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Abstract

We consider the homogenization of a system of second-order equa-
tions with a large potential in a periodic medium. Denoting by € the
period, the potential is scaled as e ~2. Under a generic assumption on
the spectral properties of the cell problem, we prove that the solution
can be factorized as the product of a fast oscillating cell eigenfunction
and of a slowly varying solution of a scalar second-order equation.
This result applies to various types of equations such as parabolic, hy-
perbolic or eigenvalue problems, as well as fourth-order plate equation.
We also prove that for well-prepared initial data concentrating at the
bottom of a Bloch band the resulting homogenized tensor depends on
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the chosen Bloch band. Our method is based on a combination of clas-
sical homogenization techniques (two-scale convergence and suitable
oscillating test functions) and of Bloch waves decomposition.

1 Introduction

We study the homogenization of evolution problems for a singularly per-
turbed second order elliptic system with periodically oscillating coefficients.
To fix ideas, let us consider the following parabolic problem

i (A2 70 (e () a (2= <@

€
ue =0 on 09 x (0,7,
u(t =0,2) = ul(2) in Q,

1)
where 0 C R is an open set and T' > 0 a final time. The unknown u. (¢, z) is
a vector-valued function from Q x (0,T) into R, The coefficients A(y), c(y)
and d(z,y) are real and bounded functions defined for x € Q and y € T (the
unit torus). Furthermore, the tensor A(y) is symmetric, uniformly positive
definite, while ¢(y) and d(z,y) are symmetric with no positivity assumption.
The parabolic equation (|1 is just an example: other evolution problems of
interest covered by this paper are the wave equation, parabolic fourth-order
equations, or spectral problems. A generalization to the Schrodinger equation
is the topic of another work [9]. The scalar case of () (i.e. K =1 and u,
is a real-valued function) is well understood (see e.g. [4], [7], [8], [21], [28])
and the goal of this paper is to solve the case of systems of several coupled
equations. However, the method, as well as some results, are very different in
the system case. In order to convince the reader, we first describe the main
results and ideas of proof in the scalar case.
For K =1 introduce the first eigencouple of the spectral cell problem

—div, (A(y) V1) + c(y)y = My in TV, (2)

which, by the Krein-Rutman theorem, is simple and satisfies ¢1(y) > 0 in
TN. One can interpret physically the first eigenvalue \; as a measure of the
balance between the diffusion and potential terms. Since v); does not vanish,
the unknown can be changed by writing a so-called factorization principle

(3)

2y ue(t, )

(2

ve(t,x) =e



and one check easily after some algebra that the new unknown v, is a solution
of a simpler equation

Y2 (%) %f; — div ((34) (%) Vv.) + (v3d) (=, %) ve=0 inQx(0,T),
Ve = on 02 x (0,7,

ve(t=0,2) = e (@) in .

(4)
The new parabolic equation is simple to homogenize since it does not
contain any singularly perturbed term, and we thus obtain the following
result.

Theorem 1.1 Assume that is a scalar problem (K = 1). Then, v,
defined by (3), converges weakly in L? ((0,T); H}(Q)) to the solution v of the
following homogenized problem

% —div(A*Vo) +d* (x)v=0 inQx(0,7),
v=0 on 0 x (0,7T), (5)
v(t =0,z) = v°(z) n 2,

where A* is a constant homogenized tensor and d*(x) a homogenized coeffi-
cient.

It is clear from the above brief summary of the scalar case that the main
idea, namely the factorization principle , does not usually work in the case
of systems, i.e. K > 1. Indeed, in general there is no maximum principle,
and therefore no Krein-Rutman theorem, for systems. Thus, 1/; may change
sign and the change of unknowns (i3)) is meaningless because v, blows up at
some points (see however [4] for a special system for which the maximum
principle holds true). Even if we perform a formal computation by assuming
that is valid, the system satisfied by v. has not a simple structure and
it is not clear that it admits a homogenized limit, and even so, there is no
reason why the homogenized tensor should be coercive.

In order to homogenize in the system case, our main new idea is
to use Bloch wave theory. Under a generic simplicity assumption for the
first eigenvalue and a non-degenerate quadratic behavior near its minimum
(see (9)) we obtain a result similar to Theorem (see Theorem for
details). The two main features are that the homogenized equation is always
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scalar and that the cell problem must sometimes be shifted, namely the
usual periodicity condition in has to be replaced by a Bloch periodicity
condition. Our analysis applies not only to the parabolic problem but
also to the corresponding spectral problem and hyperbolic system. Section
contains our notations, a brief review of Bloch wave theory and our main
assumption. Our main results are stated in Section |3 while the proofs are
distributed in Sections [ [5] and [6]

In Section [7] we also obtain new homogenization results for some specific
well-prepared initial data (assuming that Q = RY). More precisely, recall
that Bloch wave theory introduces the notion of Bloch bands, corresponding
to the range of cell eigenvalues or, in physical terms, to energy levels of
Fermi surfaces. Theorem is concerned with the first Bloch band (or
ground state). If we assume that the initial data u? is concentrating at the
bottom of a higher level Bloch band (see Section [7| for a precise statement),
we obtain a convergence result similar to Theorem but with a different
homogenized tensor (depending on the level of the chosen Bloch band). Even
in the scalar case this result is new. In the context of Schrodinger equation
it is known as an effective mass theorem (see e.g. [22], [24], [25]). The fact
that the homogenized tensor depends on the initial data is very striking in
homogenization theory since usually effective properties are proved to be
intrinsic in the sense that they do not depend on the domain, the applied
forces or source terms, and the initial data.

In Section |§| we show that under a new assumption on the first Bloch
eigenvalue a different homogenized limit can be obtained for . Indeed, the
homogenized problem is a parabolic fourth-order equation.

Finally, Section [J]is devoted to an extension of our previous results to a
different model, namely we consider a fourth-order equation. We first obtain
homogenized limits similar to those of Section [3| but with a fourth-order
operator instead of a second-order one. Then, under a different assumption
on the first Bloch eigenvalue, we prove that a second-order homogenized limit
can also be obtained (a situation which is symmetric from that in Section
. Our method could be generalized to other models. In particular, its
application to the Schrodinger equation is of paramount interest. However,
since much more can be deduced in the Schrodinger case, we address this
problem in a separate work [9].

There are several motivations for studying the homogenization of the
singularly perturbed system . First, is a model of reaction-diffusion
equations in periodic media (like a porous medium or a crystal in solid state
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physics) and the large potential is classical when studying long time asymp-
totics. Second, the spectral problem for is an usual model in nuclear
reactor physics, the so-called simplified transport equation. This is a set of
diffusion equations for the even moments of the neutron flux (moments with
respect to the angular velocity variable). One of the main features of this
simplified transport system is that it does not satisfy a maximum principle.
So our work is the first rigorous study of homogenization for this problem,
which is of paramount interest for fast numerical computations in the nuclear
industry (see [27] for more details and numerical applications). Third, as a
limit case of large potentials we recover perforated domains with periodic
holes supporting Dirichlet boundary conditions (take ¢ = 400 in the holes
and ¢ = 0 elsewhere). In such a case the term of order =2 disappear from
the equation (1)) although there is still a singular perturbation due to the
presence of Dirichlet holes. The scalar setting, K = 1, was studied in [2§]
and we extend this result to the vector-valued case. One possible application
is the study of a composite material with fixed incusions in the context of
linear elasticity. Fourth, even in the case when ¢ = 0 (i.e. without singular
perturbation) our homogenization result for initial data concentrating at the
bottom of high level Bloch bands is new and can be seen as a type of cor-

rector result for capturing an initial layer in time in the context of classical
homogenization [12] (see Remark [7.4)).

2 Notations and Bloch decomposition

We first give our precise notations and assumptions on the coefficients A(y)
and c(y) involved in equation . Our tensorial notations are the following.
Recall that N is the space dimension, and K is the system dimension, i.e. all
unknown functions are defined with values in R*. We adopt the convention
that Latin indices i,j belong to {1,.., N}, i.e. refer to spatial coordinates,
while Greek indices o, § vary in {1,.., K'}. The K x K matrices ¢ and d are
symmetric, with entries c,3, dop respectively, and have no specific positivity
properties. The tensor A acts on K x N matrices. Denoting by (ua)1<a<i
the components of a vector-valued function wu, its gradient is the K x N
matrix Vu defined by its entries

Vo (aua

Ox; )1<a<K, 1<i<N

: (6)



and the product AVu is also a K x N matrix defined with the Einstein
summation convention by

Oug,

aﬁij_) .
0% )1 <p<i, 1<j<n

AV = (A (7)

The tensor A is symmetric in the sense that
AL - ¢ = AL - ¢ for any €, € RFNY

and it is uniformly coercive, i.e. there exists v > 0 such that for a.e. y € TV
A(y)€ - € > vIgf? for any € € RV,

We assume that A(y) and c(y) are measurable bounded periodic functions,
i.e. their entries belong to L>(TY), while d(z, %) is measurable and bounded
with respect to x, and periodic continuous with respect to y, i.e. its entries
belong to L> (Q; C(T")) (other assumptions are possible).

A formal two-scale asymptotic expansion (in the spirit of [11]) shows that
the leading term in the ansatz of u. is the solution of an equation in the unit
cell TV. Therefore, we need to study a microscopic version of . It turns
out that the key cell problem is the following Bloch (or shifted) spectral cell
equation

—(divy + 2070) (A(y) (Vy + 20m0) ) + () = Ma(@)tn 0 TV, (8)

which, as a compact self-adjoint complex-valued operator on L*(T%), admits
a countable sequence of real increasing eigenvalues (\,),>1 and normalized
eigenfunctions (1 )n>1 With ||y 2(ryy = 1. The dual parameter ¢ is called
the Bloch frequency and it runs in the dual cell of TV, i.e. by periodicity it
is enough to consider 8 € TV. We refer to [I1], [I7] for more details about
the Bloch spectral problem .

Our main assumption is that there exists a Bloch parameter 6, € TV
such that

(i) 6y is the unique minimizer of A\;(f) in TV,
(13)  A1(6p) is a simple eigenvalue, 9)
(23i) the Hessian matrix VyVgA;(6p) is positive definite.



Remark 2.1 In the scalar case, K = 1, assumption @ s satisfied with
0y = 0. Indeed, by using the mazximum principle, it is easily seen that the
minimum of A\ (0) is uniquely attained at 0, and then that the Hessian matriz
VoVoAi(0), being equal to the usual homogenized matriz (see e.g. [18]), is
positive definite. On the other hand, for any K > 1 and in the absence of
zero-order term, i.e. ¢ = 0, it is easy to check that 6y = 0 is the unique
minimizer of A\ (0) (however, A\i(0) may be not simple and/or the Hessian
matriz may be not positive definite). In full generality, there always exist a
minimizer of A\1(0) but it may be non-unique and A\ (6y) has no reason to
be simple (although there are some results of generic simplicity in similar
contexts, see [1]).

Remark 2.2 In a slightly different context, namely for a system of linear
elasticity which is not uniformyl elliptic but simply satisfies the Hadamard
ellipticity condition (in other words the associed enerqy is rank-one convexr
but not convezx), there are numerical and physical evidences that the minimal
value 0y in (9) is not zero [19)].

Remark 2.3 Assumption @ can be slightly weakened, see Remarks and
28

Under assumption @D it is a classical matter to prove that the first eigen-
couple of () is analytic at #y. Introducing the operator A(f) defined on
LQ(TN )K by

AO)) = ~(divy + 2i70) (Aly)(V, + 2m0)) + cly)v = MO, (10)

it is easy to compute the derivatives of for n = 1. Denoting by (ex)i1<k<n
the canonical basis of R, the first derivative satisfies

A(Q)g—;p; = 2ime, A(y)(Vy+2im8) i1 +(divy+2im0) (A(y)2ime,r )+

oM

T@(Q)wl’

(11)



and the second derivative is

P , ¢1 : , Oy
A =2 A 2 2 A(y)2e
(9)89k891 irerA(y)(Vy + 2im6) — 20, + (div, + Z7T¢9)( (y)2imey, 891>
+2ime A(y)(Vy + 2im) —— vy + (divy, + 2i78) | Ay )Zzﬂelawl
8)\1 87,01 8)\1 8¢1
7
00y, (6 )36’5 801( >89k
—4m?er A(y)ehy — Ane  A(y)er)y + N (0)y
kAY) e l@/k189186k 1
(12)
For 6 = 6y we have VyA;(6y) = 0, thus equations (11)) and (12)) simplify and
we find o0, o~
1 1 2
— 9 = 4 1

where (}, is the solution of
A(6y)C = erA(y)(Vy +2imby) 11 + (divy, +2imby) (A(y)extyr)  in TV, (14)
and xy,; is the solution of

A(e())Xkl = ekA(y) (Vy + 2i7’[’90)€l + (diVy + 227‘(’(90) (A(y)ekg)
+eiA(y)(Vy + 2im6y) (i + (divy, + 2im6y) (A(y)eilr)

1 9*°\ N
1w 96,00, v i T

(15)
There exists a unique solution of , up to the addition of a multiple of
1. Indeed, the right hand side of satisfies the required compatibility
condition (i.e. it is orthogonal to 1) because (j is just a multiple of the
partial derivative of ¢; with respect to 6, which necessarily exists, see .
On the same token, there exists a unique solution of , up to the addition
of a multiple of ;. The compatibility condition of yields a formula for

the Hessian matrix VyVyA;(6).

t+erA(y)er + el A(y)err —

We now recall some results on the Bloch decomposition associated to the
spectral problem (see e.g. [L1], [17]).



Lemma 2.4 Letu(y) € L*(RY)X. Define ay (6 fTN wk y,0)e=2m0udy.

Then,
E / s (0)r(y, 0)e* ™ v do.
'H*N

k>1

Furthermore, if v(y) = 3= Jon Be(O)0e(y, 0)e*™¥do in L*(RV)X, we have

/RN dy—Z/ a (0 de.

In the sequel we shall need a rescaled version of Lemma [2.4] that we now
describe. Upon the change of variable y = £, we define u(z) = e V/?u(y)
which satisfies ||u||2@vyx = [Jul[p2myyx. Applying Lemma we deduce

the following rescaled Bloch transform

wle) =30 [ ok b+ e T (1)

k>1

and a5 (n) = M2, (0). The same orthogonality property

with n = 9290

holds true

/RN GORIOIZEDY / o ag(n) By (n) dn

k>1

3 Main results

Let © C RY be an open set (bounded or not). Let 0 < T' < +o00 be a final
time. We first consider the following parabolic problem

c?at <A(i>we)+<cg)+d( f)>u€:0 in Q% (0,7),

ue =0 on 092 x (0,7,
u(t =0,7) = ud(x) in Q.

(17)
The unknown u.(t,z) is vector-valued, i.e. it is a function from (0,77) x
Q into R with K > 1. Assuming that the initial data u? belongs to
L2(Q)X it is a classical result that there exists a unique solution of

in C ((0,T); L2(Q)%) N L2 ((0, T); HY(Q)K).
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Since the matrix ¢ does not satisfy any positivity property, we can not
obtain any a priori estimate directly from . On the other hand, the cell
spectral problem and assumption @D indicate that A;(6p) governs the time
decay (or growth, according to its sign) of the solution u.. Therefore, we first
perform a time renormalization in the spirit of the factorization principle ((3)
and we introduce a new unknown

A1 (0p)t

tc(t,r) =e & u(t, x), (18)

which satisfies

% _ i (4 (%) va) + e (&) =) vd(n D) =0 mox©7)

2

ot €
e =0 on 082 x (0,7,
Gc(t = 0,7) = ul(x) in Q.

(19)

Then, we can obtain the following a priori estimate.

Lemma 3.1 There exists a constant C' > 0 which does not depend on € (but
may depend on T ) such that the solution of (@) satisfies

[tic|| poo (0,722 %) + €l Vel 2o myxayvxr < Cllul|| p2ox (20)
Theorem 3.2 Assume () and that the initial data u® € L*(Q)¥ is of the
form

ul(@) = v (Z,60) ™0 a), (21)
€

with v° € L*(Q). The solution of can be written as

A1 (0g)t

u(tr) = e 3 (0 (5,00) At 2) 4 r(tw)), (22)
€
where r. is a vector-valued remainder term such that

lir% 7]l 2((0.7) xwyxc = O for any compact set w C RY, (23)
€E—>

and v, is a scalar sequence which converges weakly in L*((0,T); H*(Q)) to
the solution v of the scalar homogenized problem

%—dIV(A*VU>+d*( )UZO ZTLQX (07T)7
v=0 on 02 x (0,7T), (24)
v(t=0,z) = Uo(l‘) in €,

with A* = $5VgVeA(6p) and d*(z) = [y d(x, y)tn(y) - ¥, (y) dy

10



Remark 3.3 Of course, if () is bounded, one can take w = ) in .

Remark 3.4 Assumption is not necessary for proving Theorem |3.9

For example, it still holds true with the weaker assumption that u®(z)e 2"
two-scale converges to ¥y (y, 00)v°(x) with v° € L*(Q) (see [2], [23] for the
notion of two-scale convergence). Furthermore, for any kind of initial data
we can still obtain a similar result, but the homogenized initial condition v° is
Just defined as some type of weak two-scale limit (which may well be zero). In

other words, there is no need to have "well-prepared” initial data in Theorem

2.2

Remark 3.5 Theorem still holds true if we add to equation a non-
linear term of order €. Typically, we can add a non-linear term of the
type g(z, £, u.) where g(z,y,&) is an homogeneous of degree one, Lipschitz

function with respect to & such that

9(x,y,8) — g(z,y, )| < ClE=E|, gla,y,t8) =tg(x,y,§) Vt>0.

In such a case, the homogem’zed problem has an additional zero-order

term which is g*(x,v) with g*(z,v) fTN z,y, 1 (y, 00)v) - ¥, (y, 0o) dy.
Simalarly, it is possible to add to (w a source term of the type

A1(6p)t . g x
flta) = e E T (1, D).
€

It yields a_source term f*(t,x) f’JI‘N f(t,z,y) -, (y)dy in the homogenized
equation .

We now consider the eigenvalue problem in a bounded domain Q (the
case of Q = RY is also discussed in Section [5)

) x c (I) x .
_dW<A(E>VUJ—%( = +d(x, 6>>u6:A4% mQ
ue =0 on 0f).

Since (2 is assumed to be bounded, problem has a discrete spectrum

A< A< L <G L Ho0,

with eigenfunctions denoted by ug, normalized by |lug |2« = 1.

11



Theorem 3.6 For each k > 1 we have

At (90)

Aj = + pr +0o(1)  with limo(1) =0,

e—0

and the corresponding eigenvector u§,(x) admits the representation

ug(x) =y (%,90> e

vi(x) + i (x) (26)
where
11_13(1) HT]EC||L2(Q)K =0, HkaHl < C ll_r)% ||U16gHL2(Q) =1,

and any limit point vy, as € — 0, of the scalar sequence vy, is a normalized
eigenfunction associated to the k-th eigenvalue . of the scalar homogenized
spectral problem

—div (A*Vv) + d*(z)v = pv  in Q, (27)
v=20 on 09,
with A* = 25VeVoA(0o) and d*(z) = [ d(z,y)¢1(y) - ¥1(y) dy
Furthermore, if uy is a szmple ezgenvalue of (27), the entire sequence vy,
converges to the homogenized eigenfunction vy.

Finally we address the following hyperbolic problem

[ 0%u, . T c(%) _
52 div (A (E> Vu5> + 2 Ue= 0 inQx(0,7),
ue =0 on 09 x (0,7, (28)
ug(t =0,7) = u’(x) in ,
l (t =0,2) = ul(z) in Q.

The unknown wu.(t,x) is vector-valued, i.e. it is a function from (0,7") x
into R with K > 1. Assuming that the initial data are 0 € Hg(Q)¥
and u! € L*(Q)K] admits a unique solution u. € C ([0, T]; H}(Q)X) N
C* ([0,T]; L*()K). The scalar case K = 1 was addressed in [3]. Depending
on the sign of the minimal eigenvalue \;(6) of the cell problem (§]), we obtain
different asymptotic behavior for (28). We begin with the case A\;(6p) = 0
which does not require any time renormalization.

12



Theorem 3.7 Assume (9), \i(6o) = 0 and that the initial data are of the
form

ul(z) = (% 90) 20 (2) € HL(Q)X, )
ue(z) = ¥y (% 90) 2yl (z) € LA(Q)K,

with v* € HE(Q) and v* € L*(Q). The solution of (28) can be written as

(g

< v (t, x) + re(t, ), (30)

€T .
uc(t, x) = Uy (—, 90) e
€
where r. is a vector-valued remainder term such that

lin% 7]l L2((0.7) xwyc = O for any compact set w C RY, (31)
e—

and v, is a scalar sequence which converges weakly in L* ((0,T); H'(Q)) to
the solution v of the scalar homogenized problem

0%v ) . .
w—le(A Vu)=0 1inQx(0,7T),
v=20 on 092 x (0,7T), (32)
v(t=0,7) =0%x) in €,
1

Pt =0,z) =v'(z) in Q,
with A* = ﬁV@V@)q(eo).

When A (6p) # 0, we can not homogenize directly (28)). As in the scalar
case [3] we must rather perform a time rescaling and consider large times of
order e~!. In other words, instead of we now consider

x

AT <A (%) Vue) L@ max (0,7)

ot? €2
ue =0 on 02 x (0,7) (33)
u(t = 0,7) = ud(z) in Q
Qe (t =0,2) = ul(z) in Q.

Let us first assume that \(6y) < 0. We perform a time renormalization
analogous to ([18) and we introduce a new unknown

N
Gt x)=e = ult,z), (34)

13



which satisfies

( 2) — A, (0
€2 8t2 b | o/l —dv( ( )VUE) 4 ¢E) = M) E )z —0 max 1)
e =0 on 00 x (0,7),
Ue(t = 0,7) = ul(x) in Q,
[ % (t = 0,2) = ul(2) - Y5 ul(a) in Q.
(35)

In this case we obtain a parabolic homogenized equation.

Theorem 3.8 Assume (@ A (6o) < 0 and that the initial data is
ud(x) = ¥y (f,eo) w0 (2) € Hy (), (36)

with v* € H(Q), and that e*ul(z) is bounded in L*(Q)X while €4y (£,6p) -

ul(x) converges weakly to 0 in L*(Q2). The solution of can be written as

u(t,x) = e@ <¢1 <%,00> 2im 0 “oc(t, ) + re(t, :v)) (37)

where r. s a vector-valued remainder term such that

lir% I7ell 20,1y xwyx = 0 for any compact set w C RY, (38)
€E—>

and v. converges weakly in L? ((0,T); H*(Q)) to the solution v of the scalar
homogenized problem

—Ai(00) 2 — div (A*Vo) =0 in Q x (0,T),
v=0 on 0 x (0,7T), (39)
v(t =0,2) = 30°(2) in Q,

with A* = %VngAl(QO).

Remark 3.9 The one half factor in front of the initial data in the homoge-
nized problem (@) 15 quite surprising. It arises because the initial velocity in
contains some contribution of u®. As already explained in the scalar case

[3], there is an initial layer in time in which is not taken into account
by Theorem[3.8
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Let us now assume that A;(0p) > 0. We perform another time renormal-
ization and we introduce a new unknown

/ALt
ac(t,x) =e" e ue(t, x), (40)

which satisfies

(0% i 2) — Ay (6
€2 83;;6 + 217/ A\ (0p) 881;6 — div (A (%) Vﬂe> + W{% =0 inQx(0,7),
Ue =0 on 9 x (0,7),
t(t =0,7) = ul(x) in Q,
[ Bt = 0,2) = ul(w) — 5 ud(x) in Q.
(41)

In this case we obtain a Schrédinger type homogenized equation.

Theorem 3.10 Assume (9), A\1(6y) > 0 and that the initial data is
ul(@) = v (5.60) 50 @) € HY(@)F, (42)
€

with v° € L*(Y), and that €*ul(z) is bounded in L*(Q)X while ey (£,6p) -
ul(x) converges weakly to 0 in L*(Q). The solution of can be written as

€

N
uc(t,x) =¢' R L ve(t, x), (43)

where v, two-scale converges to ¥ (y,0y)v(t,x) and v € L* ((0,T); H}(Q)) is
the solution of the scalar homogenized problem

214/ )\1(00)% — div (A*VU) =0 mQx (O,T),
v=0 on 092 x (0,7), (44)

v(t =0,z) = 50°(2) in Q,

with A* = %V@V@)\l(e(]).

Remark 3.11 All the results in the hyperbolic case (Theorems and
hold true when we add a zero-order term of the type d (:c, E) U, where
d(z,y) is a symmetric non-negative matriz with entries in L> (Q; C(TV)).
This yields a zero-order term in the homogenized problem which is precisely

d*(z) = [on d(z, )1 (y) - ¥y (y) dy.

15



4 Proofs in the parabolic case

Notation: for any function ¢(z,y) defined on RY x TV, we denote by ¢¢
the function ¢(z, 2).

Proof of Lemma We multiply equation by u. and we integrate
by parts to obtain

/|u€tx|d;v— /|u 2daz+// u6 Uedsdx
A1 (6

//( Vue Vi, + M )dsdac—o
€

If we can check that the last integral in is non negative, the lemma is
proved by a standard Gronwall inequality. Extending u. by zero outside €2
and changing the variable as y = %, a sufficient condition is to prove that,

for any u € H'(RV)X

(45)

/]RN (A(y)Vu - Vu + (c(y) — M (0)) u - u) dy > 0.

Applying the Bloch decomposition of Lemma [2.4] to u yields

[ A6V Vel = M0 )y =3 [ lanlo) (u(6) = u(60) a9

k>1

which is non negative by assumption @ O

Proof of Theorem [3.2] To simplify the exposition we forget the notation *
for the solution @, of (19). Equivalently, we could have subtracted from c(y)
an adequate constant, so that A\;(6y) = 0 and u, = @.. Define a sequence w

by

we(t, ) = u(t,x)e”
By the a priori estimate of Lemma [3.1] we have
[well Lo 0,7;22(0)%) + €l Vwel| 2(0,myxyx < C,

and applying the compactness of two-scale convergence (see [2], [23]), up to a
subsequence there exists a limit w(t, z,y) € L* ((0,T) x Q; H'(TV)X) such
that

We R and eVw, = Vyw

16



in the sense of two-scale convergence.

First step. We multiply by the complex conjugate of €2¢(t, , f)e%’reo%
where @(t,z,y) is a smooth test function defined on [0,7) x ©Q x TV, with
compact support in [0,7) x €, and with values in CX. Integrating by parts

this yields
2 / 5 p—2im s / /

/ / A (eV + 2imbp)w, - (€V — 2inby)¢" dt da

+ / / (¢ — M) + dYw. - & dt da 0.
0o Jao
Passing to the two-scale limit yields the variational formulation of
—(div, + 2im0) (A(y)(vy + 2i7r0)w> +c(y)w = M (f)w  in TV,

By the simplicity of A;(f), this implies that there exists a scalar function
v(t,z) € L*((0,T) x Q) (possibly complex-valued) such that

w(t,ﬁ(},y) = v<t7x)¢1(y700)' (46>
Second step. We multiply by the complex conjugate of

N

U, = o (W Zaﬁtxgk )) (47)

where ¢(t, z) is a smooth, compactly supported, test function defined from
0,7) x  into R, and (;(y) is the solution of (14). After some algebra we

17



found that
Oy. — e
D) (Gwe) - (V = 2im2) 4

) 6. 9 o
+€/QA (V + 227?)(8—%?1)6) . (V QZW?)CIC

/ AVu, - Ve = / AV + i
Q Q

€

— / AGBk%we (V= ZiW%)@i
Q €

Ga:k
e . 90 65 A
+ /Q AV + 2m_)(8_ka6) - exy (48)

€

0
—/QA wevaxk - ey

- / A%UEV% - (eV — 2im0,)
0

8a:k
—I—/ AC(eV + 2imby)w - V%
Q Oxy,

Now, for any smooth compactly supported test function ® from Q into C¥,
we deduce from the definition of v, that

0 o~ 1 _
/QAE(V + 2m?0)1p§ (V- in?O)CD +5 /Q<cf — M) - B =0, (49)

and from the definition of (j

0 0o — 1 _
/QAE(V + 2m?°)c,g (V- QiW?O)CD + 5 /9(06 —M(00)C - =

. B o (30)
el/Aﬁ(v+2m—°)¢; -ekcb—e1/A6ek¢;-(V—2m-°)q>.
Q € Q €

Combining with the potential term, we easily check that the first line
of its right hand side cancels out because of with & = ¢w,, and the

next three lines cancel out because of 1) with & = ;—Ji@e. On the other

hand, we can pass to the limit in the three last terms of . Finally, (19)

18



multiplied by U, yields after Simpliﬁcation

[ 5o [ [ (85 )

/ / Amva—m epydt du

—/ / AewEV— - (eV — 2im) pdt da (51)
o Ja Oxy,

L , d¢
+ ACL(eV + 2imby)w, - V—dt dx

0o Ja Oy,

T
+/ /dewg-ﬁsdtda: = 0.
o Ja

Passing to the two-scale limit in each term of gives

/Q TNwwO-M@:o>dxdy_/OT/Q/MU@I%?MW
_/T/ /TN Alﬁwva—a-ek%dtdx dy
/ / /TN AWV— (Vy — 2imb)(dt dz dy

_ oo
+/ / / ACL(Vy + 2im6p )y v - V—(bdt dx dy
o JaJrv Oy,

+/OT/Q/TNd¢1U~E1$dtd:cdy =0.

(52)
Recalling the normalization [, [¢1|*dy = 1, and introducing
Ay = /T N (A?/)lej centhy + Aver - et
+Atpre; - (Vy — 2im0)C), + Arey - (Vy, — 2im0)( (53)

— ATV, + 2imbo) iy - e — AC,(V, + 2imlo )y - ek)dy,

and d*(z) = [pn d(z, )1 (y) - ¥, (y) dy, 1.) is equivalent to

Py ¢ * oy * >y _
/Qvod)(O)dx — /0 /Q (UE + A -VV¢ —d (ac)vgb) dtder =0

19



which is a very weak form of the homogenized equation . Note, however,
that we can not recover the Dirichlet boundary condition from . To this
end we shall use the compactness Lemma below which was not required
so far (and which holds true for functions depending on time, as claimed
in Remark . Since, by the parabolic energy estimate, assumption ({55
is satisfied, we deduce that there exists a bounded scalar sequence v, in
L2 ((0,T); H'(RY)) such that

uc(t, ) = (%,90) 2 (4, @) + et @), (54)

and lime_,o ||7]| z2((0.7)xwyx = 0 for any compact set w C RY. Up to a subse-
quence, v, converges weakly to a limit v in L? ((0,7); H*(R")), which nec-
essarily coincides with the two-scale limit obtained in (46[). If the compact
set w lies outside (2, i.e. w C (RN \ Q), we deduce from 1} that

Py < 60> ve(t,x) = —r(t,z) inwx (0,7T),

and since 1/, is normalized, we obtain

a0y /wl ) Ploc( |dH/| JPde = 0

Therefore, we deduce that v = 0 in any compact set w outside from 2. This
implies that v belongs to Hj ().

The compatibility condition of equation . for the Second derivative of
1y yields that the matrix A*, defined by (53, is indeed equal to ; L VoV (0o),
and thus is real, symmetric, positive deﬁmte by assumption @D Therefore,
the homogenized problem is well posed. By uniqueness of the solution
of the homogenized problem (24, we deduce that the entire sequence v,
converges to v (which is a real-valued function). O

Remark 4.1 As usual in periodic homogenization, the choice of the test
function V., defined by , 1s dictated by the formal two-scale asymptotic
expansion that can be obtained for the solution u. of . Indeed, if one
admits that the ansatz of u. starts with the following two exponential terms
(which is not obvious a priori !), then a simple and formal computation shows
that

N
w(t2) ~ 67)\1?0” 2im P02 (2/}1 ( > 25— t,x)Ce( )) ,

where v is the homogenized solution of (24 .
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Lemma 4.2 Let u. be a bounded sequence in L*(RN)X. Assume that there
exists a finite constant C' such that

/N <A <£> Vu, - Vu, + wue . u€> dr < C. (55)

€ €

Then, under assumption @,
x 2im %02
u(@) = v (%,00) 7 0 (@) + 7.(0), (56)

where v, is a bounded scalar sequence in H'(RY) and lim g [7ell 2@y =0
for any compact set w C RY.

Remark 4.3 If we consider functions depending on time, Lemmal{.9 is eas-
ily extended as follows. Assuming that u. is a bounded sequence in L*((0,T) x
RV and that holds true when integrated on the time interval (0,7T),
the decomposition (56) is still valid with v. bounded in L*((0,T); H'(RN))
and r. converging strongly to 0 in L*((0,T); L2 (RYN)).

loc

Remark 4.4 If the sequence u. further vanishes outside an open set €2, then
we can obtain the representation (@) with v uniformly bounded in H} ().
Indeed, it is enough to project the function v, € HY(RY), given by Lemma

on Hj ().

Proof. Our proof is in the spirit of the previous works [I§], [16]. Applying
the rescaled Bloch decomposition to ue(z) with n = =% we have

T iz 2im 208
ud(w) =) g (M k(=, o + en)e® ™ e ™ dn,
k>1 e T ¢

/ (A <£> Vu, - Vu, + Lj\l(eo)ug . u€> dx
RN € €

=S [ gl (o en) = () )i

k>1

Since Ag(0) — A1(6p) > 0 and, for k > 2, \(0) — A\1(6p) > C > 0, we deduce
from the bound that

3 / ot (n)2dn < Ce.
6_1TN

k>2

and
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For k = 1, by assumption @D there exists C' > 0 such that
Mi(8) = Mi(6o) > Cl0 — 6> VO € T,
and thus implies

| mPlastPan < c.
e—1TN

Extending a5 (n) by zero outside e TV, and using the inverse Fourier trans-
form, we deduce that the scalar sequence v,, defined by

ve() = / oy (1)e* ™" dn,
RN
is bounded in H'(R").

Introducing a parameter 0 < ¢ < 1 (to be chosen later) we define a cut-off
of v by

o
In|<e~4

The difference between v, and 9. is small since
o= vy = [ laitnan < [ nPlasto Py < cen
[n|>e=a RN
Similarly we have

/ ot (L, b)Y mwa/ ot (L, B tem)e? e i),
e~ 1TN In|<e—a

where £, is small, i.e.
[tellZo @y = / | (n)*dn < EQq/ [n?|af (n)[Pdn < Ce*.
n€e TN, |n|>e—1 e~ 1TN

By the analycity of the first eigencouple of , there exists a periodic function
x € L*(TV) such that

[U1(y, 0) — 1y, 00)] < |0 —bolx(y) Vye ™, 9 e TV.

Therefore, we have

€T . . fpw T . _0g-w
/| s (n)ir (2, B + en)e? ™7™ dy = (2, 60)e™ 5 (1) + 5. ()
ni<e—4
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where s, is small, i.e.

T

sl <)) [ dnllito]dn

. 1/2 1/2
ca@) ([ ulliwpa) ([ )
In|<e~a In|<e~?

x
< Ce Ry ().

€
Thus, we obtain that, for any compact set w C R,

N
Icl2aquye < Clulel =¥

(We can not obtain a uniform estimate on R since s, is not defined as a
Bloch decomposition.) Collecting all the intermediate steps we deduce

uc(z) = w%, 00) 2™ 5 (z) + ()

and |7l p2qyx < C’]w]eNLH with the optimal value of ¢ equal to 2/(N + 2).
O

Remark 4.5 If we remove from assumption @ the positive definite char-
acter of the Hessian matriz VeV (6y), we can still obtained an homoge-
nization result, weaker than Theorem[3.9. Indeed, the same proof shows that
we two-scales converges, up to a subsequence, to 1 (y,0y)v(t, x) where v is
a solution of the homogenized equation with a possibly degenerate ma-
triz A* (which is nevertheless always non-negative because 6y is a minimum
point). However, Lemma [4.9 holds true only if VoVoAi(6p) is positive defi-
nite. Thus, we can not recover the Dirichlet boundary condition, neither can
we obtain the uniqueness of the homogenized solution and the convergence of
the entire sequence w..

Remark 4.6 If we remove from assumption (@ the fact that the minimum
point 0y of A1(0) is unique, then we can also prove a weaker version of Theo-
rem . For each minimum and associated Hessian matrix VoV, we can
extract a subsequence such that w. two-scales converges v (y, 0o)v(t, x) where
v is a solution of the homogenized equation . However, since Lemma
[4.3 does not hold true in this case, we can not recover the Dirichlet bound-
ary condition. Nevertheless, if Q = RN and VgV is positive definite,
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we do not need any boundary condition to obtain the unique solvability of
the homogenized equation. Thus, in such a case, the entire sequence w, s
converging. Recall that w, = eklig())te’%”%%ue, so that for different minima
we have different values of 0y, thus different sequences w., and eventually
different homogenized problems. If the initial condition is a superposition of
well-prepared initial data for each minimum point 6y, then, by linearity, we
can decompose the solution in a superposition of elementary solutions, each

of them converging to its own homogenized limit depending on 0.

5 Proofs for the spectral problem

This section is devoted to the proof of Theorem For simplicity reasons,
we first prove the analogue of this result in the whole space, Q = RY, with,
on top of @D, the additional assumption

K
| |lim Z dop(,9)Nans = +oo uniformly in y € TV, € {|n| = 1}. (57)
T|—-+00
a,B=1

Under this assumption, it is well-known that the following spectral problem

—div (A <%> Vu6> +e2¢ (%) ue +d (:c, %) Ue = At in RY (58)
has a discrete spectrum in L*(RV)5 A{ < A5 < ... < XS ... — 400, with
corresponding orthonormal eigenfunctions denoted by u§(x), u§(zx), .... Sim-
ilarly, since limy|—, 4o d*(x) = 400, the homogenized problem has a dis-
crete spectrum, piq, fta, .-, fn, .. — 400, with corresponding orthonormal
eigenfunctions denoted by vy (), va(x),. . ..

Lemma 5.1 There exists a constant C' > 0, which does not depend on e,

such that A (g A (g
T T (59)

where o(1) vanishes as € — 0.

Proof. We assume that v; is smooth enough, which is not a restriction since
the general case can be reduced to this one by means of approximation. We
write down the variational formulation

A = min / (AVu-Vu+ (e %+ d)u-u)de (60)
RN

”uHLQ(RN)K:l
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and substitute a test function of the form

Ue = %62”906% (zp (=, 00)v1(x) + GZ 81)1 > , (61)

where (j, is the solution of and . is a normalization constant chosen in

such a way that [|U|| 2@~y = 1. Since 11 and (; are periodic functions,

and due to the assumptions on v;, we have lim~, = 1. In view of and
e—0

, after simple rearrangements we obtain

. _ M(6y) pe duon
M5 toll)+ g / aprViatisge r 01y o0, ™
RN
- o Ovy, Ov
2 € A€ 2 -
+7¢ / {%,a apB,ml (8@; + 2imtly m) Ckﬁaxl oxy,
RN

. 0 , . Jvy Jv
+1 o (3_yk — 227T90,k> ( aﬁ,kmCzﬂ) - 8xt}dx

+7 / U5 U 5deglvr [Pda + €%, / d(CVy) - (V0 )da
RN

RN

+2e°R / (@Z_JECEAEVVvlvl + d(v1)) - (CEVvl)) dx

N

. From the definitions of A* and d*, we deduce the upper bound in . On
the other hand, by using Lemma we have

min / (AVu-Vu+ (e % +d)u-u)de > (62)
RN

”u”LQ(RN)K:l

)\1 (90)

2

+ inf d(x,y)n-n

€ z€RN yeTN ,|n|=1

which yields the desired lower bound. O

Lemma 5.2 There exists a scalar sequence v, which is relatively compact in
L*(RY) and such that

i (@) = v(@)n (%, 00)* ™+ ()
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where
11_{% HTeHLz(RN)K =0, HUeHHl(RN) <C.

Remark 5.3 As a consequence of Lemma [5.9 v. is almost normalized, i.e.
Vel L2@ny = 1+ o(1).

Proof. ;From Lemma [5.1 we deduce

A1 (0 A1(6
1(20) +/ duS T dz < XS < 1(20) + 1+ o(1),
€ RN €
which implies that
/ dui -uj dx < C. (63)
RN

Then, the first part of Lemma [5.2]is a consequence of Lemma |4.2| since

A (6
/ (AVus§ - Va5 + €72 (¢F = M(0o)) uf - T5) do = N — 1(0) —/ deus g do < C.
RN RN

€2

To obtain the relative compactness of v, in L2(RY) we deduce from (63))
and the growth condition on d°(x) at infinity, that for each 6 > 0 there is
R = R(0) such that

il 2 (o 21> mp) K < 0 (64)
Since v, is bounded in H'(RY), we can replace (1;)? by its positive average

n and thus obtain

||Ue||L2({x: |z|>R}) < 57

which implies the relative compactness. O

Proof of Theorem [3.6] for Q = RY.
We focus on the first eigenfunction, & = 1. For k > 1 a similar proof
holds true.

By Lemma the family v, is relatively compact in L?*(RY). More-
over, any limit point v° of a converging subsequence, satisfies the relation
%[ 28y = 1. By Lemma |5.1] we can also extract a subsequence such that

A — @ converges to a limit fi. According to

C<i<py. (65)
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The proof is now very similar to that of Theorem (see Section . Up to
another subsequence, e~27@%/<y$ (1) two-scale converges to a limit uf(z,v)

and eV (e’%i‘”'(’o/ eu§> two-scale converges to V,u(z,y). As in the first step

of the proof of Theorem [3.2] one can easily show that
U(l)(.T, y) = Uo(x)wl (ya 60)7

where v° is a limit point of v.. To find the equation satisfied by v°, we proceed
as in the second step of the proof of Theorem . We multiply by the
test function

U (r) =™ - = <w (—, Z (‘9_¢ ) ;

k=1

0

where ¢ is smooth with compact support. This yields

/ A (2) Vit (2) VT, (2)dar + / wui(x) T, (2)da+

RN RN

s [ ) - A~ () [ i)Wt

€
RN RN

As before, using and , we can pass to the two scale limit to obtain

/ (A" - VV¢ + d* (2)0v°9) do = u/ v dx
RN RN
which is a weak variational formulation of
—A* VYV +d° = m® in RY. (66)

Since v° # 0 and i < i1, we necessarily have
i < p

ﬂ:ulu

and v° is an eigenfunction of (27) associated with p. If y; is simple, up to
a convenient renormalization, the entire sequence u§ is converging (and not
merely a subsequence). O

Proof of Theorem for a bounded open set ).
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We merely outline the differences with the case Q = R™. In the proof of
Lemma [5.1] in order to get an upper bound for A{, we can not use the test
function because it does not satisfy the Dirichlet boundary condition.
Therefore we replace v by a convenient approximation. For each small § > 0,
we introduce a smooth and compactly supported in 2 function w?, such that
|w?||r2() = 1 and

/ (A*Vw’ - Vo + d*(z)|w’?) dz < pg + 6.
0

Substituting in the Rayleigh quotient defining A{ a test function of the form

N
. _0g-x X 811)6 T
Us = . 2im =L 20 é et e
5 = e€ (%Dl(e, o)w’(z) +€k§:1 O, ($)<k(€)> :
in the same manner we get the estimate
A1(6
A < 1 O)+u1—|—5+0(1), (67)

€2

where o(1) vanishes as ¢ — 0. Since J is an arbitrary positive number, this
yields the required upper bound. The lower bound is obtained as before,
extending first u$ to the whole space RY by setting u(x) = 0 for z € RV \ Q,
and using formula ([16]).

Lemma is unchanged, equation is obtained as before, and the
Dirichlet boundary condition for the limit v° is recovered as in the parabolic
case (see the end of the proof of Theorem [3.2). O

6 Proofs in the hyperbolic case

We begin with proof of Theorem [3.7] when A;(6y) = 0. Actually, as soon
as uniform a priori estimates are obtained for the solution of equation ([28)),
the proof of convergence is completely similar to that of Theorem in the
parabolic case. Therefore, for the sake of brevity, we content ourselves in
establishing those a priori estimates.

Lemma 6.1 Under the assumptions of Thearem the solution u. of @
satisfies

ou,

||u6||L°°((O,T);L2(Q)K)+€||vu6||L2((0,T)><Q)NXK+HEHL"O((O,T);L?(Q)K) <C, (68)
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where C' > 0 1s a constant which does not depend on €. Furthermore, there
exists a scalar sequence v, uniformly bounded in L* ((0,T); H'(Q)), such that

u(tw) = (5.00) ™ vt @)+ rlt, @), (69)
€
where r. s a remainder term such that

lin% 7]l 2((0.7) xwyc = O for any compact set w C RY. (70)
(Sd

Proof. We multiply by 85;6 to obtain the usual energy estimate

ou,
ot

1 2 ¢
E.(t) = E.(0) with E.(t) = 5/ ( + AVu, - Vu, + :—ZUE . u6> dx.
Q

(71)
Since A1(6p) = 0, by using (8), a classical computation shows that

&@=%L(

which is uniformly bounded by assumption. Then, the Bloch wave analysis
of Lemma [3.1] yields

/ (AGVu6 -Vu, + C—Qu6 . ue) dxr > 0.
QO €

Therefore, we deduce from . To obtain and we use Lemma,
since implies that assumption is satisfied. O

LA e V) (0 @ WO)) dz,

1
U

We now turn to the proof of Theorem [3.8 when A;(6y) < 0. Once again
the proof of convergence is very similar to that of Theorem as soon
as uniform a priori estimates are established (see [3] in the scalar case if
necessary). Therefore, we restrict ourselves to obtaining a priori estimates
for the rescaled hyperbolic system ([37]).

Lemma 6.2 Under the assumptions of Theorem the solution u. of
satisfies

- . Ol
el oo 0,1y L2(@)x) + €l Vel L2 o,y ynvxx + €| ey 220 xyx < C, (72)
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where C' > 0 1s a constant which does not depend on €. Furthermore, there
exists a scalar sequence v, uniformly bounded in L* ((0,T); H'(Q)), such that

et ) = 0n (2.00) A7 0t 2) + el ), (73

where r. s a remainder term such that

lin% 7]l 2((0.7) xwyc = O for any compact set w C RY. (74)
(Sd

Proof. In a first step we multlply 5) by 8“6 to obtain the usual energy

estimate
T) 4+ 2¢/— M ( 90/ / o | dz dt = E.(0) (75)
with
1 8“6 ~ ~ ¢ — )\1(60> ~ -~
E.(t) = - — A€ . —_— U, - )
(1) 2/( T + AV, - Vi, + = Ue - Ue | dx

As in the proof of Lemma using yields

/ <A€Vu8~vu8+ ﬂuu) do = / AWl @ V) (¥l V') da,
Q Q

€

which is however not sufficient to show that E.(0) is uniformly bounded.
Indeed we have

Ol 1 —Mi(6o)
at (0) = U — E—Que
which merely implies
E.(0) < Ce?

Nevertheless, from the Bloch wave analysis of Lemma we deduce

/ (AEVQE v, 4 Em M), u> dz >0,
Q

€2

which, combined with , yields

aue 5’u6
EQH ot HL°° (0,T);L2(Q2 €/ _)\1 ‘90 H HL2 (0,T)xQ)K < C. (76)
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In a second step we multiply by u. to obtain a better energy estimate
T € _
\/—)\1(90)/ |t (T)|* da + / / (AEVﬂ€ -V, + L;(go)ﬂg . ﬂ€> dx dt =
Q 0 Jao €

T ~

Dt

\/—)\1(00)/ [1.(0) da + 62/ / u
Q o Jal| Ot

4 /Q ae(O)%Ze (0)dz — ¢ /Q ae(T)%% (T) dz.

2
dz dt

(77)
Using we deduce from ([77)

V=A(00)[Ee(T) 2y < C (14 [[ae(T) |z ) »

which implies that @, is bounded in L ((0,T); L*(2)%). Using this infor-
mation in ([77)) shows that assumption is satisfied: thus, Lemma can
be applied to obtain and (74). O

Finally we arrive at the proof of Theorem when A (6p) > 0 and again
we simply address the question of uniform a priori estimates for (the
proof of convergence is an adaptation of Theorem [3.2| and of the arguments
of [3] in the scalar case).

Lemma 6.3 Under the assumptions of Theorem the solution u. of
satisfies

Ou,
ot

where C' > 0 1s a constant which does not depend on €.

e || oo (0,1y;2 () %) + €l Vel 20,1y xyv <6 + €l L2(0,mxyx < C, (78)

Remark 6.4 The a priori estimates of Lemma[6.3 are weaker than the pre-
vious ones and in particular do mot allow us to recover the homogenized
Dirichlet boundary condition. As in the scalar case [3], in order to obtain the
homogenized boundary condition the trick is to study the homogenization of a
time integral of which has less oscillating initial data. Indeed, defining
we(t,x) = f(f Ue(s,x) ds + xe(x) with a suitable choice of x. (so that w. sat-
isfies the same p.d.e. than without source term), one can obtain better
a priori estimates for w. than for ..
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Proof. In a first step we multiply by 85‘? and we take the real part to
obtain the usual energy estimate

E(t) = E(0) (79)
with B.() — % /Q E ‘Zﬁ

the proof of Lemma [6.2] the assumptions merely imply

2 . o
+ AV, - Vi, + L;(eo)ﬁﬁ . ﬂ€> dx. As in

€

E.(0) < Ce 2.

Nevertheless, from the Bloch wave analysis of Lemma [3.1 we deduce

/ (Aevag Vi, + l;%)u u_> dz >0,
Q

€

which, combined with , yields

Ja

€ EHLO"((O,T);L?(Q)K) <C. (80)

In a second step we multiply by . and we take the imaginary part

VAlE) [ [3T)F do — VA [ [.0)F do
Q Q
— _ou —, . 0u
T te (T ETcl—/}()—e()d = 0.
vt ([amnGema - [aoow)
Using we deduce from (81))
VA (O0) (D)7 0yc < C (1 + e(T)l| 2eyr) -
which implies that @, is bounded in L* ((0,T); L*(2)X). Remark that ,

unlike , does not include any gradient term, so we can not apply Lemma
[4.2 to obtain a better estimate. O

(81)

7 Generalization to high level bands

We generalize the homogenization of a parabolic system established in Sec-
tion |3| for initial data concentrating at the bottom of the first Bloch band to
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another type of initial data concentrating at the bottom of an higher level
band. Such a generalization holds true only in the case of the whole space
Q) = RY because otherwise we lack an adequate generalization of the com-
pactness Lemma (4.2 ;From now on in this section we replace assumption
@D by the following one: for an energy level n > 1, there exists a Bloch
parameter §, € TV such that

(i)  6p is the unique minimizer of \,(6) in TV,
(17)  Au(6p) is a simple eigenvalue, (82)
(i7i) the Hessian matrix VyVyA, () is positive definite.

Under assumption (| . the n'* eigencouple of is analytic at 6y. It is
easily seen that the ﬁrst derlvatlve %w" and the second derivative 889 %g satisfy

equations similar to ((11)) and ((12)) respectively, up to changing the label 1in
n. In particular, for 9 = 90 we stlll use the following notation

On = 2%n( Ot
00,  ~°F 96,00,

= —471'2Xkl. (83)

where ¢, and Yy, are solutions of and respectively, up to changing
the label 1 in n.

We study a parabolic system with purely periodic coefficients

aue . x ¢ (f) _ : N
at — div (A <E) vue) + E—QUE =0 in R™ x (07 T)7 (84)
u(t = 0,7) = ud(z) in RV,

We also need an assumption on the initial data which must be “well pre-
pared”, namely concentrating at the bottom on the n'* Bloch band. Recall
from Lemma that any function v’ € L?(R") can be decomposed as

W)=Y [ afmunE b + et e
e~ 1TN

k>1

with n = =, We denote by II?" the projection operator on the Bloch bands
above the nth level

[T ug(z) = Z/—I’H‘N a (1 )wk( 00 + en)eX e HT Mdn- (85)

k>n
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Our assumption on the initial data is that

ul = M. (86)

€ €

Typically, we are interested in an initial data of the type

() =17 ()2, 00)e27 ) (57)
€

with v° € L2(RY). However, since the projection operator II” is not very ex-
plicit, we also consider another type of initial data which satisfies assumption

, namely
W) = [ anlmn(E b + et (88)
e—1TN €

with a,, € L*(RY) being the Fourier transform of v*(x). Actually, it is easy
to check that

lim ||’U/S71 — US’2HL2(RN) =0.

e—0

For such well-prepared initial data, we perform a time renormalization similar

to (T3)

An(0g)t

Ue(t,z) =€ < wu(t, ), (89)

such that @, satisfies

e (4 (2) va) + A0 o),

ot € €2
U (t = 0,2) = ud(z) in RY,
(90)
Lemma 7.1 Under assumption , the solution of (@) satisfies
||a6||L°°((O,T);L2(RN)K) + EHv,&eHLQ((O,T)XRN)NXK S C”USHLQ(RN)K, (91)

and there exists a bounded scalar sequence v, in L* ((0,T); H{(RY)) such
that

%

Gc(t, ) = (% 90) Ty (4 3) + r(t, 1), (92)

where lime_o ||7e|| z2((0.1)xw)x = 0 for any compact set w C RN,
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Theorem 7.2 Assume that the initial data u® € L*(RN)X is of the form

or . The solution of can be written as
An(60) by
uc(t,x) =e 2 : (@/}n <£, 00> eQZWBOTve(t,x) + 7e(t, m)), (93)
€
where r. s a remainder term such that

lir% 7]l 2((0.7) xwyc = O for any compact set w C RY, (94)
e—

and v, converges weakly in L? ((0,T); H'(RN)) to the solution v of the scalar
homogenized problem

% —div(A:Ve) =0 in RY x (0,7),
v(t=0,2) =0x) in RY,

(95)

with A% = 25 VeV, (60).

Remark 7.3 In the context of the Schrodinger equation Theorem is
called an effective mass theorem [22], [24)], [25]. Even in the case of a scalar
equation, Theorem[7.9 is new since the factorization principle does not work
for an energy level n > 1, namely one can not divide the unknown u. by
Un (f, 00) which necessarily vanishes at some points in T .

Remark 7.4 An initial data of the type or would yield a zero limit
if homogenized in the setting of Theorem . The solution u., given by (@,
decays much faster than that given by (29) because A, (6o) > M1 (0o). There-
fore, we can interpret Theorem as describing initial layers in time, com-
pared to Theorem[3.9 which captures the average behavior. This is consistent
with the classical homogenization of parabolic equations, when ¢ = 0, where
initial layers in time are known to exist [12] but can not be characterized by
the classical homogenization theory.

Proof of Lemma . We apply the rescaled Bloch decomposition (16| to
equation

~ € T LT X iwu
u(t,x) = Z/ . ak(t,n)@bk(z,ﬁg + €n) e T2 4
k>1vV€
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with )G tem)
€ € Nk 0en
ak<t7 77) - ak(07 77)6 < t'
. From assumption (86 we deduce that o, (t,n) = 0 for any k& < n. Therefore,
for any time t, we have 1@ (¢, x) = 4.(¢,z). Thus,

/N<A<§>vae.vae+w )dx>0

which easily yields the a priori estimate . We now mimick the argu-
ments of the proof of Lemma (replacing the label 1 by n) to obtain the
compactness result (92). O

Proof of Theorem The proof is very similar to that of Theorem
so we simply sketch the main points. We introduce, as before, a sequence w,
defined by

we(t, r) = u(t, x)e_%”%%

By the a priori estimates of Lemma there exist a subsequence and a
limit w(t,z,y) € L? ((0,T) x RY; HY(TV)¥) such that w, and eVw, two-
scale converges to w and V,w respectively [2], [23]). Similarly, by its very
definition, w, (0, z) two-scale converges to 1, (y,6) v°(z). In a first step we
multiply by the complex conjugate of e2p(t, z, £)e 272 Where o(t,z,y)
is a smooth test function defined in [0,7) x RY x ‘TN with values in CK.
Passing to the two-scale limit yields the existence of a scalar function v(t, x) €
L? ((O,T) X RN) such that w(t, z,y) = v(t, 2)n(y, 0). In a second step we
multiply by the complex conjugate of

= 09
v, = 22777 (¢n( Za— t x Ck ))
k=1

where ¢(t,z) is a smooth, compactly supported, test function defined from
[0,7) x RY into R, and ((y) is the solution of where the label 1 is
replaced by n. Passing to the two-scale limit yields a very weak form of the
homogenized equation ([95]). It is routine to show that its solution v(t,z) is
indeed a classical weak solution. Then, by uniqueness of the solution, we
deduce that the entire sequence w, two-scale converges to ¥, (y,6p) v(t, z).
O

36



Remark 7.5 All the results of this section are specific to the case of the
whole space, i.e. Q= RN, and can not be extended to the case of an additional
zero-order term d(z, 2) because we crucially use the Bloch diagonalization to
get a priori estimates.

8 Fourth order homogenized problem

By changing the main assumption on the Bloch spectrum it is possible to
obtain a fourth order homogenized equation from a second order parabolic
problem. Specifically we consider

628u€ — div (A (f) Vuﬁ) + <€726 <£> + €%d (:1:, E)) ue=0 1in Q x (0,7),
ot € € €

ue =0 on 092 x (0,7,

u(t =0,7) = u’(x) in Q.

(96)

Remark that the time scaling in is not the same than that in :
this means that we are looking for an asymptotic for longer time of order
€2 in , compared to . Instead of @, we now make the following

assumption

(i) 6y is the unique minimizer of A;(#) in TV,

(17)  A1(6p) is a simple eigenvalue,

(ii1) VeVeAi(fo) =0,

(iv) the fourth-order tensor VyV,VyVyAi(6y) is positive definite.
(97)

Remark 8.1 We do not know if assumption @ is satisfied for any practical
example.

Since A (6p) is a minimum, we also have VoA (6y) = 0 and VyVaVgAi(6y) =
0. Under assumption the first eigencouple of (§]) is analytic at 6. Recall
that, for 8 = 6y, the two first derivatives of 1, are given by

oy 9%y 2
— =2 = —4
0, 17, 96,00, T Xkl (98>

where (. is the solution of and xy is the solution of (remark that
this last equation simplifies since VyVyAi(6y) = 0). Similarly, the third
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derivative is

831/}1 . 3
20,00,00, O it (99)

where
A(eo)fﬂd = 6314(3/) (Vy + 27;7T€0)Xkl + (diVy + 2Z7T90) (A(y)ejxkl)

+erA(y)(Vy + 2im6y) x 0 + (divy, + 2im6y) (A(y)erx i) (100)
+eiA(y)(Vy + 2im6y) xi; + (divy, + 2im6y) (A(y)eixr;)

+erA(y)ed; + e;A(y) ey + enA(y)e; G-

There exists a unique solution of , up to the addition of a multiple of
1. Indeed, the right hand side of satisfies the required compatibility
condition (i.e. it is orthogonal to 1) because all derivatives of A;(6), up to
third order, are zero at 6 = 6,.

We perform a time renormalization by introducing a new unknown

A1(09)t

Ue(t,z) =€ & wu(t, x), (101)

which satisfies

e v (4 (2) va) + MO (0T i —0 wax 0.,

ot et
. =0 on 092 x (0,7,
t.(t =0,7) = ul(x) in Q.

(102)

As usual we obtain the following a priori estimate
||a€||Loo((07T);L2(Q)K) + 6||Vﬂ€||L2((O’T)XQ)NxK < C||u8||L2(Q)K,
where the constant C' > 0 does not depend on e.

Theorem 8.2 Assume that the initial data u? € L?(Q)X is of the form

g

ulla) = vn (%, 00) 00 @), (103)

with v° € L*(Q). The solution of (96) can be written as

_ A1 (8g)t 0g-x

uc(t,r) =e 4 <¢1 (%, 90> X v (t, ) + Te(t,fb)>, (104)
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where r. s a remainder term such that

lim {|7e]| 20,1y xw)x = O for any compact set w C RV,
e—0 ’

and v, converges weakly in L? ((0,T); H*()) to the solution v of the scalar
fourth-order homogenized problem

v + divdiv (A*"VVv) =0 in Q x (0,7,

ot

g_v =v=0 on 09 x (0,7T), (105)
n

v(t=0,2) =°(2) in €,

with A* = L VQVQVQVQ/\l(Qo).

1677
To prove Theorem [8.2] we need the following generalization of Lemmal[4.2]

Lemma 8.3 Let u. be a bounded sequence in L*(RN)X. Assume that there
exists a finite constant C' such that

/N (A (z) Vu, - Vu, + C(%)_—;\I(QO)UE . Ue) de < Ce2. (106)

€ €

Then, under assumption @,

() = P (% 90) ATy () + (), (107)

where v, is a bounded scalar sequence in H*(RN) and lime g ||rel|p2(x = 0
for any compact set w C R,

Proof. Introducing the rescaled Bloch decomposition of u.(x) with
— 0=bo

z ez 26 202
uw) =30 [ af (S b + en)e T dyy,
k>1 e T ¢

the same arguments than those in the proof of Lemma [£.2] and the estimate

M(0) — M (60) > C|O — 6|* VO €TV,
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shows that

| s < c.

Defining v (z) as the inverse Fourier transform of af(n), we deduce that v,
is uniformly bounded in H*(RY). O

Proof of Theorem [8.2 The proof is similar to that of Theorem [3.2]
. Oy

The first step is identical: the function we(t,z) = u.(t,z)e 2" < two-scale

converges to a limit v(t,z)11(y,6p). In the second step, we multiply (102)

by the complex conjugate of

21'7rM T = a(b z
U= e ¢ ¢1(2790)¢(@$)+€Z—(t 2)Gk(2)

1 YTk
N N
0%¢ x P x
2 d 3 § vy N
+e k%::l 81L'kal’l (tax>Xkl(6) + € ot aﬂfjal'kaIl (t7x)§jkl(e)> 3
(108)

where ¢(t, z) is a smooth, compactly supported, test function defined from
[0,T) x Q into R, (x(y) is the solution of . Xxi(y) is the solution of .

and & (y) is the solution of (100]). After some tedlous algebra we find that

T
[t [ [ wo w5 aa
€ 63¢ —€
/ /A 8xj8xk8xl ekaldtdx

; o
/ / A e (€9 = 2ty e (109)

&ckaxl
f o
o

AN (€V + 2imty)we - V dt dx

0z ;0x,0x;

J
Kﬁwﬁﬁaﬁm = O(e).
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Passing to the two-scale limit in each term of (109)) gives

//TNW‘Z "$(0) dz dy — ///TNWﬂv—dtdxdy

/ / /TN AoV ——— axjf)xkﬁ ~erXj dt dz dy

P9 _
/ / /TN AoV —-—"-— 52,0 (Vy = 2imty) 75 dt dx dy (110)

:ck&z:l
+/ // AT (Vy + 2im00) v VLa dt dx d
o JaJrv Mkt Yy o 0z ;01,01 4

+/OT/Q/TNd¢1vﬂ1$dtdxdy =0.

Recalling the normalization [y |¢1|°dy = 1, and introducing

Al = /TN < — Aren, - e Xy — Aren, - (Vy — 2im80) 7

(111)
+ AT (V7 + 2im00) ¢ - em> dy

(which has to be symmetrized), and d*(z) = [y d(z, y)¢1(y) ¥4 (y) dy, (110)

is equivalent to

_ T ol _ _
0 o e _gF —_
/Q’u #(0) dx /0 /Q (v o A" - VVVV¢ —d (x)vgb) dtdr =0

which is a very weak form of the homogenized equation . To recover
the Dirichlet boundary condition, we use Lemma which implies that
v € H*(RY) and v = 0 in any compact set w C (R" \ ). Thus v belongs
to HZ(Q).

The compatibility condition of the equation giving the fourth deriva-
tive of 1 yields that the tensor A*, defined by , is indeed equal to
16#4 —=VoVeVaVeAi(0y), and thus is real, symmetric, positive definite by as-
sumption (97). Therefore, the homogenized problem is well posed. By
uniqueness of the solution, the entire sequence v, converges to v. O

9 Homogenization of a fourth-order equation

Our method also applies to fourth-order problems. Although systems of
equations can be treated, for simplicity we focus on the case of a single
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equation, without loss of generality since there is no maximum principle
for fourth-order elliptic equation. Let us introduce the following symmetric
fourth-order operator

A = divaiv (0(H)vV) - gdiv (A)V) + e(D) 4@, D), (12

with periodic coefficients ©(y) = {O;;u(y)}, A(y) = {A;;(y)} and ¢(y) which
are real periodic functions in L>(T¥). Furthermore, © and A are symmetric
tensors, and © is uniformly elliptic. The locally periodic term d(z,y) belongs
to L™ (Q; C(’]TN)).

Under these assumptions the Bloch decomposition for is basically
the same as that for second order operators. On the torus T? we introduce
the Bloch operators

A0)¢(y) = e Ae ™ 0p(y) =
(Vy +2i70)(V, + 2i70) - (O(y)(Vy + 2i70)(V,, + 2in8) ) (y)+

—(Vy +2in0) - (A(y)(Vy + 2im0)Y(y) + c(y)¥ (),

with A = divdiv(©(y)VV) — div(A(y)V) + ¢(y). Then, the Bloch spectral
cell problem

A0)n = An(0)Yn  in L2(TN>

has a discrete spectrum A\ (0) < A\y(0) < ... < A\, (0) — +o00. Moreover, all
the statements of Lemma [2.4] (and its rescaled version) remain valid.

It is quite natural to make assumption (97) which implies VoV (6y) =
0. For example, is easily seen to be satisfied with 6, = 0 if there are no
zero and second order terms in (112)), i.e. A=0, c=0.

We begin with the parabolic Cauchy problem

8;: + Au, = in Q x (0,7),
w=0, 20 ononx(0,7), (113)
on

u(t =0,2) =u’(z) in Q.

Theorem 9.1 Assume (@) Let u(t,x) be a solution of with A€ given
by (119), and u? € L*(2) be an initial data of the form

ull) = vr (%, 00) e

0 (),
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with v° € L*(Q). Then u, can be written as

A1 (6g)t

x
uc(t,x) =e & <w1 <—,90) 2im = Tt x) + 1t .75)),
€
where the remainder term r. satisfies the relation

lim [|7e]| 20,1y xw) = O for any compact set w C RY,
e—0 ’

and v, converges weakly in L* ((0,T); H*(Q)) to the solution v of

%—FA*;: in Qx(0,7),
v =0, %:0 on 89 x (0,T),

v(t=0,z) =0%z) inQ,

with the homogenized operator

A" = divdiv (@*VV) + d*(z) (114)
and O = VYV VoA (6)), = Jox d(z, y)[¥1(y, 00)[*dy.
The proof of Theorem [0.1]is very similar to that of Theorem [8.2l Upon

(Ot
defining u¢(t,x) = e - “(t,z), the a priori estimates are

1@|| 2y + €| Va|| L2y~ + 62HVV11€HL2(Q)N2 < C,
which, up to a subsequence, implies the following two-scale convergences for
we = 6—27,7ra: 0o /€ 6(t LL’)
w B ot 2)i(y,00), V' B ot 2)Vyibi(y,00), VY R o(t,2)V, V4 (y, 6)

where v(t, ) is a limit point of a sequence v, bounded in L* (0, T); H*(R")),
introduced in a variant of Lemmas [£.2] and Eventually, we use the same
test function defined in ((108)). We safely leave the details to the reader.

We then study the Dirichlet spectral problem
A = \us,  uf, € HY(Q)

’Vl?’L’

stated in a bounded domain 2 C R", which, under the standing ellipticity
assumptions, admits a discrete spectrum, A\, — +o0o as n — +o00, with
corresponding normalized eigenfunctions denoted by us,.
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Theorem 9.2 Assume (@) Then for any n > 1

A1 (0
)\;: 1(0)

I + 1, +0(1) ase—0

and the corresponding eigenfunction uf (x) admits the representation
€ L 2i7r60—'z € €
(@) = ¥ (Z,00) 2™ v (@) + i (a) (115)
where
lim (| [l 2@) = 0, [lonllaz@) < €, limlopf|2@) = 1, (116)

and the family vS is relatively compact in L*(Q). Moreover, any limit point
V2, as € — 0, of the sequence v¢, is a normalized eigenfunction associated to

n’

the n-th eigenvalue u, of the scalar homogenized spectral problem
A*v = pw in €, v e HE(Q),

with A* defined by - Af py, s a simple eigenvalue of the latter problem,
the entire sequence v;, converges to the homogenized eigenfunction v,,.

The proof is a combination of those of Theorems [3.6]and [8.2] The crucial
point is to obtain a uniform estimate for the energy (AuS, ). To this end
we use a test function of the type of ((108)).

Finally, for the hyperbolic system

( aZu
at2€+A;uE:O in % (O,T)a
Ue
ue = 0, on 0 ondQ2x(0,7), (117)

0 (0,2) = (z) O,
\ %(O,x} =ul(r) inQQ,

we obtain different homogenized limits according to the sign of A;(6).

Theorem 9.3 Let (97) be fulfilled, and assume that M\i(6p) = 0 and the

mitial data are
€T . 6
ul(e) = 1 (Z.00) 00 () € HE(Q),
ub(e) = w1 (Z,60) 70l (z) € L3(Q),
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with v° € HZ(Q) and v* € L*(Q). The solution of (117), with A° given by
, can be written as

u(t,) = vr (2,00) @ vlt @) + et ),
€
where the remainder term r. satisfies the relation

lim [|re]| 20,1y xw) = O for any compact set w C RY,
e—0 ’

and v, converges weakly in L* ((0,T); H*(Q)) to the solution v of

( %JFA*U_O in Q% (0,7),
v =0, g—vzo on 092 x (0,7T),
v(t=0,2) =1"x) inQ,

| Z(t=0,z) =0v'(z) inQ,

with A* defined by (114).

The proof is the same as that of Theorem [3.7 If A\;(f) # 0, then we
need to look at a different time scaling. Instead of (117]), we now consider

4 2
%Zée +8AE“5—0 in 2 x(0,T),
Ue
u, =0, = 0 on 092 x (0,T), (118)

u(0,7) =ul(z)  nQ

ou,

- — 1 1
iy (0,2) =u.(z) in Q,

\

Theorem 9.4 Let @ be fulfilled, and assume that the initial data are
ul(@) = 1 (,60) 00 (@) € HE(Q),
€
withv® € HF(Y), and that e*ul(x) is bounded in L*() while e*yy (£,00) ul(z)

converges weakly to 0 in L*(Q).
If M\ (6y) < O the solution of @ can be written as

vV —A1(0p)t

uc(t,x) =e 4 (@/)1 (%,«90> 2im e St z) + re(t, a:))
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where lir% 7ellL2((0,1)xw) = O for any compact set w C RY, and v, converges
€E—

weakly in L*((0,T); H*(Q)) to the solution v of

2\/—)\1(00)% + AV =0 inQx(0,T),

v=0, g—vzo on 992 x (0,7T),
n
v(t =0,z) = 10°(2) in Q.

If Mi(6p) > 0 the solution of (118) satisifies

.\/mt . -z
uc(t,x) = €' a 62”906 ve(t, x),

where v, two-scale converges to ¥y (y, 0o)v(t, z) and v € L* ((0,T); H3(Q)) is
the solution of

22'\/)\1(90)% +Av=0 1inQx(0,7T),

0
v =0, 6_:;:0 on 092 x (0,7T),
v(t =0,z) = 30°(2) in €,

with A* defined by .
Again the proof is similar to those of Theorems and

Assumption is not the only possible one. In particular, it may happen
that VyVeA1(6p) does not vanish at the minimum value 6y. Therefore, we
now make assumption (9)), i.e. VoVoA;(6p) is positive definite instead of (97).

Remark 9.5 We give an explicit example where @ 15 satisfied rather than
(@). Consider an arbitrary periodic, symmetric, uniformly elliptic, operator
B of the form B = —div,(B(y)V,) + c(y) and its Bloch spectrum p,(0) <
w2(0) < .... Adding, if necessary, a sufficiently large positive constant to c,
we can assume that py(0) > C > 0. Considering the relation

(6—2i7ry~0826—2i7ry~9) ¢ — (e—Qiﬂy-GBG—QiTry-G) (6—27§7ry~986—2i7ry~0) ,¢

we conclude that the Bloch spectrum of the operator A = BB is (A, (0) = p2(0)), 5, -
According to Remark[2.1] the unique minimum point of py is attained at 6y =0
and the matriz VoVopy(0) is positive definite. Since pyi(0) is strictly positive,

the function A\i(0) = p3(0) also has a unique minimum point at 6y = 0 and

its Hessian at 0 is positive definite.
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Under assumption (9) we need to change the scaling of (112)) and consider
instead the new operator

1
A° = div div (@(fwv) ~div <A(f)v) + e +d, D). (119)
€ € € e €
Then, the homogenization of the parabolic equation is given by a result
similar to Theorem [3.2]

Theorem 9.6 Assume (@ Let u(t,x) be a solution of the parabolic equa-
tion with A° given by (119), and u? € L*(2) be an initial data of the

form
.00
ul(@) = v (5,60) 0 (w),
€
with v° € L*(Q). Then u, can be written as

A1(6g)t

uc(t,x) =e (@/}1 (E,(‘)()) 2im 0% ve(t x) + re(t, x))
€
where the remainder term r. satisfies
lim I7ell L2((0,m)xw) = 0

on any compact set w C RY, and v. converges weakly in L*((0,T); H'(Q))
to the solution v of the scalar homogenized problem

%—dw(A*Vv)er*( Jo=0 inQx(0,T),
v =0 on 002 x (0,7T),
0(0,2) = () in 9,

with A* = ﬁVngz\l(Qo) and d*(x f’]I‘N z,9) |1 (y, 0o)|*dy.

The proof of Theorem rehes on the same test function than in the
proof of Theorem . It should be noted that although u¢(¢,z) belongs to
L2((0,T); H2(2)), the sequence v¢, defined in Theorem [9.6} is only bounded
in L* ((0,T); H'(R")), uniformly with respect to e. This is due to assump-
tion @ which allows us to prove Lemma but not Lemma .

Of course, similar results can be obtained for the spectral problem and
for the hyperbolic equation: in both cases the homogenized operator is of
second-order in space as in Theorem
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