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We are interested in the uniqueness of solutions to Maxwell’s equations
when the magnetic permeability µ and the permittivity ε are symmetric posi-

tive definite matrix-valued functions in R3. We show that a unique continua-

tion result for globally W 1,∞ coefficients in a smooth, bounded domain, allows
one to prove that the solution is unique in the case of coefficients which are

piecewise W 1,∞ with respect to a suitable countable collection of sub-domains
with C0 boundaries. Such suitable collections include any bounded finite col-

lection. The proof relies on a general argument, not specific to Maxwell’s equa-

tions. This result is then extended to the case when within these sub-domains
the permeability and permittivity are only L∞ in sets of small measure.

1. Introduction

Suppose we are given a time-harmonic incident electric field E i and magnetic field
H i, special solutions of the time-harmonic homogeneous linear Maxwell equations
of the form E i = <

(
Eie−iωt

)
and magnetic field H i = <

(
Hie−iωt

)
, where Ei ∈

H1
loc

(
R3
)3

and Hi ∈ H1
loc

(
R3
)3

are complex-valued solutions of the homogeneous
time-harmonic Maxwell equations

∇∧Ei − i ωµ0H
i = 0 in R3,

∇∧Hi + i ωε0E
i = 0 in R3,

where µ0 and ε0 are positive constants, representing respectively the magnetic
permeability and the electric permittivity of vacuum, and ω ∈ R \ {0}. The full
time-harmonic electromagnetic field (E,H) ∈ Hloc

(
curl;R3

)
, where for any domain

W we define

Hloc (curl;W ) :=
{

u ∈ L2
loc (W )

3
such that ∇∧ u ∈ L2

loc (W )
3
}
,

satisfies Maxwell’s equations

∇∧E− i ωµ0µ(x) H = 0 in R3,(1.1)

∇∧H + i ωε0ε(x) E = 0 in R3,

1
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where ε and µ are real matrix-valued functions in L∞
(
R3
)3×3

. Decomposing the
full electromagnetic field into its incident part and its scattered part,

(1.2) Es := E−Ei, and Hs := H−Hi,

we assume that the scattered field satisfies the Silver-Müller radiation condition,
uniformly in all directions, that is, if x := rθ then

(1.3) lim
r→∞

sup
θ∈S2

|Hs (rθ) ∧ rθ − rEs (rθ)| = 0,

where S2 := {x ∈ R3 such that |x| = 1} denotes the unit sphere.
This paper is about the existence of a unique solution to (1.1) satisfying (1.2)

and (1.3), under the following additional hypotheses on ε and µ. We assume that
both permittivity and permeability are real symmetric, uniformly positive definite
and bounded, that is, there exist 0 < α ≤ β < ∞ such that for all ξ ∈ R3 and
almost every x ∈ R3,

α |ξ|2 ≤ ε(x)ξ · ξ ≤ β |ξ|2 ,(1.4)

α |ξ|2 ≤ µ(x)ξ · ξ ≤ β |ξ|2 .(1.5)

We suppose that ε and µ vary only in an open bounded domain Ω, so that

(1.6) ε = µ = I3 in Ωc = R3 \ Ω,

where I3 is the identity matrix in R3×3. We assume that Ω is of the form

(1.7) Ω = int

(
∪
i∈I

Ω̄i

)
,

where the sub-domains Ωi, i ∈ I ⊂ N are disjoint and of class C0, and int denotes
the interior. The permittivity ε and the permeability µ are assumed to be piecewise
W 1,∞ with respect to the sub-domains Ωi, so that for each i ∈ I, there exist

εi, µi ∈W 1,∞ (R3
)3×3

satisfying (1.4)-(1.5) and

(1.8) ‖εi‖W 1,∞(R3)3×3 + ‖µi‖W 1,∞(R3)3×3 ≤Mi,

where Mi > 0 is a positive constant, such that

(1.9) ε(x) = εi(x) and µ(x) = µi(x), a.e. x ∈ Ωi .

Given a bounded set A ⊂ R3, we write U (A) as the (unique) unbounded component
of Āc.

Assumption 1. For any J ⊂ I, and ΩJ = int

(
∪
j∈J

Ω̄j

)
, there exists j0 ∈ J such

that ∂U (ΩJ) ∩ ∂Ωj0 admits an interior point relative to ∂U (ΩJ). In other words,
there exist j0 ∈ J and x0 ∈ ∂U (ΩJ) ∩ ∂Ωj0 such that B(x0, δ) ∩ ∂U (ΩJ) ⊂ ∂Ωj0
for some δ > 0.

Proposition 1. Assumption 1 holds if for all J ⊂ I, there exist xJ ∈ ∂U (ΩJ) and
δJ > 0 such that B(xJ , δJ) ∩ Ωj 6= ∅ for only finitely many j ∈ J . In particular,
Assumption 1 holds when I is finite.

Proof. Given J , xJ ∈ ∂U (ΩJ) and δJ as in the statement of the proposition let
BJ = B(xJ , δJ) and let J ′ be the finite subset of J such that BJ ∩ ∪

j∈J
Ωj =
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Figure 1. Left: an infinite collection of sub-domains satisfying
Assumption 1. Centre: an infinite collection of sub-domains ex-
cluded by Assumption 1. Right: this collection satisfies Assump-
tion 1.

BJ ∩ ∪
j∈J′

Ωj . We first show that

∂U (ΩJ) ∩BJ = ∪
j∈J

(∂U (ΩJ) ∩BJ) ∩ ∂Ωj .(1.10)

Indeed, let x ∈ ∂U (ΩJ) ∩ BJ . Then x 6∈ ∪
j∈J

Ωj . We claim that there exists a

sequence xk ∈ ∪
j∈J

Ωj such that xk tends to x. If not, for some η > 0 sufficiently

small, we would have B(x, η) ⊂ BJ , and B(x, η) ∩ ∪
j∈J

Ωj = B(x, η) ∩ ∪
j∈J′

Ωj = ∅.
On the other hand, there exists a sequence yk ∈ U (ΩJ) such that yk tends to
x. But B(x, η) is connected and contained in Ω̄cJ , thus B(x, η) ⊂ U (ΩJ). This
contradiction proves the claim.

Next, we note that ∂U (ΩJ) is closed, thus complete in the subspace topology
induced by R3. Its intersection with the open ballBJ is an open subspace of ∂U (ΩJ)
by definition of the subspace topology. It is therefore a Baire space (see e.g. [11]).
If a Baire Space is a countable union of closed sets, then one of the sets has an
interior point. Using the identity (1.10), we obtain that there exists j0 such that
∂U (ΩJ)∩BJ ∩∂Ωj0 admits an interior point relative to ∂U (ΩJ)∩BJ , that is, there
exist j0 ∈ J , x0 ∈ ∂U (ΩJ)∩BJ and δ > 0 such that B(x0, δ)∩∂U (ΩJ)∩BJ ⊂ ∂Ωj0 .

Since BJ is open, B(x0, δ) ∩ BJ = B(x0, δ) when δ is sufficiently small, and we
have established that Assumption 1 holds. �

An example of a collection of sub-domains excluded by Assumption 1 is a col-
lection of concentric shells concentrating on an exterior boundary, such as

(1.11) Ωi = B

(
0,

i

i+ 1

)
\ B̄

(
0,
i− 1

i

)
, i = 1, 2, 3, . . .

In such a case, ∂U (Ω) is the unit sphere, which is not the boundary of any of the
subsets. On the other hand, Assumption 1 allows the sub-domains Ωi to concentrate
at a point or near an interior boundary. In Figure 1, we represent on the left a
non-Lipschitz non-simply connected domain Ω which satisfies Assumption 1. In the
centre, the domain given by (1.11) excluded by Assumption 1 is shown. On the
right, we sketch a domain inspired by the one described by (1.11) which satisfies
Assumption 1: near the accumulating boundary, interior points can be found on
the wedge-shaped slit in the domain.
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2. Main result

Our main result is the following theorem.

Theorem 2. Assume that (1.4)–(1.9) and Assumption 1 hold. If for a given ω 6= 0,
E ∈ Hloc

(
curl;R3

)
and H ∈ Hloc

(
curl;R3

)
are solutions of (1.1)–(1.3) correspond-

ing to Ei = 0 and Hi = 0, then E = H = 0.

There is a very long history concerning this problem, under various assumptions
on the coefficients, see e.g. [1, 2, 3, 6, 7, 10, 13, 12, 14, 16] and the references
therein. The improvement provided by the result in this work is that we assume
that ε, µ are matrix-valued functions and that the sub-domains Ωi are only of class
C0. We do not assume that the sub-domains are Lipschitz as assumed for example
in [6] for the isotropic (scalar) case. The authors are not aware of the existence of a
general uniqueness result for the above problem when the coefficients are just C0,α

Hölder continuous, with α < 1. For general elliptic equations, counter-examples to
unique continuation, the main technique for proving uniqueness, are known in that
case, see [8]. We remind the reader of the definition of a domain of class C0.

Definition 3. A bounded domain Ω of R3 is of class C0 if for any point x0
on the boundary ∂Ω, there exists a ball B (x0, δ) and an orthogonal coordinate
system (x1, x2, x3) with origin at x0 such that there exists a continuous function
f : C0

(
R2;R

)
that satisfies

Ω ∩B (x0, δ) = {x ∈ B (x0, δ) : x3 > f (x1, x2)} .
We define B0 as the smallest open ball containing Ω. Note that the uniqueness

of the solution outside B0 is well known, due to the so-called Rellich’s Lemma, see
e.g. [2].

Lemma 4 (Rellich’s Lemma). If for a fixed ω, E ∈ Hloc

(
curl;R3

)
and H ∈

Hloc

(
curl;R3

)
are solutions of (1.1)-(1.3) corresponding to Ei = 0 and Hi = 0,

then E = H = 0 in B̄c0.

Our proof relies on a recent unique continuation result [13] proved for globally
W 1,∞ regular coefficients.

Theorem 5 ([13]). Let V be a connected open set in R3. Assume that ε and µ are
two real symmetric matrix valued functions in V satisfying (1.4)–(1.5), and

‖ε‖W 1,∞(V )3×3 + ‖µ‖W 1,∞(V )3×3 ≤M,

for some constant M > 0. Suppose (E,H) ∈
(
L2
loc (V )

)2
satisfy

∇∧E− i ωµ0µ(x) H = 0 in V,

∇∧H + i ωε0ε(x) E = 0 in V.

Then, there exist s > 0 independent of V , E and H, such that if for some x0 ∈ V ,
and for all N ∈ N and all δ > 0 sufficiently small,∫

B(x0,δ)

(
|E|2 + |H|2

)
dx ≤ CN exp

(
−Nδ−s

)
for some constant CN > 0, then E = H = 0 in V .

The proof of Theorem 2 consists of three steps. The first two steps are given by
the two propositions below.
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Proposition 6. Under the hypothesis of Theorem 2, suppose that A ⊂ R3 is a
bounded open set and that for almost every x ∈ U (A) either ε(x) = µ(x) = I3 or
E(x) = H(x) = 0. Then E = H = 0 in U (A).

Proof. For any v,w ∈ L2 (U (A))
2
, we have∫

U(A)

∇∧E · v dx− iωµ0

∫
U(A)

µ(x)H · v dx = 0,(2.1) ∫
U(A)

∇∧H ·w dx+ iωε0

∫
U(A)

ε(x)E ·w dx = 0,(2.2)

where the integrals (2.1) and (2.2) are well defined by Rellich’s Lemma 4. Since for
almost every x in U (A), either ε(x) = µ(x) = I3 or E = H = 0, the solutions of
the system (2.1)-(2.2) can be written also in the form∫

U(A)

∇∧E · v dx− iωµ0

∫
U(A)

H · v dx = 0,∫
U(A)

∇∧H ·w dx+ iωε0

∫
U(A)

E ·w dx = 0,

which is the weak formulation of

∇∧E− i ωµ0 H = 0 in U (A) ,

∇∧H + i ωε0 E = 0 in U (A) .

Next, since A is bounded, thanks to Rellich’s Lemma 4, E = H = 0 in U (A) ∩(
R3 \ B̄(R)

)
, for R large enough. In particular, E and H vanish in a ball contained

in U (A), which is open and connected, and the conclusion follows from Theorem 5,
applied with ε(x) = µ(x) = I3, which in this case reduces to a well known result
concerning the Helmholtz equation. �

Proposition 7. Let

J := {i ∈ I : |E(x)|2 + |H(x)|2 > 0 on a set of positive measure in Ωi}.
Then J = ∅.
Proof. Suppose for contradiction that J is nonempty. Then, by Assumption 1 there
exists x0 ∈ ∂U (ΩJ) ∩ ∂Ωj0 such that B(x0, δ) ∩ ∂U (ΩJ) ⊂ ∂Ωj0 for some j0 ∈ J
and δ > 0. To simplify notation, set j0 = 1.

Let us show that there exist a point c on ∂U (ΩJ)∩ ∂Ω1 and a radius δ̃ > 0 such
that

(2.3) ΩJ ∩B(c, δ̃) = Ω1 ∩B(c, δ̃).

Figure 2 sketches the configuration we have at hand around c.
Since Ω1 has a C0 boundary, for some (smaller) δ > 0 there exists a continuous

map f and a suitable orientation of axes such that B(x0, δ) ∩ ∂ΩJ ⊂ ∂Ω1 and

Ω1 ∩B(x0, δ) = {x ∈ B (x0, δ) : x3 > f (x1, x2)} .
This alone does not prove our claim, since B(x0, δ) could still intersect ΩJ when
x3 ≤ f(x1, x2). Since x0 ∈ ∂U (ΩJ), there exists a sequence {yj} ⊂ U (ΩJ)∩B(x0, δ)
such that yj tends to x0. Consider for a fixed and sufficiently large j the line segment
{yj + te3, t ≥ 0}, and let τ > 0 be the least value of t such that yj + te3 ∈ ∂ΩJ .
Then, yj + te3 6∈ Ω̄J , for t < τ , and yj + τe3 ∈ ∂Ω1. Hence yj + τe3 6∈ ∪

k∈J,k>1
Ωk.
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Ωj0

U (ΩJ)

c

Figure 2. A ball centred at an interior point on the boundary of U (ΩJ).

Since the sets Ωk are disjoint, the line segment does not intersect ∪
k∈J,k>1

Ωk in

B(x0, δ). The same argument applies to any line segment {z + te3, t ≥ 0} for z
sufficiently close to yj . Introducing c = yj + τe3 we have established that there

exists a ball B
(
c, δ̃
)

such that Ω1 ∩B
(
c, δ̃
)

= ΩJ ∩B
(
c, δ̃
)

, which is (2.3).

Now, thanks to Proposition 6, and noting that (by Fubini’s Theorem) each ∂Ωi
is of measure zero, E = H = 0 almost everywhere in U (ΩJ). Thus, for almost

every x ∈ B(c, δ̃), either E = H = 0 or ε(x) = ε1(x), and µ(x) = µ1(x). Consid-
ering the weak formulation of Maxwell’s equations, and arguing as in the proof of
Proposition 6, we note that E and H are weak solutions of

∇∧E− i ωµ0µ1(x) H = 0 in B(c, δ̃),

∇∧H + i ωε0ε1(x) E = 0 in B(c, δ̃),

and vanish on the connected non-empty open set B(c, δ̃) ∩ {x3 < f(x1, x2)}. Since
ε1 and µ1 satisfy (1.8), that is,

‖ε1‖W 1,∞(R3)3×3 + ‖µ1‖W 1,∞(R3)3×3 ≤M1,

Theorem 5 shows that E = H = 0 in B(c, δ̃). This in turn shows that E and H
vanish on a ball inside Ω1, and applying Theorem 5 in Ω1 we obtain E = H = 0
almost everywhere in Ω1. This contradiction concludes the proof. �

We now turn to the final step. We have obtained that E = H = 0 almost
everywhere in Ω, and therefore either E = H = 0 or ε(x) = µ(x) = I3 almost
everywhere in R3. Arguing as above, we deduce that (E,H) is a weak solution of
(1.1) with ε(x) = µ(x) = I3 everywhere and the conclusion of Theorem 2 follows
from Rellich’s Lemma.

3. The case of a medium with defects

We extend our result to the case when defects of small measure are allowed in the
medium. One application is to liquid crystals (see [15] for more details). Namely,
we assume that the permittivity and permeability are of the form

εD = (1− 1D) ε+ 1D ε̃,(3.1)

µD = (1− 1D)µ+ 1Dµ̃,

where ε and µ satisfy (1.4)-(1.9), 1D is the indicator function of a measurable
bounded set D, such that

(3.2) D ⊂ ∪
i∈I

Ωi, D ∩ Ωi ⊂ Ωi and Ωi \D ∩ Ωi is connected for each i ∈ I,
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and ε̃ and µ̃ are real symmetric positive definite matrices in L∞
(
R3
)3×3

satisfying
(1.4)-(1.5).

Theorem 8. Suppose that the electric and magnetic fields ED ∈ Hloc

(
curl;R3

)
and HD ∈ Hloc

(
curl;R3

)
are solutions of

∇∧ED − i ωµ0µD(x) HD = 0 in R3,(3.3)

∇∧HD + iωε0εD(x) ED = 0 in R3,

together with the Silver-Müller radiation condition (1.3), and that εD and µD are
given by (3.1), with D satisfying (3.2). Suppose Assumption 1 holds. Then, there
exists a constant d0 > 0 depending only on the measure |B0| of B0, |ω| and the
lower and upper bounds α and β given in (1.4)-(1.5) such that if the measure of D
satisfies |D| < d0, then ED = HD = 0 almost everywhere.

To prove Theorem 8, we use the following variant of Theorem 2.

Proposition 9. Under the same assumptions as Theorem 2, and assuming that
(3.2) holds,

supp HD ∪ supp ED ⊂ D̄.
Proof. The proof follows from that of Theorem 2, since by assumption for each
i ∈ I, D ∩ Ωi ⊂ Ωi, and the boundary of Ω \ Ωi is unaltered by the defects. �

Proof of Theorem 8. Since (3.3) admits a weak formulation, arguing as before we
see using Proposition 9 that ED ∈ H (curl;B0) and HD ∈ H (curl;B0) have com-
pact support in B0 and are also solutions of

∇∧ED − iωµ0µ̂HD = 0 in B0,

∇∧HD + iωε0ε̂ED = 0 in B0,

where ε̂ = I3 + 1D (ε̃− I3) , and µ̂ = I3 + 1D (µ̃− I3). Note that iωµ0µ̂HD has
compact support and is divergence free. Thus the Helmholtz decomposition (see

e.g. [4, 5, 9]) of iωµ0µ̂HD shows there exists a unique AH ∈ H1 (B0)
3

such that
AH ·ν = 0, on ∂B0, div (AH) = 0 and such that iωµ0µ̂HD = ∇∧AH . Furthermore,
AH satisfies

‖∇AH‖L2(B0)
3×3 ≤ C

(
‖∇ ∧AH‖L2(B0)

3 + ‖AH‖L2(B0)
3

)
and ‖AH‖L2(B0)

3 ≤ C|B0|1/3 ‖∇ ∧AH‖L2(B0)
3 ,

where C is a universal constant. Altogether this yields

(3.4) ‖∇AH‖L2(B0)
3×3 ≤ Cβµ0|ω| (|B0|+ 1)

1/3 ‖HD‖L2(B0)
3 .

Since ED − AH is curl free, we deduce that there exists p ∈ H1 (B0) such that
ED = AH +∇p, and p is uniquely defined by setting

∫
B0
p dx = 0. Noticing that

ε̂ED is divergence free, and ε̂− I3 is compactly supported in B0 we have that p is
the solution of

div (ε̂∇p) = −div (ε̂AH) in B0,

∇p · n = 0 on ∂B0,∫
B0

p dx = 0.
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Since AH is divergence free, the right-hand side becomes

−div (ε̂AH) = −div (1D (ε̃− I3) AH) .

To proceed, we compute using the Cauchy-Schwarz inequality the following bound

α ‖∇p‖2L2(B0)3
≤
∫
B0

ε̂∇p · ∇p dx = −
∫
B0

1D (ε̃− I3) AH · ∇p dx

≤ (β + 1) ‖AH‖L2(D)3 ‖∇p‖L2(B0)3
,

and we have obtained that

‖∇p‖L2(B0)3
≤ β + 1

α
‖AH‖L2(D)3 .

Next note using Proposition 9 that

‖ED‖L2(B0)
3 = ‖ED‖L2(D)3 ≤ ‖∇p‖L2(B0)

3 + ‖AH‖L2(D)3 ≤
2β + 1

α
‖AH‖L2(D)3 .

The Sobolev-Gagliardo-Nirenberg inequality in B0 shows that

‖AH‖L6(B0)
3 ≤ C (|B0|+ 1)

1/3 ‖AH‖H1(B0)
3 ,

where C is a universal constant. Therefore, using Hölder’s inequality, together with
the Poincaré-Friedrichs estimate (3.4), we have

‖AH‖L2(D)3 ≤ |D|
1
3 ‖AH‖L6(B0)

3 ≤ Cβ (|B0|+ 1)
2/3

µ0|ω| |D|
1
3 ‖HD‖L2(B0)

3 .

Altogether we have obtained

(3.5) ‖ED‖L2(B0)
3 ≤ Cβ(β + 1)

α
(|B0|+ 1)

2/3
µ0|ω| |D|

1
3 ‖HD‖L2(B0)

3 .

Repeating the same argument, but starting with HD, we obtain also

(3.6) ‖HD‖L2(B0)
3 ≤ Cβ(β + 1)

α
(|B0|+ 1)

2/3
ε0|ω| |D|

1
3 ‖ED‖L2(B0)

3 .

The inequalities (3.5) and (3.6) imply that HD = ED = 0 when

(3.7) |D| < d0 := C
α3

β3(β + 1)3(|B0|+ 1)2
(√
ε0µ0|ω|

)3 ,
where C is a universal constant. �

Remark 10. The dependence of the threshold constant d0 given by (3.7) on |ω| and
|B0| shows that for a permeability µ and a permittivity ε satisfying (1.4), (1.5)
and (1.6) only, uniqueness for Maxwell’s equations holds provided, if ω is fixed, the
domain Ω is of small measure and bounded diameter, or, for a given Ω, when the
absolute value of the frequency |ω| is sufficiently small. In such cases, the whole
domain Ω can be taken as a defect D (and a fictitious ball containing D plays the
role of Ω). We do not claim that the dependence of d0 in terms of |ω| or |B0| in
(3.7) is optimal. In contrast, Theorem 2 requires additional regularity assumptions
on µ and ε, but does not depend on the frequency or the size of the domain.
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divergence form with Hölder continuous coefficients. Arch. Rational Mech. Anal., 54:105–117,

1974.

[9] Peter Monk. Finite element methods for Maxwell’s equations. Numerical Mathematics and
Scientific Computation. Oxford University Press, New York, 2003.

[10] C. Müller. Foundations of the mathematical theory of electromagnetic waves. Revised and

enlarged translation from the German. Die Grundlehren der mathematischen Wissenschaften,
Band 155. Springer-Verlag, New York, 1969.

[11] J. R. Munkres. Topology: a first course. Prentice-Hall Inc., Englewood Cliffs, N.J., 1975.
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