electric impedance tomography – current density
impedance imaging

9.1.1. Physical model. — The two modalities we consider here refer to the
same physical coupling method. A brief description of this problem follows,
and readers are referred to [196, 195] for a more detailed discussion.

A conductive body is equipped with the standard EIT apparatus discussed in
x1.1.1. For every electric potential ' applied on the boundary of a domain �,
the corresponding potential u inside � satisfies the conductivity equation

(9.1)
² �div(�ru) = 0 in � ;

u = ' on @� ;

where � is the spatially varying conductivity. As a result, a current of the form

J = �ru in �

is created inside the domain. The presence of the electrical current creates a
magnetic field H , which, by Ampère’s law, satisfies

(9.2) J = curlH in � :

In a more general and realistic model, we can also consider the full Maxwell
system

(9.3)

8<:
curlE = i!H in � ;

curlH = �i	E in � ;

E � � = '� � on @� :

with complex unknown admittance 	 = !"+i�. We assume � = 1 and "; � > 0,
namely we study the isotropic case. Note that (9.1) and (9.2) are nothing else
than (9.3) in the limit ! ! 0 (Remark 3.20).

9.1.2. The internal data. — The coupled step of these hybrid modalities con-
sists in the reconstruction of one or more components of the magnetic field H

with a magnetic resonance imaging (MRI) scanner. As this is a very classi-
cal medical imaging modality, we shall not discuss the mathematical details.
In vague terms, the reconstruction in MRI boils down to an inversion of the
Fourier transform.
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If only one component is measured, the modality is usually called mag-
netic resonance electric impedance tomography (MREIT). In order to measure the
full magnetic field H , two rotations of the object or of the scanner are re-
quired. In this case, the modality takes the name of current density impedance
imaging (CDII), since by (9.2) the full current J can be easily obtained from H .
For simplicity, in this book we shall consider only the case of CDII, even though
MREIT is arguably much more practical.

In CDII modelled by the conductivity equation, in view of (9.2) the internal
data are given by the current density

J = �ru;

corresponding to one or several boundary potentials '. These internal mea-
surements represent the data obtained from CDII: the desired unknown � is
multiplied by the field ru.

In the more general case of Maxwell’s system (9.3), the internal data simply
consist of several measurements of H for several boundary values ', and both "

and � are unknown.
In Chapter 10 , we will study the quantitative step in CDII, namely how to

reconstruct � (and ") from these internal data.

9.2. Acousto-electric tomography

9.2.1. Physical model. — Acousto-electric tomography is a hybrid modality
using the electro-acoustic interaction phenomenon, experimentally measured
in [135]. It has been developed under different names, such as acousto-electric
tomography [218], [101] or ultrasound current source density imaging [175]
(and possibly other names as well), and in the mathematical literature as
electrical impedance tomography by elastic deformation, impedance acoustic-
tomography or ultrasound modulated electrical impedance tomography [25],
[99], [71], [129], [40] (and possibly other names as well). The fundamental
physical mechanism used for this imaging phenomenon is that when a tissue
is compressed, its conductivity is affected. Namely, if a volume D is subject to a
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variation of pressure �p, its conductivity varies by

(9.4) �� 
 �k�p;

where k is a proportionality constant [119], [135].

We will describe one of these imaging modalities, which uses focused waves.
In that case small domains D are perturbed by means of focused ultrasound
waves. Another possibility is the use of modulated plane waves. The resulting
internal data have the same form in both cases.

9.2.2. The internal data. — Let � be a smooth three-dimensional domain.
(This approach works in the two-dimensional case as well, but we decided to
restrict ourselves to three dimensions since the theoretical result of Chapter 4
we are going to use was discussed only for d = 3.) We consider two measure-
ments. In the first case, no pressure is applied, and the voltage potential ui
is given by ²

div(�rui) = 0 in � ;

ui = 'i on @� ;

where 'i; i = 1; : : : N , are the imposed boundary voltage potentials for some
N 2 �

� (a boundary current can be imposed instead, leading to the same
final result). Second, when a focused ultrasound beam is applied to the object,
calibrated so that it is centred around a point z located within the domain �,
the voltage potential satisfies²

div(�zruzj) = 0 in � ;

uzj = 'j on @� ;

where �z = �+ (��) �Dz = �(1 + k �p�Dz):

Dz = z+D is the locus of the focused wave, and D is a set of small diameter
centred at the origin. An integration by parts shows that the cross-correlation
of the known boundary measurements leads to some localised information on
the inclusion, namelyZ

@�
�('i @� u

z
j � 'j @� ui)ds =

Z
Dz

��ruzj 	 ruidx:
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We can now apply the theory developed in Chapter 4 . More precisely, assuming
that � 2 W 1; p for some p > 3, by Theorem 4.7 we haveZ

@�
�('i @� u

z
j � 'j @� ui)ds =

Z
Dz

��(I3 + P�
D)ruj 	 ruidx+ O

�jDj1+�Ð
for some � > 0. In particular, if D is a small ball centred at the origin, we derive

1

jDj
Z
@�

�('i @� u
z
j � 'j @� ui)ds 
 ��(z)3�(z)

3�(z) + ��(z)
ruj(z) 	 rui(z)

=
3k�p

3 + k�p
�(z)ruj(z) 	 rui(z):

Varying the applied pressure or otherwise, the constant k can be reconstructed
and we obtain

�(z)rui(z) 	 ruj(z)
for every centre point z . In other words, the cross-correlation of the boundary
measurements allows us to measure pointwise (cross-)power measurements for
the unperturbed problem. If we assume that it is possible to perform the above
measurements for all z 2 �0 , for some subdomain �0 � �, the internal data
in AET is

Hij(x) = �(x)rui(x) 	 ruj(x); x 2 �0:
Quantitative AET, that is, the reconstruction of � from multiple measurements
of Hij will be addressed in the next chapter.

9.3. Thermoacoustic tomography

9.3.1. Physical model. — Thermoacoustic tomography (TAT) is one of the
most commonly studied hybrid imaging problem in the mathematical liter-
ature of the last decade. Electromagnetic radiations are coupled with ultra-
sound measurements as we now describe. The absorption of the electromag-
netic waves inside the object under investigation results in local heating, and so
in a local expansion of the medium. This creates acoustic waves that propagate
up to the boundary of the domain, where they can be measured. The frequency
of the waves is typically in the microwave range; when high frequency waves,
namely laser pulses, are used, this hybrid modality is called photoacoustic to-
mography (see Section 9.6).
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The model assumes that the object under consideration has the mechani-
cal properties of a mostly inviscid fluid. In the case of soft biological tissues,
this assumption is reasonable, even though more advanced models prefer to
consider visco-elastic tissues instead.

Assuming that the velocities, variations of pressure, and variations of densi-
ties are sufficiently small to justify a linearised model, we write down the con-
servation of mass and momentum under the form

1

�

d�

dt
+ div U = 0; �

d

dt
u =

dX
j=1

@j�ij ;

in absence of external forces [89, Chapter 1]. The velocity vector is u in Eu-
lerian coordinates, and U is the same vector in Lagrangian coordinates, � is
the density, and �ij is the stress tensor. The constitutive equation defining the
stress is

�ij =
�� p+ �div(u)

Ð
�ij + �(@jui + @iuj) + �Fij(x; �);

where p is the pressure, � and � are the coefficients of viscosity, and F is
the thermal stress tensor, accounting for the effects of the temperature �. It
is usually assumed that viscosity can be neglected and that the thermal stress
tensor isotropic, leading to a simpler (Euler) model,

�
dui
dt
= �@i

�
p+ �F (x; �)

Ð
:

Assuming the flow is irrotational, that is, curlU = 0, the velocities derive from
a potential,

U = r';
and the problem becomes

@t p+ r� 	 U + ��' = 0; @i
�
@t'+

1
2U
2Ð+ 1

�
@i
�
p+ �F (x; �)

Ð
= 0:

Linearising again, we obtain

@t �+ ��' = 0; @i
�
@t'+

1

�
p+ F (x; �)

�
= 0;

e.g.

(9.5) @t '+
1

�
p+ F (x; �) = 0;
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absorbing the constant (independent of time) into ': Assuming that the den-
sity depends on the location, the pressure and the temperature according to
an equation of state, namely

� = �(p; x; �):

As a result, the first equation becomes

@ �

@ p
@t p+

@ �

@ �
@t�+ ��' = 0;

Combining these two equations gives after linearisation

@ �

@ p
@tt '� �' = @t�

�1
�

@ �

@ �
� @ �

@ p
@�F (x; �)

�
:

The temperature � is assumed to satisfy the heat equation,

@t�� 1
�
div(Kr�) = S(x; t);

where S(x; t) is a source term accounting for the heat added to the system by
electromagnetic radiations. The commonly accepted model is a particular case
of this system, where the thermal diffusion is considered to happen at a larger
time scale than the propagation of the the pressure wave, therefore

@t� = S(x; t);

and the problem finally becomes

@ �

@ p
@tt '� �' = S(x; t)

�1
�

@ �

@ �
� @ �

@ p
@�F (x; �)

�
:

It is usually assumed that F is linear in �, that is @�F (x; �) = �(x). Using (9.5)
we obtain

@ �

@ p

1

�
@tt p� �

�1
�
p
�
= @tS(x; t)

�1
�

@ �

@ �
� 2 @ �

@ p
�
�
+ �F:

It is further assumed that the spatial variations of � and F are so mild that this
model may be simplified to

c�2 @tt p� �p = @tS(x; t)A(x);
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for some function A: From thermodynamic considerations, the source term
S(x; t) is seen to be proportional to the Joule energy deposited by the electro-
magnetic radiating field, e.g. (see [208])

S(x; t) =
1

Cp
�(x)

þþE(x; t)þþ2:
If the illumination happens suddenly, so that S is modelled as an initial im-
pulse, this leads to the commonly accepted model, namely8><>:

@tt p� c2(x)�p = 0 in �� (0; T );
p(x; 0) = ��(x; !c)jE(x; !c)j2 in � ;

@t p(x; 0) = 0 in � ;

where � is a mildly varying function of space, the so-called Grüneisen parameter.
The boundary conditions satisfied by the pressure depend on the approach fol-
lowed to reconstruct the source from boundary measurements. One possibility
is to consider idealised acoustic receptors, “invisible” to the acoustic propaga-
tion, situated at a certain distance from the medium. In this case, this equation
holds in the whole space. In other words, � = �

d and no further boundary
conditions are imposed. Then, one assumes that the initial source has support
contained in some bounded domain �0 � �

d , and that the acoustic measure-
ments are performed on @�0 . (For the partial data problem, only a subset
of @�0 is considered.) This is the most studied setting in the mathematical
literature: a good understanding of this problem has now been reached, and
a successful inversion is often possible, even with partial data or non-constant
sound speed. The reader is referred to [127] for a review on the main advances
related to this inverse problem.

In this book we follow a different approach: the wave propagation is consid-
ered only within the bounded domain surrounded by the sensor surface, and
assume a certain behaviour of the acoustic wave at the boundary (see [84],
[26], [130], [116], [1], [200]). In other words, we set � = �0 and we aug-
ment the previous initial boundary problem with suitable boundary conditions
on @�. For simplicity, here we choose Dirichlet boundary conditions:

p(x; t) = 0 in @�� [0; T ]:

COURS SPÉCIALISÉS 25



9.3. THERMOACOUSTIC TOMOGRAPHY 175

Other types of boundary conditions may be considered as well; for instance,
Neumann boundary conditions would be appropriate for a reflecting cavity. In
the Dirichlet case, the measurements are

@� p(x; t); x 2 �; t 2 [0; T ]
for some measuring surface � � @� and some time T > 0.

9.3.2. The internal data. — From the previous discussion, the acoustic pres-
sure satisfies the wave equation8>>><>>>:

c(x)2�p� @2ttp = 0 in �� (0; T );
p(x; 0) = H(x) in � ;

@t p(x; 0) = 0 in � ;

p = 0 on @�� (0; T );
where � � �

d , d = 2; 3, is a smooth bounded domain, c is the sound speed of
the medium and H is the initial source. By the theory developed in Chapter 2,
see Remark 2.7, it is possible to reconstruct the source term H from boundary
measurements of @� p on a part of the boundary � � @�, provided that the ob-
servability inequality is satisfied. In the sequel, we assume that the observability
inequality holds.

Assuming � = 1, the source term H has the form

H(x) = �(x)
þþE(x)þþ2;

where � is the spatially varying conductivity of the medium and E is the electric
field that satisfies the Maxwell system

� curl curlE + (!2 + i!�)E = 0;
where ! > 0 is the angular frequency of the microwaves.

We consider only a simplified version of the above model, namely the stan-
dard scalar approximation of Maxwell’s system given by the Helmholtz equa-
tion ²

�u+ (!2 + i!�)u = 0 in � ;

u = ' on @� :

For simplicity, we have augmented the problem with Dirichlet boundary values,
even though Robin boundary conditions would be arguably more appropriate
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in this context. In this simplified scalar case, the measured absorbed energy
takes the form

H(x) = �(x)
þþu(x)þþ2; x 2 � :

This quantity represents the so-called thermoacoustic image.

In the following chapter (see Section 10.3) we shall deal with the problem
of quantitative thermoacoustics, namely the problem of reconstructing � from
the knowledge of the internal data H . There exists an explicit reconstruction
formula for the reconstruction of �, provided that several measurements are
taken for different boundary values '.

9.4. Dynamic elastography

In elastography, the medium is modelled as a solid instead of a fluid. The
variable u now represents the displacement and not the velocity. The classi-
cal isotropic dynamic linear elasticity model, resulting from Newton’s second
law, is

�
@2u

@ t2
= f + div �(u)

where � = (�ij)1�i;j�3 is the stress tensor, related to the displacement u by
Hooke’s Law

�(u) = �div(u)Id + �(ru+ ruT );
where � and � are the Lamé parameters, and Id is the identity matrix.

The gravity force f is usually neglected compared to other forces in play.
This yields

�
@2u

@ t2
= r��div(u)Ð+ div(2�ru) + curl(� curl u);

where the operator div(2�r	) acts component-wise, like the vector Laplacian.
A Helmholtz decomposition (see Lemma 3.7) allows us to decompose u into a
compression wave and a shear wave. Namely, we write

u = rq + curl�:
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The quantity uc = rq is called the compression wave, whereas us = curl� is a
called a shear wave, and

(9.6) �
@2u

@ t2
= r��div(uc)Ð+ div �2�r(uc + us)

Ð
+ curl(� curl us):

When � and � are constant, this becomes simply

(9.7) div �(u) = r�(�+ 2�) div(uc)Ð� curl(� curl us);
which acts independently on gradient fields and gradient free fields: this has
lead to the separate investigation of compression waves and shear waves. In
inhomogeneous media it is often assumed that shear waves and compression
waves do not interact at first order, and that (9.7) still holds(4). Due to the fact
that � � � in tissues, the compression wave and the shear wave are then easily
separated after a Fourier transform, as they are deemed to propagate at very
different velocities. The fast compression wave is given by

�!2uc + div
�
(�+ 2�) div(uc)Id

Ð
= 0;

whereas the slower shear waves satisfies

�!2us � curl(� curl us) = 0:
The displacement of the shear wave are then measured by either ultra-fast
ultrasound imaging, or magnetic resonance [177], [178], [190], [102]. As a
result, the available data is us in the medium, and the main unknowns of the
problem are the functions � and �. In the following chapter we consider the
problem of quantitative elastography, which consists of the reconstruction of �
and � from several measurements of the internal displacement us .

9.5. The thermoelastic problem

We mention here an early model described in [174], which shares similari-
ties with thermoacoustics and elastography. As far as the authors know, it has
not evolved into an experimental imaging method yet. We follow the descrip-
tion given in [89, Chapter 1] of the corresponding physical principles.

4. As far as the authors are aware, this assumption is made to simplify the models; a rigorous
justification might be difficult to derive.
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Setting u as the small displacement in the medium, and � a small variation
in temperature, assuming Hooke’s law of isotropic elasticity holds, with Lamé
Parameters �(x) and �(x), and setting �(x) as the density of the medium,
we have

�(x)@tt ui = @j(�ij) + f ;

where f are the external forces (neglected in the sequel), the strain tensor �

is given by

�ij := (�(x) div(u) + �
�
2�(x) + 3�(x)

Ð
�)�ij + 2�(x)�ij(u);

where

�(u) = 12 @jui +
1
2 @iuj

is the tensor of linearised deformation, � is the linear coefficient of thermal
dilatation, and u is the displacement (unlike in the fluid model where it repre-
sented a velocity). Assuming as before that the displacement field is irrotational
(as it is caused by a dilatation), so that u = r', and because in aqueous tissues
�=� 
 5:102 so that she shear parameter can be neglected, we obtain

�ij = (��'+ �3�(x)�)�ij ;

and in turn,

�(x)@tt ' = ��'+ �3�(x)�+ G(x);

and the integrating factor G(x) can be integrated into ' by setting

�g(x) =
G(x)

�(x)

and redefining as e' = '+ g . We have obtained
�

�
@tt '� �' = 3��:

The heat equation writes

�@t�� div(Kr�) = 3��div(@tu) + F (x; t) = 3��@t(�') + F (x; t);

where � = (�=T )ce , T is the reference temperature, ce is the specific heat at
constant strain, and r represents the rate of heat supplied externally (by ra-
diation in our case), and K is the heat conduction coefficient, divided by T .
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9.6. PHOTOACOUSTIC TOMOGRAPHY 179

Introducing the velocity  = @t ', linearising, and once again neglecting ther-
mal diffusion as its time-scale is of a different order of magnitude than the
speed of wave propagation, we arrive at

�

�
@tt  �

�
1 +
9��2

�

�
� = 3�@tF;

that is, a model very similar to the thermoacoustic one (but with a different
definition of the c), when linear approximations and irrotational, shear-less
assumptions are valid, and the (double) inverse problem is similar.

9.6. Photoacoustic tomography

Photoacoustic tomography (PAT) (sometimes referred to as optoacoustic to-
mography) and TAT exploit the same physical phenomenon: the propagation
of acoustic waves due to the expansions of tissues caused by the absorption of
electromagnetic radiation [208]. The only difference lies in the frequency of
the EM waves: microwaves for TAT and light (laser) for PAT. As a result, the
physical model for PAT is the same as the one described above for TAT, except
for the different initial source for the pressure wave. In PAT, this takes the form

(9.8) H(x) = �(x)�(x)u(x); x 2 � ;

where � is the Grüneisen parameter, � is the light absorption and u is the light
intensity.

As discussed above for TAT, the acoustic pressure satisfies the wave equation8>>><>>>:
c(x)2�p� @2ttp = 0 in �� (0; T );
p(x; 0) = H(x) in � ;

@t p(x; 0) = 0 in � ;

p = 0 on @�� (0; T );
where � � �

d , d = 2; 3, is a smooth bounded domain, c is the sound speed
of the medium and H is the initial source given by (9.8). Arguing as in Sec-
tion 9.3, in a first step it is possible to reconstruct H from boundary measure-
ments of @� p on a part of the boundary � � @�, provided that the observability
inequality is satisfied.
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After the acoustic inverse problem comes to the optical inverse problem. A
model for light propagation is required to tackle this problem. Light propaga-
tion could be modelled using the Maxwell system of equations [93]. Simpler
(numerically and theoretically) approximations are often preferred, such as
the radiative transport equation, that models the propagation of photons, or
its diffusion approximation, valid in highly scattering media [35]. For simplic-
ity, in this work we consider only the diffusive regime, namely

�div(Dru) + �u = 0;

where the diffusion coefficient D depends on the scattering parameter and on
the light absorption �. In general, D is an unknown of the problem.

In the quantitative step of PAT, the light absorption � has to be recovered
from several measurements of Hi = ��ui , corresponding to different light
fields ui . These are obtained with different illuminations 'i , which play the
role of boundary values for the above second order elliptic PDE. This will be
discussed in the next chapter.
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CHAPTER 10

THE QUANTITATIVE STEP IN HYBRID INVERSE
PROBLEMS

This chapter focuses on the quantitative step of the reconstruction for the
hybrid imaging modalities introduced in Chapter 1 and presented in Chap-
ter 9. This reconstruction can be usually achieved, at least formally, in absence
of noise, by means of exact reconstruction formulae. The applicability of these
formulae is guaranteed if the solutions of the direct problem satisfy certain
non-zero constraints inside the domain. Such constraints can be enforced by
using the methods discussed in Chapters 6, 7 and 8.

A careful analysis of the reconstruction procedure leads to stability estimates
in most cases. A detailed discussion of this issue, which is of foremost impor-
tance, goes beyond the scope of this book. Note that the reconstruction proce-
dures discussed below typically involve the differentiation of the internal data.
In practice, and particularly in presence of noise, these steps must be suitably
approximated, e.g. via a regularisation procedure. This is a standard issue in
inverse problems, and will not be discussed here.

10.1. Current density impedance imaging

This section focuses on the quantitative step of the reconstruction in current
density impedance imaging (CDII).
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10.1.1. The conductivity equation. — In the first step, we measured the inter-
nal current distributions

Ji(x) = �(x)rui(x); x 2 � ;

where � � �
d is a Lipschitz bounded domain, d = 2; 3, � is the conductivity of

the medium such that ��1 � � � � in � and the electric potentials ui satisfy² �div(�rui) = 0 in � ;

ui = 'i on @� :

For simplicity we shall also assume that � is known in � n �0 , for some con-
nected subdomain �0 b �. The quantitative step of CDII consists of the recon-
struction of � from the knowledge of the internal data Ji . In this book, we shall
present a simple direct reconstruction, whose main ideas are taken from [137],
[115].

Let us first discuss the required regularity for the conductivity �. The
reconstruction is based on the differentiation of the data, and so we need
Ji 2 H1(�0). Moreover, the reconstruction is based on a pointwise non-
vanishing condition depending on the first derivatives of ui , and so we
need ui 2 C1(�0;�). The following result gives minimal assumptions on the
regularity of � so that these conditions hold true.

Lemma 10.1. — If � 2 H1(�;�) \ C0;�(�;�) for some � 2 (0; 1) then ui belongs
to C1(�;�) and Ji to H1loc(�).

Proof. — Since � 2 C0;�(�;�), by classical Schauder estimates (see Lemma 8.5
or [105, Corollary 8.36]) we have ui 2 C1(�;�). Thus, by Lemma 3.2 ap-
plied to

��ui = ��1r� 	 rui in � ;

it follows that ui 2 H2loc(�). For j = 1; 2 we have

@j Ji = (@j�)rui + �r@jui:
As a result, Ji 2 H1loc(�). This concludes the proof.
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10.1.1.1. The two dimensional case. — Assume that the domain � is convex.
The reconstruction formula is based on two independent measurements such
that the matrix [J1(x); J2(x)] is invertible in �0 . Up to a factor �(x), this is
equivalent to the non-degeneracy of the Jacobian

det
ðru1(x) ru2(x)Ł; x 2 �0:

This brings us to the focus of Chapter 6. In particular, Corollary 6.8 gives that
if we choose 'i = xi for i = 1; 2 then

(10.1)
þþdet ðru1(x) ru2(x)Łþþ � C; x 2 �0;

for some C > 0 depending only on �, �0 , � and �.

We are now ready to derive a reconstruction formula. Set

� =

�
0 1

�1 0

½
:

As div(�rui) = 0 in �, we have div(��1� Ji) = 0 in �. Using the chain
rule this becomes � Ji 	 r log ��1 = �div(� Ji) in �. This identity in a more
compact form is

T [� J1 � J2]r log � = div
�
� [J1 J2]

Ð
:

The non-zero constraint (10.1) allows us to invert the matrix T [� j1 � j2], since

[� J1 � J2](x) = �(x)� [ru1(x)ru2(x)]; x 2 �0:

As a consequence, we have the following reconstruction formula.

Proposition 10.2. — Under the above assumptions, we have

r log � = T [� J1 � J2]
�1 div(� [J1 J2]) in �0:

Since the right-hand side of this identity is known, this equation can be
integrated directly along line segments in �0 , thereby obtaining � in �0 up to
a multiplicative constant, that can be determined if � is known at one point
of �0 .

If � is known on the whole � n�0 , then the reconstruction may be carried
out by solving the following Dirichlet problem for the Poisson equation² ��v = �div �T [� J1 � J2]

�1 div(� [J1 J2])
Ð

in �0;
v = log � on @�0;
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and setting � = ev in �0 . Uniqueness and stability follow immediately from
the classical PDE theory (estimate (10.1) gives a stable inversion of the matrix
[� J1 � J2]): well-posedness for this inverse problem is established.

10.1.1.2. The three dimensional case. — The reconstruction formula when d = 3

is based on a method similar to the one used in the two dimensional case,
where the operator div J becomes the standard curl operator in three dimen-
sions.

In order to apply the direct formula we need to have two linearly indepen-
dent currents at every point. In the two dimensional case, we were able to use
the results discussed in Chapter 6. However, such results do not hold in three
dimensions, as we have shown in Section 6.5. We therefore use the techniques
of Chapter 7 instead. Suitable boundary values will not be determined explic-
itly, and higher regularity of � will have to be assumed.

In particular we may use complex geometric optics solutions to construct
such illuminations, as discussed in x7.2.3.1. Assume � 2 H3=2+3+�(�) for
some � > 0. By Theorem 7.2 there exist '1; '2 2 C2(�;�) such that ru1
and ru2 are linearly independent in �. Hence the corresponding internal
data J1 and J2 are linearly independent in �0 , namely

(10.2) J1(x)� J2(x) 6= 0; x 2 �0:

Note that this corresponds to the two-dimensional constraint given in (10.1).
We readily derive

0 = curlrui = curl(��1Ji) = ��1 curl Ji + r��1 � Ji in � ;

whence Ji � r log � = � curl Ji in �. Taking a scalar product with ej for
j = 1; 2; 3 yields

ej � Ji 	 r log � = � curl Ji 	 ej in � :

Combining these equations for i = 1; 2 and j = 1; 2; 3 gives

T [e1 � J1 e1 � J2 	 	 	 e3 � J1 e3 � J2]r log �
= � T [curl J1 	 e1 curl J2 	 e1 	 	 	 curl J1 	 e3 curl J2 	 e3] in � :
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We now claim that the matrix [e1� J1 e1� J2 	 	 	 e3� J1 e3� J2] has rank three
in �0 . Indeed, fix x 2 �0 and take z 2 �

3 such that ej � Ji(x) 	 z = 0 for all i
and j . Then Ji(x)� z = 0 for all i, which by (10.2) establishes our claim.

Therefore, we have the following reconstruction formula.

Proposition 10.3. — Under the above assumptions, we have

r log � = � T [ej � Ji]
�1
i;j 	 T [curl Ji 	 ej]i;j in �0:

As in the two dimensional case, this equation can be integrated in �0 , and �

can be reconstructed in �0 up to a multiplicative constant. Well-posedness for
this inverse problem follows as above.

It is worth noting that the suitable boundary conditions may be constructed
by means of the Runge approximation, as discussed in Theorem 7.11. The ad-
vantage lies in the regularity assumption on �: since � is isotropic, it suffices to
suppose � 2 C0;�(�;�) \ W 1;3(�;�) (see Remark 7.6). However, the bound-
ary values constructed with this method provide the invertibility constraints
only locally: many more measurements are then required.

10.1.2. Maxwell’s equations. — We now consider the model with Maxwell’s
system of equations

(10.3)

8><>:
curlEi = i!Hi in � ;

curlHi = �i	Ei in � ;

Ei � � = 'i � � on @� :

The inverse problem we study consists of the reconstruction of the complex
valued function 	 = !" + i� from the knowledge of internal magnetic fields.
In view of the regularity theory for Maxwell’s system developed in Chap-
ter 3, we assume that "; � 2 C0;�(�;�) \ W 1;3(�;�) for some � 2 (0; 12].
By Theorems 3.9 and 3.10, these assumptions guarantee that Ei belongs
to C0;�(�;�3) \H1loc(�;�

3). In particular, we have

curlHi; Ei 2 C0;�(�;�3); curlHi 2 H1loc(�;�
3):

We may therefore refer to pointwise values of Ei and differentiate curlHi in a
weak sense.
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We present a straightforward extension of the strategy used previously to
address the conductivity equation. We therefore assume that we have two mea-
surements with associated linearly independent electric fields, namely

(10.4) E1(x)� E2(x) 6= 0; x 2 �0:

In order to construct suitable boundary values such that the corresponding
solutions satisfy (10.4) (at least locally), different techniques based on com-
plex geometric optics solutions for Maxwell’s system or on the use of multiple
frequencies may be employed. More precisely, by using the above regularity
properties, results similar to those discussed in Chapters 7 and 8 may be de-
rived for the Maxwell system of equations as well. We have decided to omit
these developments in this book; the interest reader is referred to [80], [83]
for the CGO approach and to [6], [5] for the multi-frequency approach.

From the non degeneracy condition (10.4) and Maxwell’s system we find

(10.5) curlH1(x)� curlH2(x) 6= 0; x 2 �0:

We now proceed to eliminate the unknown electric field from system (10.3), in
order to obtain an exhibit an identity involving only " and � as unknowns and
the magnetic field as a known datum. A computation shows that for i = 1; 2,

r	� curlHi = 	 curl curlHi � 	2!Hi in � :

Projecting these identities along ej for j = 1; 2; 3 we have

r	 	 �curlHi � ej
Ð
= �	(curl curlHi)j � 	2!(Hi)j in � :

We can now write these six equations in a more compact form. By introducing
the 3� 6 matrix

M =
ð
curlH1 � e1 curlH2 � e1 	 	 	 curlH1 � e3 curlH2 � e3

Ł
and the six-dimensional horizontal vectors

v =
�
(H1)1; (H

2)1; : : : ; (H
1)3; (H

2)3
Ð
; w =

�
(curl curlHi)j

Ði=1;2
j=1;2;3

we obtain

(10.6) r	M = �	w � 	2!v in � :
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Arguing as above, in view of (10.5) for x 2 �0 the matrix M(x) admits a right
inverse, which with an abuse of notation we denote by M�1(x). Therefore,
problem (10.6) may be rewritten as follows.

Proposition 10.4. — Under the above assumptions, we have

r	 = �	wM�1 � 	2!vM�1 in �0:

It is now possible to solve this PDE and reconstruct " and � in every x 2 �0

if these are known for one value x0 2 �0 .

10.2. Acousto-electric tomography

In this section we study the problem of quantitative AET, namely of recon-
structing the conductivity � from internal data of the form

Hij(x) = �(x)rui(x) 	 ruj(x); x 2 � ;

where � � �
d is a C1;� bounded domain, d = 2; 3, � is the conductivity of the

medium such that ��1 � � � � in � and the electric potentials ui satisfy² �div(�rui) = 0 in � ;

ui = 'i on @� ;

for i = 1; : : : ; N .
This problem has been studied in [25], [71], [129], [40] and solved by

using different techniques. These have been extended to the anisotropic
case in [160], [162]. In this work, we shall discuss the explicit reconstruc-
tion algorithms considered in [71], [40], which are applicable provided that
fru1(x); : : : ;ruN (x)g spans �d for every x 2 �0 , and shall follow the presen-
tation of [40]. Therefore, as in the previous section, we will need to apply
the techniques discussed in Chapters 6 and 7 for the two-dimensional and
three-dimensional cases, respectively.

As with CDII, the reconstruction is based on the differentiation of the data,
and so some regularity of H is needed. Assume � 2 W 1;2(�;�)\C0;�(�;�) for
some � 2 (0; 1). By Lemma 10.1 there holds ui 2 C1(�;�) and Hij 2 H1loc(�).
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10.2.1. Local reconstruction. — This subsection is devoted to the local recon-
struction of �. Let e� � � be a connected smooth subdomain of � and take d

boundary values '1; : : : ; 'd 2 H1(�;�) such that

(10.7) det
ðru1 	 	 	 rudŁ � C in e�:

We now prove that � and rui can be uniquely reconstructed in e� from the

knowledge of H in e� and of �(x0) and rui(x0) for some x0 2 e�.

Write Hij = Si 	 Sj , where Si =
p
�rui . The reconstruction of � can be split

into two steps:

1) Reconstruction of Si in e� from the knowledge of H in e� and of Si(x0)
for some x0 2 e�.

2) Reconstruction of � in e� from the knowledge of Si in e� and of �(x0)
for some x0 2 e�.

The second step can be solved by proceeding exactly as in the previous section,
where � was reconstructed from the current densities �rui . Thus, the rest of
this subsection focuses only on the reconstruction of the vectors Si .

We claim that the knowledge of the matrix H determines the matrix

(10.8) S =
ð
S1 	 	 	 Sd

Ł
in e� up to a SO(d;�)-valued function. Indeed, first note that H is positive
definite in e�, as Hij = Si 	 Sj and fSigi is a basis of �d in e� by (10.7). (This
is a standard property of Gram matrices, the matrices of scalar products of a
family of vectors.) Since H is symmetric and positive definite, we can construct
the inverse of its square root

T = H� 12 in e�:
Note that T is symmetric and positive definite. Thus, writing R = S T , we have
that TRR = T TS S T = T H T = I in e� and detR > 0 by (10.7), therefore R

belongs to SO(d;�). We obtain

(10.9) S = RH
1
2 in e�;

namely S is known in e� up to a (varying) rotation. It remains to determine
the matrix R(x) for every x 2 e�.
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Write T = (tij)ij and T�1 = (tij)ij and set

(10.10) Vij = (rtik)tkj ; 1 � i; j � d:

The vector fields Vij are known in e� and will be used for the reconstruction
of R, which can be achieved by solving a PDE satisfied by R. This PDE can be
best expressed in terms of a suitable parametrisation of the rotation matrix R.
Thus, since the natural parametrisation of SO(d;�) depends on d, we shall
study the two and three-dimensional cases separately.

10.2.1.1. The two-dimensional case. — Using the standard parametrisation of
two-dimensional rotation matrices, it is convenient to write

R(x) =
h cos �(x) � sin �(x)
sin �(x) cos �(x)

i
; x 2 e�:

The angle � satisfies a PDE, whose derivation is rather lengthy, and we have
decided to omit it.

Proposition 10.5 (see [71], [40]). — We have

(10.11) r� = 12(V12 � V21) +
1
4�r log detH in e�;

where � =
ð
0 1

�1 0
Ł

and Vij is defined in (10.10).

It is now possible to reconstruct �, thereby R, in e� up to a constant by inte-
grating (10.11). The constant can be determined from the knowledge of R(x0).
Once R is known, the vectors Si can be reconstructed via (10.8) and (10.9).

In x10.2.2 we shall see how to use this local reconstruction algorithm to
image � in the whole domain �.

10.2.1.2. The three-dimensional case. — The three-dimensional case is slightly
more involved. Indeed, while the Lie group SO(2;�) is one dimensional, in
dimension three the special orthogonal group SO(3;�) is three-dimensional,
and therefore obtaining the rotation matrix R is more complicated. As it was
shown in [40], using the quaternion representation of the elements in SO(3;�)

yields an equation of the form

rR = f(R; Vij) in e�;
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for some function f that depends on R polynomially. As above, it is possible to
integrate this PDE and reconstruct R, hence the vectors Si , in e�.

10.2.2. Global reconstruction. — The reconstruction procedure discussed in
the previous subsection is based on estimate (10.7), which can be satisfied by
using the results discussed in Chapters 6 and 7 in dimension two and three
respectively.

10.2.2.1. The two-dimensional case. — In dimension two it is possible to sat-
isfy (10.7) globally, this greatly simplifies the reconstruction. For simplicity,
suppose that the domain � is convex.

Choose the two boundary values defined by

'1 = x1; '2 = x2:

By Corollary 6.8 (see also Remark 6.4) we have

det
ðru1 ru2Ł(x) � C; x 2 � :

Therefore, assuming that �(x0), ru1(x0) and ru2(x0) are known for some
x0 2 @� by boundary measurements, it is possible to reconstruct � in � by
using the method discussed in x10.2.1.

10.2.2.2. The three-dimensional case. — In three dimensions it is possible to sat-
isfy (10.7) only locally, by using the techniques discussed in Chapter 7, namely
the complex geometric optics solutions and the Runge approximation. For
brevity, we discuss only the approach based on CGO (Theorem 7.2); the ap-
proach based on the Runge approximation is similar (see Theorem 7.11).

Assume that � 2 H
3
2+3+�(�3) for some � > 0. In view of Theorem 7.2, there

exist boundary conditions '1; : : : ; '4 2 C2(�;�) such thatþþþdet ðru1ru2ru3Ł(x)þþþ+ þþþdet ðru1ru2ru4Ł(x)þþþ > 0; x 2 � :

Therefore we have the decomposition

� = �1 [�2; �` = fx 2 � : þþdet ðru1ru2ru2+`Ł(x)j > 0g:
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Considering now the connected components �`
j (l 2 Ij ) of �j , we have

� =
[
j=1;2
`2Ij

�`
j :

Note that, by the compactness of � , we can assume that this union is finite.
It is now possible to apply the local reconstruction procedure discussed

above as follows. Take x0 2 @� such that �(x0) and rui(x0) are known for
all i = 1; : : : ; 4 by boundary measurements. Let j0 2 f1; 2g and `0 2 Ij0 be
such that x0 2 �`0

j0
. By using the local reconstruction algorithm with measure-

ments corresponding to the boundary values '1 , '2 and '2+`0 it is possible
to reconstruct � and rui in �`0

j0
for all i. Proceeding in the same way, we re-

construct � and rui in �`
j for all j and l such that �`

j \�`0
j0

6= ?. Repeating
this argument a finite number of step, we can reconstruct � uniquely in the
whole � .

10.3. Thermoacoustic tomography

This section is devoted to the study of the quantitative step in thermoacous-
tic tomography (see Section 9.3). The problem of quantitative thermoacoustic
tomography (QTAT) consists of the reconstruction of the conductivity � from
the knowledge of the internal data

H(x) = �(x)
þþu(x)þþ2; x 2 � ;

where the electric field u satisfies the Dirichlet boundary value problem for
the Helmholtz equation²

�u+ (!2 + i!�)u = 0 in � ;

u = ' on @� :

This problem has attracted considerable attention in the past few years. An
iterative algorithm for the reconstruction of � is proposed in [216]. Unique-
ness and stability for the problem, under certain assumptions on the parameter
is shown in [41]. In this paper, the convergence of an iterative algorithm based
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on the knowledge of multiple measurements �(x)jui(x)j2 is established, pro-
vided that the corresponding illuminations 'i are suitably chosen. In [51] a
general theory for the reconstruction of parameters of elliptic PDEs from the
knowledge of their solutions is developed, and can be applied to our problem
as in [38]. Another formulation of the same ideas is given in [28], where the
authors exhibit an explicit reconstruction formula, namely an algebraic iden-
tity where � is given explicitly from the data H . The formula uses multiple
measurements where the illuminations 'i are with suitably chosen.

Such a suitable choice of illumination can be achieved making use of the
methods introduced in Chapters 7 and 8. This is the focus of this section.

Let us first give a precise formulation of the problem of quantitative ther-
moacoustics with multiple measurements. Let � � �

d , d = 2; 3, be a C1;�

bounded domain and � 2 L1(�;�) be the conductivity of the medium such
that

��1 � � � � in �

for some � > 0. Given d+1 boundary values 'i 2 C1;�(�;�) (i = 1; : : : ; d+1),
let ui! 2 H2loc(�;�) \ C1(�;�) be the unique solution to

(10.12)
²
�ui! + (!

2 + i!�)ui! = 0 in � ;

ui! = 'i on @� :

For well-posedness and regularity properties of this problem see Lemmata 3.2
and 8.5. The polarisation formula yields for i = 1; : : : ; d+ 1

�u1!u
i
! =

1
2

�
�ju1! + ui!j2 � �ju1!j2 � �jui!j2

Ð
+ 12 i

�
�jiu1! + ui!j2 � �ju1!j2 � �jui!j2

Ð
:

All the factors on the right-hand side are measurable quantities. Indeed,
by the linearity of (10.12) it is sufficient to use the boundary values '1 , 'i ,
'1 + 'i and i'1 + 'i in (10.12) and measure the corresponding internal data
H(x) = �(x)ju(x)j2 . As a result, the quantities

Hi
!(x) = �(x)u1!(x)u

i
!(x); x 2 �

can be considered as known data, and the conductivity � has to be recon-
structed.
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10.3.1. Local reconstruction. — Let us first study the local reconstruction of �
from the knowledge of d + 1 measurements u1!; : : : ; u

d+1
! , corresponding to a

fixed frequency ! and d + 1 boundary values '1; : : : ; 'd+1 . Let e� � � be a
subdomain in which the following constraints hold true:

ju1!j � C in e�;(10.13a) þþþdet hu1! 			 ud+1!

ru1! 			rud+1!

iþþþ � C in e�:(10.13b)

We shall comment on how to satisfy these constraints globally in the following
subsection. We now show that � can be uniquely reconstructed in e�.

We use the notation

vi! =
Hi
!

H1!
=

ui!
u1!

,

so that vi! is a known quantity as well. Note that vi! is well-defined in e� since
u1! 6= 0 in e� by (10.13a). In view of (10.12) we have for i = 2; : : : ; d+ 1

�div �(u1!)2rvi!Ð = �div(u1!rui! � ui!ru1!) = ui!�u
1
! � u1!�u

i
!

= �ui!(!2 + i!�)u1! + u1!(!
2 + i!�)ui!

= 0

in e�. Recalling that u1!; v
i
! 2 H2(e�;�), expanding the left-hand side of this

identity yields r(u1!)2 	 rvi! = �(u1!)2�vi! , whence 2ru1! 	 rvi! = �u1!�vi! in e�
for i = 2; : : : ; d+1. Writing these equations in a more compact form we obtain

2ru1!
ðrv2! 	 	 	 rvd+1!

Ł
= �u1!

ð
�v2! 	 	 	 �vd+1!

Ł
in e�:

We would like to invert the matrix in the left-hand side in order to have an
explicit expression for ru1! . This is possible thanks to the identity

(10.14) det
ðrv2! 	 	 	 rvd+1!

Ł
= (u1!)

�(d+1) det
h
u1! 			 ud+1!

ru1! 			rud+1!

i
;

whose proof is trivial but rather lengthy, and has therefore been omitted. As a
result, in view of (10.13b) the matrix [rv2! 	 	 	 rvd+1! ] is invertible in e� and so
we obtain the following reconstruction formula.

Proposition 10.6. — Under the above assumptions, we have

2ru1! = �u1!
ð
�v2! 	 	 	 �vd+1! ][rv2! 	 	 	 rvd+1!

Ł�1 in e�:
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Since the vi! s are known, this first order PDE with unknown u1! can now
be integrated in e�, and u1! is determined uniquely in e� up to a complex
multiplicative constant. In other words, we have u1! = cf for some unknown
c 2 �� and some known function f 2 H2(e�;�). Finally, by using (10.12)
we have

!2 + i!� = ��u
1
!

u1!
= ��f

f
in e�;

whence � can be uniquely reconstructed in e� through the explicit formula

� = i!�1
��f
f
+ !2

�
in e�:

It is worth noting that, without additional regularity assumptions on �, the
above formula holds only almost everywhere in e�.

Remark 10.7. — The above result allows a direct reconstruction of � from the
knowledge of the data Hi . Uniqueness and Lipschitz stability (with respect to
appropriate Sobolev norms) for this inverse problem follow immediately from
a careful inspection of the several steps involved. The stability constant depends
on the lower bound C > 0 given in (10.13): the larger the better.

10.3.2. Global reconstruction. — We have seen above that � can be recon-
structed in a subdomain e� where the constraints given in (10.13) are satisfied
for some C > 0. It remains to understand how to cover the whole domain �
with several subdomains where the conditions (10.13) are satisfied for differ-
ent boundary values and/or frequencies. As in the previous sections, since �

is unknown, this problem is highly non-trivial. In Chapters 7 and 8 we have
discussed two methods to construct such boundary conditions in the case of
a PDE with complex-valued coefficients, namely the complex geometric optics
solutions and the multi-frequency approach. Also the Runge approximation
approach could be used in this case, but we shall not discuss it since only the
result for real-valued coefficients was proven in Chapter 7.

The use of CGO solutions allows us to satisfy (10.13) everywhere in the do-
main. In addition to the assumptions discussed above, we suppose that � is
the restriction to � of a function in Hd=2+1+�(�d;�) for some � > 0. Condi-
tion (7.11) is satisfied by Lemma 8.5, so that all the assumptions of Theorem 7.3
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are satisfied. By this result, for a fixed frequency ! > 0 there exists an open set
of boundary conditions ('1; : : : ; 'd+1) in C2(�;�) such that

ju1!j � C in � ,
þþþdet hu1! 			 ud+1!

ru1! 			rud+1!

iþþþ � C in � ,

for some C > 0. As a consequence, the unknown conductivity � can be
uniquely and stably reconstructed in the whole domain � by using the
method described in the previous subsection. As mentioned in Section 7.2,
this approach has two main drawbacks: the high regularity required for � and
the non-explicit construction of the suitable boundary values 'i s.

It is possible to overcome these issues by using multiple measurements. More
precisely, the multiple frequency approach discussed in Chapter 8 allows to
choose a priori d + 1 real boundary values and several frequencies so that the
desired constraints are satisfied everywhere in � for different frequencies, as
we now describe. Let � = [Kmin; Kmax] be the microwave range of frequencies,
for some 0 < Kmin < Kmax , and define the finite set of frequencies K(n) � �

as in (8.8). Choose the d+ 1 real boundary values defined by

'1 = 1; '2 = x1; : : : ; 'd+1 = xd:

By Theorem 8.2, there exist a positive constant C > 0 and a number of fre-
quencies n � 2 depending only on �, � and � and an open cover

� =
[

!2K(n)
�!

such that for every ! 2 K(n) we have

ju1!j � C in �!,
þþþdet hu1! 			 ud+1!

ru1! 			rud+1!

iþþþ � C in �!.

Note that, since the functions Hi
! are known, the domains �! are known. The

unknown conductivity � can then be obtained in each subdomain �! by using
the local reconstruction method discussed above, with the measurements rel-
ative to the frequency !. Since these subdomains cover the whole domain �,
� can be reconstructed globally. It is worth observing that in order to have
explicitly constructed boundary conditions there is a price to pay: several mea-
surements, corresponding to several frequencies !, have to be taken.
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10.4. Dynamic elastography

The quantitative step of dynamic elastography consists of the reconstruc-
tion of the tissue parameters from the knowledge of the tissue displacement.
Let � � �

d be a C1;� bounded domain, with d = 2 or d = 3. We consider here
a simplified scalar elastic model, given by the Helmholtz equation

(10.15)
² �div(�rui!)� �!2ui! = 0 in � ;

ui! = 'i on @� :

In this model ui! 2 C1(�;�) represents (one component of) the tissue dis-
placement. The shear modulus is � 2 W 1;2(�;�) \ C0;�(�;�+), the density is
� 2 L1(�;�+), the frequency is ! 2 �+ , and 'i 2 C1;�(�;�) is the bound-
ary displacement. We assume that ��1 � �; � � � almost everywhere in �
for some � > 0. The inverse problem discussed in this section consists of the
reconstruction of � and � from the knowledge of several measurements ui! ,
corresponding to several boundary conditions 'i and possibly several frequen-
cies !.

The general problem of quantitative elastography modelled by the full Lamé
system has attracted considerable attention over the last decade, see e.g. [154],
[52], [131], [39]. The anisotropic case is treated in [45]. Given the knowledge
of different full displacement vector fields, it is possible to uniquely and stably
recover the Lamé parameters through explicit reconstruction algorithms. The
scalar approximation of the linear system of elasticity was studied in [117] for
the single-measurement case and in [38], [50], [51] for the multi-measurement
case (see also [153]). The exposition presented below takes strong inspiration
from these papers.

10.4.1. Local reconstruction. — Let us first study the local reconstruction of �
and � from the knowledge of d+ 1 measurements u1!; : : : u

d+1
! , corresponding

to a fixed frequency ! and d+1 boundary values '1; : : : ; 'd+1 . Let e� � � be a
subdomain such that the following constraints hold true:

ju1!j � C in e� ;(10.16a) þþþdet hu1! 			 ud+1!

ru1! 			rud+1!

iþþþ � C in e� :(10.16b)
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We now show that � and � can be uniquely reconstructed in e� provided that
�(x0) is known at some point x0 2 e�. The inversion method is very similar
to that discussed for quantitative thermoacoustic tomography in the previous
section.

First, we observe that by (10.15) the quantities vi! := ui!=u
1
! satisfy the PDE

�div ��(u1!)2rvi!Ð = �div(�u1!rui! � �ui!ru1!)
= ui! div(�ru1!)� u1! div(�rui!)
= �ui!!2�u1! + u1!!

2�ui! = 0

in e�, for i = 2; : : : ; d + 1. Arguing as in Lemma 10.1, we prove that u1!; v
i
!

belongs to H2(e�;�). Expanding in turn the left-hand side of this identity yields

r� 	 (u1!)2rvi! = ��div �(u1!)2rvi!Ð:
Recalling that � and ju1!j are strictly positive in e�, this PDE can be rewritten
as r(log�) 	rvi! = �(u1!)�2 div((u1!)2rvi!), which in turn can be reformulated
in a more compact form in e� as

r(log�)ðrv2! 	 	 	 rvd+1!

Ł
= �(u1!)�2

ð
div((u1!)

2rv2!) 	 	 	 div
�
(u1!)

2rvd+1!

ÐŁ
:

By (10.14) and (10.16b), the matrix [rv2! 	 	 	 rvd+1! ] is invertible in e�, and so
the above system of equations may be rewritten as follows.

Proposition 10.8. — Under the above assumptions, we have in e�
r(log�) = �(u1!)�2

ð
div

�
(u1!)

2rv2!
Ð 	 	 	 div �(u1!)2rvd+1!

ÐŁðrv2! 	 	 	 rvd+1!

Ł�1
:

This first order PDE with unknown log� can be integrated in e�, since u1!
and the vi! s are known quantities, and � can be uniquely reconstructed in e�
up to a real multiplicative constant. However, since we assumed to know �(x0)

for some x0 2 e�, this constant is uniquely determined.
Finally, using again (10.15) we immediately obtain

� = �div(�ru
1
!)

!2u1!
in e�;

which is an explicit reconstruction formula for � in e�, since � and u1! are now
known in e�.
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10.4.2. Global reconstruction. — In the previous subsection, we have de-
scribed a simple method for the local recovery of � and �. The success of this
approach relies on the fact that the constraints given in (10.16) are satisfied.
The solutions to (10.15) do not satisfy (10.16) in � in general: waves oscillate,
and so zeros must occur. The methods used in Chapters 7 and 8 can be used
to cover the whole domain � with several subdomains in which the required
constraints are satisfied for different measurements. Any of these methods,
CGO solutions, the Runge approximation and the multi-frequency approach
(see Remark 8.4) is applicable to this context. As the former and the latter
were used in the previous section, we implement the Runge approximation
approach for this modality.

The local reconstruction method described above is not fully local; namely,
it requires the knowledge of � in some point of the subdomain. It is unlikely
that � would be known a priori at one point of each subdomain. It is more
relevant to assume that � is known at a single locus x0 2 �, possibly near the
boundary. This makes it impossible to readily use the global reconstruction
method discussed in x10.3.2 for a very similar problem, and we will have to
adapt the technique applied in x10.2.2. The idea is to start to apply the local
reconstruction in the subdomain of � containing x0 , and then move to cover
the whole domain using that subdomains overlap.

We also assume that � 2 C0;1(�;�) (this hypothesis may be reduced to C0;�

in 2D and to C0;� \W 1;3 in 3D by Remark 7.6) and let �0 b � be a connected
subdomain such that x0 2 �0 . Using the Runge approximation approach (The-
orem 7.13), there exist N 2 �� depending only on �, �0 , � and k�kC0;1(�;�) ,
N � (d + 1) boundary values 'j

i 2 H1=2(@�;�), i = 1; : : : ; d + 1, j = 1; : : : ; N
and an open cover

�0 =
N[
j=1

�j

such that for every j = 1; : : : ; N we have

(10.17) ju1;j! j � 1
2 in �j ,

þþþdet hu1;j! 			 u
d+1;j
!

ru1;j! 			rud+1;j!

iþþþ � 1
2 in �j ,
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where u
i;j
! is the solution to (10.15) with boundary condition '

j
i . Note that,

as discussed in Section 7.3, the boundary conditions 'j
i are not explicitly con-

structed. This would not be the case if the multi-frequency approach were used
instead, provided for example that � � 1 or d = 2.

As in x10.2.2, consider now the connected components �`
j (` 2 Ij ) of �j .

By construction we have
�0 =

[
j=1;:::;N
`2Ij

�`
j :

Note that, by the compactness of �0 , we may assume that this union is finite.
It is now possible to apply the local reconstruction procedure discussed in

the previous subsection. Recall that x0 2 �0 is such that �(x0) is known. Let
j0 2 f1; : : : ; Ng and `0 2 Ij0 be such that x0 2 �`0

j0
. By (10.17), the required

constraints (10.16) are satisfied in �`0
j0

for the boundary values '
j0
1 ; : : : ; '

j0
d+1 .

Using the local reconstruction algorithm we reconstruct � and � in �j0
`0

. Iter-
ating this approach, we reconstruct � and � in �`

j for all j and l such that

�`
j \�

j0
`0
6= ?, using the boundary values 'j

1; : : : ; '
j
d+1 . After a finite number of

steps, we have reconstructed � and � uniquely everywhere in �0 .

10.5. Photoacoustic tomography

The coupled step of photoacoustic tomography delivers an absorbed en-
ergy H inside the domain which has the form

H(x) = �(x)�(x)u(x); x 2 � ;

where � is the Grüneisen parameter, � is the light absorption and u is the light
intensity. While � and � are properties of the tissue under consideration, u is
the light field injected to obtain the measurements. The problem of quanti-
tative photoacoustic tomography (QPAT) is the reconstruction of � from the
knowledge of (several measurements of) the internal energy H . In many cases,
the condition � = 1 is assumed in order to make the problem more feasible.

This problem has attracted a lot of attention form the physical and mathe-
matical communities, mainly over the past decade. We now mention the main
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contribution on the mathematical aspects of this inverse problem; for further
details, the reader is referred to the reviews [85], [98], [87]. Except for few ex-
ceptions, most methods are based on the partial differential equation satisfied
by the light intensity u. Depending on the considered regime, light propa-
gation is usually modelled by the radiative transport equation or, in case of
highly scattering media, by its diffusion approximation [35]. The diffusion ap-
proximation has been considered in most contributions, see e.g. [18], [49]
for the single-measurement case, [88], [46], [38], [186], [51] for the multi-
measurement case and [86], [84] for the discussion of possible iterative meth-
ods. The full radiative transport equation is considered in [44], [88], [191].

Without adding further constraints, the above problem in its full generality
is unsolvable. It was known that it is impossible to recover all the parameters
in the diffusive regime, even with an infinite number of illuminations [46].
In order to overcome this issue, multi-frequency approaches were proposed
in [47], [183]. An alternative approach is to include additional a priori assump-
tions: the unknown parameters may be assumed piecewise constant or more
generally sparse with respect to a suitable basis [188], [169], [9], [151], [57].

It should be mentioned that all the methods discussed above regard the
inversion in PAT as a two-step process: in the coupled step, the energy H is
constructed, and in the quantitative step the unknowns have to be extracted.
Very recently, one step methods have been developed, in which the interme-
diate step is skipped, and the unknown parameters are directly reconstructed
from the acoustic measurements [112], [90], [182]

10.5.1. Reconstruction algorithm. — In this presentation, we are going to
briefly present the method discussed in [46], [38] considering a very simple
case: the diffusion approximation with constant scattering coefficient. Namely,
assume that the light intensity ui is the solution to

(10.18)
² ��ui + �ui = 0 in � ;

ui = 'i on @� ;

where � � �
d is a smooth bounded domain, d = 2; 3, � 2 L1(�;�) is

such that ��1 � � � � almost everywhere in � and 'i 2 C2(�;�+)
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for i = 1; : : : ; d+ 1. We need to reconstruct � from the internal measurements

Hi(x) = �(x)�(x)ui(x); x 2 � :

As in the other hybrid modalities, non-zero constraints have to be satisfied.
Let e� � � be a subdomain such that

(10.19)
þþþdet hu1 			 ud+1

ru1 			rud+1
iþþþ � C in e�:

By the maximum principle, we immediately have that u1 � C in � for
some C > 0, provided that '1 > 0 on @�. Proceeding as in Sections 10.3
and 10.4, consider the known quantities

vi =
Hi

H1
=

ui

u1
	

It is immediate to see that �div((u1)2rvi) = 0 in � for every i = 2; : : : ; d+ 1.
Arguing as in x10.3.1, thanks to (10.19) we can reconstruct u1 in e� up to a
multiplicative constant c. Finally, � can be reconstructed in e� via

� =
��(cu1)

cu1
	

The above algorithm can be applied locally in each subdomain where
(10.19) is satisfied for well chosen boundary values. The techniques presented
in Chapter 7 can be used to cover the whole domain � with subdomains where
the required constraint is satisfied for appropriate choices of the boundary
conditions. The arguments are similar to those discussed in the previous
sections, and have been omitted. The multi-frequency approach discussed
in Chapter 8 is not applicable here, since (10.18) is independent of the
frequency.

It is worth noting that, in two dimensions, condition (10.19) can be easily
satisfied globally by using the theory developed in Chapter 6. Supposing that �
is convex, it is enough to choose

'1 = 1; '2 = x1; '3 = x2:

Indeed, this implies that vi is a solution of² �div((u1)2rvi) = 0 in � ;

vi = xi�1 on @� ;
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for i = 1; 2. Therefore, for a fixed �0 b �, by Corollary 6.8 there exists C > 0

such that þþdet ðrv2(x) rv2(x)Łþþ � C; x 2 �0:
By (10.14), this inequality is equivalent to (10.19).
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[36] K. Astala & L. Päivärinta – “Calderón’s inverse conductivity problem
in the plane”, Ann. of Math. (2) 163 (2006), no. 1, p. 265–299.

[37] P. Auscher & M. Qafsaoui – “Observations on W 1;p estimates for diver-
gence elliptic equations with VMO coefficients”, Boll. Unione Mat. Ital.
Sez. B Artic. Ric. Mat. (8) 5 (2002), no. 2, p. 487–509.

[38] G. Bal – “Explicit Reconstructions in QPAT, QTAT, TE, and MRE”, ArXiv
e-prints (2012).
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BIBLIOGRAPHY 221

[188] A. Rosenthal, D. Razansky & V. Ntziachristos – “Quantitative op-
toacoustic signal extraction using sparse signal representation”, Medical
Imaging, IEEE Transactions on 28 (2009), no. 12, p. 1997–2006.

[189] D. L. Russell – “Controllability and stabilizability theory for linear par-
tial differential equations: recent progress and open questions”, SIAM
Rev. 20 (1978), no. 4, p. 639–739.

[190] L. Sandrin, M. Tanter, S. Catheline & M. Fink – “Shear modulus
imaging with 2-d transient elastography”, IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control 49 (2002), no. 4, p. 426–435.

[191] T. Saratoon, T. Tarvainen, B. T. Cox & A. S. R. – “A gradient-based
method for quantitative photoacoustic tomography using the radiative
transfer equation”, Inverse Problems 29 (2013), no. 7, p. 075006.

[192] Scherzer (ed.) – Handbook of Mathematical Methods in Imaging, 2nd ed.,
vol. I,II,III, Springer, July 2015.

[193] F. Schulz – Regularity theory for quasilinear elliptic systems and Monge-Ampère
equations in two dimensions, Lecture Notes in Mathematics, vol. 1445,
Springer-Verlag, Berlin, 1990.

[194] G. Scott, M. Joy, R. Armstrong & R. Henkelman – “Measurement of
nonuniform current density by magnetic resonance”, Medical Imaging,
IEEE Transactions on 10 (1991), no. 3, p. 362–374.

[195] J. K. Seo, D. Kim, J. Lee, O. I. Kwon, S. Z. K. Sajib & E. J. Woo – “Elec-
trical tissue property imaging using MRI at dc and Larmor frequency”,
Inverse Problems 28 (2012), no. 8, p. 084002.

[196] J. K. Seo & E. J. Woo – “Magnetic resonance electrical impedance to-
mography (MREIT)”, SIAM review 53 (2011), no. 1, p. 40–68.

[197] C. G. Simader – On Dirichlet’s boundary value problem, Lecture Notes in
Mathematics, Vol. 268, Springer-Verlag, Berlin-New York, 1972, An Lp -
theory based on a generalization of Gȧrding’s inequality.
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BIBLIOGRAPHY 223

[210] C. Weber – “Regularity theorems for Maxwell’s equations”, Math. Meth-
ods Appl. Sci. 3 (1981), no. 4, p. 523–536.

[211] N. Weck – “Maxwell’s boundary value problem on Riemannian man-
ifolds with nonsmooth boundaries”, J. Math. Anal. Appl. 46 (1974),
p. 410–437.

[212] T. Widlak & O. Scherzer – “Hybrid tomography for conductivity imag-
ing”, Inverse Problems 28 (2012), no. 8, p. 084008.

[213] T. H. Wolff – “Recent work on sharp estimates in second-order elliptic
unique continuation problems”, J. Geom. Anal. 3 (1993), no. 6, p. 621–
650.

[214] E. J. Woo, S. Y. Lee & C. W. Mun – “Impedance tomography using in-
ternal current density distribution measured by nuclear magnetic reso-
nance”, Proc. SPIE 2299 (1994), p. 377–385.

[215] J. C. Wood – “Lewy’s theorem fails in higher dimensions”, Math. Scand.
69 (1991), no. 2, p. 166 (1992).

[216] L. Yao, G. Guo & H. Jiang – “Quantitative microwave-induced thermoa-
coustic tomography”, Medical Physics 37 (2010), no. 7, p. 3752–3759.

[217] H.-M. Yin – “Regularity of weak solution to Maxwell’s equations and
applications to microwave heating”, J. Differential Equations 200 (2004),
no. 1, p. 137–161.

[218] H. Zhang & L. V. Wang – “Acousto-electric tomography”, Proc. SPIE.
Photons Plus Ultrasound: Imaging and Sensing 5320 (2004), p. 145–149.
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Regularity for elliptic equations, 42
Regularity for Maxwell’s equations, 14, 48–
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Rellich inequality, 23
Runge approximation, 125, 135, 146, 158,
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Scattered field, 80
Scattering estimates, 14, 82
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Schrödinger equation, 129, 132, 141
Small volume perturbations, 10, 14, 64, 171
Sobolev embedding theorem, 43, 45, 49–52,
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Sommerfeld radiation condition, 80
Stability, 3, 4, 167, 181, 184
Strong Runge approximation, 137, 143, 147
Thermoacoustic tomography, 6, 10, 171, 191
Thermoelastic model, 177
Transposition solutions, 32
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tomography, 169
Unique continuation, 135
Univalent mappings, 104
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In recent years, several new imaging modalities have been developed in order to be
able to detect physical parameters simultaneously at a high spatial resolution and with
a high sensitivity to contrast. These new approaches typically rely on the interaction
of two physical imaging methods, and the corresponding mathematical models are the
so-called hybrid, or coupled-physics, inverse problems. The combination of two physical
modalities poses new mathematical challenges: the analysis of this new class of inverse
problems requires the use of various mathematical tools, often of independent inter-
est. This book intends to provide a first comprehensive course on some of these tools
(mainly related to elliptic partial differential equations) and on their applications to
hybrid inverse problems.

For certain topics, such as the observability of the wave equation, the generalisation
of the Radó-Kneser-Choquet Theorem to the conductivity equation, complex geomet-
rical optics solutions and the Runge approximation property, we review well-known
results. The material is presented with a clear focus on the intended applications to in-
verse problems. On other topics, including the regularity theory and the study of small-
volume perturbations for Maxwell’s equations, scattering estimates for the Helmholtz
equation and the study of non-zero constraints for solutions of certain PDE, we discuss
several new results. We then show how all these tools can be applied to the analysis of the
parameter reconstruction for some hybrid inverse problems: Acousto-Electric tomogra-
phy, Current Density Impedance Imaging, Dynamic Elastography, Thermoacoustic and
Photoacoustic Tomography.

Giovanni S. Alberti obtained his D. Phil. at Oxford University and, after two postdocs in
Paris at the École Normale Supérieure and in Zürich at ETH, is now Assistant Professor
at the University of Genoa. His research focuses on partial differential equations and
applied harmonic analysis. In particular, he has recently worked on Maxwell’s equations
and on the mathematical theory of multi-dimensional wavelets and shearlets. He is also
interested in the interactions of these areas with imaging, as in inverse problems in PDE
and compressed sensing.

Yves Capdeboscq is an Associate Professor at the University of Oxford. He is interested in
problems arising from multiple scales interactions in partial differential equations, par-
ticularly in homogenization theory and parameter identification via non invasive mea-
surements. Previously he was at Université de Versailles-Saint-Quentin-en-Yvelines, before
that at INSA in Rennes, earlier at Rutgers University and he prepared his thesis at the
Commissariat à l’Énergie Atomique in Saclay.
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