CORRIGENDUM

YVES CAPDEBOSCQ

Abstract

C)Capdeboscq, 2014. The definitive, peer reviewed and edited version of this article is published in Asymptotic Analysis, IOS Press, 88 (3), pp.185-186 2014. DOI: $10.3233 / A S Y-141240$.

Correction to : On the scattered filed generated by a ball inhomogeneity of constant index

The statement of Lemma A. 3 is incorrect and its proof is incomplete. Below is the corrected statement, and its proof.
Lemma. For any $x>0$ the function $x \rightarrow \ln \left|H_{0}^{(1)}(x)\right|$ is convex. For any $y>1$ the function

$$
x \rightarrow \frac{\left|H_{0}^{(1)}(x y)\right|}{\left|H_{0}^{(1)}(x)\right|}
$$

is decreasing on $(0, \infty)$ and

$$
1 \geq \frac{\left|H_{0}^{(1)}(x y)\right|}{\left|H_{0}^{(1)}(x)\right|} \geq \frac{1}{\sqrt{y}} .
$$

Proof. Define

$$
f:=x \rightarrow \ln \left|H_{0}^{(1)}(x)\right| .
$$

The proof (which unfortunately contains obvious typos) given in the paper shows the convexity (not the concavity) of f. Several inequalities of this type are shown in [1]. An asymptotic expansion shows that $\lim _{x \rightarrow \infty} x^{4} f^{\prime \prime}(x)+x^{3} f^{\prime}(x)=-\frac{1}{4}$, an by inspection we see that

$$
x^{4} f^{\prime \prime}(x)+x^{3} f^{\prime}(x)<0 \text { for all } x>0 .
$$

Furthermore, $x \rightarrow x^{2} f^{\prime \prime}(x)$ is increasing. Therefore, for every $0<\lambda \leq 1$, and for every $x>0$ there holds

$$
x^{2} f^{\prime \prime}(x \lambda)+\frac{x}{\lambda^{2}} f^{\prime}(x) \leq \frac{1}{\lambda^{2}}\left(x^{2} f^{\prime \prime}(x)+x f^{\prime}(x)\right)<0,
$$

thus, for any $x>0, y \rightarrow x f^{\prime}(x \lambda)-\frac{x}{\lambda} f^{\prime}(x)$ is decreasing, and therefore cancels only at $\lambda=1$. We have obtained that $f^{\prime}(x \lambda)-\lambda^{-1} f^{\prime}(x)>0$ for all $\lambda<1$ and all $x>0$. Now set $t=x \lambda$, and $y=\lambda^{-1}$, to derive that

$$
y f^{\prime}(t y)<f^{\prime}(t)
$$

for all $y>1$, and all $t>0$. In particular, $x \rightarrow \exp (f(x y)-f(x))$ is decreasing on $(0, \infty)$, which is our thesis. The bounds follow from the limits the origin and infinity.

There is a typo in the statement of Theorem 2.1, Theorem 3.1 and one before last line of the proof of Theorem 2.1. Instead of $u_{s}^{\epsilon}\left(|x|=(\varepsilon \omega)^{-1}\right)$, one should read $u_{i}(|x|=\varepsilon)$. There is also a typo in the first line of the proof of Theorem 5.1. Instead of $x\left|\frac{H_{n}^{(1)}\left(\sqrt{q_{o} \omega} R\right)}{H_{n}^{(1)}\left(\lambda \omega_{\varepsilon}\right)}\right|^{2}$, one should read $x\left|H_{n}^{(1)}(x)\right|^{2}$.

References

[1] Á Baricz, S. Ponnusamy, and M. Vuorinen. Functional inequalities for modified Bessel functions. Expo. Math., 29(4):349-414, 2011.

