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ATTAINABILITY BY SIMPLY CONNECTED DOMAINS OF
OPTIMAL BOUNDS FOR THE POLARIZATION TENSOR

HABIB AMMARI 1, YVES CAPDEBOSCQ 2, HYEONBAE KANG 3, EUNJOO KIM 1,
AND MIKYOUNG LIM 1

Abstract. The notion of polarization tensor is employed for the derivation
of the leading-order boundary perturbations in the steady-state voltage poten-
tials that are due to the presence of conductivity inclusions of small diame-
ter. Recently, Capdeboscq and Vogelius obtained optimal bounds of Hashin-
Shtrikman type for the trace of the polarization tensor, showing that every pair
satisfying these optimal bounds arises as the eigenvalues of a polarization ten-
sor associated with a coated ellipse. In this paper, we give numerical evidence
of the fact that the set of possible polarization tensor eigenvalue pairs can also
be obtained using simply connected domains. Our numerical computations
are based on a boundary integral method.

1. Introduction

This paper is concerned with the notion of polarization tensor (PT) associated
with a bounded Lipschitz domain and an isotropic constant conductivity. The no-
tion of PT appeared in problems of potential theory related to certain questions
arising in hydrodynamics, in electrostatics, and in low-frequency scattering; see
[22, 21, 14]. The PT is a key mathematical concept in efficiently imaging small
conductivity inclusions from boundary measurements and also in calculating ef-
fective electrical properties of composite materials consisting of inclusions of one
material of known shape embedded homogeneously into a continuous matrix of
another having electrical properties different from its own. It is now known that
the leading-order term in the boundary perturbations due to the presence of an
inclusion inside a conductor as well as in the asymptotic expansion of the effec-
tive conductivity of a dilute composite material in terms of the volume fraction
of the inclusions can be expressed by means of the PT of the inclusions shape;
see [13, 8, 11, 1, 4, 6, 15, 20, 16]. The asymptotic expansion of the effective con-
ductivity is motivated by the practically important inverse problem of determining
the volume fraction of a suspension of complicated shaped particles from boundary
measurements of voltage potentials. Therefore, in both applications, it is impor-
tant from an imaging point of view to precisely characterize the class of PTs and
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extract from the (detected) PT some important information, such as the size and
the orientation of the inclusion. Indeed, it is important to obtain bounds for the
matrix-elements of the PT since a better bound for the PT yields a better estimate
for the size of the inclusion; see [11, 1].

Recently, based on variational techniques originally described in [17], Capde-
boscq and Vogelius [11] obtained geometry independent optimal bounds of Hashin-
Shtrikman (HS) type for the trace of the PT. These bounds had already been
derived, by an alternative approach, by Lipton [19]. Throughout this paper, these
bounds are called the HS bounds. To mathematically state the main estimates pro-
vided in [11], let M denote the PT associated with the bounded domain D ⊂ Rd

whose volume |D| = 1 and the constant conductivity 0 < k 6= 1 < +∞. Then, for
d = 2, 3, these bounds are as follows:

(1.1) Trace(M) ≤ (k − 1)(d− 1 +
1
k

),

and

(1.2) Trace(M−1) ≤ d− 1 + k

k − 1
.

In particular, in the two-dimensional case, if λ1 and λ2 are two eigenvalues of M ,
then

(1.3) λ1 + λ2 ≤ (k − 1)(k + 1)
k

,

and

(1.4)
1
λ1

+
1
λ2

≤ k + 1
k − 1

.

Figure 1 shows these bounds graphically, where the region A is the upper part of
the HS bounds, namely the set of all (λ1, λ2) satisfying

λ1 + λ2 <
(k − 1)(k + 1)

k
,

1
λ1

+
1
λ2

≤ k + 1
k − 1

, λ1 ≤ λ2,

and the region B is the set of all (λ1, λ2) satisfying

λ1 + λ2 <
(k − 1)(k + 1)

k
,

1
λ1

+
1
λ2

≤ k + 1
k − 1

, λ1 ≥ λ2.

The question we deal with in this paper is whether each point inside the HS
bounds is a pair of eigenvalues of a PT associated with a domain of unit area in
R2. This question was positively answered by Capdeboscq and Vogelius in [12].
These authors showed that each point inside the HS bounds is attained as a PT
associated with a coated ellipse, or a washer of elliptic shape. In fact, every point
on the lower bound 1/λ1 + 1/λ2 = (k + 1)/(k − 1) corresponds to an ellipse, and
as ellipses get thinner, corresponding points on the lower bound move to the upper
or lower corner. If we start from an ellipse corresponding to a point on the lower
bound, and make confocal washers of elliptic shape, then corresponding points move
toward the upper bound following a certain curve as the washers get thinner and
larger. These curves make foliations and cover all regions inside the bounds except
the upper bound.

Our goal in this paper is to give numerical evidence of the fact that this optimal
set can also be obtained using simply connected domains. Our approach is to com-
pute numerically the polarization tensors corresponding to a radial interpolation
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Figure 1. The optimal bounds for the polarization tensor in R2.

between ellipses of unit area and crosses with right angles, equal legs, and smooth
corners. It turns out that if we start from the unit disk and vary the domain to
make a thin and long cross as shown in Figure 2, the corresponding eigenvalues
move from the intersection point of the lower hyperbola and the line λ1 = λ2 to-
ward the intersection point of the upper bound and the line λ1 = λ2 following the
line λ1 = λ2. Note that the intersection point of the lower hyperbola and the line
λ1 = λ2 is the pair of eigenvalues of the PT associated with the unit disk. We
also note that the cross-shaped domain in Figure 2 is invariant under rotation by
π/2, and hence the corresponding PT is of the form λI for some λ where I is the
2× 2 identity matrix. Thus, by interpolating a cross-shape domain and an ellipse,
we can obtain foliation of the bounds (1.3) and (1.4). This is the basic idea of our
work. Based on this idea, we will show, by numerical computations, that each point
inside the HS bounds is attained by cross-shaped domains whose sides are different
(see section 3 for precise parameterizations of domains). We will also present a
method to find a domain whose PT has a given pair of eigenvalues. We emphasize
that the result of this paper is numerical and analytic computations of the PTs
associated with the domains we construct in this work, for arbitrary aspect ratios,
seem unlikely. However, we will show that it is possible to compute the eigenvalues
of mixtures of ellipses and cross-shape domains in the high aspect ratio limit.

. . . . .  

Figure 2. The variation of cross-domains starting from the unit disk.

The paper is organized as follows. In section 2, we review the definition of the
PT and its representation in terms of boundary integrals. This boundary integral
representation is used for our numerical computations throughout this paper. In
sections 3 and 4, we parameterize the domains we consider using two parameters,
one being the ellipticity of the ellipses (or the length over width ratio of the crosses’
legs) and the second being the proportion of ellipses and crosses, to show numerical
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evidence of the fact that the corresponding PTs make foliation of the HS bounds.
In section 5 we first provide the asymptotic behavior of the PT associated with
crosses as crosses get thinner and longer. We then show that this results validates
the numerical results presented in section 4 for thin an long inclusions - which are
the most difficult to accurately simulate numerically.

In section 6, we present a method to identify a parameterized domain whose PT
has a given pair of eigenvalues. We derive an approximate formula to extrapolate
from the computed eigenvalue pairs data the shape of the domain. We use a
combination of least square fitting with Lagrange interpolation. The robustness
of this extrapolation, compared to the direct simulation, is accurately tested.

In concluding this introduction, we briefly mention a conjecture of Pólya-Szegö.
Observe that among the points in HS-bounds, the intersection point of the lower
bound and the line λ1 = λ2, (2(k − 1)/(k + 1), 2(k − 1)/(k + 1), has the minimal
trace, and this is the eigenvalue of the PT associated with the disk of unit area.
Pólya and Szegö [21] conjectured that the disk (or the sphere for three dimensions)
is a unique domain with minimal trace. This conjecture has not yet been proved.

2. Preliminaries

Let us recall the definition of PT. Let D be a bounded Lipschitz domain in
R2. The conductivity of R2 \D and D are assumed to be 1 and 0 < k 6= 1 < +∞,
respectively. LetW 1,2 be the collection of all functions ψ such that

∫
R2 |∇ψ|2 < +∞

and ψ(x) = O(|x|−1). The polarization tensor M = (Mij)i,j=1,2 associated with
the domain D is defined to be the 2× 2 matrix given by

(2.1) Mij = (k − 1)
[
δij |D|+

∫

∂D

xj
∂ψi

∂ν

∣∣∣
−
ds

]
, i, j = 1, 2,

where ψi, i = 1, 2, is the unique solution in W 1,2 to the following transmission
problem:

(2.2) ∆ψi = (1− k)∇ · (χ(D) (∇ψi + ei)) ,

or equivalently,




∆ψi = 0 in (R2 \D) ∪D,
ψi|+ − ψi|− = 0 on ∂D,

∂ψi

∂ν

∣∣∣
+
− k

∂ψi

∂ν

∣∣∣
−

= (k − 1)νi on ∂D,

ψi(x) = O(|x|−1) as |x| → ∞.

Here, χ(D) is the characteristic function of D, ei is the standard basis of R2, the
subscripts + and − denote the limits from outside and inside D, respectively, and
ν = (ν1, ν2) is the unit outward normal to ∂D. Then one can show (see [12]) that
for any ξ ∈ R2

(2.3) Mξ · ξ =
∫

R2
γD

∣∣∣∣∇w +
k − 1
k

χ(D)ξ
∣∣∣∣
2

+
k − 1
k

|ξ|2 |D|,

where w is the solution to

∆w = (1− k)∇ · (χ(D) (∇w + ξ)) .
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Here and throughout this paper γD := 1 + (k − 1)χ(D). Moreover, the solution w
is the minimizer of the functional∫

R2
γD

∣∣∣∣∇φ+
k − 1
k

χ(D)ξ
∣∣∣∣
2

+
k − 1
k

|ξ|2 |D|

over φ ∈W 1,2. It then follows that

(2.4)
∫

Rn

γD

∣∣∣∣∇w + χ(D)
k − 1
k

ξ

∣∣∣∣
2

= −
∫

R2
γD |∇w|2 +

(k − 1)2

k
|ξ||D|.

See [12] for details.
The definition (2.1) of PT is proved to be equivalent to the following represen-

tation using layer potential techniques [2, 1]. For φ ∈ L2(∂D), let K∗Dφ be defined
by

K∗Dφ(x) =
1
2π

p.v.
∫

∂D

〈x− y, νx〉
|x− y|2 φ(y)dσ(y),

where p.v. stands for the Cauchy principal value. Then M can be represented as
follows:

(2.5) Mij =
∫

∂D

yj(λI −K∗D)−1(νi)(y)dσ(y), λ :=
k + 1

2(k − 1)
.

This boundary integral representation of PT is particularly useful for computational
purpose and we will use this representation for all the computations provided in
this paper.

3. Parameterizations of domains and attainability

In this section, we show numerically that every point inside the bounds (1.3) and
(1.4) is a pair of eigenvalues of a PT associated with a simply connected domain of
unit area. The domains varies from ellipses to crosses as shown in the introduction.
The crosses to be considered in this section will be slightly different from those
considered in the previous section in order to avoid the corners.

Let us briefly explain how we numerically compute the PT M . The domain D
to be considered is symmetric with respect to x and y axes, and centered at the
origin (0, 0). In order to compute M using its definition given in (2.5), we compute
(λI−K∗D)−1(νi)(y) in the following way. We first choose 2m points x1, x2, . . . , x2m

on ∂D, and find φi, i = 1, 2, satisfying

(λI −K∗D)φi(xk) = νi(xk), k = 1, 2, · · · , 2m.
This equation is solved by making use of the collocation method and trapezoid rule
(see, for instance, [18]). Because of the symmetry of D, the discretized operator

(λI −K∗D) is a matrix of the form
( A B
B A

)
where A and B are m×m matrices,

and the vector νi = νi(xk) for k = 1, . . . , 2m, takes the form
(

ai

−ai

)
. Therefore,

the solution φi = (φi(xk))2m
k=1 should be of the form

(
bi
−bi

)
, where the vector

bi ∈ Rm is the solution of the algebraic equation

(3.1) (A− B)bi = ai, i = 1, 2.

In order to solve (3.1), we use the decomposition P (A−B) = LU where the matrix
L, U and P are a lower triangular, an upper triangular, and a permutation matrix,
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respectively. Once (3.1) is solved, we can in a standard way use (2.5) to finally
calculate M .

As it will be shown in the following, the domain D can be a thin long cross. As
the cross gets thinner and longer, we need more points on ∂D, and hence the matrix
A − B becomes larger, causing more difficulties for solving (3.1). But, thanks to
the symmetry of D, A − B is a sparse matrix and then we can decompose it into
several symmetric matrices of small sizes.

Note that, because of an obvious symmetry reason, it suffices to consider the
region λ2 ≥ λ1. In fact, we recall that if two domains D and D′ are related by
D′ = R(D) where R is a unitary transformation, then their corresponding PTs, M ′

and M , satisfy the relation:

(3.2) M ′ = RMRT .

For t ≥ 1, let E(t) be the ellipse of the form

x2

a2
+
y2

b2
= 1, a ≤ b,

where t := b/a and the area |E(t)| = 1. The cross-shaped domain D(t), t ≥ 2, is
defined by

D(t) :=
{

(x, y), (x,−y), (−x, y), (−x,−y)|(x, y) ∈ D
}
,

where |D(t)| = 1, and for x ≥ 0 and y ≥ 0, t := r1/r2, and the set D is given by

D =





(r1, y) for 0 ≤ y ≤ r2
2 ,

(r1 − r2
2

+
r2
2

x√
x2 + y2

,
r2
2

+
r2
2

y√
x2 + y2

) for 0 ≤ tan−1 y
x ≤ π

2 ,

(x, r2) for 3r2
2 ≤ x ≤ r1 − r2

2 ,

(
3r2
2

+
r2
2

x√
x2 + y2

,
3r2
2

+
r2
2

y√
x2 + y2

) for π ≤ tan−1 y
x ≤ 3π

2 ,

(r2, y) for 3r2
2 ≤ y ≤ r1 − r2

2 ,

(
r2
2

+
r2
2

x√
x2 + y2

, r1 − r2
2

+
r2
2

y√
x2 + y2

) for 0 ≤ tan−1 y
x ≤ π

2 ,

(x, r1) for 0 ≤ x ≤ r2
2 .

The domain D(t) is a cross whose corners are polished to be arcs. We make the
corners smooth to make the computations easier. Figure 3 shows the shape of
D(t = 3). The classes of domains E(t) and D(t) are the basic building blocks for
representing the optimal shapes constructed in this paper.

It is known that the eigenvalue pair of the PT of the ellipse E(t) lies on the lower
bound (hyperbola) of the region A. In fact, according to [8], the PT for the ellipse
E(t) is given by

(3.3) M = |E|
(

(k−1)(a+b)
a+kb 0

0 (k−1)(a+b)
ka+b

)
.

Thus the eigenvalue pair of the PT for E(t) is(
(k − 1)(1 + t)

1 + kt
,
(k − 1)(1 + t)

k + t

)
.
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Figure 3. The graph of D(t) for t = r1/r2 = 3.
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Figure 4. The curve of PT associated with U(s, 2) divides A into
the upper part A1 and the lower part A2.

On the other hand, since the domain D(t) is invariant under the rotation by π/2,
by the relation (3.2) the eigenvalue pair of its PT lies on the line λ1 = λ2.

Let
U(s, 2) = (1− s)D(2) + sE(2), 0 ≤ s ≤ 1.

As shown in Figure 4, the eigenvalue pair of the PT associated with the domain
U(s, 2) divides the region A into two parts A1 and A2. Therefore, we will use
different parameterizations of domains to attain points in A1 and A2. This is solely
for the convenience of the computations.

Attainability of the region A1. Let

U(s, t) = (1− s)D(t) + sE(t), 0 ≤ s ≤ 1, 2 ≤ t.

By this notation, we do not mean the convex combination of the two shapes. Notice
for every t, that D(t) and E(t) are both star-shaped domains around the origin,
i.e., there exist two functions dt ∈ C1([0, 2π]) and et ∈ C∞([0, 2π]) such that
∂D(t) = {(ϕ, dt(ϕ)), ϕ ∈ [0, 2π]} and ∂E(t) = {(ϕ, et(ϕ)), ϕ ∈ [0, 2π]}. The precise
definition of U(s, t) for a given s ∈ [0, 1] is the bounded domain limited by the
C1 curve ∂U(s, t) = {(ϕ, (1− s)dt(ϕ) + set(ϕ)), ϕ ∈ [0, 2π]}. Note that |U(s, t)| =
1
2

∫ 2π

0
((1− s)dt(ϕ) + set(ϕ))2 dϕ is not a priori equal to one. We therefore rescale

the polarization tensor by a factor 1/|U(s, t)|.
Our goal in this section is to show that the points inside A1 are attained by

the domain U(s, t). Note that U(1, t) = E(t) is an ellipse and U(0, t) = D(t) is



8 H.A., Y.C, H.K, E.K, M.L.

a cross. As t gets larger, the ellipse U(1, t) becomes thinner and the cross U(0, t)
becomes thinner and longer. For a fixed t, U(s, t) changes its shape from a cross
to an ellipse as s varies from 0 to 1. The left-hand side of Figure 5 shows the
variation of the domain U(s, t). Numerical computations show that as t→∞, the
eigenvalue pair of PT associated with U(0, t) moves toward the point (λ1, λ2) =
((k − 1)(k + 1)/(2k), (k − 1)(k + 1)/(2k)) following the line λ1 = λ2 while that of
U(1, t) moves toward the point ((k − 1)/k, k − 1) following the hyperbola. Both of
these facts will be rigorously established in section 5. For each fixed t, the eigenvalue
pair for U(s, t), 0 ≤ s ≤ 1, makes a curve in the region A1, and these curves make
foliation of the region A1 as t varies. Figure 5 shows variations of U(s, t) and the
result of numerical computations.

t=10 

t=8 

t=6 

t=4 

t=2 
s=1 s=0.8 s=0.6 s=0.4 s=0.2 s=0 

(1) 

(2) 

(3) (4) (1) 

(2) 

(3)
   

(4) 

Figure 5. The variation of U(s, t) and the corresponding eigen-
value pairs. As t → ∞, the cross and ellipse become thinner
and longer, and corresponding eigenvalues move toward the upper
bound. As s→ 1, the cross becomes an ellipse and corresponding
eigenvalues move toward the lower hyperbola.

Attainability of the region A2. Let

L(s, t) := (1− s)E(t) + sD(2), 0 ≤ s ≤ 1 and 1 ≤ t < 2.

As above, this notation does not mean the convex combination of E(t) andD(2) but
the bounded domain limited by the curve {(ϕ, (1− s)et(ϕ) + sd2(ϕ)), ϕ ∈ [0, 2π]}.
Note that D(2) is fixed. For each fixed t, E(t) corresponds to a point on the
lower hyperbola. So, L(s, t) interpolates the point on the hyperbola and the fixed
point on the line λ1 = λ2 corresponding to D(2). Numerical computations give the
evidence of the fact that the points in A2 arise as the eigenvalue pairs of the PT
corresponding to the domain L(s, t). Figure 6 shows the variation of L(s, t) and
the corresponding eigenvalues of its PT.

Figure 7 shows attainability of both the regions A1 and A2.

4. An approximate formula for the foliation

In the previous section, we parameterized domains to show that as the parameter
s varies from 0 to 1 for a fixed t, the eigenvalue pairs make a curve. Then, by varying
t these curves, a foliation of the region, say A1, can be obtained.
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Figure 6. The variations of L(s, t) and the corresponding eigen-
value pairs of its PT.

0.8 1 1.2 1.4 1.6 1.8 2

0.8

1

1.2

1.4

1.6

1.8

2

0.96 0.98 1 1.02

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

(a) (b)

Figure 7. The left figure shows the eigenvalue pairs of the PTs
associated with U(s, t) and L(s, t). The blue points are eigenvalue
pairs corresponding to U(s, t) and the red ones to L(s, t). The
right figure enlarges A2.
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In this section, we derive an approximate formula for this foliation. Since the
formula for the region A2 can be obtained in almost the same way, we omit its
derivation.

Choose finite sets of parameters, S = {s0 = 0, s1, . . . , sm = 1} and T =
{t0 = 2, t1, . . . , tn}. Then numbers m,n are at our disposal. We may take large
ones if we need very accurate approximations. We then compute the eigenvalues
(λ1(si, tj), λ2(si, tj)) of the PT associated with the domain U(si, tj) for i = 0, . . . ,m
and j = 0, . . . , n. Our objective is to find a formula to relate λ1(si, tj) with
λ2(si, tj).

Let us introduce a transformation which makes the computations easier. Let V
be given by

V (x, y) := Rπ
4

(
x− (k − 1)(k + 1)

2k
, y − (k − 1)(k + 1)

2k

)
,

where Rθ is the rotation by θ. Then define

(ρ1(s, t), ρ2(s, t)) := V (λ1(s, t), λ2(s, t)).

We seek to find a function P (x, t) of the form

P (x, t) =
m∑

l=0

al(t)xl,

such that

ρ2(si, tj) = P (ρ1(si, tj), tj) =
m∑

l=0

al(tj)ρ1(si, tj)l.

We can obtain the desired formula by completing the following steps.

An approximate formula for the foliation

S1. For each si ∈ S (i 6= m) and l = 1, 2, we look for a function P l
i on (1, 3/2]

satisfying

P l
i

(
1 + tj
tj

)
= ρk(si, tj), tj ∈ T,

or minimizing
∑

tj∈T

∣∣∣∣P l
i (

1 + tj
tj

)− ρk(si, tj)
∣∣∣∣ .

We obtain such a polynomial P l
i using the least square curve fitting.

If i = m or si = 1, then U(sm, t) is an ellipse, and the corresponding
eigenvalues are given explicitly by (3.3). We use these explicit formulas for
our P l

m, l = 1, 2.
S2. We seek a function P (x, t), which is the unique m-th degree polynomial in

x satisfying

P (ρ1(si, tj), tj) = ρ2(si, tj), si ∈ S and tj ∈ T.
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t�s 0 0.2 0.4 0.8 1

2 (1.0111,1.0111) (0.9736,1.0463) (0.9376,1.0847) (0.8778,1.1640) (0.8571,1.2000)
3 (1.0443,1.0443) (0.9812,1.1021) (0.9194,1.1656) (0.8227,1.2886) (0.8000,1.3333)
4 (1.0737,1.0737) (0.9945,1.1480) (0.9160,1.2292) (0.7938,1.3803) (0.7692,1.4286)
5 (1.0981,1.0981) (1.0074,1.1852) (0.9171,1.2798) (0.7767,1.4498) (0.7500,1.5000)
6 (1.1182,1.1182) (1.0187,1.2158) (0.9195,1.3208) (0.7656,1.5042) (0.7368,1.5556)
7 (1.1351,1.1351) (1.0285,1.2413) (0.9220,1.3548) (0.7578,1.5482) (0.7273,1.6000)
8 (1.1491,1.1491) (1.0366,1.2627) (0.9243,1.3833) (0.7520,1.5844) (0.7200,1.6364)
9 (1.1622,1.1622) (1.0443,1.2815) (0.9268,1.4078) (0.7475,1.6147) (0.7143,1.6667)
10 (1.1717,1.1717) (1.0497,1.2970) (0.9282,1.4286) (0.7438,1.6407) (0.7097,1.6923)
11 (1.1811,1.1811) (1.0552,1.3111) (0.9299,1.4470) (0.7410,1.6629) (0.7059,1.7143)
12 (1.1881,1.1881) (1.0591,1.3229) (0.9308,1.4629) (0.7382,1.6824) (0.7027,1.7333)
13 (1.1964,1.1964) (1.0640,1.3344) (0.9325,1.4773) (0.7361,1.6995) (0.7000,1.7500)
14 (1.2025,1.2025) (1.0675,1.3441) (0.9335,1.4901) (0.7342,1.7147) (0.6977,1.7647)
15 (1.2077,1.2077) (1.0703,1.3527) (0.9341,1.5013) (0.7325,1.7281) (0.6957,1.7778)
16 (1.2134,1.2134) (1.0736,1.3609) (0.9351,1.5117) (0.7309,1.7403) (0.6939,1.7895)
17 (1.2205,1.2205) (1.0779,1.3690) (0.9368,1.5213) (0.7299,1.7511) (0.6923,1.8000)
18 (1.2272,1.2272) (1.0819,1.3764) (0.9384,1.5301) (0.7282,1.7613) (0.6909,1.8095)

Table 1. The eigenvalue pairs (λU
1 (s, t), λU

2 (s, t)) associated with U(s, t).

Such a polynomial is given by

P (x, t) =
m∑

i=0

ai(t)xi

=
m∑

i=0

∏
l6=i

l=0,...,m

(
ρ2(si, t)

x− ρ1(sl, t)
ρ1(si, t)− ρ1(sl, t)

)

=
m∑

i=0

∏
l6=i

l=0,...,m

(
P 2

i

(
1 + t

t

)
x− P 1

l

(
1+t

t

)

P 1
i

(
1+t

t

)− P 1
l

(
1+t

t

)
)
,

where P 1
i , P

2
i , i = 0, . . . ,m, are the polynomials obtained in step S1.

Notice that for the sake of a simpler parameterization we have used two different
ways of interpolation for the lower and upper parts.

Figure 8 shows results of numerical tests using Matlab program. For these com-
putations we assume the conductivity k = 3. The boundary integral is discretized
at 16, 000 boundary points. This large number of points will be used throughout
the paper. After doing experiments on the accuracy of the method, we have chosen
this number to make the numerical computations precise, since as the cross gets
thinner, the domain variations affect very little the PT. The dots in the left figure
of Figure 8 are the computed eigenvalue pairs of the PT associated with U(s, t) for
s = 0, 0.2, · · · , 1 and t = 2, 3, · · · , 18. The solid-curves are graphs of P (x, t) fitting
dots, which are computed following the procedure described in steps S1 and S2.
We use S := {0, 0.4, 1} and T := {2, 3, · · · , 18} for the computation of P (x, t). The
right hand side figure is for L(s, t), s = 1, 1.1, . . . , 1.9, t = 2, 3, · · · , 18. Numerical
values for the eigenvalues are recorded in Tables 1 and 2. Figure 9 shows whole
foliation by P (x, t) of the HS bounds.
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Figure 8. Numerical results for U and L. The dots are the com-
puted eigenvalue pairs of the PT of the domains and solid curves
are curves fitting dots.

t�s 0 0.2 0.4 0.8 1

1 (1.0111,1.0111) (1.0078,1.0078) (1.0048,1.0048) (1.0006,1.0006) (1.0000,1.0000)
1.1 (1.0111,1.0111) (1.0027,1.0130) (0.9946,1.0152) (0.9812,1.0208) (0.9767,1.0244)
1.2 (1.0111,1.0111), (0.9981,1.0178) (0.9856,1.0248) (0.9642,1.0399) (0.9565,1.0476)
1.3 (1.0111,1.0111) (0.9940,1.0222) (0.9775,1.0339) (0.9491,1.0581) (0.9388,1.0698)
1.4 (1.0111,1.0111) (0.9903,1.0264) (0.9702,1.0424) (0.9357,1.0753) (0.9231,1.0909)
1.5 (1.0111,1.0111) (0.9869,1.0302) (0.9636,1.0504) (0.9237,1.0917) (0.9091,1.1111)
1.6 (1.0111,1.0111) (0.9838,1.0338) (0.9575,1.0580) (0.9128,1.1074) (0.8966,1.1304)
1.7 (1.0111,1.0111) (0.9810,1.0372) (0.9520,1.0652) (0.9029,1.1224) (0.8852,1.1489)
1.8 (1.0111,1.0111) (0.9783,1.0404) (0.9468,1.0720) (0.8938,1.1368) (0.8750,1.1667)
1.9 (1.0111,1.0111) (0.9759,1.0434) (0.9421,1.0785) (0.8855,1.1506) (0.8657,1.1837)

Table 2. The eigenvalue pairs (λL
1 (s, t), λL

2 (s, t)) associated with L(s, t).

5. Asymptotics of PT for thin crosses, and analytic accuracy of the
foliation

On Figure 5 we see that the upper trace bound is reached by the PT correspond-
ing to E(t) as t tends to infinity. It also seems that as the cross becomes thinner
and longer, the corresponding PT approaches the upper trace bound.

The first result of this section show that this is indeed what is predicted by the
asymptotics.
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V−1 

Figure 9. The numerical results for the foliation.

Theorem 5.1. The PT MD(t) associated to D(t) satisfies

(5.1) lim
t→∞

MD(t) =
(k − 1)(k + 1)

2k

(
1 0
0 1

)
.

On Figure 9, it seems that as the “thinness” parameter t becomes large, the curve
described by (λU

1 (s, t), λU
2 (s, t)) as s varies between 0 and 1 appears to be a straight

line. This can be measured on table 1 as well. The cross-shape was designed to
be “simple” from a computational point of view. The drawback is that obtaining
precise analytical results for this shape is unreasonably technical. We shall show
that the affine nature of the curve (λU

1 (s, t), λU
2 (s, t)) is asymptotically correct for

a similar (but different) cross for which analytical computations are simpler.
The alternate cross we consider is given as follows. Let Ft and St be a “ flat”

elliptic beam and a “standing” elliptic beam given by

Ft :
x2

b2
+
y2

a2
= 1, St :

x2

a2
+
y2

b2
= 1, a =

1√
2πt

, b = ta.

Define Xt := Ft ∪St, and following the approach introduced in section 3, define for
all s ∈ [0, 1] and t ∈ [1,∞),

U(s, t) = sE(t) + (1− s)X(t),

the domain of unit area obtained by radial interpolation between X(t) and E(t).
The second result of this section shows that as s varies between 0 and 1, the curve
described by (λU

1 (s, t), λU
2 (s, t)) is asymptotically a line.

Theorem 5.2. The PT MU(s,t) associated to U(s, t) satisfies

MU(s,t) =

(√
2s+ 1− s

)2

(√
2s+ 1− s

)2
+ (1− s)2

MU(1,t)+
(1− s)2

(√
2s+ 1− s

)2
+ (1− s)2

MU(0,t)+ε(t),

where ε(t) tends to zero as t tends to infinity.

We shall start by proving Theorem 5.1.
Note that D(t) can be approximated by D̃t = Ht ∪ Vt, where

Ht =

[
−

√
t

8
,

√
t

8

]
×

[
− 1√

8t
,

1√
8t

]
and Vt =

[
− 1√

8t
,

1√
8t

]
×

[
−

√
t

8
,

√
t

8

]
.

The difference between the two domains are the smooth corners of D(t), and the
surface of Ht ∪ Vt which is not exactly one. It is easy to see that, for every t > 0
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there exists t1 and t2 and λ such that

|t1 − t2|+ |λ− 1| ≤ C

t
,

where C is a constant independent of t, and D̃t1 ⊂ D(t) ⊂ λD̃t2 . Since the
polarization tensors are monotonous with respect to inclusion, we deduce that

MD(t) = MD̃(t) +O(
1
t
).

In the sequel, we will identify D and D̃(t). The asymptotic limit of the polarization
tensor of a single thin beam is known [7]. We have

lim
t→∞

MH(t) =
1
2

(
k − 1 0

0
k − 1
k

)
, and lim

t→∞
MV (t) =

1
2

(
k − 1
k

0

0 k − 1

)
.

Given ξ ∈ R2, let wξ
t ∈W 1,2 be the solution to

∆wt = (1− k)∇ · (χ(D(t)) (∇wt + ξ)) ,

and let hξ
t , and vξ

t be the solutions to the same equations with D(t) replaced with
Ht and Vt respectively.

The following lemmas hold.

Lemma 5.3. For any unit vector ξ = (ξ1, ξ2), the functions hξ
t and vξ

t satisfy
(5.2)∥∥∥∥∇hξ

t + χ(Ht)
1− k

k
ξ2e2

∥∥∥∥
L2(R2)

= ε(t), and
∥∥∥∥∇vξ

t + χ(Vt)
1− k

k
ξ1e1

∥∥∥∥
L2(R2)

= ε(t),

where limt→∞ ε(t) = 0.

Proof. Write M(Ht) = (M i,j
t )i,j=1,2. Since

M1,1
t =

k − 1
2

+ ε(t) as t→∞,

it follows from (2.3) and (2.4) that
∫

R2
γHt |∇he1

t |2 = ε(t).

On the other hand, since M2,2
t = (k−1)/2k+ ε(t) as t→∞, we get from (2.3) that

∫

R2
γHt

∣∣∣∣∇he2
t +

k − 1
k

χ(Ht)e2

∣∣∣∣
2

= ε(t).

Since hξ
t = ξ1h

e1
t + ξ2h

e2
t , we obtain the first limit in (5.2). The second estimate

can be proved in a similar fashion. ¤

Lemma 5.4. For each unit vector ξ, we have

(5.3)
∥∥∥∇wξ

t −
(
∇hξ

t +∇vξ
t

)∥∥∥
L2(R2)

= ε(t),

where limt→∞ ε(t) = 0.
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Proof. Let us, for simplicity, drop superscripts ξ. Since

‖∇ht‖L2(Ht∩Vt)
≤

∥∥∥∥∇ht + χ(Ht)
1− k

k
ξ2e2

∥∥∥∥
L2(Ht∩Vt)

+ ξ2|Ht ∩ Vt| = ε(t),

it follows from (5.2) that

(5.4) ‖∇ht‖L2(Vt)
= ε(t).

Likewise we get

(5.5) ‖∇vt‖L2(Ht)
= ε(t).

By simple algebra, we obtain

∇ · γD(t)∇ (wt − ht − vt)

= (k − 1)∇ · (χ(Vt)∇ht + χ(Ht)∇vt)− (k − 1)∇ · (χ(Ht ∩ Vt) (∇ht +∇vt + ξ)) .

If we multiply the above equation by a test function φ and integrate by parts, we
get ∫

R2
γXt∇ (wt − ht − vt) · ∇φ = (k − 1) (A+B + C)

with

|A| =
∣∣∣∣
∫

Ht∩Vt

(∇ht +∇vt + ξ) · ∇φ
∣∣∣∣ ≤ ‖∇ht +∇vt + ξ‖L2(Ht∩Vt)

‖∇φ‖L2(R2) ,

|B| =
∣∣∣∣
∫

Vt

∇ht · ∇φ
∣∣∣∣ ≤ ‖∇ht‖L2(Vt)

‖∇φ‖L2(R2) ,

|C| =
∣∣∣∣
∫

Ht

∇vt · ∇φ
∣∣∣∣ ≤ ‖∇vt‖L2(Ht)

‖∇φ‖L2(R2) .

Thanks to (5.4) and (5.5), we obtain
∣∣∣∣
∫

R2
γD(t)∇ (wt − ht − vt) · ∇φ

∣∣∣∣ ≤ ‖∇φ‖L2(R2) ε(t),

for any test function φ, and hence (5.3) follows. ¤

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. By (2.1) we have

MD(t)ξ · ξ = (k − 1)

[
1 + (k − 1)

∫

D(t)

ξ · ∇wξ
t dx

]
,

for any ξ ∈ R2. It then follows from (5.3) that

(5.6) MD(t)ξ · ξ = (k − 1)

[
1 + (k − 1)

∫

D(t)

ξ · (∇hξ
a +∇vξ

d)dx

]
+ ε(t).

From (5.2) we obtain that
∫

D(t)

ξ · (∇hξ
t +∇vξ

t )dx =
∫

Ht

ξ · ∇hξ
t +

∫

Vt

ξ · ∇vξ
t +

∫

D(t)\Ht

ξ · ∇hξ
t +

∫

D(t)\Vt

ξ · ∇vξ
t

=
∫

Ht

ξ · ∇hξ
t +

∫

Vt

ξ · ∇vξ
t + ε(t).
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Therefore, (5.6) yields

MD(t)ξ · ξ = MV (t)ξ · ξ +MH(t)ξ · ξ + ε(t).

Now, (5.1) immediately follows from (5). ¤

Proof of Theorem 5.2. We have introduced

U(s, t) = sE(t) + (1− s)X(t),

that is, a domain with vertical and horizontal symmetries defined in the first quad-
rant as the domain inside the curve given, in polar coordinates, by

for 0 ≤ ϕ ≤ π

4
, ρU (ϕ) =

√
t

2π
∗




√
2s√

t2 cos2(ϕ) + sin2(ϕ)
+

1− s√
t2 sin2(ϕ) + cos2(ϕ)




for
π

4
≤ ϕ ≤ π

2
, ρU (ϕ) =

√
t

2π
∗

√
2s+ 1− s√

t2 cos2(ϕ) + sin2(ϕ)
.

With this definition, we can compute

|U(s, t)| =
∫ π

4

0

1
2
ρ2

U (ϕ)dϕ+
∫ π

2

π
4

1
2
ρ2

U (ϕ)dϕ =
(1− s)2

2
+

(√
2s+ 1− s

)2

2
+ ε(t).

Furthermore, we see that, up to a small volume, U(s, t) = F̃st ∪ S̃st + ε(t), where

F̃st :
x2

ã2
+
y2

b̃2
= 1, S̃st :

x2

c̃2
+
y2

d̃2
= 1, a =

√
2s+ 1− s√

2πt
, b = ta

and

c = td, d =
(1− s)√

2πt
.

Arguing as before, we see that the PT corresponding to U(s, t) is equal to the PT
corresponding to F̃st ∪ S̃st, up to an error ε(t) which tends to zero as t tends to
infinity. The polarization tensors of F̃st and S̃st are known [8] and given by (3.3).
Thus we have

lim
t→∞

MFst = ‖Fst‖
(
k − 1 0

0
k − 1
k

)
, and lim

t→∞
MS(t) = ‖Sst‖

(
k − 1
k

0

0 k − 1

)
.

Using the same arguments that in the proof of Theorem 5.1, with D(t), H(t) and
V (t) replaced by U(s, t), F̃st and S̃st respectively, formula (5) becomes

‖U(s, t)‖MU(s,t)ξ · ξ = MFstξ · ξ +MSstξ · ξ + ε(t),

which, together with (5), concludes the proof of Theorem 5.2. ¤

In concluding this section, we would like to refer to the recent paper by Capde-
boscq and Kang [9] where it is shown that if the domain contains certain set of
volume and is not thin than its PT stays away from the upper HS-bound.

It is also worth noticing that the asymptotic result in this section holds in the
three-dimensional case as well. Indeed, taking combinations of ellipsoids, we can
show by exactly the same arguments as those presented above the optimality of the
upper bounds (1.1) and (1.2).



OPTIMAL BOUNDS FOR THE POLARIZATION TENSOR 17

(λ1, λ2) t∗ s∗ (λ1(s∗, t∗), λ2(s∗, t∗))
|(λ1,λ2)−(λ1(s

∗,t∗),λ2(s
∗,t∗))|

|(λ1,λ2)|
(1.0470,1.2893) 9.5607 0.1992 (1.0480,1.2902) 8.0838E-4
(0.8277,1.4614) 6.8182 0.6081 (0.8248,1.4586) 2.3709E-3
(1.2060,1.2060) 14.4493 4.7730E-15 (1.2062,1.2062) 2.1222E-4
(0.9387,1.5378) 19.0739 0.4008 (0.9403,1.5394) 1.2567E-3
(0.7274,1.7702) 18.4077 0.8089 (0.7253,1.7681) 1.5114E-3
(1.1015,1.4132) 26.7781 0.1981 (1.1065,1.4182) 3.9419E-3

Table 3. The numerical results for the identification algorithm.
For a given eigenvalue pair (λ1, λ2), we compute the parameters
t∗, s∗ of the domain and find the eigenvalues (λ1(s∗, t∗), λ2(s∗, t∗)).
The last column is the relative error.

6. Identification of domains

In this section, given a pair (λ1, λ2) inside the HS bounds, we present a method
to find the parameters s and t, such that this pair arises as the eigenvalue pair of
the PT associated with U(s, t) or L(s, t).

Our procedure is described in the following.

Identification algorithm

S’1. Given (λ1, λ2) ∈ A1, transform it into

(ρ1, ρ2) := V (λ1, λ2).

S’2. Find the zero t∗ ≥ 2 satisfying

P (ρ1, t
∗) = ρ2.

Here P (x, t) is the polynomial computed in the previous section.
S’3. Compute (ρ1(si, t

∗), ρ2(si, t
∗)) for si ∈ S. From these data, we derive the

relation between s and ρ1(s, t∗) as follows:

x1(s) =
m∑

i=0

∏

l 6=i

(
ρ1(si, t

∗)
s− sl

si − sl

)
, 0 ≤ s ≤ 1.

S’4. Find s∗ so that

x1(s∗) = ρ1.

We can check the validity of the above algorithm by computing the relative error.
If (s∗, t∗) is the computed pair of parameters, then we calculate the eigenvalues
λ1(s∗, t∗) and λ2(s∗, t∗) of its associated PT. We can see the order of the relative
error by computing

|(λ1, λ2)− (λ1(s∗, t∗), λ2(s∗, t∗))|
|(λ1, λ2)| .

As shown in Table 3, the above algorithm identifies the parameterized domain
pretty well.
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7. Conclusion

In this paper we proved that the PT associated with crosses approaches to the
upper bound as cross gets thinner and longer. We then show, by numerical compu-
tations based on a boundary integral method, that every point inside the Hashin-
Shtrikman bounds for polarization tensors can be attained by a simply connected
domain which is given explicitly in terms of two parameters. We also present a
method to find the parameters corresponding to a given pair of eigenvalues inside
the Hashin-Shtrikman bounds.
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