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ON THE SCATTERED FIELD GENERATED BY A BALL INHOMOGENEITY OF CONSTANT INDEX

We consider the solution of a scalar Helmholtz equation where the potential (or index) takes two positive values, one inside a disk of radius ε and another one outside. We derive sharp estimates of the size of the scattered field caused by this disk inhomogeneity, for any frequencies and any contrast. We also provide a broadband estimate, that is, a uniform bound for the scattered field for any contrast, and any frequencies outside of a set which tends to zero with ε.

Introduction

We consider a scalar field satisfying the Helmholtz equation with frequency ω > 0 in R 2 . Given a prescribed incident field u i , a non-singular solution of (1.1)

∆u i + ω 2 q 0 u i = 0 in R 2 ,
we are interested in the solution

u ε ∈ H 1 loc R 2 of (1.2) ∆u ε + ω 2 q ε u ε = 0 in R 2 ,
where, for |x| > ε, u ε = u i + u s ε , and q ε equals q inside the inhomogeneity and q 0 outside. We take the inhomogeneity to be a disk of radius ε. The coordinate system is chosen so that the inhomogeneity is centered at the origin. In other words q ε (r) := q if r < ε q 0 if r > ε

We assume that both q 0 and q are real and positive. We assume that the scattered field satisfies the classical Silver-Müller [START_REF] Müller | Foundations of the mathematical theory of electromagnetic waves[END_REF][START_REF] Nédélec | Acoustic and electromagnetic equations[END_REF] outgoing radiation condition, given by

(1.3) ∂ ∂r u s ε -iω √ q 0 u s ε = o 1 √ r ,
where, as usual r := |x|. Altogether, the conditions (1.1,1.2,1.3) imply that the incident field u i , the scattered field u s ε and the transmitted field u t ε = u ε for r < ε, admit series expansions in terms of special functions, namely

u i (x) ∼ ∞ n=-∞ a n J n ( √ q 0 ωr) exp i n arctan x r , (1.4) u s ε (x) ∼ ∞ n=-∞
a n R n (ω ε , λ) H (1) n ( √ q 0 ωr) exp i n arctan x r , (1.5)

u t ε (x) ∼ ∞ n=-∞ a n T n (ω ε , λ) J n ( √ qωr) exp i n arctan x r . (1.6)
In the above formulae, J n (x) = (H [START_REF] Ammari | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations[END_REF] n (x)), and x → H [START_REF] Ammari | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations[END_REF] n (x) is the Hankel function of the first kind of order n. The rescaled non-dimensional frequency ω ε , and the contrast factor λ are given by (1.7) ω ε := √ q 0 ωε and λ := q q 0 .

The reflection and transmission coefficients R n and T n are given by the transmission problem on the boundary of the inhomogeneity, that is, at r = ε. They are the unique solutions of T n (ω ε , λ) J n (λω ε ) = J n (ω ε ) + R n (ω ε , λ) H (1) n (ω ε ) , λT n (ω ε , λ) J n (λω ε ) = J n (ω ε ) + R n (ω ε , λ) H (1) n (ω ε ) , which are (1.8) R n (ω ε , λ) = -H (1) n (ω ε ) J n (λω ε ) -λJ n (λω ε ) H (1) n (ω ε ) H (1) n (ω ε ) J n (λω ε ) -λJ n (λω ε ) H (1) n (ω ε )

, and, after a simplification using the Wronskian identity satisfied by J n (•) and H

n (•),

(1.9)

T n (ω ε , λ) = 2i π 1 H (1) 
n (ω ε ) J n (λω ε ) -λJ n (λω ε ) H (1) n (ω ε )

.

It is well known that both R n and T n are well defined for all λ > 0 and ω ε > 0, see e.g. [START_REF] Hansen | Asymptotically precise norm estimates of scattering from a small circular inhomogeneity[END_REF] for a proof. Note that R n = R -n , and T n = T -n for all n.

In (1.4), (1.5) and (1.6), the ∼ symbol is an equality if the right-hand-side is replaced by its real part, the fields being real. By a common abuse of notations, in what follows we will identify u i and u s ε with the full complex right-hand-side. Such expansions have been known for almost two centuries. They allow in principle, with the help of modern computers and recent numerical methods, to compute the scattered field accurately, given the incident field ω, ε and q/q 0 . Yet, they do not give any insight on the behavior of the scattered field when the frequency, the contrast, or the radius ε vary. When ε tends to zero, the behavior of the scattered field for this problem has been studied recently in [START_REF] Hansen | Asymptotically precise norm estimates of scattering from a small circular inhomogeneity[END_REF]. The cases considered are either a n = 0 for n > N 0 , or (q) > 0, or full reflection on the boundary of the inclusion, that is, u ε = 0 at r = ε. In this work, we focus on non lossy inclusions, that is, when (q) = 0, and we provide sharp estimates of the scattered field. These estimates are derived for any sequence (a n ), thus for any incident field. They are completely explicit, up to the numerical values of the constants involved. Such detailed results are possible because of the extensive studies of Hankel functions conducted by others. We will quote frequently the classical treatise of Watson [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF], and we will indirectly refer to the book of Olver [?] by frequently citing the NIST Handbook of Mathematical Functions [START_REF] Olver | NIST handbook of mathematical functions[END_REF]. Other papers related to properties of Bessel functions [START_REF] Boyd | Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions[END_REF][START_REF] Landau | Ratios of Bessel functions and roots of αJν (x) + xJ ν (x) = 0[END_REF][START_REF] Landau | Bessel functions: Monotonicity and bounds[END_REF][START_REF] Muldoon | Some remarks on zeros of cylinder functions[END_REF][START_REF] Paris | An inequality for the Bessel function Jν (νx)[END_REF][START_REF] Szász | Inequalities concerning ultraspherical polynomials and Bessel functions[END_REF][START_REF] Thiruvenkatachar | Inequalities concerning Bessel functions and orthogonal polynomials[END_REF] are also cited in the proofs. Some additional estimates that we could not find in the literature are provided in Appendix A. Some of them could be new, but we have not performed a comprehensive search of the vast literature on that topic. However with the exception of Section 4, our main results are stated in a form that does not require any knowledge of the literature related to Bessel functions, except possibly for some universal constants (approximate numerical values are provided).

Let us now discuss the norms we shall use. Given any f ∈ C 0 (R 2 ), its restriction to the circle |x| = R is a periodic function. We can therefore define its complex Fourier coefficients

c n (f (|x| = R)) = 2π 0 f (R, θ)e -inθ dθ,
and f (|x| = R) can be measured in terms of the following Sobolev norm (1.10) f

(|x| = R) H σ := √ 2π ∞ n=-∞ |c n (f (|x| = R)) | 2 (1 + |n|) 2σ ,
for any real parameter σ. By density, this norm can be defined for less regular functions. If f (|x| = R) is L 2 (0, 2π) for example it is bounded, for any σ ≤ 0. To measure the oscillations of f only, we will use (1.11)

f (|x| = R) H σ * := f (|x| = R) - 1 2π 2π 0 f (|x| = R) dθ H σ .
For radius independent estimates, we shall use the semi-norm (1.12)

N σ (f ) := √ 2π n =0 sup R>0 |c n (f (|x| = R)) | 2 (1 + |n|) 2σ .
It is easy to see that this norm is finite for a smooth f with bounded radial variations. Finally, to document the sharpness of our estimates, we will provide lower bounds in terms of a semi-norm, (1.13)

N σ p (f ) := √ 2π sup |n|≥p sup R>0 |c n (f (|x| = R)) |(1 + |n|) σ ,
where p is a positive parameter. These norms are satisfy the following inequality

f (|x| = R) H σ ≤ N σ (f )
, and N σ p (f ) ≤ N σ (f ), and if for all R, f (|x| = R) only has one non-zero Fourier coefficient,

N σ 1 (f ) = N σ (f ) = sup R>0 f (|x| = R) H σ * .
We choose these three (semi-)norms • H σ , N σ and N σ p because they are compatible with expansions (1.4), (1.5) and (1.6). For example, (1.14)

u s ε (|x| = R) H σ := √ 2π ∞ n=-∞ |R n (ω ε , λ) a n | 2 (1 + |n|) 2σ H (1) n ( √ q 0 ωR) 2 1 2 
, and

(1.15)

N σ u i := √ 2π   n =0 |a n | 2 sup x>0 |J n (x)| 2 (1 + |n|) 2σ   1/2
. Furthermore, it is known [START_REF] Landau | Bessel functions: Monotonicity and bounds[END_REF] that for all n = 0

(1.16) 4 7 1 (|n| + 1) 1/3 ≤ sup x>0 |J n (x)| ≤ 6 7 1 (|n| + 1) 1/3 ,
therefore N σ u i has upper and lower bounds depending on a n only, namely, (1.17) 8π 7

n =0 |a n | 2 (1 + |n|) 2σ-2/3 ≤ N σ u i 2 ≤ 16π 7 n =0 |a n | 2 (1 + |n|) 2σ-2/3 .
The motivation for this work comes from imaging. In electrostatics, the small volume asymptotic expansion for a diametrically bounded conductivity inclusion is now well established, and the first order expansion has been shown to be valid for any contrast [START_REF] Nguyen | A representation formula for the voltage perturbations caused by diametrically small conductivity inhomogeneities. Proof of uniform validity[END_REF]. It is natural to wonder whether such expansion could also hold for non-zero frequencies, even in a simple case.

Section 2 addresses the case λ ≤ 1. In Theorem 2.1 we derive perturbation-type estimates when λω ε < 1, that is, proportional to (λ -1)ω 2 ε at first order, for all x such that |x| ≥ ε. This can be seen as a generalization of the electrostatic case. We show that the range of frequencies for which this result applies is sharp. In Theorem 2.4, we provide an upper estimate for the scattered field valid for all frequencies and all |x| ≥ ε, and we document its sharpness by providing a lower bound for the supremum of the scattered field for all frequencies. Section 3, 4, 5 address the case λ ≥ 1. Theorem 3.1 is similar to Theorem 2.1 and applies when λ √ ln λ + 1 ω ε < 1, and when λ ω ε < 1 if there is no zero-order term. In Section 4, we provide a detailed study of quasi-resonances. These are frequencies located just after the perturbative range, at which the near-field becomes arbitrarily large. Theorem 4.3 provides lower bounds for the near field in this regime. We also provide numerical examples of quasi-resonant modes. Section 5 provides far field estimates, that is, for x such that |x|λ > ε, valid for all frequencies. As in Theorem 3.1, we show that the bounds provided are sharp.

Another inspiration for this work is recent results concerning the so-called cloaking-by-mapping method for the Helmholtz equation. In [START_REF] Kohn | Cloaking via change of variables for the Helmholtz equation[END_REF], the authors show that cloaks can be constructed using lossy layers, and that non-lossy media could not be made invisible to some particular frequencies (the quasi-resonant frequencies). In Section 6, we show in Lemma 6.2 that if an interval around these frequencies is removed, contrast independent estimates for the near-field can be obtained. When λ = ε -1 , the following proposition is proved as a corollary of Lemma 6.2.

Proposition. Assume ε < 1/7, and λ = ε -1 . Then, for any α, β > 0, there exists a set I 1 depending on ε, α and β and a set I 0 depending on ε and β which satisfies

|I 1 | ≤ ε β |ln ε| , |I 0 | ≤ ln |ln ε| (|ln ε| + 1) β ,
such that for all R ≥ ε,

sup √ q0ω∈(0,∞) \ I1 u s ε (|x| = R) 2 H σ * ≤ 18 α ε 1-2β R N σ+2+α u i ,
and

sup √ q0ω∈(0,∞) \ I0 1 2π 2π 0 u s ε (|x| = R) ≤ 12 1 (|ln ε| + 1) 3/2-2β R .
We do not prove that this result is sharp. Combining Lemma 6.2 with results of the previous sections, we show in Theorem 6.5 that broadband estimates uniform with respect to the contrast are possible. In particular we show that when observed at any fixed distance |x| = R > 0, the scattered field vanishes in the limit ε = 0 except in a set of frequencies of zero measure.

Section 7 is devoted to the proof of intermediate estimates stated without proofs in Section 2 and 3. Section 8 is devoted the proof of an intermediate estimate used in Lemma 6.2.

Inclusions with relative index smaller than one

This section is devoted to the case when q < q 0 . We estimate the scattered field at a distance R ≥ ε from the center of the inclusion. Our first result addresses the case of moderate frequencies.

Theorem 2.1. Let y 0,1 be the first positive solution of Y 0 (x) = 0. When ε ≤ R, λ ≤ 1, and ω ε < y 0,1 , there holds

u s ε (|x| = R) H σ ≤ (1 -λ) ω ε 3 ε R u i (|x| = ε) H σ-1/3 * + 9 ω ε u i (0) H (1) 0 ( √ q 0 ωR) .
Furthermore, if for some p > 0 the first p Fourier coefficients of u i |x| = (εω) -1 are zero, then for all ω ε < p there holds

u s ε (|x| = R) H σ ≤ 3 (1 -λ) ω ε ε R u i (|x| = ε) H σ-1/3 * .
To compare Theorem 2.1 with known results, we derive the following variant.

Corollary 2.2. When ε ≤ R, λ ≤ 1 and ω ε < y 0,1 we have

u s ε (|x| = R) H σ ≤ 9 (1 -λ) ω 2 ε u i (0) H (1) 0 ( √ q 0 ωR) + ε R N σ-1 3 u i .
Remark 2.3. Under this form, one can read for example that the first order term in ε is correct both with respect to ε and with respect to the contrast. First order asymptotic expansions for small volume or small contrast perturbations [START_REF] Ammari | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations[END_REF][START_REF] Ammari | Reconstruction of Small Inhomogeneities from Boundary Measurements[END_REF] derived for a fixed frequency are of the order of ε 2 . Note that this estimate holds up to frequencies of the order ε -1 : this shows that the inhomogeneity can be viewed as a perturbation up to frequencies of that order.

Our second result is an estimate valid for all frequencies.

Theorem 2.4. When ε ≤ R and λ ≤ 1 there holds

(2.1) sup ω>0 u s ε (|x| = R) H σ ≤ 5 2 ε R N σ u i + √ 2π u i (0) H (1) 0 y 0,1 R ε .
Furthermore,

(2.2) sup ω>0 u s ε (|x| = ε) H σ * ≥ 1 √ 10 N σ n0 u i ,
where n 0 is the smallest positive number such that

λ 2 ≤ 1 - 49 9n 2/3 . for all n ≥ n 0 .
Remark 2.5. The lower bound (2.2) shows that the upper bound (2.1) is sharp in the case when N σ n0 and N σ are equivalent norms. We give a more precise upper bound in remark 2.7. The proof of these results is based on a careful study of R n (ω ε , λ) conducted in Section 7. We prove that the following proposition holds Proposition 2.6. Let y n,1 be the first positive solution of Y n (x) = 0. When λ ≤ 1, there holds, for all n ≥ 1

• For all ω ε < y n,1 ,

R n (ω ε , λ) H (1) n (ω ε ) ≤ 5 2 |J n (ω ε )| . • For all ω ε < n, R n (ω ε , λ) H (1) n (ω ε ) ≤ 2(1 -λ) ω ε n 1/3 |J n (ω ε )| .
• when λ 2 < 1 -

7 3 n 1/3 2 , then R n (n, λ) H (1) n (n) > 1 2 |J n (n)| .
For n = 0, there holds

• For all ω ε > 0, R 0 (ω ε , λ) H (1) 0 ω ε R ε ≤ H (1) 0 y 0,1 R ε . • When x < y 0,1 , R 0 (ω ε , λ) H (1) 0 x R ε ≤ π 2 2 √ 2 (1 -λ)ω 2 ε H (1) 0 ω ε R ε .
Proof. This follows from Lemma 7.1 and Proposition 7.6.

Proof of Theorem 2.1. From formula (1.14), we have

u s ε (|x| = R) 2 H σ =2π |n| =0 |a n | 2 (1 + |n|) 2σ R n (ω ε , λ) |H (1) n (ω ε ) 2 H (1) n √ q 0 ωR H (1) n (ω ε ) 2 + 2π |a 0 | 2 R 0 (ω ε , λ) H (1) 0 ( √ q 0 ωR) 2 .
Note that y 0,1 < 1. Proposition 2.6 shows that when ω ε ≤ n and n ≥ 1, [16, 13.74], therefore R H (1) n ( √ q 0 ωR)

R n (ω ε , λ) H (1) n (ω ε ) ≤ 2 (1 -λ) ω ε n 1/3 |J n (ω ε )| ≤ 3 (1 -λ) ω ε (1 + |n|) 1/3 |J n (ω ε )| , When n = 0, √ x H 1 n (x) is decreasing
2 ≤ ε H (1) n (ω ε ) 2 ,
On the other hand, a 0 = u i (0), and Proposition 2.6 shows that

R 0 (ω ε , λ) H (1) 0 ( √ q 0 ωR) ≤ (1 -λ) π 2 2 √ 2 ω 2 ε H (1) 0 ( √ q 0 ωR)
Combining these estimates we have

u s ε (|x| = R) 2 H σ ≤ 3 (1 -λ) ω ε ε R 2 2π |n| =0 |a n | 2 (1 + |n|) 2σ-2/3 |J n (ω ε )| 2 + u i (0) (1 -λ) ω 2 ε 2 π 5 4 H (1) 0 ( √ q 0 ωR) 2 = (3 (1 -λ) ω ε ) 2 ε R u i (|x| = ε) 2 H σ-1 3 * + 9 ω 2 ε u i (0) 2 H (1) 0 ( √ q 0 ωR) 2 ,
and the conclusion follows. If for some p > 0 the first p Fourier coefficients of u s ε |x| = (εω) -1 are zero, a n = 0 for n = 0, . . . , p -1, and the argument above proves our claim.

Proof of Corollary 2.2. For all n ≥ 1, it is known that [START_REF] Paris | An inequality for the Bessel function Jν (νx)[END_REF] for 0 < x < y < n,

J n (x) ≤ x n y n J n (y) exp y 2 -x 2 2n + 2 .
In particular,

J n (ω ε ) ≤ ω ε y 0,1 J n (y 0,1 ) exp y 2 0,1 4 ≤ 3 ω ε J n (y 0,1 ) .
This implies that

u i (|x| = ω ε ) H σ-1 3 * ≤ 3 ω ε u i (|x| = y 0,1 ) H σ-1 3 * .
inserting this upper bound in the estimate provided by Theorem 2.1 proves our claim.

Proof of Theorem 2.4. Starting from the formula (1.14), using the monotonicity of x H 

u s ε (|x| = R) 2 H σ ≤ 2π |n| =0 |a n | 2 (1 + |n|) 2σ R n (ω ε , λ) |H (1) n (ω ε ) 2 ε R +2π |a 0 | 2 R 0 (ω ε , λ) H (1) 0 ( √ q 0 ωR) 2 .
Thanks to Proposition 2.6,

(2.3) R 0 (ω ε , λ) H (1) 0 ( √ q 0 ωR) ≤ H (1) 0 y 0,1 R ε .
and when n ≥ 1, and

ω ε < y n,1 , (2.4) R n (ω ε , λ) |H (1) n (ω ε ) ≤ 5 2 |J n (ω ε )| ≤ 5 2 sup x>0 |J n (x)| .
On the other hand, the definition of R n (1.8) shows that |R n (ω ε , λ)| ≤ 1. It is known [16, 13.74] that for x > n ≥ 0,

x → x 2 -n 2 |H n (x)| 2
is an increasing function of x, with limit 2/π. Consequently, since y n,1 > n + 13 14 n 1/3 , [16, 15.3], [START_REF] Olver | NIST handbook of mathematical functions[END_REF], for all ω ε ≥ y n,1 we have

(2.5) R n (ω ε , λ) H (1) n (ω ε ) ≤ 2 π 1 ω 2 ε -n 2 ≤ 4 5 1 (1 + n) 1/3 ≤ 7 5 sup x>0 |J n (x)| ,
thanks to (1.16). Combining (2.4), and (2.5) we have obtained that for all ω ε > 0,

2π |n| =0 |a n | 2 (1 + |n|) 2σ R n (ω ε , λ) |H (1) n (ω ε ) 2 ≤ 5 2 N σ u i 2 ,
which concludes our proof of the upper bound (2.1). Turning to the lower bound, we have

sup ω>0 u s ε (|x| = ε) H σ * ≥ sup |n|≥n0 sup ω>0 √ 2π a n (1 + |n|) σ R n (ω ε , λ) H (1) n (ω ε ) .
We know from Proposition 2.6 that provided λ 2 < 1 -49 9n 2/3 ,

R n (n, λ) |H (1) n (n) ≥ 1 2 J n (n)
Since it is known [16, 8.54] that n → n

1 3 J n (n) is increasing, R n (n, λ) H (1) n (n) > J 1 (1) 2n 
1 3 ≥ 1 √ 10 sup x>0 |J n (x)| ,
where in the last inequality we used a variant of (1.16), [START_REF] Landau | Bessel functions: Monotonicity and bounds[END_REF]. Choosing ω such that ω ε = n, we obtain sup

ω>0 u s ε (|x| = ε) H σ * ≥ 1 √ 10 N σ n0 u i ,
as announced.

Remark 2.7. The lower bound was obtained for ω ε = n, that is, in the special case when the order and argument are equal. This is precisely the upper limit for ω ε in Theorem 2.1. When the argument is much larger than the order, one should expect a decay gain of 1/2 and not 1/3. The bound given by Theorem 5.1 is of this form, and applies here also (when λ is replaced by 1).

Inclusions with relative index larger than one: the perturbative regime

In this section, we consider the case when q > q 0 in the case of moderate frequencies and moderate contrast. Our result is expressed in terms of a threshold m λ which depends on the contrast, given by (3.1)

m λ := 1 λ √ ln λ + 1
Theorem 3.1. Suppose R ≥ ε, and λ ≥ 1. When

ω ε < min 1 2 , m λ we have u s ε (|x| = R) H σ ≤ (1 -λ) ω ε 3 ε R u i (|x| = ε) H σ-1 3 * + 23 ω ε λ u i (0) H (1) 0 ( √ q 0 ωR) .
Furthermore, if for some p > 0 the first p Fourier coefficients of u s ε |x| = (εω) -1 are zero, then for all ω ε < λ -1 p there holds,

u s ε (|x| = R) H σ ≤ 3 (1 -λ) ω ε ε R u i (|x| = ε) H σ-1 3 *
The proof of Theorem 3.1 is, mutatis mutandis, the same as that of Theorem 2.1, using Proposition 3.2, proved in Section 7 in lieu of Proposition 2.6, and we omit it. Proposition 3.2. When λ ≥ 1, there holds, for all n ≥ 1

• For all ω ε ≤ λ -1 y

(1)

n,1 , R n (ω ε , λ) H (1) n (ω ε ) ≤ 5 2 |J n (ω ε )| . • For all ω ε < λ -1 n, R n (ω ε , λ) H (1) n (ω ε ) ≤ 2(1 -λ) ω ε n 1/3 |J n (ω ε )| . For n = 0, there holds • For all ω ε such that min 1 2 , m λ ω ε ≤ 1, R 0 (ω ε , λ) H (1) 0 x R ε ≤ 5π 2 4 (λ -1)λω 2 ε H (1) 0 ω ε R ε .
• For all ω ε , we have

R ε 0 H (1) 0 x R ε ≤ √ 5 H (1) 0 min 1 2 , m λ R ε .
Proof. This is follows from Lemma 7.1 and Proposition 7.6.

In contrast with the case λ ≤ 1, the range of frequencies for which Theorem 3.1 is valid becomes increasingly small as the contrast increases. The two extreme contrast cases, λ = 0 and λ = ∞ are therefore of a very different nature. As we will see in Section 4, the range of frequencies for which Theorem 2.1 applies is sharp: the behavior of the near field is drastically different when ω ε is larger.

Inclusions with relative index larger than one: quasi-resonances

In this section, we investigate the behavior of the scattered field when q > q 0 , and the product of the effective frequency and the contrast λω ε is bounded. In such a case, a quasi-resonance phenomenon occurs: near the inclusion, the scattered field becomes extremely large, for some frequencies. We refer to such frequencies as quasi-resonant frequencies. They are defined in Definition 4.1.

Before we proceed, we remind the readers of usual notations and known properties of zeros of Bessel functions.

When n ≥ 0, the k-th positive root of

J n (x) = 0 is written j n,k . The first positive root of Y n (x) = 0 is written y n,1 . When n ≥ 1, the k-th positive solution of J n (x) = 0 is written j (1)
n,k . When n = 0, we count non-negative solutions, that is, j

(1) 0,1 = 0. The first positive root of Y n (x) = 0 is noted y (1)
n,1 It is known [16, 15.3

] that when n ≥ 1, j n,1 = n + a n,1 n 1/3 , with a n,1 > lim n→∞ a n,1 ≈ 1.86, j (1) 
n,1 = n + a (1) n,1 n 1/3 , with a (1) n,1 > lim n→∞ a (1)
n,1 ≈ 0.81, [12, 10.21] and we have

y n,1 = n + b n,1 n 1/3 , with b n,1 > lim n→∞ b n,1 ≈ 0.93, (4.1) y (1) n,1 = n + b (1) n,1 n 1/3 , with b (1) n,1 > lim n→∞ b (1) n,1 ≈ 1.82, when n = 0, j 0,1 ≈ 2.40, j (1) 0,1 = 0, y 0,1 ≈ 0.894 y (1) 0,1 ≈ 2.20. The zeros of J n (•) and Y n (•) are interlacing
(4.2) n ≤ j (1) n,1 < y n,1 < y (1) n,1 < j n,1 < . . . < j (1) 
n,k < j n,k < . . . and the first inequality is strict when n > 0. Using the notations

(4.3) M n (x) = J n (x) 2 + Y n (x) 2 , θ n (x) = arg(J n (x) + iY n (x)),
we have [12, 10.18]

(4.4) lim x→0+ θ n (x) = - π 2 , d dx θ n (x) > 0, θ n (x) ≈ x - 2n + 1 4 π for x large.
This shows in particular that for n fixed, the size of the intervals (j

n,1 , j n,1 ) is strictly decreasing, and tends to π/2. Definition 4.1. For any n ≥ 0, the triplet

(n, x, λ) is called quasi-resonant if 0 < x < y n,1 ,
and if the reflection coefficient given by (1.8) is of maximal amplitude, that is,

R n (x, λ) = -1. When (n, ω ε , λ) is quasi-resonant, problem (1.
2) has the following particular solution (4.5)

u ε =    Yn(ωε) Jn(λωε) J n λω ε |x| ε exp i n arctan x |x| when |x| ≤ ε Y n ω ε |x| ε exp i n arctan x |x| when |x| ≥ ε.
Note that u ε is not truly a resonance, since Y n (•) does not satisfy the outgoing radiation condition. The solution u ε contains an incident field given by

u i = J n ω ε |x| ε exp i n arctan x |x| + π 2 .
The almost resonant behavior of this solution is apparent in the near field. The amplitude of the incident field at |x| = ε is J n (ω ε ), whereas the amplitude of the scattered field is given by |H

n (ω ε ) |. Suppose for example that ω ε ≈ nK, with K > 1 fixed -as Proposition 4.2 below shows, this is the generic case. Then at |x| = ε the amplitude of u ε grows geometrically with n, [12, 10.19]

lim n→∞ |Y n (ω ε ) | 1 n = K + √ K -1 e √ 1-1 K ,
whereas the amplitude of the incident field and its normal derivative at decays with the inverse rate,

lim n→∞ |J n (ω ε ) | 1 n = lim n→∞ | d dx J n (ω ε ) | 1 n = 1 K + √ K -1 e - √ 1-1 K .
The size of the scattered field is therefore not controlled by the size of the incident field: this behavior can be compared to that of a resonant mode. Note that the amplitude of the scattered field is also large compared to the maximal amplitude of the incident field anywhere, as the uniform bound (1.17) indicates. The lower bound for the maximal value of the incident field is the motivation from the restriction ω ε < y n,1 in the definition of quasi-resonances. Indeed, when ω ε > y n,1 , using the bound [16, 13.74]

H (1) n (ω ε ) ≤ 2 π ω 2 ε -n 2 ,
we obtain, for all n ≥ 0

(4.6) H (1) n (ω ε ) ≤ 7 5 sup x>0 |J n (x)| ,
therefore the scattered field, and in turn the full field, is comparable to the maximal amplitude of the incident field in this regime.

The following variant of Dixon's Theorem on interlacing zeros [16, 15.23] proves the existence of quasi-resonances. Proposition 4.2. For any n ≥ 0 and λ > j n,1 /y n,1 , in every interval

U n,k = j (1) n,k λ j n,k λ such that U n,k ⊂ j (1) n,1 λ , y n,1
there exists a unique frequency ω n,k such that the triplet (n, ω n,k , λ) is quasi-resonant. There are no quasi-resonances in the interval (0, j

n,1 /λ) when n ≥ 1, or when λ < j n,1 /y n,1 . The proof is given at the end of this section. To illustrate this result, we consider the case when λ = 2 and n = 30. The quasi-resonances are to be found in the interval (j

(1)
30,1 /2, y 30,1 ) ≈ (16.28, 32, 98). There are 8 such frequencies. The first one is ω 30,1 ≈ 17.4211682, and the last one is ω 30,8 ≈ 31.4683226. Figure 4.1 shows two plots on a logarithmic scale. The red line shows the radial component of full field u ε , corresponding to a relative index λ = 2, an effective frequency ω 30,1 . The blue line shows the radial component of the incident field u i , J 30 (ω 30,1 •). Note that the blow-up region is concentrated around ε. At |x| = λε = 2ε, the full field and the incident field are of the same order of magnitude. This is the far field regime discussed in Section 5. This last quasi-resonance, situated close to the upper bound y 30,1 , does not show a blow-up around |x| = ε. This vindicates the choice to limit the definition of quasi-resonances to the interval (0, y n,1 ).

Quasi-resonances provide lower-bounds for frequency independent scattering estimates, as the following Theorem shows. Theorem 4.3. Given λ > 1, let n 0 be the smallest integer such that λ > j n0,1 y n0,1 .

Then, for any p ≥ n 0 ,

(4.7) sup { u s ε (|x| = R) H σ , 0 < λω ε ≤ j p,1 } ≥ sup n0≤n≤p |a |n| |(1 + |n|) σ H (1) n j n,1 λ R ε . Furthermore, if λ > exp(2), sup u s ε (|x| = R) H σ , 0 < λω ε < √ 2 √ ln λ 1 + 1 2 √ ln λ ≥ |a 0 |H (1) 0 √ 2 λ √ ln λ 1 + 1 2 √ ln λ R ε . (4.8) Remark 4.4. Note that j n,1 /y n,1 = 1 + O(n -2/3
) so for any λ > 1, n 0 exists and is finite. Since j n,1 /n = 1 + O(n -2/3 ) < 4, the lower bound (4.7) also matches the end of the perturbative regime described in Theorem 3.1, which required ω ε < n/λ.

As we noted earlier, the lower bound blows-up geometrically with n. Thus, taking p = ∞, if the coefficients a n decay only polynomially with n, then

sup ω>0 u s ε (|x| = ε) H σ = ∞
for any s > -∞. This is the case for plane waves, for example, since

exp(iωx • ζ) = ∞ -∞ J n (ω|ζ||x|) exp(in(arg x |x| - ζ |ζ| + π 2 )).
Estimate (4.8) shows that even low frequencies are affected by quasi-resonances. However, the blow-up is milder. Indeed, J 0 (x) tends to 1 close to the origin, whereas

H (1) 0 √ 2 λ √ ln λ 1 + 1 2 √ ln λ ≈ 2 π ln(λ).
This quasi-resonance also occurs just after the perturbative regime, which applies when ω ε < m λ . We may therefore argue that the estimates provided by Theorem 2.4 are optimal in terms of frequency range, up to a multiplicative factor of at most 4.

Proof of Theorem 4.3. Starting from formula (1.14), we have

sup ωε≤jp,1/λ u s ε (|x| = R) H σ ≥ sup ωε≤jp,1/λ sup n0≤n≤p √ 2π R n (ω ε , λ) a |n| (1 + |n|) σ H (1) n ω ε R ε ≥ sup n0≤n≤p √ 2π a |n| (1 + |n|) σ H (1) n ω n,1 R ε .
Where we used that

|R n (ω n,1 , λ)| = 1. Since x → H (1)
n (x) is decreasing and from Proposition 4.2 ω n,1 < j n,1 /λ, we obtain (4.7). The second bound (4.8) is proved similarly, using the monotonicity of x → H

(1) 0 (x) , and Lemma 4.5 below which shows that when λ > exp(2),

ω 0,1 < √ 2 λ √ ln λ 1 + 1 2 √ ln λ .
Let us now turn to the proof of Proposition 4.2. From the definition of R n (1.8), it is clear that R n (x, λ) = -1 if and only if

H (1) n (x) J n (λx) -λJ n (λx) H (1) n (x) = Y n (x) J n (λx) -λJ n (λx) Y n (x) = 0 When 0 < x < y n,1 , inequalities (4.
2) show that Y n (x) < 0 and Y n (x) > 0. Dixon's Theorem [16, 15.23] shows that J n (x) and J n (x) have no common zeros. Thus quasi-resonances cannot occur at any j n,k /λ or j

n,k /λ. Lastly, note that when n > 1, in the set (0, j

n,1 /λ), both J n (λx) and , and are the solutions of (4.9) 

λ J n (λx) J n (λx) = Y n (x) Y n (x) .
30,1 /2, y 30,1 ) ≈ (16.28, 32, 98). The dashed lines represent the solutions of J 30 (2x) = 0 in this interval. The eight red dots on the horizontal axis mark the quasi-resonant frequencies corresponding to n = 30 and λ = 2. To study the solutions of (4.9), we introduce, when n ≥ 1 (4.10)

g n := x → x n J n (x) J n (x) and k n := x → - x n Y n (x) Y n (x) ,
when n = 0,

(4.11) g 0 (x) := x → x J 0 (x) J 0 (x) and k 0 (x) := x → -x Y 0 (x) Y 0 (x) .
and we rewrite (4.9) as (4.12)

g n (λx) = -k n (x).
Proof of Proposition 4.2. From the recurrence relation satisfied by Bessel functions, we derive that for all n ≥ 0,

(4.13) g n (x) = n x - x n + - n + x g 2 n (x),
with the notation n + = max(n, 1). In particular, for x > n, g n is decreasing. Thus, on each interval

U n,k , x → g n (λx) decreases from 0 to -∞. When n ≥ 1, on [j (1) 
n,1 /λ, y n,1 ), k n is positive, thus there exists at least one solution to (4.12). When n = 0, since (k 0 (x) + g 0 (x))/x tends to ∞ as x tends to zero, therefore at least one solution exists in (0, j 0,1 /λ).

To show uniqueness, we compute that the derivative of

g n (λ•) + k n (•) is λg n (λx) + k n (x) = x n + 1 -λ 2 + n + x k 2 n (x) -g 2 n (λx) ,
so at any point where g n (λx) = -k n (x), we have

λg n (λx) + k n (x) = x n + 1 -λ 2 < 0.
Thanks to the Intermediate Value Theorem, there can therefore only be one solution. Finally, note that when λ < j n,1 /y n,1 , x -1 (k n (x) + g n (λx)) tends to +∞ both at x = 0 and x = y n,1 , therefore there cannot be a unique solution of k n (x)) + g n (λx) = 0 in this interval, and consequently there is none.

We conclude this section by an upper and lower estimate of ω 0,1 .

Lemma 4.5. The quasi-resonant triplet (0, ω 0,1 , λ) satisfies

(4.14) √ 2 λ √ ln λ 1 - 1 2 ln(λ) < ω 0,1 < √ 2 λ √ ln λ 1 + 1 2 √ ln λ ,
for all λ ≥ exp(2).

Proof. Introducing the functions f + and f -given by

f ± (λ) := √ 2 λ √ ln λ 1 ± 1 2 ln(λ) ,
thanks to Proposition 4.2, it is sufficient to check that

g 0 (λf + (λ)) + k 0 (f + (λ)) < 0, and g 0 (λf -(λ)) + k 0 (f -(λ)) > 0.
The following bounds

- 1 2 x 2 - 1 12 x 4 ≤ g 0 (x) ≤ - 1 2 x 2 - 1 16
x 4 for all 0 ≤ x ≤ 1,

and - 1 γ + ln x 2 + 1 2 x 2 ≤ k 0 (x) ≤ - 1 γ + ln x 2 + x 2 for all 0 ≤ x ≤ 1 4 .
can be derived using the asymptotic expansions of Bessel functions around x = 0 given in [START_REF] Olver | NIST handbook of mathematical functions[END_REF]. The proof (4.14) becomes a study of a function of one variable, λ. We omit this tedious but straightforward calculation. It is easy to visually confirm this result using a modern scientific computation software, using the built-in formulae of J 0 (x), J 1 (x), Y 0 (x) and Y 1 (x) to compute g 0 and k 0 , and then verify for example that ±g 0 (λf ± (λ)) + ±k 0 (f ± (λ)) < 0, and that both expressions are of order (ln λ) -3/2 for large λ. The lower bound λ ≥ exp(2) is not optimal: it is convenient because of the form of the ansatz for k 0 given above. Numerically, it appears that (4.14) holds almost up threshold value j 0,1 /y 0,1 (up to 1.003 times that value).

Inclusions with relative index larger than one: far-field estimates

As we could notice on Figure 4.1, the effect of quasi-resonances is localized close to |x| = ε. We now show that in the far field, that is, when λε ≤ |x|, estimates valid for all frequencies can be derived in the spirit of Theorem 2.4.

Theorem 5.1. When 1 ≤ λ and ελ < R there holds

sup ω>0 u s ε (|x| = R) H σ ≤ 5 2 λ ε R u i (|x| = ε) H σ * + 2 n =0 |a n | 2 (1 + |n|) 2σ j (1) n,1 R ε 2 -n 2 (5.1) + √ 10π u i (0) H (1) 0 min 1 2 , m λ R ε , Furthermore, (5.2) sup ω>0 u s ε (|x| = R) H σ * ≥ 2 5 λ ε R N σ-1 6 1 u i .
Remark 5.2. Just like in Theorem 2.4, the upper bound (5.1) can be replaced by the frequency independent bound

(5.3) u s ε (|x| = R) H σ ≤ 5 2 λ ε R N σ u i + √ 10π u i (0) H (1) 0 min 1 2 , m λ R ε .
We chose the form (5.1) to obtain an optimal decay rate in n for R ε. The dependence on the zero order term is sharp, as we have seen in Section 4. Note that the lower bound (5.2) and upper bound (5.1) have the same dependence on the contrast, and on ε/R.

Proof. Starting from the formula (1.14), using the monotonicity of x

H (1) n ( √ q0ωR) H (1) n (λωε) 2
for n ≥ 1 as in the proof of Theorem 2.1, we obtain

u s ε (|x| = R) 2 H σ ≤ λ ε R 2π I1 |a n | 2 (1 + |n|) 2σ R n (ω ε , λ) |H (1) n (λω ε ) 2 2π I2 |a n | 2 (1 + |n|) 2σ R n (ω ε , λ) |H (1) n λω ε R ε 2 +2π |a 0 | 2 R 0 (ω ε , λ) H (1) 0 ( √ q 0 ωR) 2 ,
where I 1 is the set of indices n for which 0 < |n| and λω ε < j

(1)
|n|,1 , and I 2 is the set of indices n for which 0 < |n| and λω ε > j

(1) n,1 . Thanks to Proposition 3.2, R 0 (ω ε , λ) H (1) 0 ( √ q 0 ωR) ≤ √ 5 H (1) 0 y 0,1 R ε . and when n ∈ I 1 , R n (ω ε , λ) H (1) n (ω ε ) ≤ 5 2 |J n (ω ε )| .
Alternatively, as in Theorem 2.4, when n ∈ I 2 ,

R n (ω ε , λ) H (1) n (ω ε ) ≤ 2 π 1 j (1) n,1 R ε 2 -n 2
Therefore, altogether, we have obtained that for all ω ε > 0,

2π |n| =0 |a n | 2 (1 + |n|) 2σ R n (ω ε , λ) |H (1) n (ω ε ) 2 ≤ 25 4 2π n =0 |a n | 2 (1 + |n|) 2σ |J n (ω ε )| 2 +4 n =0 |a n | 2 (1 + |n|) 2σ j (1) n,1 R ε 2 -n 2
, which concludes our proof of the upper bound. Turning to the lower bound, we have

u s ε (|x| = R) H σ ≥ √ 2π sup |n|≥1 sup ωε>0 |R ε n a n | (1 + |n|) σ H (1) n ω ε R ε ≥ √ 2π sup |n|≥1 |a n | (1 + |n|) σ H (1) n ω n,1 R ε ,
where we used the first quasi-resonant frequency ω n,1 given by Proposition 4.2. Since √ x H 1 n (x) decreases to 2/π [16, 13.74],

H (1) n ω n,1 R ε > 2ε πRω n,1
and, in turn, since from (1.16),

ω n,1 < j n,1 λ < 4n λ < 4 (n + 1) 1/3 λ 6 7 2 sup x>0 |J n (x)| -2
, we obtain

u s ε (|x| = R) H σ * ≥ 2 5 λ ε R N σ-1 6 1 u i ,
as announced.

Broadband contrast and frequency independent estimates

In the previous sections, we have seen that we cannot hope for contrast independent estimates for all frequencies, because of the appearance of quasi-resonances. Combining Theorem 2.4 and Theorem 5.1, we see that scattered field tends to zero at a rate ε 1-δ , when observed at a fixed distance, say R = 1, provided the contrast λ does not grow faster than ε -δ with δ < 1. On the other hand, when λ is of size ε -1 or larger, the lower bound provided by Theorem 5.1 shows that for some frequencies, the quasi-resonant frequencies, some components of the scattered field will be of size one or larger.

The following proposition shows that if an interval around quasi-resonant frequencies is excluded, the scattered field can be controlled by the incident field. It is proved in Section 8. Proposition 6.1. For any 0 < τ ≤ 1 4 , we define (6.1)

I n,k (τ ) := {x ∈ U n,k such that |g n (λx) + k n (x)| ≤ τ |k n (x)|} , If λ > 7, n ≥ 1 and ω ε ∈ (0, y n,1 ) \ (∪ k I n,k (τ )), then, R n (ω ε , λ) H (1) n (ω ε ) ≤ 9 2 τ J n (ω ε ) .
we have

(0, y n,1 ) \ (∪ k I n,k (τ )) = (0, y n,1 ) \ k∈K(λ,n) I n,k (τ ) 
where K(λ, n) is the set of all positive k such that j

n,k < nλ. Furthermore, k∈K(λ,n)

I n,k (τ ) ≤ 6τ n ln λ λ . If λ > 7, n = 0 and ω ε ∈ (0, ζ 0 ) \ (∪ k I 0,k (τ )), where ζ 0 ≈ 0.3135 is defined Proposition A.2, then R 0 (ω ε , λ) H (1) 0 (ω ε ) ≤ 5 3τ J 0 (ω ε ) ≤ 5 3 τ .
We have

(0, ζ 0 ) \ (∪ k I 0,k (τ )) = (0, ζ 0 ) \ k∈K(λ,0) I 0,k (τ )
where K(λ, 0) is the set of all positive k such that j

(1) 0,k < λζ 0 . Furthermore, k∈K(λ,0)

I 0,k (τ ) ≤ 7τ ln(ln λ) λ .
Proof. This is the result of Proposition 8.3 (together with Lemma 7.1 for ω ε < j

n,1 /λ and Proposition 7.6 when n = 0), and Proposition 8.2.

This result allows us to prove the following. Lemma 6.2. Suppose λ > 7. Let η max be the following decreasing function of the contrast (6.2)

η max = 3 2 ln λ λ .
Given α > 0, for any η > 0 such that

η ≤ 1 α η max
there exists a set I 1 depending on η, α, ε and λ such that

|I 1 | < η ε and, for any R ≥ ε sup √ q0ω∈(0,∞) \ I1 u s ε (|x| = R) H σ * ≤ 18 ε R η max ηα N σ+2+α u i .
Let η 0 be given by

η 0 = 7 4
ln(ln λ) λ .

for any η > 0 such that η ≤ η 0 there exists a set I 0 ⊂ (0, ζ 0 ) which depends on η, ε and λ such that

|I 0 | < η ε and, for any R ≥ ε sup √ q0ω∈(0,∞) \ I0 1 2π 2π 0 u s ε (|x| = R) ≤ 7 η 0 η H (1) 0 m λ R ε H (1) 0 (m λ )
. Remark 6.3. Lemma 6.2 shows that by excluding some frequencies, around quasi-resonances, nearfield estimates can be obtained, up to the boundary of the inclusion |x| = ε, at the cost of a little more than two powers of n when compared to the near field estimates given by Theorem 2.4 for λ < 1. We showed in Theorem 4.3 that if the quasi-resonances are not excluded, the blow up is geometric in n. The most striking feature of this result is that since η max and η 0 tend to zero as λ tends to ∞, the size of the set of frequencies to exclude shrinks as the contrast increases.

Proof of Lemma 6.2. Starting from the formula (1.14), using the monotonicity of x

H (1) n ( √ q0ωR) H (1) 
n (ωε)

2
for n ≥ 1 as in the proof of Theorem 2.1, we obtain

u s ε (|x| = R) 2 H σ * ≤ ε R   2π |n| =0 |a n | 2 1 τ 2 n (1 + |n|) 2σ R n (ω ε , λ) |H (1) n (λω ε ) 2   ,
for any sequence of positive parameters 0 < τ n < 1 4 to be chosen later. Next we divide the non zero indices into three parts. The first set of indices is

N 1 := n = 0 such that λω ε ≤ j (1)
|n|,1 or ω ε > n .

In N 1 , thanks to Proposition 3.2 and Proposition 7.3, we have that either

R n (ω ε , λ) |H (1) n (λω ε ) ≤ 5 2 J n (ω ε ) ≤ 5 2 sup x>0 |J n (x)|
or ω ε > y n,1 , and (4.6) shows that

R n (ω ε , λ) |H (1) |n| (λω ε ) 2 ≤ 7 5 sup x>0 |J n (x)|
We define the sets

N 2 := n = 0 such that g |n| (λx) + k |n| (x) ≤ τ n k |n| (x) ,
and N 3 := {n = 0, n ∈ S 1 and n ∈ S 2 } . Proposition 6.1 shows that for all n ∈ N 3 R n (ω ε , λ) H (1) n (ω ε ) ≤

9 2 1 τ n J n (ω ε ) ≤ 9 2 1 τ n sup x>0 |J n (x)|
We have obtained that for all ω such that N 2 = ∅, we have

(6.3) u s ε (|x| = R) 2 H σ * < 2π 9 2 2 ε R n =0 |a n | 1 τ 2 n (1 + |n|) 2σ sup x>0 |J n (x)| 2 .
Thanks to Proposition 6.1, the forbidden values for √ q 0 ω lie in a collection of intervals O ε :=

ε -1 n,k I n,k (τ n ) of total size of at most |O ε | ≤ ∞ n=1 nτ n 6 ln λ ελ = 4 η max ε ∞ n=1 nτ n .
This leads us to choose

τ n = ηα (1 + |n|) 2+α 1 4η max .
Then, an upper estimate of the total size of the forbidden intervals is

|O ε | ≤ 1 ε ∞ n=1 α (1 + n) 1+α ≤ η ε ,
and from (6.3) we obtain

u s ε (|x| = R) H σ * ≤ 18 ε R η max ηα N σ+2+α u i ,
as announced.

Let us now consider the other estimate. We have, from (1.5)

1 2π 2π 0 u s ε (|x| = R) = |u i (0)| R 0 (ω ε , λ) H (1) 0 ω ε R ε .
Proposition 7.7 shows that when ω ε < m λ , R 0 (ω ε , λ) H

(1) 0

ω ε R ε ≤ 4 H (1) 0 m λ R ε H (1) 0 (m λ ) ≤ 1 τ H (1) 0 m λ R ε H (1) 0 (m λ ) . Proposition 7.6 shows that when ω ε > ζ 0 , R 0 (ω ε , λ) H (1) 0 ω ε R ε ≤ H (1) 0 ζ 0 R ε ≤ ε R 2 πζ 0 ≤ 3 2 ε R .
From Lemma A.3, we know that H

(1) 0

m λ R ε H (1) 0 (m λ ) ≥ ε R , therefore when ω ε > ζ 0 , R 0 (ω ε , λ) H (1) 0 ω ε R ε ≤ 1 τ H (1) 0 m λ R ε H (1) 0 (m λ )
.

On the other hand, Proposition 6.1 shows that if

ω ε ∈ (m λ , ζ 0 ) \ k∈K(λ,0) I 0,k (τ ) we have R 0 (ω ε , λ) H (1) 0 (ω ε ) ≤ 5 3 1 τ . Therefore, Lemma A.3 shows that x → H (1) 0 x R ε /H (1) 0 (x) is decreasing, R 0 (ω ε , λ) H (1) 0 ω ε R ε = R 0 (ω ε , λ) H (1) 0 (ω ε ) H (1) 0 ω ε R ε H (1) 0 (ω ε ) ≤ 5 3 1 τ H (1) 0 m λ R ε H (1) 0 (m λ )
.

We have obtained, for all ω ε ∈ (0, ∞) \ k∈K(λ,0) I 0,k (τ ), and all τ ≤ 1 4 , R 0 (ω ε , λ) H

(1) 0

ω ε R ε ≤ 5 3 1 τ H (1) 0 m λ R ε H (1)
0 (m λ ) The total size of the set of forbidden values for √ q 0 ω is bounded by

|O ε | ≤ 7 ln ln(λ) λ τ ε , thus choosing τ = 1 4 η η0 establishes our claim.
As an application of Lemma 6.2, we provide a broadband estimate for the case λ = ε -1 .

Corollary 6.4. Assume ε < 1/7, and λ = ε -1 . Then, for any α, β > 0, there exists a set I 1 depending on ε, α and β and a set I 0 depending on ε and β which satisfies

|I 1 | ≤ ε β |ln ε| , |I 0 | ≤ ln |ln ε| (|ln ε| + 1) β ,
such that for all R ≥ ε,

sup √ q0ω∈(0,∞) \ I1 u s ε (|x| = R) 2 H σ * ≤ 18 α ε 1-2β R N σ+2+α u i ,
and

sup √ q0ω∈(0,∞) \ I0 1 2π 2π 0 u s ε (|x| = R) ≤ 12 1 (|ln ε| + 1) 3/2-2β R .
Proof. This is an application of Lemma 6.2. In this case η max = ε |ln ε|, and η 0 = ε ln |ln ε|. Choose η = ε β η max . We have

|I 1 | ≤ ε β |ln ε| and sup √ q0ω∈(0,∞) \ I1 u s ε (|x| = R) 2 H σ * ≤ 21 α ε 1-2β R .
Choose η = (|ln ε| + 1) -β η 0 . Then,

|I 0 | ≤ ln |ln ε| (|ln ε| + 1) β .
Using the bound H

(1) 0 (m λ ) > 1 2 (1 + |ln ε|), and the usual upper bound (7.13),

sup √ q0ω∈(0,∞) \ I0 1 2π 2π 0 u s ε (|x| = R) ≤ 14 2 π (|ln ε| + 1) β-1+ 1 4 1 √ R ≤ 12 1 (|ln ε| + 1) 3/2-2β R .
Combining Lemma 6.2 with Theorem 2.4 and Theorem 5.1 we obtain the following broadband result, which provides a uniform estimate for all contrast, and almost all frequencies. Theorem 6.5. Suppose given λ > 0 and 1 15 > ε > 0. For any α > 0, there exists a open set

I 1 (α, λ, ε) ⊂ R satisfying |I 1 (α, λ, ε) | ≤ ε 1/8 |ln ε|
and for any R ≥ ε 1/4 we have

(6.4) sup √ q0ω∈(0,∞) \ I1 u s ε (|x| = R) 2 H σ * ≤ 21 α ε 1/4 R N σ+2+α u i .
When λ ≤ ε -3/4 , (6.4) holds with I 1 = ∅. There exists another open set I 0 (ε, λ) ⊂ (0, ζ 0 ) satisfying

|I 0 (λ, ε) | ≤ ln ln ε + 2 ln ε + 1
and such that for any R such that (|ln ε| + 1) 1/12 R ≤ 1, we have

(6.5) sup √ q0ω∈(0,∞) \ I0 1 2π 2π 0 u s ε (|x| = R) ≤ 21 max 2 (|ln ε| + 1) 1/12 R , H (1) 
0

m λ R ε H (1) 0 (m λ )
, where m λ is defined in (3.1) and equals

m λ = 1 λ √ ln λ + 1 .
When λ -1 > ε (|ln ε| + 1) 7/12 , (6.5) holds with I 0 = ∅.

Remark 6.6. Note that both I 1 and I 0 have zero measure when ε tends to zero: in this limit, the estimate is true almost everywhere. This is not a far-field result in the sense of 5.1, as we do not require λR > ε. Any fixed positive R is possible for ε small enough. The decay of the size of I 0 is logarithmically slow, even though the quasi-resonances of the zero order term are at most logarithmic in the contrast, see Theorem 4.3. Note that the upper bound in (6.5) is always smaller than the numerical constant 21. Naturally, many variants of Theorem 6.5 can be derived by other combinations of Lemma 6.2, Theorem 2.4 and 5.1, and more precise broadband estimates can be obtained if λ is known to be in a particular range with respect to ε. Corollary 6.4 gives an improved estimate in the case λ = ε -1 . The dependence on n in (6.4) could probably be improved by a precise study of the distance between the roots of the Bessel Function J n (x) for x ∈ (n/ε, n).

Proof. When 0 < λ ≤ 1, Theorem 2.4 implies (6.4), with I 1 = ∅. Similarly, when 1 < λ < ε -3/4 , Theorem 5.1 implies (6.4), with I 1 = ∅. . Let us therefore suppose λ > ε -3/4 > 7. We apply Lemma 6.2 with η = 8 9 ε 3/8 η max .

Note that Since λ → λ -1 ln λ is decreasing when λ > 7, therefore

η max ≤ 9 8 |ln ε| ε 3/4 ,
and there exists a set I 1 such that

|I 1 | ≤ ε 1/8 |ln ε| for which sup √ q0ω∈(0,∞) \ I1 u s ε (|x| = R) 2 H σ * ≤ 21 α ε 1/4 R N σ+2+α u i .
Let us now turn to the zero order term, and assume u i (0) = 1 by linearity. The cases λ < 1 or m λ > 1/2 are consequences of Theorem 2. 

I 0 = ∅, 1 2π 2π 0 u s ε (|x| = R) ≤ √ 10π H (1) 0 m λ R ε .
Since H

(1) 0 (•) is decreasing, an upper bound is found by choosing λ = λ 0 . Then, ln λ 0 ≤ |ln ε|, and

ε -1 m λ = (ln ε + 1) 7/12 1 √ ln λ 0 + 1 ≥ (|ln ε| + 1) 1/12
which yields (6.6)

1 2π 2π 0 u s ε (|x| = R) ≤ √ 10π H (1) 0 m λ R ε ≤ 5 1 R (|ln ε| + 1) 1/12 . When λ 0 < λ < (|ln ε| + 1) 1/12 ε ,
we have

m λ > m 1 := 1 2 + e -2 ε (1 + |ln ε|) 7/12 .
We turn now to Lemma 6.2. We have

η 0 = 7 4 ln ln λ λ ≤ ln ln λ 0 λ 0 ≤ ε ln(|ln ε|) (1 + |ln ε|) 7/12 Choose η = 4 7 1 (1 + |ln ε|) 2/3 η 0 . Then, |I 0 | ≤ ln |ln ε| (|ln ε| + 1) 1/12 and since x → H (1) 0 x R ε / H (1) 0 (x) is decreasing by Lemma A.3, outside of I 0 we have (6.7) 1 2π 2π 0 u s ε (|x| = R) ≤ 7 7 4 (1 + |ln ε|) 2/3 H (1) 0 m 1 R ε H (1) 0 (m 1 )
.

We have H

(1) 0 (m 1 ) > 1 2 (1 + |ln ε|), and therefore

1 2π 2π 0 u s ε (|x| = R) ≤ 49 2 2(2 + e -2 ) π (1 + |ln ε|) 2/3-1+7/14 1 √ R . ≤ 29 1 R (1 + |ln ε|) 1/12
.

Let us now assume λ ≥ (|ln ε|+1) 

√ q0ω∈(0∞)\I0 1 2π 2π 0 u s ε (|x| = R) ≤ 21 H (1) 0 m λ R ε H (1) 0 (m λ )
.

Combining (6.6), (6.7) and (6.8) we obtain the (6.5).

7.

Estimates relating the scattered field and the incident field outside quasi-resonances 7.1. The n = 0 case. The main result of this section, Lemma 7.1 proves Proposition 2.6 and Proposition 3.2 when n = 0. Note that, for a given n, these results are focused on the case when ω ε is bounded, namely ω ε < y n,1 . Since y n,1 < j n,1 for all n ≥ 0, we are thus only considering the case when J n (ω ε ) > 0, and ω ε < y n,1 . To compare the scattered field with the incident field, it is convenient to introduce a new quantity, namely

(7.1) S n (ω ε ) := - R n (ω ε , λ) H (1) n (ω ε ) J n (ω ε )
.

A simple manipulation of the equation, together with the Wronskian identity satisfied by J n (x) and Y n (x) shows that S n has two equivalent formulations, namely

S n (x) = (g n (λx) -g n (x)) (1 + i tan θ n (x)) (g n (λx) -g n (x)) + i tan θ n (x) (g n (λx) + k n (x)) , (7.2) = u n (x)H (1) n (x) u n (x)H (1) n (x) + i 2 π J n (λx) , (7.3) (7.4)
where θ n is given by (4.3), g n and k n are defined by (4.10) and (4.11) and where u n is given by

u n (x) := max(|n|, 1)J n (x) J n (λx) (g n (x) -g n (λx)) .
Note that these formulae are not defined when λx = j n,1 , that is, at the singular points of g n (λx). However from Formula (7.3) we see that these singularity can be resolved, and we define S n as the continuous limit of S n towards these points (which is 1).

The main result of this section is the following Lemma.

Lemma 7.1. For all λ ∈ (0, ∞), and all n ≥ 1, for x ∈ 0, min j

n,1 λ -1 , y n,1 we have the following bound

|S n (x)| ≤ 5 2 .
For x ∈ 0, min nλ -1 , n , we also have

|S n (x)| ≤ 2 |λ -1| x n 1/3 . and if λ 2 < 1 - 7 3n 1/3 2 , then |S n (n)| > 1 2 .
To prove Lemma 7.1, we shall use the following observation.

Proposition 7.2. For all 0 < x ≤ n, and all n ≥ 1, we have the following bounds

3 5 2 < 1 + Y 2 n (x)/J 2 n (x) 1 + |Y n (x)| 2 / |J n (x)| 2 ≤ 5 2 2 .
We do not use the lower bound in this paper. We include it to document the fact that one cannot hope for an upper bound tending to zero for n large, for example.

Proof. The proof is elementary from the inequalities (A.1) given in Appendix A. Since

2 5 < α n = k n g n = Y n J n J n Y n < 5 3 , it suffices to observe that 1 + Y 2 n (x)/J 2 n (x) 1 + |Y n (x)| 2 / |J n (x)| 2 = 1 + tan 2 θ n 1 + α 2 n tan 2 θ n therefore, since 2 5 < 1 < 5 3 , 3 5 2 < 1 + Y 2 n (x)/J 2 n (x) 1 + |Y n (x)| 2 / |J n (x)| 2 < 5 2 2 .
The final intermediate result we shall use is the following bound.

Proposition 7.3. For all x ∈ [n, y n,1 ], we have

|S n | < √ 5.
Proof. Using that |R n (ω ε , λ) | ≤ 1, we have

|S n | 2 ≤ 1 + tan 2 θ n .
Remember that from (4.4), as x varies between 0 and y n,1 , θ n (x) varies between -π 2 and 0. The map of n → -θ n (n) is decreasing to π/3, and is always close to its limit, as

9 5 > tan (-θ n (n)) > √ 3 for n ≥ 1.
see [16, 15.8]. Consequently, for all x ∈ [n, y n,1 ], tan(-θ n (x)) ≤ tan(-θ n (n)) < 9 5 , and

|S n | 2 ≤ 1 + tan(θ n (x)) 2 < 5,
as claimed.

We can now conclude the proof of the estimate of this section.

Proof of Lemma 7.1. Let us first consider the case when x ∈ 0, min n, j

n,1 λ -1 , y n,1 . When x > n, the result follows from Proposition 7.3.

We have

(7.5) |S n (x)| 2 = |g n (λx) -g n (x)| 2 1 + tan 2 θ n |g n (λx) -g n (x)| 2 + tan 2 θ n |g n (λx) + k n (x)| 2 .
From Proposition A.1, for λx ≤ j

n,1 , g n (λx) ≥ 0, and k n (x) > 0. The study of the function

u → (u -a) 2 1 + tan 2 θ n (u -a) 2 + tan 2 θ n (u + b) 2
for u > 0, a > 0 and b > 0 shows that it has a minimum for u = a, tends to 1 for u → ±∞ and decreases between 0 and a. Therefore,

|S n | 2 ≤ max 1, |g n | 2 1 + tan 2 θ n |g n | 2 + tan 2 θ n |k n | 2 . Now compute that |g n (x)| 2 1 + tan 2 (x)θ n (x) |g n (x)| 2 + tan 2 θ n (x) |k n (x)| 2 = 1 + Y n (x) 2 /J n (x) 2 1 + |Y n (x)| 2 / |J n (x)| 2 ,
and thanks to the Proposition 7.2 this quotient is bounded by 5 2 2 . We have obtained that

|S n | ≤ 5/2
. From (7.5), we derive that

|S n (x)| 2 ≤ g n (λx) -g n (x) k n (x) + g n (λx) 2 1 + tan 2 θ n (x) tan 2 θ n (x) .
As we will see in Proposition 7.3, tan(θ n ) -2 + 1 ≤ 4 3 when x ≤ n. Thanks to Proposition A.1,

g n (λx) + k n (x) ≥ k n (x) > 3
5 n -1/3 , thus we have

|S n (x)| 2 ≤ 100 27 n 2/3 (λ -1) 2 x 2 (g n (n)) 2 ≤ 4(λ -1) 2 x 2 n 2/3 ,
where we used the bounds on g n given by Proposition A.1.

Let us now turn to the lower bounds. When λ < 1, Consider the case x = n. Then Proposition A.1 shows that g n (λn

) > √ 1 -λ 2 , 7 6 
1 n 1/3 > k n (n) and 13 14n 1/3 > g n (n) > 1 √ 2 1 n 1/3 and tan 2 θ n (n) > 3, therefore |S n (x)| 2 = |g n (λn) -g n (n)| 2 1 + tan 2 θ n (n) |g n (λn) -g n (n)| 2 + tan 2 θ n (n) |g n (λn) + k n (n)| 2 > 4 |g n (λn) -g n (n)| 2 |g n (λn) -g n (n)| 2 + 3 g n (λn) + 7 6 n -1/3 2 > 4 √ 1 -λ -1 n 1/3 2 √ 1 -λ -n -1/3 2 + 3 √ 1 -λ + 7 6 n -1/3 2 > 1 4 , when √ 1 -λ 2 > 7/(3n 1/3 ), or λ < 1 - 7 3n 1/3 2 .
7.2. The n = 0 case. We summarize here properties of g 0 and k 0 . They are derived using methods similar to the ones used for k n an g n for n = 0, and can be checked by inspection with the help of a modern mathematical software. We therefore will omit the proof.

Proposition 7.4. The function g 0 (resp. k 0 ) is defined on (0, ∞) except at j 0,k (resp. y 0,k ), k = 1, . . ., and cancels at each j

(1) 0,k (resp. y (1) 0,k ).
• Where it is defined, g 0 is decreasing. On (0, j 0,1 ) g 0 is concave.

lim x→j 0,k x<j 0,k g 0 (x) = -∞, lim x→j 0,k x>j 0,k g 0 (x) = +∞.
• Where it is defined, k 0 is increasing, and

lim x→y 0,k x<y 0,k k 0 (x) = +∞, lim x→y 0,k x>y 0,k k 0 (x) = -∞. • For 0 ≤ x ≤ 1, - 1 2 x 2 - 1 12 x 4 ≤ g 0 (x) ≤ - 1 2 x 2 - 1 16
x 4 , and |g 0 | ≤ 4 3

x.

• For 0 ≤ x ≤ 1 4 , - 1 γ + ln x 2 + 1 2 x 2 ≤ k 0 (x) ≤ - 1 γ + ln x 2 + x 2 .
Proposition 7.5. For all λ ≤ 1, and all 0 < x < y 0,1 ,

|S 0 (x)| ≤ π 2 √ 2 min(1, 2 -2λ)x 2 ln x 2 .
For all λ ≥ 1 and all 0 < x ≤ min( 1 2 , m λ ),

|S 0 (x)| ≤ π min 1, 5 2 λ -1 λ λ 2 x 2 ln x 2 .
Proof of Proposition 7.5. Let us first consider the case λ < 1. Since g 0 is decreasing, for all x < j 0,1 , we have

g 0 (x) -g 0 (λx) = (1 -λ)xg 0 (ζ 0 ) < 0,
Then, for all x ≤ y 0,1 , we have 0 < J 0 (λx) ≤ 1 and 0 ≤ u 0 Y 0 . Consequently,

(7.6) u 0 (x) (J 0 (x) + iY 0 (x)) + i 2 π J 0 (λx) ≥ 2 π |J 0 (λx)| .
Thanks to Proposition 7.4, for all 0 < x < y 0,1 , (7.7)

|g 0 (x) -g 0 (λx)| ≤ min((1 -λ)x |g 0 (x)| , |g 0 (x)| ≤ min 4 3 (1 -λ), 2 3 x 2 .
Note that for 0 < x < 1, there holds

(7.8) |J 0 (x) + iY 0 (x)| < 3 2 √ 2 ln x 2 .
Together with (7.7), this shows that

|u 0 (x) (J 0 (x) + iY 0 (x)) | = |J 0 (λx)| |J 0 (x)| |J 0 (x) + iY 0 (x)| |g 0 (x) -g 0 (λx)| ≤ 1 √ 2 min(1, 2 -2λ)x 2 ln x 2 |J 0 (λx)| . (7.9)
Inserting the estimates (7.6) and (7.9) in formula (7.2), we obtain

|S 0 | ≤ π 2 √ 2 min(1, 2 -2λ)x 2 ln x 2 .
Let us now suppose 1 ≤ λ. For all x ≤ 1 2λ , using the bounds on g 0 given by Proposition 7.4, we have

|g 0 (x) -g 0 (λx)| ≤ |g 0 (λx)| ≤ λ 2 x 2 2 1 + λ 2 6 x 2 ≤ 25 48 λ 2 x 2
Alternatively, note that for x ≤ m λ and λ ≤ e 3 , that is, when 2 > ln(λ) + 1, we can also bound

|g 0 (x) -g 0 (λx)| ≤ λ 2 x 2 2 1 - 1 λ 2 + λ 2 6 - 1 8λ 2 x 2 ≤ λ 2 x 2 2 1 - 1 λ 2 + λ 2 6 - 1 8λ 2 1 λ 2 (ln(λ) + 1) < 25 48 λ 2 x 2 .
Using that when x < 1 2 , |J 0 (x) + iY 0 (x)| < 3 4 ln x 2 and arguing as above, we obtain (7.10)

|u 0 (x) (J 0 (x) + iY 0 (x)) | ≤ 2 5 x 2 λ 2 ln x 2 |J 0 (λx)| .
Alternatively, starting from the inequality

|g 0 (x) -g 0 (λx)| ≤ (λ -1)x |g 0 (λx)| ≤ 4 3 λ -1 λ λ 2 x 2 ,
we obtain

(7.11) |u 0 (x) (J 0 (x) + iY 0 (x)) | ≤ λ -1 λ x 2 λ 2 ln x 2 |J 0 (λx)| .
Next, using the inverse triangular inequality, (7.12)

u 0 (x) (J 0 (x) + iY 0 (x)) + i 2 π J 0 (λx) ≥ 2 5 x 2 λ 2 ln x 2 - 2 π |J 0 (λx)| ≥ 2 5π | |J 0 (λx)| , provided x ln x 2 < 4 π 1 λ .
Inserting the estimates (7.11) and (7.12) in formula (7.2), we obtain

|S 0 | ≤ π min 1, 5 2 λ -1 λ λ 2 x 2 ln x 2
Then remark that when x < m λ , then x ln x 2 < 4 π 1 λ , for all λ ≥ 1.

Proposition 7.6. Let R ≥ ε. For any λ > 0 and any x > 0,

(7.13) R ε 0 H (1) 0 x R ε 2 ≤ 2 πx ε R . If λ < 1 then for all x > 0 R ε 0 H (1) 0 x R ε ≤ H (1) 0 y 0,1 R ε .
Furthermore, when x < y 0,1 ,

R ε 0 H (1) 0 x R ε ≤ π 2 2 √ 2 (1 -λ)x 2 H (1) 0 x R ε . If 1 ≤ λ then for all x > 0 R ε 0 H (1) 0 x R ε ≤ √ 5 H (1) 0 min 1 2 , m λ R ε . Furthermore, when x < min 1 2 , m λ , R ε 0 H (1) 0 x R ε ≤ 5π 2 4 λ -1 λ x 2 λ 2 H (1) 0 x R ε .
Proof. Note that x H

2 is an increasing function of x, with limit 2 π . Since |R ε 0 | ≤ 1 for all x > 0, this implies (7.13).

Suppose now λ < 1. Note that H

(1) 0 (•) is decreasing, therefore using the simple bound

|R ε 0 | ≤ 1 we have for all x ≥ y 0,1 , R ε 0 H (1) 0 x R ε 2 ≤ H (1) 0 y 0,1 R ε 2 
For 0 < x < 1 it is easy to verify that,

1 + Y 0 (x) J 0 (x) 2 > 1 + 4 π 2 ln x 2 2 .
Therefore we obtain

R ε 0 H (1) 0 x R ε 2 ≤ |S 0 (x)| 2 1 + 4 π 2 ln x 2 2 H (1) 0 x R ε 2
Thanks to Proposition 7.5, we have, for all 0 < x < y 0,1 ,

(7.14) R ε 0 H (1) 0 x R ε 2 ≤ π 2 8 min (1, 2 -2λ) 2 ε R (1 -λ) 2 x 3 ln x 2 2 1 + 4 π 2 ln x 2 2 x R ε H (1) 0 x R ε 2 .
The function

x → x 3 ln x 2 2 1 + 4 π 2 ln x 2 2
is increasing on (0, 1), and as we noted before, so is x H

. Therefore an upper bound is obtained by choosing x = y 0,1 in the right-hand-side of (7.14), which gives

R ε 0 H (1) 0 x R ε 2 ≤ π 2 8 
y 4 0,1 ln y0,1 2 2 1 + 4 π 2 ln y0,1 2 2 H 
(1) 0

y 0,1 R ε 2 ≤ H (1) 0 y 0,1 R ε 2 ,
where we used (7.13) in the second inequality. We have obtained that for all x > 0,

R 0 (ω ε , λ) H (1) 0 x R ε ≤ H (1) 0 y 0,1 R ε .
Alternatively, note that the function (ln(x/2) 2 )/(1 + 4 π 2 ln(x/2) 2 ) is decreasing on (0, 1), with a maximum of π 2 /4, therefore (7.14) and (7.13) yield

R ε 0 H (1) 0 x R ε 2 ≤ π 4 8 (1 -λ) 2 x 4 H (1) 0 x R ε 2 ,
for all 0 < x < y 0,1 .

Let us now consider the case λ > 1. We only consider the case when m λ ≥ 2, the proof in the other case is similar. Arguing as before, we have for all

x such that x ≥ m λ R ε 0 H (1) 0 x R ε ≤ H (1) 0 m λ R ε .
Next, when x < m λ , we have

R ε 0 H (1) 0 x R ε 2 ≤ |S 0 (x)| 2 1 + 4 π 2 ln x 2 2 H (1) 0 x R ε 2 ≤ min 1, 5 2 λ -1 λ 2 π 2 x 4 λ 4 ln x 2 2 1 + 4 π 2 ln x 2 2 H (1) 0 x R ε 2
Arguing as in the case λ < 1, an upper bound is obtained by replacing x by its maximal value, namely

R ε 0 H (1) 0 x R ε 2 ≤ π 2 ln 2λ √ ln λ + 1 2 (1 + ln(λ)) 2 1 + 4 π 2 ln 2λ √ ln λ + 1 2 H (1) 0 1 λ √ ln λ + 1 R ε 2 ≤ 5 1 + 2 π 2 ln λ 2 H (1) 0 m λ R ε 2 . (7.15)
We have obtained that for all x > 0,

R ε 0 H (1) 0 x R ε 2 ≤ 5 H (1) 0 m λ R ε 2 .
Alternatively, we also have, when x < m λ ,

R ε 0 H (1) 0 x R ε 2 ≤ π 2 5 2 λ -1 λ 2 x 4 λ 4 ln x 2 2 1 + 4 π 2 ln x 2 2 H (1) 0 x R ε 2 ≤ 5π 2 4 λ -1 λ x 2 λ 2 2 H (1) 0 x R ε 2 .
We conclude this section by an estimate which will prove useful for broadband estimations.

Proposition 7.7. Let R ≥ ε. For any λ ≥ 7 and any m λ ≥ x > 0,

(7.16) R ε 0 H (1) 0 x R ε ≤ 4 H (1) 0 m λ R ε H (1) 0 (m λ )
.

Proof. Inequality (7.15) shows that for all 0 < x ≤ m λ , we have

R ε 0 H (1) 0 x R ε ≤ 5 1 + 2 π 2 ln λ 2 H (1) 0 m λ R ε .
We note (and can prove, it is a study of a function of one variable, ln λ) that

λ → H (1) 0 (m λ ) 1 + 2 π 2 ln λ 2
is increasing for λ > 7, and its value at λ = 7 is greater than 3.2. This lower bound yields our estimate.

Bounds near quasi-resonances

This section is devoted to the proof of Proposition 6.1. We wish to bound the size of the "blow-up" regions, that is, the sets I n,k (τ ) defined by (6.1), centered on quasi-resonances. From (4.2) we know that y

(1)
n,1 > y n,1 for all n ≥ 0, thus k n > 0 on (0, y n,1 ). Introducing (8.1) φ n := (0, y n,1 )

\ ∪ k {j n,k /λ} → R x → g n (λx) k n (x) , we have φ n (I n,k (τ )) = [-1 -τ, -1 + τ ].
We first verify that φ n is one-to-one on I n,k (τ ), for τ small enough and λ large enough. Lemma 8.1. Suppose τ ≤ 1 4 and 7 ≤ λ. When n ≥ 1 the function φ n given by (8.1) satisfies

φ n (x) ≤ 1 -λ 2 2n + k n (x)
< 0

where n + = max(n, 1), for all x ∈ I n,k (τ ) ∩ (0, n) when n ≥ 1 and for all x ∈ I 0,k (τ ) ∩ (0, ζ 0 ) when n = 0. Furthermore, I 0,k (τ ) ⊂ (m λ , y 0,1 ) , and for n ≥ 1, I n,k (τ ) ⊂ j

Proof. We compute, using (4.13) and (A.3), for n ≥ 0,

(8.2) φ n (x) = x n + k n (x) 1 -λ 2 + k n (x) + g n (λx) k n (x) 2 n x - x n + - n + x g n (λx)k n (x) ,
Suppose first that n ≥ 1. When x ≤ n and -g n > k n ,

(k n (x) + g n (λx))( n x - x n - n x g n (λx)k n (x)) < 0 therefore φ n (x) ≤ x nk n (x) 1 -λ 2 < 0.
On the other hand, when g n (λx) + k n (x) > 0 and x ∈ I n,k (τ ), that is, when 0 < g n (λx) + k n (x) ≤ τ k n (x), we have

k n (x) + g n (λx) k n (x) n x - x n - n x g n (λx)k n (x) ≤ τ n x n 2 -x 2 + n 2 k 2 n
Using the upper bound on k n given by Proposition A.1, we find that when n λ ≤ x ≤ κ n , we have

2 τ n x n 2 -x 2 + n 2 k 2 n ≤ 2 τ x n λ 2 -1 λ ≤ 1 2 x n λ 2 -1 provided τ ≤ 1 4 . When κ n ≤ x ≤ n, 2 τ n x n 2 -x 2 + n 2 k 2 n ≤ 2τ x n n 2 + 7/6n 4/3 (n -4/5n 1/3 ) 2 ≤ 93τ λ 2 -1 x n λ 2 -1 λ < 1 2 x n λ 2 -1 ,
when τ ≤ 1 4 and 7 ≤ λ. We have obtained that when x ∈ I n,k (τ ),

φ n (x) ≤ x 2nk n (x)
1λ 2 < 0, as announced. Finally, note that at x = j

n,1 /λ we have g n (λx) = 0 > (τ -1)k n (x), thus I n,k (τ ) is a proper subset of U n,k . Let us now consider the case n = 0. We have

(8.3) φ 0 (x) = x k 0 (x) 1 -λ 2 + x k 0 (x) + g 0 (λx) k 0 (x) 2 -1 - 1 x 2 g 0 (λx)k 0 (x) .
When -τ k 0 (x) ≤ g 0 (λx) + k 0 (x) ≤ τ k 0 (x), thanks to Proposition A.2, we have

- 1 x 2 g 0 (λx)k 0 (x) -1 ≥ (1 -τ ) 1 (0.36) 2 -1 > 0, when τ ≤ 1
4 . Turning back to (8.3), this shows that when k 0 (x) + g 0 (λx) ≤ 0,

φ 0 (x) ≤ x k 0 (x) 1 -λ 2 .
Let us now assume 0 < k 0 (x) + g 0 (λx) < τ k 0 (x). We claim that on (0, m λ ), -φ 0 < 3/5. Therefore no I 0,k (τ ) lies in the interval (0, m λ ), since τ ≤ 1/4. Using the bounds on g 0 and k 0 given by Proposition 7.4 we find, when x ≤ m λ and λ ≥ 7, maximizing in x first and then in λ,

-g 0 (λx) k 0 (x) ≤ λ 2 x 2 2 ln 2 xe γ 1 + 1 12 λ 4 x 4 ≤ 1 2 ln λ + 2 ln 2λ √ ln λ + 1 e γ (1 + 1 12 1 (ln λ + 1) 2 ≤ 1 2 1 + e -3-2γ (1 + 1 12 
1 (ln 7 + 1) 2 < 3 5
, which is our claim. This is turn shows that when x ∈ I 0,k (τ ), and x ≤ ζ 0 , and 7 ≤ λ,

(8.4) - 1 x 2 g 0 (λx)k 0 (x) ≤ 1 m 2 λ k 2 0 (m λ ) ≤ 1 m λ ln 2 e γ -ln(m λ ) + m λ 2 < λ 2 ln(λ)
.

We therefore have obtained that for all x ∈ I 0,k (τ ) ∩ (0, ζ 0 ),

x k 0 (x) + g 0 (λx) k 0 (x) 2 -1 - 1 x 2 g 0 (λx)k 0 (x) ≤ τ x k 0 (x) (λ 2 -1),
which in turn shows that φ 0 (x) ≤ x 2k 0 (x) 1λ 2 .

We are now ready to compute an upper bound on the sum of size of the intervals I n,k (τ ) for a given n. Proposition 8.2. Suppose λ ≥ 7 and 1 4 ≥ τ . For all n ≥ 1,

(8.5) k∈K(λ,n) I n,k (τ ) ≤ 6τ n ln λ λ ,
where K(λ, n) is the set of all positive k such that j

n,k < nλ. We also have (8.6) k∈K(λ,0)

I 0,k (τ ) ≤ 7τ ln(ln λ) λ ,
where K(λ, 0) is the set of all positive k such that j Proof. When n ≥ 1. We know thanks to Lemma 8.1 that φ n is a bijection on I n,k (τ ). We write

I n,k (τ ) = [α n,k , β n,k ], that is β n,k ∈ U n,k is such that φ(β n,k ) = -1 -τ and α n,k ∈ U n,k is such that φ(β n,k ) = -1 + τ . We have (8.7) 2 τ = φ(α n,k ) -φ(β n,k ) = β n,k α n,k -φ (u)du ≥ λ 2 -1 2 β n,k α n,k u nk n (u) du.
From Proposition A.2 we know that, introducing χ n = n -4/5n 1/3 , u → u/k n (u) is increasing on (0, χ n ), and satisfies

x nk n (x) ≥      n 2 x 2 -1 -1/2 when 0 ≤ x ≤ χ n , n 2 χ 2 n -1 -1/2 when χ n ≤ x ≤ n.
Let k * be the largest indice such that α n,k < χ n . For all k ≤ k * we have

4τ λ 2 -1 ≥ β n,k α n,k n 2 x 2 -1 -1/2 dx ≥ |I n,k (τ )| n 2 α 2 n,k -1 -1/2
and when α n,k > χ n ,

4τ λ 2 -1 ≥ β n,k α n,k n 2 x 2 -1 -1/2 dx ≥ |I n,k (τ )| n 2 χ 2 n,k -1 -1/2
Observing that I n,k (τ ) ⊂ U n,k , and therefore n > j n,k /λ > α n,k > j

n,k /λ > α n,0 := n/λ we have obtained that

k * k=1 I n,k (τ ) ≤ 4τ λ 2 -1 k * k=1 n α n,k 2 -1 ≤ 4τ λ 2 -1 min k≤k * α n,k n - α n,k-1 n -1 k * k=1 n α n,k 2 -1 α n,k n - α n,k-1 n ≤ 4nτ λ 2 -1 min k≤k * (α n,k -α n,k-1 ) -1 1 λ -1 1 x 2 -1 dx. = 4τ nλ ln λ λ 2 -1 max k≤k * 1 (λα n,k -λα n,k-1 )
.

For k ≥ 1, the distance λα n,k+1λα n,k is at least j

n,k+1j n,k . We know from (4.4) that this distance decreases with k, and tends to π/2. On the other-hand, using the estimates (4.1), λα n,1λα n,0 > j (1) n,1n > 4 5 n 1/3 > 4 5 . Therefore, we have

(8.8) k * k=1 I n,k (τ ) ≤ 5τ nλ ln λ λ 2 -1 .
Using again the fact that j

n,kj

n,k-1 is at least π, there can be at most

(n -χ n )λ/π intervals U n,k in (χ n , n). Therefore k≥k * I n,k (τ ) ≤ 4λτ π(λ 2 -1) n 2 χ 2 n -1(n -χ n ) ≤ 4nλτ π(λ 2 -1)
.

Altogether, we have

k∈K(λ,n) I n,k (τ ) ≤ nτ ln λ λ λ 2 λ 2 -1 5 + 4 π ln λ ≤ 6nτ ln λ λ
which completes the proof of estimate (8.5).

When n = 0. As above, with the same notations, we have (8.9)

2 τ = φ(α 0,k ) -φ(β 0,k ) = β 0,k α 0,k -φ (u)du ≥ λ 2 -1 2 β 0,k α 0,k u k 0 (u) du.
Proposition A.2 shows that x → x/k 0 (x) is increasing until ζ 0 , and decreasing afterwards. Thus

2 τ ≥ λ 2 -1 2 |I 0,k (τ )| α 0,k k 0 (α 0,k ) .
As before, we know that for k ≥ 1, α 0,kα 0,k+1 > λ -1 (j 0,kj

(1) 0,k+1 ) > λ -1 π/2. We have

k≥2 k 0 (α 0,k ) α 0,k ≤ max k≥1 1 α 0,k -α 0,k+1 k≥2 k 0 (α 0,k ) α 0,k (α 0,k-1 -α 0,k ) ≤ 2λ π ζ0 j0,1/λ k 0 (x) x dx ≤ 2λ π ln Y 0 (j 0,1 /λ) Y 0 (ζ 0 ) ≤ 2 π λ ln (ln λ) .
Finally, using the bound (8.4) α 0,1 k 0 (α 0,1 ) ≤ λ √ ln λ and we have obtained that k∈K(λ,0)

I 0,k (τ ) ≤ 4λτ λ 2 -1 1 √ ln λ + 2 π ln (ln λ) ≤ τ 7 ln (ln λ) λ ,
which concludes our proof.

Let us now check that away from ω n,k , we can produce a bound S n similar to that of the perturbative regime. 

S n (x) = (g n (λx) -g n (x)) (1 + i tan θ n ) (g n (λx) -g n (x)) + i tan θ n (g n (λx) + k n (x))
,

we write a = g n (x) and b = k n (x), and the study of the function

u → (u -a) 2 1 + tan 2 θ n (u -a) 2 + tan 2 θ n (u + b) 2 for a > 0 and b > 0 , with u ∈ (-∞, -(1 + τ )b) ∪ (-(1 -τ )b, +∞),
shows that it has a minimum for u = a, tends to 1 for u → ±∞, increases until -(1 + τ )b, decreases on (-(1τ )b, a) and increases to 1 afterwards. Therefore, the maximum of S n is smaller than the maximum of the two values A and B given by

A = 1 + tan 2 θ n ((1 + τ ) b + a) 2 ((1 + τ ) b + a) 2 + tan 2 θ n τ 2 b 2 = 1 + tan 2 θ n 1 + τ 2 tan 2 θ n b 2 a 2 1 + (1 + τ ) b a -2 , B = 1 + tan 2 θ n ((1 -τ ) b + a) 2 ((1 -τ ) b + a) 2 + tan 2 θ n τ 2 b 2 = 1 + tan 2 θ n 1 + τ 2 tan 2 θ n b 2 a 2 1 + (1 -τ ) b a It is clear that τ 1 + (1 + τ ) b a < τ 1 + (1 -τ ) b a < 1 therefore the maximum is A. Noticing that, for b > αa b a τ 1 + (1 + τ ) b a > ατ 1 + 2α we obtain A < 1 + 2α ατ 2 1 + tan 2 θ n 1+2α ατ + tan 2 θ n < 1 + 2α ατ 2
Thanks to Proposition A.1 we know that 2 5 < b a . We can therefore conclude that

A ≤ 9 2 1 τ 2 ,
which concludes the proof.

Case n = 0. The proof is slightly different when n = 0, as k 0 /g 0 is unbounded near x = 0. Note that when x < 1 3 , (and

ζ 0 < 1/3), 3 5 
1 k 0 (x) ≤ tan θ 0 (x) ≤ 4 5 1 k 0 (x) 9 10 ≤ k 0 (x) + g 0 (x) k 0 (x) ≤ 1. Introducing u = g0(λx)+k0(x) k0 (x) 
, and v = (k 0 (x) + g 0 (x))/k 0 (x) we have

u ∈ (-∞, -τ ) ∪ (τ, ∞) and 9 10 ≤ v ≤ 1, |S 0 (x)| 2 = |g 0 (λx) -g 0 (x)| 2 1 + tan 2 θ 0 (x) |g 0 (λx) -g 0 (x)| 2 + tan 2 θ 0 (x) |g 0 (λx) + k n (x)| 2 ≤ |u -v| 2 4 5 + k 0 (x) 2 |u -v| 2 k 0 (x) 2 + 3 5 u 2 .
Relaxing u to an independent variable, we see that |u -v|

2 4 5 + k 0 (x) 2 |u -v| 2 k 0 (x) 2 + 3 5 u 2 ≤ max(A, B , 1) 
where

A = |τ -v| 2 ( 4 5 ) 2 + k 0 (x) 2 |τ -v| 2 k 0 (x) 2 + ( 3 5 ) 2 τ 2 and B = |τ + v| 2 ( 4 5 ) 2 + k 0 (x) 2 |τ + v| 2 k 0 (x) 2 + ( 3 5 ) 2 τ 2 It is clear that A < B.
Taking the maximum value for v and τ , we find

B ≤ 1 + ( 5 4 ) 2 k 0 (x) 2 5 4 k 0 (x) 2 + ( 3 5 ) 2 τ 2 ≤ 25 9 1 + 5 4 k 0 (m λ ) 2 25 12 k 0 (m λ ) 2 + τ 2 ≤ 25 9 τ 2 .
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iv. For 0 < x < n, 0 < -g n (x) ≤ g 2 n (n). On (0, y n,1 ), the function k n is positive. It decreases until κ n ∈ (n - 4 5 n 1/3 , n), defined as the unique solution of

k n (κ n ) = 1 - 1 n 2 κ 2 n .
v. For 0 < x < n, k n satisfies,

3 5 1 n 1/3 ≤ k n (x) ≤ max 1 - x n 2 , 7 6 
1 n 1/3 .
More precisely, for all x ≤ κ n ,

κ + 1 - x n 2 -g n (x) ≤ k n (x) ≤ 1 - x n 2 , with κ + > 1.91, whereas for all κ n ≤ x ≤ n, 3 5 
1 n 1/3 ≤ k n (x) ≤ 7 6 1 n 1/3 vi. Finally, (A.1) 2 5 < k n (x) g n (x) < 5 3 . 
Proof. Property (i) is well-known, see e.g. [START_REF] Thiruvenkatachar | Inequalities concerning Bessel functions and orthogonal polynomials[END_REF][START_REF] Landau | Ratios of Bessel functions and roots of αJν (x) + xJ ν (x) = 0[END_REF]. To obtain property (ii), notice that

-ng n (x) = (J n (x)) 2 -J n+1 (x) J n-1 (x) (J n (x)) 2 = 1 n + 1 + 2 n + 2 J n+1 (x) J n (x) 2 +2n ∞ p=2 J n+p (x) J n (x) 2 1 n + p -1 1 n + p + 1 .
The second identity is proved in [START_REF] Szász | Inequalities concerning ultraspherical polynomials and Bessel functions[END_REF][START_REF] Thiruvenkatachar | Inequalities concerning Bessel functions and orthogonal polynomials[END_REF]. Since for x > 0, x → J n+1 (x) /J n (x) is an increasing function as it can be readily observed from its continued fraction expansion, see [12, 10.10], we deduce that g n is concave on (0, j n,1 ). For property (iii), using the recurrence relations for Bessel functions, we notice that g n satisfies the differential equation (4.13). Since g n is decreasing, we deduce that

g n (x) ≥ 1 - x 2 n 2 . for x ≤ n. We know [16, 8.55] that n → n 1/3 g n (n) is an increasing function of n, therefore 1 √ 2 < g 1 (1) ≤ c n ≤ lim n→∞ c n < 13 14 .
Since g n is concave, we have for all x < n g n (x) > g n (n) = -g 2 n (n), and inserting this inequality in (4.13), we obtain (A.2) g 2 n (x) ≤ 1 -

x 2 n 2 + x n 5/3 c 2 n ,
as announced. This also proves the first part of property (iv). On (0, n), k n is strictly positive, as x → Y n (x) is negative and increasing until y n,1 , since from (4.2) y

n,1 > y n,1 . The asymptotic development

k n (x) = 1 - x 2 2 1 n(n -1) + O(x 4 )
shows that k n initially decreases. Note that k n satisfies

(A.3) k n (x) = n x k 2 n (x) -1 + x 2 n 2
Since k n (n) > 0, there exists κ n < n such that k n (κ n ) = 1 -κ 2 n n 2 , and k n increases on (κ n , y n,1 ). The lower bound on κ n will be proved later. We now address property (v). The Wronskian identity can be written

k n + g n = 2 πn (-J n (x) Y n (x)) ,
It is shown in [START_REF] Boyd | Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions[END_REF] that for all x ≤ n, and n > 0, 2π (-J n (x) Y n (x)) n 2x 2 ≤ 2.09.

The lower bound on k n , k n ≥ κ + 1 -x n 2g n (x) follows immediately. To derive an upper bound, we therefore need to estimate k n (n). Using the Wronskian identity, we can write

n 1/3 k n (n) = -n 1/3 g n (n) + 2 π n 1/3 J n (n) 2 - J n (n) Y n (n)
Note that n 1/3 g n (n), n 1/3 J n (n) and -J n (n) /Y n (n) are bounded increasing functions of n, see [16, 8.54,855] and [START_REF] Muldoon | Some remarks on zeros of cylinder functions[END_REF]. Therefore

4 5 ≤ lim n→∞ -n 1/3 g n (n) + 2 π n 1/3 J n (n) 2 - J 1 (1) Y 1 (1)
≤ n 1/3 k n (n), (A.4)

7 6
≥ -g 1 (1) + 2

πJ 1 (1) 2 lim n→∞ - J n (n) Y n (n) ≥ n 1/3 k n (n). (A.5)
We have obtained

k n ≤ max 1 - x n 2 , 7 6 
1 n 1/3 , as announced. We can verify by inspection that k 1 > 3/5 on (0, 1). Let us compute a lower bound for n ≥ 2. Note that we have obtained that k n (n) < 1. We compute

k n (n) -k n (κ n ) = n κn k n (x)dx = n κn n x k n (x) 2 -1 + x 2 n 2 dx, ≤ x 2 2n + n(kn(n) 2 -1) ln(x) n x1 = n 2 k n (κ n ) 2 + (1 -k n (n) 2 ) ln 1 -k n (κ n ) 2 ≤ nk n (n) 2 2 k n (κ n ) 2 .
This implies, using the bounds 7/6 > k n (n)n 1/3 > 4/5, min 0≤x≤1

(k n (x)) = k n (κ n ) ≥ 1 nk 2 n (n) -1 + 1 + 2nk 3 n (n) ≥ 1 n 1/3 min 4/5≤x≤7/6 -1 + √ 1 + 2x 3 x 2 ≥ 3 5n 1/3 .
Let us show now that κ n ≥ n - 4 5 n 1/3 , to conclude the proof of Property (iv). Differentiating the identity (A.3) we obtain, when k n ≥ 0, k (2) n (x) = -

1 x k n (x) + n x 2 x n 2 + 2k n (x)k n (x) = 2 n + k n (x)
x (2nk n (x) -1)

≥ 2 n + k n (x) x 6 5 n 2/3 -1 ≥ 2 n .
Therefore, we can write using the upper and lower bound on k n and the lower bound on k

n , 7 6 -3 5

1 n 1/3 ≥ k n (n) -k n (κ n ) = n κn k n (t)dt ≥ 2 n n κn (t -κ n )dt = 1 n (n -κ n ) 2 .
Consequently, nκ n ≤ 17 30 n 1/3 ≤ 4 5 n 1/3 , which is the announced bound. Finally, let us address property (vi.). Note that for x ≥ x 1 , k n /g n is increasing, as the quotient of an increasing function over a decreasing one, therefore the lower bound is in the interval [0, x 1 ]. Thus, the maximum is either at x = 0 or x = x 1 , and

max 0≤x≤x1 (k n /g n ) ≤ max(1, k n (n)/g n (n)) ≤ 7 √ 2 6 < 5 3 . 
Using the differential equations (A.3) and (4.13), we obtain

k n g n = n xg n 1 - x 2 n 2 -k n g n 1 + k n g n ,
An expansion around zero shows that

1 - x 2 n 2 -k n g n = 1 n 2 -1
x 2 n 2 + O(x 4 ), therefore k n /g n initially decreases. Since k n (n)/g n (n) > 0, it decreases until x 2 < x 1 such that k n (x 2 )g n (x 2 ) = 1x 2 2 /n 2 , and increases afterwards. Using the upper bound on g n , we obtain, that, at that point, Proof. From (A.3) we deduce that x → x/k n (x) is a solution of the differential equation d dx

k n (x 2 ) g n (x 2 ) = 1 -x 2 2 /n 2 g n (x 2 ) 2 ≥ min 0≤x≤x1 1 + g 2 n (n) x n 1 - x 2 n 2 -1 -1 ≥ 1 + g 2 n (n) k n (κ n ) 2
x k n (x) = nk n (x)(1nk n (x)) + n 2x 2 nk 2 n (x) Clearly, while x ≤ κ n , that is, while k n is decreasing, x → x/k n (x) is increasing. We note that nk n (x)(1nk n (x)) + n 2x 2 only has one root greater than 1/n. From the lower bound on k n > 3/5n -1/3 given by Proposition A.1 and by inspection for n = 1, 2, we verify that (x -1 k n (x)) cancels at most once on (κ n , n). We find

d dx x k n (κ n ) = 1 k n (κ n ) > 0.
Using the lower estimate on k n (n) given by (A.4) and by inspection for n = 1, 2, we find

d dx x k n (n) = 1 -nk n (n) k n (n) < 0.
Thus, there exists a unique maximum for x/k n (x) on (0, n). Noting that k n (x)/x = -(ln |Y n |) (x), we conclude that this maximum is ζ n . For any x ∈ [κ n , n], we obtain that

x nk n (x) ≥ min κ n nk n (κ n ) , 6n 1/3 7 ≥ n 2 χ 2 n -1 -1/2
, where we used the upper bound for x ≤ κ n given by Proposition A.1

k n (x) ≤ 1 - x 2 n 2
, and where χ n = n - 4 5 n 1/3 is the lower bound κ n given by the same proposition. In the case n = 1, κ 1 ≈ 0.52 > 1 2 . Altogether, we have obtained

x nk n (x) ≥      n 2 x 2 -1 -1/2 when 0 ≤ x ≤ χ n , n 2 χ 2 n -1 -1/2
when χ n ≤ x ≤ n.

For n = 0, we compute that d dx

1 x k 0 = 1 + 1 x 2 k 0 (k 0 -1)
Therefore x → 1 x k 0 (x) is decreasing until ζ 0 , given by k 0 (ζ 0 ) = 1 2 + 1 2 1 -4κ 2 0 , and increasing afterwards.

We conclude this section by a property of x → |H Mathematical Institute, 24-29 St Giles, OXFORD OX1 3LB, UK

2 for n ≥ 1

 21 as in the proof of Theorem 2.1, we obtain

Figure 4 . 1 .Figure 4 . 2 .

 4142 Figure 4.1. First quasi-resonant solution for λ = 2 and n = 30.

Figure 4 .

 4 Figure 4.2 shows a plot the radial component of full field u ε in red, corresponding to a relative index λ = 2, an effective frequency ω 30,8 , and the radial component of the incident field u i , J 30 (ω 30,8 •), in blue.This last quasi-resonance, situated close to the upper bound y 30,1 , does not show a blow-up around |x| = ε. This vindicates the choice to limit the definition of quasi-resonances to the interval (0, y n,1 ).Quasi-resonances provide lower-bounds for frequency independent scattering estimates, as the following Theorem shows.

Figure 4 .

 4 Figure 4.3 shows a plot of x → 2J 30 (2x) /J 30 (2x), in blue, and x → Y n (x) /Y n (x), in red, in the interval (j

1 ε (|ln ε| + 1 ) 7 / 12 ,

 11712 4 and Theorem 5.1 with I 0 = ∅. When m λ < 1 2 , and λ ≤ λ 0 := Theorem 5.1 shows that with

Proposition 8 . 3 .

 83 If n ≥ 1 and x ∈ λ -1 j (1) n,1 , y n,1 \ (∪ k I n,k (τ )), there holds |S n | ≤ 9 2 τ . When n = 0, if x ∈ (m λ , ζ 0 ) \ (∪ k I 0,k (τ )), we have |S 0 | ≤ 5 3 τ . Proof. Case n = 0. When x ∈ [n, y n,1 ] Proposition 7.3 shows that |S n | ≤ √ 5, which establishes the bound. The proof is along the lines of that of Lemma 7.1. Starting from the formula

Proposition A. 2 . 2 x 2 - 1 - 1 / 2 when 0 2 χ 2 n - 1 - 1 / 2 when

 222112022112 For any n = 0, let ζ n be the first positive solution of(ln |Y n |) (2) (ζ n ) = 0. On (0, ζ n ), x → x/k n (x) is increasing, and ζ n is the maximum of x → x/k n (x) on (0, n) (resp.on (0, y 0,1 )) when n ≥ 1 (resp. n = 0).When n ≥ 1, we have ζ n > κ n . Introducing χ n := n -4 5 n 1/3 for n ≥ 1, and χ 1 = 1/2, we have(A.6) x nk n (x) ≤ x ≤ χ n , n χ n ≤ x ≤ n.When n = 0, ζ 0 ≈ 0.3135, andζ 0 k 0 (ζ 0 ) ≈ 0.3524In terms of previously defined functions, it is the unique solution of k 0 (ζ 0

  ) | which is useful for broadband estimates.Lemma A.3. For any x > 0, the function x → ln |H
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Appendix A. Miscellaenous Properties of Bessel Functions

Proposition A.1 details properties of quotients of Bessel functions. This result is therefore independent from the rest of the paper. Properties ii., v. and vi. could be new. Since many authors have worked on Bessel Functions, it is quite possible that similar results were proved before, but we are not aware of it.

Proposition A.1. For all real n ≥ 1, i. The function g n is strictly decreasing on [0, ∞) \ ∪ k j n,k , and cancels at each j

where c n := n 1/3 g n (n), satisfies

.