
HAL Id: hal-02083813
https://hal.science/hal-02083813

Submitted on 4 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Homogenization of periodic systems with large
potentials

Grégoire Allaire, Yves Capdeboscq, Andrey Piatnitski, Vincent Siess,
Muthusamy Vanninathan

To cite this version:
Grégoire Allaire, Yves Capdeboscq, Andrey Piatnitski, Vincent Siess, Muthusamy Vanninathan. Ho-
mogenization of periodic systems with large potentials. Archive for Rational Mechanics and Analysis,
2004, 174 (2), pp.179–220. �10.1007/s00205-004-0332-7�. �hal-02083813�

https://hal.science/hal-02083813
https://hal.archives-ouvertes.fr


Homogenization of periodic systems with large
potentials
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Abstract

We consider the homogenization of a system of second-order equa-
tions with a large potential in a periodic medium. Denoting by ε the
period, the potential is scaled as ε−2. Under a generic assumption on
the spectral properties of the cell problem, we prove that the solution
can be factorized as the product of a fast oscillating cell eigenfunction
and of a slowly varying solution of a scalar second-order equation.
This result applies to various types of equations such as parabolic, hy-
perbolic or eigenvalue problems, as well as fourth-order plate equation.
We also prove that for well-prepared initial data concentrating at the
bottom of a Bloch band the resulting homogenized tensor depends on
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the chosen Bloch band. Our method is based on a combination of clas-
sical homogenization techniques (two-scale convergence and suitable
oscillating test functions) and of Bloch waves decomposition.

1 Introduction

We study the homogenization of evolution problems for a singularly per-
turbed second order elliptic system with periodically oscillating coefficients.
To fix ideas, let us consider the following parabolic problem

∂uε
∂t
− div

(
A
(x
ε

)
∇uε

)
+
(
ε−2c

(x
ε

)
+ d

(
x,
x

ε

))
uε = 0 in Ω× (0, T ),

uε = 0 on ∂Ω× (0, T ),
uε(t = 0, x) = u0

ε(x) in Ω,

(1)
where Ω ⊂ RN is an open set and T > 0 a final time. The unknown uε(t, x) is
a vector-valued function from Ω× (0, T ) into RK . The coefficients A(y), c(y)
and d(x, y) are real and bounded functions defined for x ∈ Ω and y ∈ TN (the
unit torus). Furthermore, the tensor A(y) is symmetric, uniformly positive
definite, while c(y) and d(x, y) are symmetric with no positivity assumption.
The parabolic equation (1) is just an example: other evolution problems of
interest covered by this paper are the wave equation, parabolic fourth-order
equations, or spectral problems. A generalization to the Schrödinger equation
is the topic of another work [9]. The scalar case of (1) (i.e. K = 1 and uε
is a real-valued function) is well understood (see e.g. [4], [7], [8], [21], [28])
and the goal of this paper is to solve the case of systems of several coupled
equations. However, the method, as well as some results, are very different in
the system case. In order to convince the reader, we first describe the main
results and ideas of proof in the scalar case.

For K = 1 introduce the first eigencouple of the spectral cell problem

−divy (A(y)∇yψ1) + c(y)ψ1 = λ1ψ1 in TN , (2)

which, by the Krein-Rutman theorem, is simple and satisfies ψ1(y) > 0 in
TN . One can interpret physically the first eigenvalue λ1 as a measure of the
balance between the diffusion and potential terms. Since ψ1 does not vanish,
the unknown can be changed by writing a so-called factorization principle

vε(t, x) = e
λ1t

ε2
uε(t, x)

ψ1

(
x
ε

) , (3)
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and one check easily after some algebra that the new unknown vε is a solution
of a simpler equation

ψ2
1

(x
ε

) ∂vε
∂t
− div

(
(ψ2

1A)
(x
ε

)
∇vε

)
+ (ψ2

1d)
(
x,
x

ε

)
vε = 0 in Ω× (0, T ),

vε = 0 on ∂Ω× (0, T ),

vε(t = 0, x) = u0ε (x)

ψ1(xε )
in Ω.

(4)
The new parabolic equation (4) is simple to homogenize since it does not
contain any singularly perturbed term, and we thus obtain the following
result.

Theorem 1.1 Assume that (1) is a scalar problem (K = 1). Then, vε,
defined by (3), converges weakly in L2 ((0, T );H1

0 (Ω)) to the solution v of the
following homogenized problem

∂v

∂t
− div (A∗∇v) + d∗(x) v = 0 in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),
v(t = 0, x) = v0(x) in Ω,

(5)

where A∗ is a constant homogenized tensor and d∗(x) a homogenized coeffi-
cient.

It is clear from the above brief summary of the scalar case that the main
idea, namely the factorization principle (3), does not usually work in the case
of systems, i.e. K > 1. Indeed, in general there is no maximum principle,
and therefore no Krein-Rutman theorem, for systems. Thus, ψ1 may change
sign and the change of unknowns (3) is meaningless because vε blows up at
some points (see however [4] for a special system for which the maximum
principle holds true). Even if we perform a formal computation by assuming
that (3) is valid, the system satisfied by vε has not a simple structure and
it is not clear that it admits a homogenized limit, and even so, there is no
reason why the homogenized tensor should be coercive.

In order to homogenize (1) in the system case, our main new idea is
to use Bloch wave theory. Under a generic simplicity assumption for the
first eigenvalue and a non-degenerate quadratic behavior near its minimum
(see (9)) we obtain a result similar to Theorem 1.1 (see Theorem 3.2 for
details). The two main features are that the homogenized equation is always
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scalar and that the cell problem must sometimes be shifted, namely the
usual periodicity condition in (2) has to be replaced by a Bloch periodicity
condition. Our analysis applies not only to the parabolic problem (1) but
also to the corresponding spectral problem and hyperbolic system. Section
2 contains our notations, a brief review of Bloch wave theory and our main
assumption. Our main results are stated in Section 3 while the proofs are
distributed in Sections 4, 5 and 6.

In Section 7 we also obtain new homogenization results for some specific
well-prepared initial data (assuming that Ω = RN). More precisely, recall
that Bloch wave theory introduces the notion of Bloch bands, corresponding
to the range of cell eigenvalues or, in physical terms, to energy levels of
Fermi surfaces. Theorem 1.1 is concerned with the first Bloch band (or
ground state). If we assume that the initial data u0

ε is concentrating at the
bottom of a higher level Bloch band (see Section 7 for a precise statement),
we obtain a convergence result similar to Theorem 1.1 but with a different
homogenized tensor (depending on the level of the chosen Bloch band). Even
in the scalar case this result is new. In the context of Schrödinger equation
it is known as an effective mass theorem (see e.g. [22], [24], [25]). The fact
that the homogenized tensor depends on the initial data is very striking in
homogenization theory since usually effective properties are proved to be
intrinsic in the sense that they do not depend on the domain, the applied
forces or source terms, and the initial data.

In Section 8 we show that under a new assumption on the first Bloch
eigenvalue a different homogenized limit can be obtained for (1). Indeed, the
homogenized problem is a parabolic fourth-order equation.

Finally, Section 9 is devoted to an extension of our previous results to a
different model, namely we consider a fourth-order equation. We first obtain
homogenized limits similar to those of Section 3 but with a fourth-order
operator instead of a second-order one. Then, under a different assumption
on the first Bloch eigenvalue, we prove that a second-order homogenized limit
can also be obtained (a situation which is symmetric from that in Section
8). Our method could be generalized to other models. In particular, its
application to the Schrödinger equation is of paramount interest. However,
since much more can be deduced in the Schrödinger case, we address this
problem in a separate work [9].

There are several motivations for studying the homogenization of the
singularly perturbed system (1). First, (1) is a model of reaction-diffusion
equations in periodic media (like a porous medium or a crystal in solid state
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physics) and the large potential is classical when studying long time asymp-
totics. Second, the spectral problem for (1) is an usual model in nuclear
reactor physics, the so-called simplified transport equation. This is a set of
diffusion equations for the even moments of the neutron flux (moments with
respect to the angular velocity variable). One of the main features of this
simplified transport system is that it does not satisfy a maximum principle.
So our work is the first rigorous study of homogenization for this problem,
which is of paramount interest for fast numerical computations in the nuclear
industry (see [27] for more details and numerical applications). Third, as a
limit case of large potentials we recover perforated domains with periodic
holes supporting Dirichlet boundary conditions (take c = +∞ in the holes
and c = 0 elsewhere). In such a case the term of order ε−2 disappear from
the equation (1) although there is still a singular perturbation due to the
presence of Dirichlet holes. The scalar setting, K = 1, was studied in [28]
and we extend this result to the vector-valued case. One possible application
is the study of a composite material with fixed incusions in the context of
linear elasticity. Fourth, even in the case when c ≡ 0 (i.e. without singular
perturbation) our homogenization result for initial data concentrating at the
bottom of high level Bloch bands is new and can be seen as a type of cor-
rector result for capturing an initial layer in time in the context of classical
homogenization [12] (see Remark 7.4).

2 Notations and Bloch decomposition

We first give our precise notations and assumptions on the coefficients A(y)
and c(y) involved in equation (1). Our tensorial notations are the following.
Recall that N is the space dimension, and K is the system dimension, i.e. all
unknown functions are defined with values in RK . We adopt the convention
that Latin indices i, j belong to {1, .., N}, i.e. refer to spatial coordinates,
while Greek indices α, β vary in {1, .., K}. The K ×K matrices c and d are
symmetric, with entries cαβ, dαβ respectively, and have no specific positivity
properties. The tensor A acts on K × N matrices. Denoting by (uα)1≤α≤K
the components of a vector-valued function u, its gradient is the K × N
matrix ∇u defined by its entries

∇u =

(
∂uα
∂xi

)
1≤α≤K, 1≤i≤N

, (6)
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and the product A∇u is also a K × N matrix defined with the Einstein
summation convention by

A∇u =

(
Aαβij

∂uα
∂xi

)
1≤β≤K, 1≤j≤N

. (7)

The tensor A is symmetric in the sense that

Aξ · ξ′ = Aξ′ · ξ for any ξ, ξ′ ∈ RK×N ,

and it is uniformly coercive, i.e. there exists ν > 0 such that for a.e. y ∈ TN

A(y)ξ · ξ ≥ ν|ξ|2 for any ξ ∈ RK×N .

We assume that A(y) and c(y) are measurable bounded periodic functions,
i.e. their entries belong to L∞(TN), while d(x, y) is measurable and bounded
with respect to x, and periodic continuous with respect to y, i.e. its entries
belong to L∞

(
Ω;C(TN)

)
(other assumptions are possible).

A formal two-scale asymptotic expansion (in the spirit of [11]) shows that
the leading term in the ansatz of uε is the solution of an equation in the unit
cell TN . Therefore, we need to study a microscopic version of (1). It turns
out that the key cell problem is the following Bloch (or shifted) spectral cell
equation

−(divy + 2iπθ)
(
A(y)(∇y + 2iπθ)ψn

)
+ c(y)ψn = λn(θ)ψn in TN , (8)

which, as a compact self-adjoint complex-valued operator on L2(TN), admits
a countable sequence of real increasing eigenvalues (λn)n≥1 and normalized
eigenfunctions (ψn)n≥1 with ‖ψn‖L2(TN ) = 1. The dual parameter θ is called
the Bloch frequency and it runs in the dual cell of TN , i.e. by periodicity it
is enough to consider θ ∈ TN . We refer to [11], [17] for more details about
the Bloch spectral problem (8).

Our main assumption is that there exists a Bloch parameter θ0 ∈ TN
such that

(i) θ0 is the unique minimizer of λ1(θ) in TN ,
(ii) λ1(θ0) is a simple eigenvalue,
(iii) the Hessian matrix ∇θ∇θλ1(θ0) is positive definite.

(9)
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Remark 2.1 In the scalar case, K = 1, assumption (9) is satisfied with
θ0 = 0. Indeed, by using the maximum principle, it is easily seen that the
minimum of λ1(θ) is uniquely attained at 0, and then that the Hessian matrix
∇θ∇θλ1(0), being equal to the usual homogenized matrix (see e.g. [18]), is
positive definite. On the other hand, for any K ≥ 1 and in the absence of
zero-order term, i.e. c = 0, it is easy to check that θ0 = 0 is the unique
minimizer of λ1(θ) (however, λ1(0) may be not simple and/or the Hessian
matrix may be not positive definite). In full generality, there always exist a
minimizer of λ1(θ) but it may be non-unique and λ1(θ0) has no reason to
be simple (although there are some results of generic simplicity in similar
contexts, see [1]).

Remark 2.2 In a slightly different context, namely for a system of linear
elasticity which is not uniformyl elliptic but simply satisfies the Hadamard
ellipticity condition (in other words the associed energy is rank-one convex
but not convex), there are numerical and physical evidences that the minimal
value θ0 in (9) is not zero [19].

Remark 2.3 Assumption (9) can be slightly weakened, see Remarks 4.5 and
4.6.

Under assumption (9) it is a classical matter to prove that the first eigen-
couple of (8) is analytic at θ0. Introducing the operator A(θ) defined on
L2(TN)K by

A(θ)ψ = −(divy + 2iπθ)
(
A(y)(∇y + 2iπθ)ψ

)
+ c(y)ψ − λ1(θ)ψ, (10)

it is easy to compute the derivatives of (8) for n = 1. Denoting by (ek)1≤k≤N
the canonical basis of RN , the first derivative satisfies

A(θ)
∂ψ1

∂θk
= 2iπekA(y)(∇y+2iπθ)ψ1+(divy+2iπθ) (A(y)2iπekψ1)+

∂λ1

∂θk
(θ)ψ1,

(11)
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and the second derivative is

A(θ)
∂2ψ1

∂θk∂θl
= 2iπekA(y)(∇y + 2iπθ)

∂ψ1

∂θl
+ (divy + 2iπθ)

(
A(y)2iπek

∂ψ1

∂θl

)
+2iπelA(y)(∇y + 2iπθ)

∂ψ1

∂θk
+ (divy + 2iπθ)

(
A(y)2iπel

∂ψ1

∂θk

)
+
∂λ1

∂θk
(θ)

∂ψ1

∂θl
+
∂λ1

∂θl
(θ)

∂ψ1

∂θk

−4π2ekA(y)elψ1 − 4π2elA(y)ekψ1 +
∂2λ1

∂θl∂θk
(θ)ψ1

(12)
For θ = θ0 we have ∇θλ1(θ0) = 0, thus equations (11) and (12) simplify and
we find

∂ψ1

∂θk
= 2iπζk,

∂2ψ1

∂θk∂θl
= −4π2χkl, (13)

where ζk is the solution of

A(θ0)ζk = ekA(y)(∇y +2iπθ0)ψ1 +(divy +2iπθ0) (A(y)ekψ1) in TN , (14)

and χkl is the solution of

A(θ0)χkl = ekA(y)(∇y + 2iπθ0)ζl + (divy + 2iπθ0) (A(y)ekζl)

+elA(y)(∇y + 2iπθ0)ζk + (divy + 2iπθ0) (A(y)elζk)

+ekA(y)elψ1 + elA(y)ekψ1 −
1

4π2

∂2λ1

∂θl∂θk
(θ0)ψ1 in TN .

(15)
There exists a unique solution of (14), up to the addition of a multiple of
ψ1. Indeed, the right hand side of (14) satisfies the required compatibility
condition (i.e. it is orthogonal to ψ1) because ζk is just a multiple of the
partial derivative of ψ1 with respect to θk which necessarily exists, see (11).
On the same token, there exists a unique solution of (15), up to the addition
of a multiple of ψ1. The compatibility condition of (15) yields a formula for
the Hessian matrix ∇θ∇θλ1(θ0).

We now recall some results on the Bloch decomposition associated to the
spectral problem (8) (see e.g. [11], [17]).
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Lemma 2.4 Let u(y) ∈ L2(RN)K. Define αk(θ) =
∫
TN u(y)·ψk(y, θ)e−2iπθ·ydy.

Then,

u(y) =
∑
k≥1

∫
TN
αk(θ)ψk(y, θ)e

2iπθ·ydθ.

Furthermore, if v(y) =
∑

k≥1

∫
TN βk(θ)ψk(y, θ)e

2iπθ·ydθ in L2(RN)K, we have∫
RN
u(y) · v(y) dy =

∑
k≥1

∫
TN
αk(θ)βk(θ) dθ.

In the sequel we shall need a rescaled version of Lemma 2.4 that we now
describe. Upon the change of variable y = x

ε
, we define uε(x) = ε−N/2u(y)

which satisfies ‖uε‖L2(RN )K = ‖u‖L2(RN )K . Applying Lemma 2.4 we deduce
the following rescaled Bloch transform

uε(x) =
∑
k≥1

∫
ε−1TN

αεk(η)ψk(
x

ε
, θ0 + εη)e2iπη·xe2iπ

θ0·x
ε dη, (16)

with η = θ−θ0
ε

and αεk(η) = εN/2αk(θ). The same orthogonality property
holds true ∫

RN
uε(x) · vε(x) dx =

∑
k≥1

∫
ε−1TN

αεk(η)β
ε

k(η) dη.

3 Main results

Let Ω ⊂ RN be an open set (bounded or not). Let 0 < T < +∞ be a final
time. We first consider the following parabolic problem

∂uε
∂t
− div

(
A
(x
ε

)
∇uε

)
+

(
c
(
x
ε

)
ε2

+ d
(
x,
x

ε

))
uε = 0 in Ω× (0, T ),

uε = 0 on ∂Ω× (0, T ),
uε(t = 0, x) = u0

ε(x) in Ω.
(17)

The unknown uε(t, x) is vector-valued, i.e. it is a function from (0, T ) ×
Ω into RK with K ≥ 1. Assuming that the initial data u0

ε belongs to
L2(Ω)K it is a classical result that there exists a unique solution of (17)
in C

(
(0, T );L2(Ω)K

)
∩ L2

(
(0, T );H1

0 (Ω)K
)
.
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Since the matrix c does not satisfy any positivity property, we can not
obtain any a priori estimate directly from (17). On the other hand, the cell
spectral problem and assumption (9) indicate that λ1(θ0) governs the time
decay (or growth, according to its sign) of the solution uε. Therefore, we first
perform a time renormalization in the spirit of the factorization principle (3)
and we introduce a new unknown

ũε(t, x) = e
λ1(θ0)t

ε2 uε(t, x), (18)

which satisfies
∂ũε
∂t
− div

(
A
(x
ε

)
∇ũε

)
+
c
(
x
ε

)
− λ1(θ0)

ε2
ũε + d

(
x,
x

ε

)
ũε = 0 in Ω× (0, T ),

ũε = 0 on ∂Ω× (0, T ),
ũε(t = 0, x) = u0

ε(x) in Ω.
(19)

Then, we can obtain the following a priori estimate.

Lemma 3.1 There exists a constant C > 0 which does not depend on ε (but
may depend on T ) such that the solution of (19) satisfies

‖ũε‖L∞((0,T );L2(Ω)K) + ε‖∇ũε‖L2((0,T )×Ω)N×K ≤ C‖u0
ε‖L2(Ω)K . (20)

Theorem 3.2 Assume (9) and that the initial data u0
ε ∈ L2(Ω)K is of the

form

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε v0(x), (21)

with v0 ∈ L2(Ω). The solution of (17) can be written as

uε(t, x) = e−
λ1(θ0)t

ε2

(
ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x)

)
, (22)

where rε is a vector-valued remainder term such that

lim
ε→0
‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN , (23)

and vε is a scalar sequence which converges weakly in L2 ((0, T );H1(Ω)) to
the solution v of the scalar homogenized problem

∂v

∂t
− div (A∗∇v) + d∗(x) v = 0 in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),
v(t = 0, x) = v0(x) in Ω,

(24)

with A∗ = 1
4π2∇θ∇θλ1(θ0) and d∗(x) =

∫
TN d(x, y)ψ1(y) · ψ1(y) dy.

10



Remark 3.3 Of course, if Ω is bounded, one can take ω = Ω in (23).

Remark 3.4 Assumption (21) is not necessary for proving Theorem 3.2.

For example, it still holds true with the weaker assumption that u0
ε(x)e−2iπ

θ0·x
ε

two-scale converges to ψ1(y, θ0)v0(x) with v0 ∈ L2(Ω) (see [2], [23] for the
notion of two-scale convergence). Furthermore, for any kind of initial data
we can still obtain a similar result, but the homogenized initial condition v0 is
just defined as some type of weak two-scale limit (which may well be zero). In
other words, there is no need to have ”well-prepared” initial data in Theorem
3.2.

Remark 3.5 Theorem 3.2 still holds true if we add to equation (17) a non-
linear term of order ε0. Typically, we can add a non-linear term of the
type g(x, x

ε
, uε) where g(x, y, ξ) is an homogeneous of degree one, Lipschitz

function with respect to ξ such that

|g(x, y, ξ)− g(x, y, ξ′)| ≤ C|ξ − ξ′|, g(x, y, tξ) = tg(x, y, ξ) ∀ t > 0.

In such a case, the homogenized problem (24) has an additional zero-order
term which is g∗(x, v) with g∗(x, v) =

∫
TN g(x, y, ψ1(y, θ0)v) · ψ1(y, θ0) dy.

Similarly, it is possible to add to (17) a source term of the type

fε(t, x) = e−
λ1(θ0)t

ε2 e2iπ
θ0·x
ε f

(
t, x,

x

ε

)
.

It yields a source term f ∗(t, x) =
∫
TN f(t, x, y) · ψ1(y) dy in the homogenized

equation (24).

We now consider the eigenvalue problem in a bounded domain Ω (the
case of Ω = RN is also discussed in Section 5) −div

(
A
(x
ε

)
∇uε

)
+

(
c
(
x
ε

)
ε2

+ d
(
x,
x

ε

))
uε = λεuε in Ω,

uε = 0 on ∂Ω.

(25)

Since Ω is assumed to be bounded, problem (25) has a discrete spectrum

λε1 ≤ λε2 ≤ . . . ≤ λεn . . .→ +∞,

with eigenfunctions denoted by uεk, normalized by ‖uεk‖L2(Ω)K = 1.
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Theorem 3.6 For each k ≥ 1 we have

λεk =
λ1(θ0)

ε2
+ µk + o(1) with lim

ε→0
o(1) = 0,

and the corresponding eigenvector uεk(x) admits the representation

uεk(x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vεk(x) + rεk(x) (26)

where

lim
ε→0
‖rεk‖L2(Ω)K = 0, ‖vεk‖H1(Ω) ≤ C, lim

ε→0
‖vεk‖L2(Ω) = 1,

and any limit point vk, as ε → 0, of the scalar sequence vεk is a normalized
eigenfunction associated to the k-th eigenvalue µk of the scalar homogenized
spectral problem {

−div (A∗∇v) + d∗(x)v = µv in Ω,
v = 0 on ∂Ω,

(27)

with A∗ = 1
4π2∇θ∇θλ1(θ0) and d∗(x) =

∫
TN d(x, y)ψ1(y) · ψ1(y) dy.

Furthermore, if µk is a simple eigenvalue of (27), the entire sequence vεk
converges to the homogenized eigenfunction vk.

Finally we address the following hyperbolic problem

∂2uε
∂t2
− div

(
A
(x
ε

)
∇uε

)
+
c
(
x
ε

)
ε2

uε = 0 in Ω× (0, T ),

uε = 0 on ∂Ω× (0, T ),
uε(t = 0, x) = u0

ε(x) in Ω,
∂uε
∂t

(t = 0, x) = u1
ε(x) in Ω.

(28)

The unknown uε(t, x) is vector-valued, i.e. it is a function from (0, T ) × Ω
into RK with K ≥ 1. Assuming that the initial data are u0

ε ∈ H1
0 (Ω)K

and u1
ε ∈ L2(Ω)K , (28) admits a unique solution uε ∈ C

(
[0, T ];H1

0 (Ω)K
)
∩

C1
(
[0, T ];L2(Ω)K

)
. The scalar case K = 1 was addressed in [3]. Depending

on the sign of the minimal eigenvalue λ1(θ0) of the cell problem (8), we obtain
different asymptotic behavior for (28). We begin with the case λ1(θ0) = 0
which does not require any time renormalization.
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Theorem 3.7 Assume (9), λ1(θ0) = 0 and that the initial data are of the
form

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε v0(x) ∈ H1

0 (Ω)K ,

u1
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε v1(x) ∈ L2(Ω)K ,

(29)

with v0 ∈ H1
0 (Ω) and v1 ∈ L2(Ω). The solution of (28) can be written as

uε(t, x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x), (30)

where rε is a vector-valued remainder term such that

lim
ε→0
‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN , (31)

and vε is a scalar sequence which converges weakly in L2 ((0, T );H1(Ω)) to
the solution v of the scalar homogenized problem

∂2v

∂t2
− div (A∗∇v) = 0 in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),
v(t = 0, x) = v0(x) in Ω,
∂v
∂t

(t = 0, x) = v1(x) in Ω,

(32)

with A∗ = 1
4π2∇θ∇θλ1(θ0).

When λ1(θ0) 6= 0, we can not homogenize directly (28). As in the scalar
case [3] we must rather perform a time rescaling and consider large times of
order ε−1. In other words, instead of (28) we now consider

ε2
∂2uε
∂t2
− div

(
A
(x
ε

)
∇uε

)
+
c
(
x
ε

)
ε2

uε = 0 in Ω× (0, T )

uε = 0 on ∂Ω× (0, T )
uε(t = 0, x) = u0

ε(x) in Ω
∂uε
∂t

(t = 0, x) = u1
ε(x) in Ω.

(33)

Let us first assume that λ1(θ0) < 0. We perform a time renormalization
analogous to (18) and we introduce a new unknown

ũε(t, x) = e−
√
−λ1(θ0)t
ε2 uε(t, x), (34)
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which satisfies
ε2
∂2ũε
∂t2

+ 2
√
−λ1(θ0)

∂ũε
∂t
− div

(
A
(x
ε

)
∇ũε

)
+
c
(
x
ε

)
− λ1(θ0)

ε2
ũε = 0 in Ω× (0, T ),

ũε = 0 on ∂Ω× (0, T ),
ũε(t = 0, x) = u0

ε(x) in Ω,

∂ũε
∂t

(t = 0, x) = u1
ε(x)−

√
−λ1(θ0)

ε2
u0
ε(x) in Ω.

(35)
In this case we obtain a parabolic homogenized equation.

Theorem 3.8 Assume (9), λ1(θ0) < 0 and that the initial data is

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε v0(x) ∈ H1

0 (Ω)K , (36)

with v0 ∈ H1
0 (Ω), and that ε2u1

ε(x) is bounded in L2(Ω)K while ε2ψ1

(
x
ε
, θ0

)
·

u1
ε(x) converges weakly to 0 in L2(Ω). The solution of (35) can be written as

uε(t, x) = e

√
−λ1(θ0)t
ε2

(
ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x)

)
, (37)

where rε is a vector-valued remainder term such that

lim
ε→0
‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN , (38)

and vε converges weakly in L2 ((0, T );H1(Ω)) to the solution v of the scalar
homogenized problem 2

√
−λ1(θ0)∂v

∂t
− div (A∗∇v) = 0 in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),
v(t = 0, x) = 1

2
v0(x) in Ω,

(39)

with A∗ = 1
2
∇θ∇θλ1(θ0).

Remark 3.9 The one half factor in front of the initial data in the homoge-
nized problem (39) is quite surprising. It arises because the initial velocity in
(35) contains some contribution of u0

ε . As already explained in the scalar case
[3], there is an initial layer in time in (35) which is not taken into account
by Theorem 3.8.
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Let us now assume that λ1(θ0) > 0. We perform another time renormal-
ization and we introduce a new unknown

ũε(t, x) = e−i
√
λ1(θ0)t

ε2 uε(t, x), (40)

which satisfies
ε2
∂2ũε
∂t2

+ 2i
√
λ1(θ0)

∂ũε
∂t
− div

(
A
(x
ε

)
∇ũε

)
+
c
(
x
ε

)
− λ1(θ0)

ε2
ũε = 0 in Ω× (0, T ),

ũε = 0 on ∂Ω× (0, T ),
ũε(t = 0, x) = u0

ε(x) in Ω,

∂ũε
∂t

(t = 0, x) = u1
ε(x)− i

√
λ1(θ0)

ε2
u0
ε(x) in Ω.

(41)
In this case we obtain a Schrödinger type homogenized equation.

Theorem 3.10 Assume (9), λ1(θ0) > 0 and that the initial data is

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε v0(x) ∈ H1

0 (Ω)K , (42)

with v0 ∈ L2(Ω), and that ε2u1
ε(x) is bounded in L2(Ω)K while ε2ψ1

(
x
ε
, θ0

)
·

u1
ε(x) converges weakly to 0 in L2(Ω). The solution of (35) can be written as

uε(t, x) = ei
√
λ1(θ0)t

ε2 e2iπ
θ0·x
ε vε(t, x), (43)

where vε two-scale converges to ψ1(y, θ0)v(t, x) and v ∈ L2 ((0, T );H1
0 (Ω)) is

the solution of the scalar homogenized problem
2i
√
λ1(θ0)

∂v

∂t
− div (A∗∇v) = 0 in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),
v(t = 0, x) = 1

2
v0(x) in Ω,

(44)

with A∗ = 1
2
∇θ∇θλ1(θ0).

Remark 3.11 All the results in the hyperbolic case (Theorems 3.7, 3.8, and
3.10) hold true when we add a zero-order term of the type d

(
x, x

ε

)
uε, where

d(x, y) is a symmetric non-negative matrix with entries in L∞
(
Ω;C(TN)

)
.

This yields a zero-order term in the homogenized problem which is precisely
d∗(x) =

∫
TN d(x, y)ψ1(y) · ψ1(y) dy.
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4 Proofs in the parabolic case

Notation: for any function φ(x, y) defined on RN × TN , we denote by φε

the function φ(x, x
ε
).

Proof of Lemma 3.1. We multiply equation (19) by ũε and we integrate
by parts to obtain

1

2

∫
Ω

|ũε(t, x)|2dx− 1

2

∫
Ω

|u0
ε(x)|2dx+

∫ t

0

∫
Ω

d
(
x
x

ε

)
ũε · ũε ds dx

+

∫ t

0

∫
Ω

(
A
(x
ε

)
∇ũε · ∇ũε +

c
(
x
ε

)
− λ1(θ0)

ε2
ũε · ũε

)
ds dx = 0.

(45)

If we can check that the last integral in (45) is non negative, the lemma is
proved by a standard Gronwall inequality. Extending ũε by zero outside Ω
and changing the variable as y = x

ε
, a sufficient condition is to prove that,

for any u ∈ H1(RN)K ,∫
RN

(A(y)∇u · ∇u+ (c(y)− λ1(θ0))u · u) dy ≥ 0.

Applying the Bloch decomposition of Lemma 2.4 to u yields∫
RN

(A(y)∇u · ∇u+ (c(y)− λ1(θ0))u · u) dy =
∑
k≥1

∫
TN
|αk(θ)|2 (λk(θ)− λ1(θ0)) dθ

which is non negative by assumption (9). 2

Proof of Theorem 3.2. To simplify the exposition we forget the notation ·̃
for the solution ũε of (19). Equivalently, we could have subtracted from c(y)
an adequate constant, so that λ1(θ0) = 0 and uε = ũε. Define a sequence wε
by

wε(t, x) = uε(t, x)e−2iπ
θ0·x
ε .

By the a priori estimate of Lemma 3.1 we have

‖wε‖L∞((0,T );L2(Ω)K) + ε‖∇wε‖L2((0,T )×Ω)K ≤ C,

and applying the compactness of two-scale convergence (see [2], [23]), up to a
subsequence there exists a limit w(t, x, y) ∈ L2

(
(0, T )× Ω;H1(TN)K

)
such

that
wε

2s
⇀ w and ε∇wε

2s
⇀ ∇yw

16



in the sense of two-scale convergence.

First step. We multiply (19) by the complex conjugate of ε2φ(t, x, x
ε
)e2iπ

θ0·x
ε

where φ(t, x, y) is a smooth test function defined on [0, T ) × Ω × TN , with
compact support in [0, T )× Ω, and with values in CK . Integrating by parts
this yields

ε2
∫

Ω

u0
ε · φ

ε
e−2iπ

θ0·x
ε dx− ε2

∫ T

0

∫
Ω

wε ·
∂φ

ε

∂t
dt dx

+

∫ T

0

∫
Ω

Aε(ε∇+ 2iπθ0)wε · (ε∇− 2iπθ0)φ
ε
dt dx

+

∫ T

0

∫
Ω

(cε − λ1(θ0) + ε2dε)wε · φ
ε
dt dx = 0.

Passing to the two-scale limit yields the variational formulation of

−(divy + 2iπθ)
(
A(y)(∇y + 2iπθ)w

)
+ c(y)w = λ1(θ0)w in TN .

By the simplicity of λ1(θ0), this implies that there exists a scalar function
v(t, x) ∈ L2 ((0, T )× Ω) (possibly complex-valued) such that

w(t, x, y) = v(t, x)ψ1(y, θ0). (46)

Second step. We multiply (19) by the complex conjugate of

Ψε = e2iπ
θ0·x
ε

(
ψ1(

x

ε
, θ0)φ(t, x) + ε

N∑
k=1

∂φ

∂xk
(t, x)ζk(

x

ε
)

)
(47)

where φ(t, x) is a smooth, compactly supported, test function defined from
[0, T ) × Ω into R, and ζk(y) is the solution of (14). After some algebra we
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found that∫
Ω

Aε∇uε · ∇Ψεdx =

∫
Ω

Aε(∇+ 2iπ
θ0

ε
)(φwε) · (∇− 2iπ

θ0

ε
)ψ

ε

1

+ε

∫
Ω

Aε(∇+ 2iπ
θ0

ε
)(
∂φ

∂xk
wε) · (∇− 2iπ

θ0

ε
)ζ
ε

k

−
∫

Ω

Aεek
∂φ

∂xk
wε · (∇− 2iπ

θ0

ε
)ψ

ε

1

+

∫
Ω

Aε(∇+ 2iπ
θ0

ε
)(
∂φ

∂xk
wε) · ekψ

ε

1

−
∫

Ω

Aεwε∇
∂φ

∂xk
· ekψ

ε

1

−
∫

Ω

Aεwε∇
∂φ

∂xk
· (ε∇− 2iπθ0)ζ

ε

k

+

∫
Ω

Aεζ
ε

k(ε∇+ 2iπθ0)wε · ∇
∂φ

∂xk

(48)

Now, for any smooth compactly supported test function Φ from Ω into CK ,
we deduce from the definition of ψ1 that∫

Ω

Aε(∇+ 2iπ
θ0

ε
)ψε1 · (∇− 2iπ

θ0

ε
)Φ +

1

ε2

∫
Ω

(cε − λ1(θ0))ψε1 · Φ = 0, (49)

and from the definition of ζk∫
Ω

Aε(∇+ 2iπ
θ0

ε
)ζεk · (∇− 2iπ

θ0

ε
)Φ +

1

ε2

∫
Ω

(cε − λ1(θ0))ζεk · Φ =

ε−1

∫
Ω

Aε(∇+ 2iπ
θ0

ε
)ψε1 · ekΦ− ε−1

∫
Ω

Aεekψ
ε
1 · (∇− 2iπ

θ0

ε
)Φ.

(50)

Combining (48) with the potential term, we easily check that the first line
of its right hand side cancels out because of (49) with Φ = φwε, and the
next three lines cancel out because of (50) with Φ = ∂φ

∂xk
wε. On the other

hand, we can pass to the limit in the three last terms of (48). Finally, (19)
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multiplied by Ψε yields after simplification∫
Ω

u0
ε ·Ψε(t = 0)dx−

∫ T

0

∫
Ω

wε ·
(
ψ
ε

1

∂φ

∂t
+ ε

∂2φ

∂xk∂t
ζ
ε

k

)
dt dx

−
∫ T

0

∫
Ω

Aεwε∇
∂φ

∂xk
· ekψ

ε

1dt dx

−
∫ T

0

∫
Ω

Aεwε∇
∂φ

∂xk
· (ε∇− 2iπθ0)ζ

ε

kdt dx

+

∫ T

0

∫
Ω

Aεζ
ε

k(ε∇+ 2iπθ0)wε · ∇
∂φ

∂xk
dt dx

+

∫ T

0

∫
Ω

dεwε ·Ψε dt dx = 0.

(51)

Passing to the two-scale limit in each term of (51) gives∫
Ω

∫
TN
ψ1v

0 · ψ1φ(t = 0)dx dy −
∫ T

0

∫
Ω

∫
TN
ψ1v · ψ1

∂φ

∂t
dt dx dy

−
∫ T

0

∫
Ω

∫
TN
Aψ1v∇

∂φ

∂xk
· ekψ1dt dx dy

−
∫ T

0

∫
Ω

∫
TN
Aψ1v∇

∂φ

∂xk
· (∇y − 2iπθ0)ζkdt dx dy

+

∫ T

0

∫
Ω

∫
TN
Aζk(∇y + 2iπθ0)ψ1v · ∇

∂φ

∂xk
dt dx dy

+

∫ T

0

∫
Ω

∫
TN
dψ1v · ψ1φ dt dx dy = 0.

(52)
Recalling the normalization

∫
TN |ψ1|2dy = 1, and introducing

A∗jk =

∫
TN

(
Aψ1ej · ekψ1 + Aψ1ek · ejψ1

+Aψ1ej · (∇y − 2iπθ0)ζk + Aψ1ek · (∇y − 2iπθ0)ζj

−Aζk(∇y + 2iπθ0)ψ1 · ej − Aζj(∇y + 2iπθ0)ψ1 · ek
)
dy,

(53)

and d∗(x) =
∫
TN d(x, y)ψ1(y) · ψ1(y) dy, (52) is equivalent to∫

Ω

v0φ(0)dx−
∫ T

0

∫
Ω

(
v
∂φ

∂t
+ A∗v · ∇∇φ− d∗(x)vφ

)
dt dx = 0
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which is a very weak form of the homogenized equation (24). Note, however,
that we can not recover the Dirichlet boundary condition from (52). To this
end we shall use the compactness Lemma 4.2 below which was not required
so far (and which holds true for functions depending on time, as claimed
in Remark 4.3). Since, by the parabolic energy estimate, assumption (55)
is satisfied, we deduce that there exists a bounded scalar sequence vε in
L2
(
(0, T );H1(RN)

)
such that

uε(t, x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x), (54)

and limε→0 ‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN . Up to a subse-
quence, vε converges weakly to a limit v in L2

(
(0, T );H1(RN)

)
, which nec-

essarily coincides with the two-scale limit obtained in (46). If the compact
set ω lies outside Ω, i.e. ω ⊂

(
RN \ Ω

)
, we deduce from (54) that

ψ1

(x
ε
, θ0

)
vε(t, x) = −rε(t, x) in ω × (0, T ),

and since ψ1 is normalized, we obtain

‖rε‖2
L2((0,T )×ω)K =

∫
ω

|ψ1

(x
ε
, θ0

)
|2|vε(x)|2dx→

∫
ω

|v(x)|2dx = 0.

Therefore, we deduce that v = 0 in any compact set ω outside from Ω. This
implies that v belongs to H1

0 (Ω).
The compatibility condition of equation (15) for the second derivative of

ψ1 yields that the matrixA∗, defined by (53), is indeed equal to 1
4π2∇θ∇θλ1(θ0),

and thus is real, symmetric, positive definite by assumption (9). Therefore,
the homogenized problem (24) is well posed. By uniqueness of the solution
of the homogenized problem (24), we deduce that the entire sequence vε
converges to v (which is a real-valued function). 2

Remark 4.1 As usual in periodic homogenization, the choice of the test
function Ψε, defined by (47), is dictated by the formal two-scale asymptotic
expansion that can be obtained for the solution uε of (17). Indeed, if one
admits that the ansatz of uε starts with the following two exponential terms
(which is not obvious a priori !), then a simple and formal computation shows
that

uε(t, x) ≈ e−
λ1(θ0)t

ε2 e2iπ
θ0·x
ε

(
ψ1

(x
ε
, θ0

)
v(t, x) + ε

N∑
k=1

∂v

∂xk
(t, x)ζk(

x

ε
)

)
,

where v is the homogenized solution of (24).
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Lemma 4.2 Let uε be a bounded sequence in L2(RN)K. Assume that there
exists a finite constant C such that∫

RN

(
A
(x
ε

)
∇uε · ∇uε +

c
(
x
ε

)
− λ1(θ0)

ε2
uε · uε

)
dx ≤ C. (55)

Then, under assumption (9),

uε(x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(x) + rε(x), (56)

where vε is a bounded scalar sequence in H1(RN) and limε→0 ‖rε‖L2(ω)K = 0
for any compact set ω ⊂ RN .

Remark 4.3 If we consider functions depending on time, Lemma 4.2 is eas-
ily extended as follows. Assuming that uε is a bounded sequence in L2((0, T )×
RN)K and that (55) holds true when integrated on the time interval (0, T ),
the decomposition (56) is still valid with vε bounded in L2((0, T );H1(RN))
and rε converging strongly to 0 in L2((0, T );L2

loc(RN)).

Remark 4.4 If the sequence uε further vanishes outside an open set Ω, then
we can obtain the representation (26) with vε uniformly bounded in H1

0 (Ω).
Indeed, it is enough to project the function vε ∈ H1(RN), given by Lemma
4.2, on H1

0 (Ω).

Proof. Our proof is in the spirit of the previous works [18], [16]. Applying
the rescaled Bloch decomposition (16) to uε(x) with η = θ−θ0

ε
, we have

uε(x) =
∑
k≥1

∫
ε−1TN

αεk(η)ψk(
x

ε
, θ0 + εη)e2iπη·xe2iπ

θ0·x
ε dη,

and ∫
RN

(
A
(x
ε

)
∇uε · ∇uε +

c
(
x
ε

)
− λ1(θ0)

ε2
uε · uε

)
dx

= ε−2
∑
k≥1

∫
ε−1TN

|αεk(η)|2
(
λk(θ0 + εη)− λ1(θ0)

)
dη.

Since λk(θ)− λ1(θ0) ≥ 0 and, for k ≥ 2, λk(θ)− λ1(θ0) ≥ C > 0, we deduce
from the bound (55) that∑

k≥2

∫
ε−1TN

|αεk(η)|2dη ≤ Cε2.
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For k = 1, by assumption (9) there exists C > 0 such that

λ1(θ)− λ1(θ0) ≥ C|θ − θ0|2 ∀θ ∈ TN ,

and thus (55) implies ∫
ε−1TN

|η|2|αε1(η)|2dη ≤ C.

Extending αε1(η) by zero outside ε−1TN , and using the inverse Fourier trans-
form, we deduce that the scalar sequence vε, defined by

vε(x) =

∫
RN
αε1(η)e2iπη·xdη,

is bounded in H1(RN).
Introducing a parameter 0 < q < 1 (to be chosen later) we define a cut-off

of vε by

ṽε =

∫
|η|<ε−q

αε1(η)e2iπη·xdη.

The difference between vε and ṽε is small since

‖ṽε − vε‖2
L2(RN ) =

∫
|η|>ε−q

|αε1(η)|2dη ≤ ε2q
∫
RN
|η|2|αε1(η)|2dη ≤ Cε2q.

Similarly we have∫
ε−1TN

αε1(η)ψ1(
x

ε
, θ0+εη)e2iπη·xe2iπ

θ0·x
ε dη =

∫
|η|<ε−q

αε1(η)ψ1(
x

ε
, θ0+εη)e2iπη·xe2iπ

θ0·x
ε dη+tε(x),

where tε is small, i.e.

‖tε‖2
L2(RN ) =

∫
η∈ε−1TN , |η|>ε−q

|αε1(η)|2dη ≤ ε2q
∫
ε−1TN

|η|2|αε1(η)|2dη ≤ Cε2q.

By the analycity of the first eigencouple of (8), there exists a periodic function
χ ∈ L2(TN) such that

|ψ1(y, θ)− ψ1(y, θ0)| ≤ |θ − θ0|χ(y) ∀y ∈ TN , θ ∈ TN .

Therefore, we have∫
|η|<ε−q

αε1(η)ψ1(
x

ε
, θ0 + εη)e2iπη·xe2iπ

θ0·x
ε dη = ψ1(

x

ε
, θ0)e2iπ

θ0·x
ε ṽε(x) + sε(x)
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where sε is small, i.e.

|sε(x)| ≤ χ(
x

ε
)

∫
|η|<ε−q

ε|η||αε1(η)| dη

≤ εχ(
x

ε
)

(∫
|η|<ε−q

|η|2|αε1(η)|2dη
)1/2(∫

|η|<ε−q
dη

)1/2

≤ Cε1−
Nq
2 χ(

x

ε
).

Thus, we obtain that, for any compact set ω ⊂ RN ,

‖sε‖2
L2(ω)K ≤ C|ω|ε1−

Nq
2 .

(We can not obtain a uniform estimate on RN since sε is not defined as a
Bloch decomposition.) Collecting all the intermediate steps we deduce

uε(x) = ψ1(
x

ε
, θ0)e2iπ

θ0·x
ε ṽε(x) + rε(x)

and ‖rε‖L2(ω)K ≤ C|ω|ε
2

N+2 with the optimal value of q equal to 2/(N + 2).
2

Remark 4.5 If we remove from assumption (9) the positive definite char-
acter of the Hessian matrix ∇θ∇θλ1(θ0), we can still obtained an homoge-
nization result, weaker than Theorem 3.2. Indeed, the same proof shows that
wε two-scales converges, up to a subsequence, to ψ1(y, θ0)v(t, x) where v is
a solution of the homogenized equation (24) with a possibly degenerate ma-
trix A∗ (which is nevertheless always non-negative because θ0 is a minimum
point). However, Lemma 4.2 holds true only if ∇θ∇θλ1(θ0) is positive defi-
nite. Thus, we can not recover the Dirichlet boundary condition, neither can
we obtain the uniqueness of the homogenized solution and the convergence of
the entire sequence wε.

Remark 4.6 If we remove from assumption (9) the fact that the minimum
point θ0 of λ1(θ) is unique, then we can also prove a weaker version of Theo-
rem 3.2. For each minimum and associated Hessian matrix ∇θ∇θλ1, we can
extract a subsequence such that wε two-scales converges ψ1(y, θ0)v(t, x) where
v is a solution of the homogenized equation (24). However, since Lemma
4.2 does not hold true in this case, we can not recover the Dirichlet bound-
ary condition. Nevertheless, if Ω = RN and ∇θ∇θλ1 is positive definite,
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we do not need any boundary condition to obtain the unique solvability of
the homogenized equation. Thus, in such a case, the entire sequence wε is

converging. Recall that wε = e
λ1(θ0)t

ε2 e−2iπ
θ0·x
ε uε, so that for different minima

we have different values of θ0, thus different sequences wε, and eventually
different homogenized problems. If the initial condition is a superposition of
well-prepared initial data for each minimum point θ0, then, by linearity, we
can decompose the solution in a superposition of elementary solutions, each
of them converging to its own homogenized limit depending on θ0.

5 Proofs for the spectral problem

This section is devoted to the proof of Theorem 3.6. For simplicity reasons,
we first prove the analogue of this result in the whole space, Ω = RN , with,
on top of (9), the additional assumption

lim
|x|→+∞

K∑
α,β=1

dαβ(x, y)ηαηβ = +∞ uniformly in y ∈ TN , η ∈ {|η| = 1}. (57)

Under this assumption, it is well-known that the following spectral problem

−div
(
A
(x
ε

)
∇uε

)
+ ε−2c

(x
ε

)
uε + d

(
x,
x

ε

)
uε = λεuε in RN (58)

has a discrete spectrum in L2(RN)K , λε1 ≤ λε2 ≤ . . . ≤ λεn . . . → +∞, with
corresponding orthonormal eigenfunctions denoted by uε1(x), uε2(x), . . .. Sim-
ilarly, since lim|x|→+∞ d

∗(x) = +∞, the homogenized problem (27) has a dis-
crete spectrum, µ1, µ2, . . . , µn, . . . → +∞, with corresponding orthonormal
eigenfunctions denoted by v1(x), v2(x), . . ..

Lemma 5.1 There exists a constant C > 0, which does not depend on ε,
such that

λ1(θ0)

ε2
+ C ≤ λε1 ≤

λ1(θ0)

ε2
+ µ1 + o(1), (59)

where o(1) vanishes as ε→ 0.

Proof. We assume that v1 is smooth enough, which is not a restriction since
the general case can be reduced to this one by means of approximation. We
write down the variational formulation

λε1 = min
‖u‖

L2(RN )K
=1

∫
RN

(
Aε∇u · ∇u+

(
ε−2cε + dε

)
u · u

)
dx (60)

24



and substitute a test function of the form

U ε = γεe
2iπ

θ0·x
ε

(
ψ1(

x

ε
, θ0)v1(x) + ε

N∑
k=1

∂v1

∂xk
(x)ζk(

x

ε
)

)
, (61)

where ζk is the solution of (14) and γε is a normalization constant chosen in
such a way that ‖U ε‖L2(RN )K = 1. Since ψ1 and ζk are periodic functions,
and due to the assumptions on v1, we have lim

ε→0
γε = 1. In view of (10) and

(14), after simple rearrangements we obtain

λε1 ≤
λ1(θ0)

ε2
+ o(1) + γ2

ε

∫
RN

Aεαβ,klψ
ε
1,αψ̄

ε
1,β

∂v1

∂xk

∂v1

∂xl
dx

+γ2
ε

∫
RN

{
ψ̄ε1,αA

ε
αβ,ml

(
∂

∂ym
+ 2iπθ0,m

)
ζεk,β

∂v1

∂xl

∂v1

∂xk

+ψε1,α

(
∂

∂yk
− 2iπθ0,k

)(
Aεαβ,kmζ̄

ε
l,β

) ∂v1

∂xm

∂v1

∂xl

}
dx

+γ2
ε

∫
RN

ψ̄ε1,αψ
ε
1,βd

ε
αβ|v1|2dx+ ε2γ2

ε

∫
RN

dε(ζε∇v1) · (ζ̄ε∇v1)dx

+2εγ2
εR

∫
RN

(
ψ̄ε1ζ

εAε∇∇v1v1 + dε(v1ψ̄
ε
1) · (ζε∇v1)

)
dx

 .

¿From the definitions of A∗ and d∗, we deduce the upper bound in (59). On
the other hand, by using Lemma 2.4 we have

min
‖u‖

L2(RN )K
=1

∫
RN

(
Aε∇u · ∇u+

(
ε−2cε + dε

)
u · u

)
dx ≥ (62)

λ1(θ0)

ε2
+ inf

x∈RN ,y∈TN ,|η|=1
d(x, y)η · η

which yields the desired lower bound. 2

Lemma 5.2 There exists a scalar sequence vε which is relatively compact in
L2(RN) and such that

uε1(x) = vε(x)ψ1(
x

ε
, θ0)e2iπ

θ0·x
ε + rε(x)
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where
lim
ε→0
‖rε‖L2(RN )K = 0, ‖vε‖H1(RN ) ≤ C.

Remark 5.3 As a consequence of Lemma 5.2 vε is almost normalized, i.e.
‖vε‖L2(RN ) = 1 + o(1).

Proof. ¿From Lemma 5.1 we deduce

λ1(θ0)

ε2
+

∫
RN
dεuε1 · uε1 dx ≤ λε1 ≤

λ1(θ0)

ε2
+ µ1 + o(1),

which implies that ∫
RN
dεuε1 · uε1 dx ≤ C. (63)

Then, the first part of Lemma 5.2 is a consequence of Lemma 4.2 since∫
RN

(
Aε∇uε1 · ∇uε1 + ε−2 (cε − λ1(θ0))uε1 · uε1

)
dx = λε1−

λ1(θ0)

ε2
−
∫
RN
dεuε1·uε1 dx ≤ C.

To obtain the relative compactness of vε in L2(RN) we deduce from (63)
and the growth condition on dε(x) at infinity, that for each δ > 0 there is
R = R(δ) such that

‖uε1‖L2({x : |x|≥R})K < δ. (64)

Since vε is bounded in H1(RN), we can replace (ψ1)2 by its positive average
in (64) and thus obtain

‖vε‖L2({x : |x|≥R}) < δ,

which implies the relative compactness. 2

Proof of Theorem 3.6 for Ω = RN .
We focus on the first eigenfunction, k = 1. For k > 1 a similar proof

holds true.
By Lemma 5.2 the family vε is relatively compact in L2(RN). More-

over, any limit point v0 of a converging subsequence, satisfies the relation
‖v0‖L2(RN ) = 1. By Lemma 5.1 we can also extract a subsequence such that

λε1 −
λ1(θ0)
ε2

converges to a limit µ̄. According to (59)

C ≤ µ̄ ≤ µ1. (65)
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The proof is now very similar to that of Theorem 3.2 (see Section 4). Up to
another subsequence, e−2πix·θ0/εuε1(x) two-scale converges to a limit u0

1(x, y)

and ε∇
(
e−2πix·θ0/εuε1

)
two-scale converges to ∇yu

0
1(x, y). As in the first step

of the proof of Theorem 3.2, one can easily show that

u0
1(x, y) = v0(x)ψ1(y, θ0),

where v0 is a limit point of vε. To find the equation satisfied by v0, we proceed
as in the second step of the proof of Theorem 3.2. We multiply (58) by the
test function

Ψε(x) = e2iπ
θ0·x
ε

(
ψ1(

x

ε
, θ0)φ(x) + ε

N∑
k=1

∂φ

∂xk
(x)ζk(

x

ε
)

)
,

where φ is smooth with compact support. This yields∫
RN

Aε(x)∇uε1(x)∇Ψε(x)dx+

∫
RN

cε(x)− λ1(θ0)

ε2
uε1(x) ·Ψε(x)dx+

+

∫
RN

dε(x)uε1(x) ·Ψε(x) =
λε1 − λ1(θ0)

ε2

∫
RN

uε1(x) ·Ψε(x).

As before, using (8) and (14), we can pass to the two scale limit to obtain∫
RN

(
A∗v0 · ∇∇φ+ d∗(x)v0φ

)
dx = µ̄

∫
RN
v0ϕdx

which is a weak variational formulation of

−A∗ · ∇∇v0 + d∗v0 = µ̄v0 in RN . (66)

Since v0 6= 0 and µ̄ ≤ µ1, we necessarily have

µ̄ = µ1,

and v0 is an eigenfunction of (27) associated with µ1. If µ1 is simple, up to
a convenient renormalization, the entire sequence uε1 is converging (and not
merely a subsequence). 2

Proof of Theorem 3.6 for a bounded open set Ω.
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We merely outline the differences with the case Ω = RN . In the proof of
Lemma 5.1, in order to get an upper bound for λε1, we can not use the test
function (61) because it does not satisfy the Dirichlet boundary condition.
Therefore we replace v1 by a convenient approximation. For each small δ > 0,
we introduce a smooth and compactly supported in Ω function wδ, such that
‖wδ‖L2(Ω) = 1 and∫

Ω

(
A∗∇wδ · ∇w̄δ + d∗(x)|wδ|2

)
dx < µ1 + δ.

Substituting in the Rayleigh quotient defining λε1 a test function of the form

U ε
δ = γεe

2iπ
θ0·x
ε

(
ψ1(

x

ε
, θ0)wδ(x) + ε

N∑
k=1

∂wδ

∂xk
(x)ζk(

x

ε
)

)
,

in the same manner we get the estimate

λε1 ≤
λ1(θ0)

ε2
+ µ1 + δ + o(1), (67)

where o(1) vanishes as ε → 0. Since δ is an arbitrary positive number, this
yields the required upper bound. The lower bound is obtained as before,
extending first uε1 to the whole space RN by setting uε1(x) = 0 for x ∈ RN \Ω,
and using formula (16).

Lemma 5.2 is unchanged, equation (66) is obtained as before, and the
Dirichlet boundary condition for the limit v0 is recovered as in the parabolic
case (see the end of the proof of Theorem 3.2). 2

6 Proofs in the hyperbolic case

We begin with proof of Theorem 3.7 when λ1(θ0) = 0. Actually, as soon
as uniform a priori estimates are obtained for the solution of equation (28),
the proof of convergence is completely similar to that of Theorem 3.2 in the
parabolic case. Therefore, for the sake of brevity, we content ourselves in
establishing those a priori estimates.

Lemma 6.1 Under the assumptions of Theorem 3.7 the solution uε of (28)
satisfies

‖uε‖L∞((0,T );L2(Ω)K) +ε‖∇uε‖L2((0,T )×Ω)N×K +‖∂uε
∂t
‖L∞((0,T );L2(Ω)K) ≤ C, (68)
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where C > 0 is a constant which does not depend on ε. Furthermore, there
exists a scalar sequence vε, uniformly bounded in L2 ((0, T );H1(Ω)), such that

uε(t, x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x), (69)

where rε is a remainder term such that

lim
ε→0
‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN . (70)

Proof. We multiply (28) by ∂uε
∂t

to obtain the usual energy estimate

Eε(t) = Eε(0) with Eε(t) =
1

2

∫
Ω

(∣∣∣∣∂uε∂t
∣∣∣∣2 + Aε∇uε · ∇uε +

cε

ε2
uε · uε

)
dx.

(71)
Since λ1(θ0) = 0, by using (8), a classical computation shows that

Eε(0) =
1

2

∫
Ω

(∣∣u1
ε

∣∣2 + Aε(ψ1
ε ⊗∇v0) · (ψ1

ε ⊗∇v0)
)
dx,

which is uniformly bounded by assumption. Then, the Bloch wave analysis
of Lemma 3.1 yields∫

Ω

(
Aε∇uε · ∇uε +

cε

ε2
uε · uε

)
dx ≥ 0.

Therefore, we deduce (68) from (71). To obtain (69) and (70) we use Lemma
4.2 since (71) implies that assumption (55) is satisfied. 2

We now turn to the proof of Theorem 3.8 when λ1(θ0) < 0. Once again
the proof of convergence is very similar to that of Theorem 3.2 as soon
as uniform a priori estimates are established (see [3] in the scalar case if
necessary). Therefore, we restrict ourselves to obtaining a priori estimates
for the rescaled hyperbolic system (37).

Lemma 6.2 Under the assumptions of Theorem 3.8 the solution ũε of (37)
satisfies

‖ũε‖L∞((0,T );L2(Ω)K) + ε‖∇ũε‖L2((0,T )×Ω)N×K + ε‖∂ũε
∂t
‖L2((0,T )×Ω)K ≤ C, (72)
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where C > 0 is a constant which does not depend on ε. Furthermore, there
exists a scalar sequence vε, uniformly bounded in L2 ((0, T );H1(Ω)), such that

ũε(t, x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x), (73)

where rε is a remainder term such that

lim
ε→0
‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN . (74)

Proof. In a first step we multiply (35) by ∂ũε
∂t

to obtain the usual energy
estimate

Eε(T ) + 2
√
−λ1(θ0)

∫ T

0

∫
Ω

∣∣∣∣∂ũε∂t
∣∣∣∣2 dx dt = Eε(0) (75)

with

Eε(t) =
1

2

∫
Ω

(
ε2
∣∣∣∣∂ũε∂t

∣∣∣∣2 + Aε∇ũε · ∇ũε +
cε − λ1(θ0)

ε2
ũε · ũε

)
dx.

As in the proof of Lemma 6.1, using (8) yields∫
Ω

(
Aε∇u0

ε · ∇u0
ε +

cε − λ1(θ0)

ε2
u0
ε · u0

ε

)
dx =

∫
Ω

Aε(ψ1
ε⊗∇v0)·(ψ1

ε⊗∇v0) dx,

which is however not sufficient to show that Eε(0) is uniformly bounded.
Indeed we have

∂ũε
∂t

(0) = u1
ε −

√
−λ1(θ0)

ε2
u0
ε

which merely implies
Eε(0) ≤ Cε−2.

Nevertheless, from the Bloch wave analysis of Lemma 3.1 we deduce∫
Ω

(
Aε∇ũε · ∇ũε +

cε − λ1(θ0)

ε2
ũε · ũε

)
dx ≥ 0,

which, combined with (75), yields

ε2‖∂ũε
∂t
‖L∞((0,T );L2(Ω)K) + ε

√
−λ1(θ0)‖∂ũε

∂t
‖L2((0,T )×Ω)K ≤ C. (76)
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In a second step we multiply (35) by ũε to obtain a better energy estimate

√
−λ1(θ0)

∫
Ω

|ũε(T )|2 dx+

∫ T

0

∫
Ω

(
Aε∇ũε · ∇ũε +

cε − λ1(θ0)

ε2
ũε · ũε

)
dx dt =

√
−λ1(θ0)

∫
Ω

|ũε(0)|2 dx+ ε2
∫ T

0

∫
Ω

∣∣∣∣∂ũε∂t
∣∣∣∣2 dx dt

+ε2
∫

Ω

ũε(0)
∂ũε
∂t

(0) dx− ε2
∫

Ω

ũε(T )
∂ũε
∂t

(T ) dx.

(77)
Using (76) we deduce from (77)√

−λ1(θ0)‖ũε(T )‖2
L2(Ω)K ≤ C

(
1 + ‖ũε(T )‖L2(Ω)K

)
,

which implies that ũε is bounded in L∞
(
(0, T );L2(Ω)K

)
. Using this infor-

mation in (77) shows that assumption (55) is satisfied: thus, Lemma 4.2 can
be applied to obtain (73) and (74). 2

Finally we arrive at the proof of Theorem 3.10 when λ1(θ0) > 0 and again
we simply address the question of uniform a priori estimates for (41) (the
proof of convergence is an adaptation of Theorem 3.2 and of the arguments
of [3] in the scalar case).

Lemma 6.3 Under the assumptions of Theorem 3.10 the solution ũε of (41)
satisfies

‖ũε‖L∞((0,T );L2(Ω)K) + ε‖∇ũε‖L2((0,T )×Ω)N×K + ε‖∂ũε
∂t
‖L2((0,T )×Ω)K ≤ C, (78)

where C > 0 is a constant which does not depend on ε.

Remark 6.4 The a priori estimates of Lemma 6.3 are weaker than the pre-
vious ones and in particular do not allow us to recover the homogenized
Dirichlet boundary condition. As in the scalar case [3], in order to obtain the
homogenized boundary condition the trick is to study the homogenization of a
time integral of (41) which has less oscillating initial data. Indeed, defining
wε(t, x) =

∫ t
0
ũε(s, x) ds + χε(x) with a suitable choice of χε (so that wε sat-

isfies the same p.d.e. than (41) without source term), one can obtain better
a priori estimates for wε than for ũε.
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Proof. In a first step we multiply (41) by ∂ũε
∂t

and we take the real part to
obtain the usual energy estimate

Eε(t) = Eε(0) (79)

with Eε(t) =
1

2

∫
Ω

(
ε2
∣∣∣∣∂ũε∂t

∣∣∣∣2 + Aε∇ũε · ∇ũε +
cε − λ1(θ0)

ε2
ũε · ũε

)
dx. As in

the proof of Lemma 6.2, the assumptions merely imply

Eε(0) ≤ Cε−2.

Nevertheless, from the Bloch wave analysis of Lemma 3.1 we deduce∫
Ω

(
Aε∇ũε · ∇ũε +

cε − λ1(θ0)

ε2
ũε · ũε

)
dx ≥ 0,

which, combined with (79), yields

ε2‖∂ũε
∂t
‖L∞((0,T );L2(Ω)K) ≤ C. (80)

In a second step we multiply (41) by ũε and we take the imaginary part√
λ1(θ0)

∫
Ω

|ũε(T )|2 dx−
√
λ1(θ0)

∫
Ω

|ũε(0)|2 dx

+ε2I
(∫

Ω

ũε(T )
∂ũε
∂t

(T ) dx−
∫

Ω

ũε(0)
∂ũε
∂t

(0) dx

)
= 0.

(81)

Using (80) we deduce from (81)√
λ1(θ0)‖ũε(T )‖2

L2(Ω)K ≤ C
(
1 + ‖ũε(T )‖L2(Ω)K

)
,

which implies that ũε is bounded in L∞
(
(0, T );L2(Ω)K

)
. Remark that (81),

unlike (77), does not include any gradient term, so we can not apply Lemma
4.2 to obtain a better estimate. 2

7 Generalization to high level bands

We generalize the homogenization of a parabolic system established in Sec-
tion 3 for initial data concentrating at the bottom of the first Bloch band to
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another type of initial data concentrating at the bottom of an higher level
band. Such a generalization holds true only in the case of the whole space
Ω = RN because otherwise we lack an adequate generalization of the com-
pactness Lemma 4.2. ¿From now on in this section we replace assumption
(9) by the following one: for an energy level n ≥ 1, there exists a Bloch
parameter θ0 ∈ TN such that

(i) θ0 is the unique minimizer of λn(θ) in TN ,
(ii) λn(θ0) is a simple eigenvalue,
(iii) the Hessian matrix ∇θ∇θλn(θ0) is positive definite.

(82)

Under assumption (82) the nth eigencouple of (8) is analytic at θ0. It is

easily seen that the first derivative ∂ψn
∂θk

and the second derivative ∂2ψn
∂θk∂θl

satisfy

equations similar to (11) and (12) respectively, up to changing the label 1 in
n. In particular, for θ = θ0 we still use the following notation

∂ψn
∂θk

= 2iπζk,
∂2ψn
∂θk∂θl

= −4π2χkl. (83)

where ζk and χkl are solutions of (14) and (15) respectively, up to changing
the label 1 in n.

We study a parabolic system with purely periodic coefficients ∂uε
∂t
− div

(
A
(x
ε

)
∇uε

)
+
c
(
x
ε

)
ε2

uε = 0 in RN × (0, T ),

uε(t = 0, x) = u0
ε(x) in RN .

(84)

We also need an assumption on the initial data which must be “well pre-
pared”, namely concentrating at the bottom on the nth Bloch band. Recall
from Lemma 2.4 that any function u0

ε ∈ L2(RN) can be decomposed as

u0
ε(x) =

∑
k≥1

∫
ε−1TN

αεk(η)ψk(
x

ε
, θ0 + εη)e2iπη·xe−2iπ

θ0·x
ε dη,

with η = θ−θ0
ε

. We denote by Πn
ε the projection operator on the Bloch bands

above the nth level

Πn
ε u

0
ε(x) =

∑
k≥n

∫
ε−1TN

αεk(η)ψk(
x

ε
, θ0 + εη)e2iπη·xe−2iπ

θ0·x
ε dη. (85)
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Our assumption on the initial data is that

u0
ε = Πn

ε u
0
ε . (86)

Typically, we are interested in an initial data of the type

u0,1
ε (x) = Πn

ε

(
v0(x)ψn(

x

ε
, θ0)e2iπ

θ0·x
ε

)
, (87)

with v0 ∈ L2(RN). However, since the projection operator Πn
ε is not very ex-

plicit, we also consider another type of initial data which satisfies assumption
(86), namely

u0,2
ε (x) =

∫
ε−1TN

αn(η)ψn(
x

ε
, θ0 + εη)e2iπη·xe2iπ

θ0·x
ε dη, (88)

with αn ∈ L2(RN) being the Fourier transform of v0(x). Actually, it is easy
to check that

lim
ε→0
‖u0,1

ε − u0,2
ε ‖L2(RN ) = 0.

For such well-prepared initial data, we perform a time renormalization similar
to (18)

ũε(t, x) = e
λn(θ0)t

ε2 uε(t, x), (89)

such that ũε satisfies ∂ũε
∂t
− div

(
A
(x
ε

)
∇ũε

)
+
c
(
x
ε

)
− λn(θ0)

ε2
ũε = 0 in RN × (0, T ),

ũε(t = 0, x) = u0
ε(x) in RN .

(90)

Lemma 7.1 Under assumption (86), the solution of (90) satisfies

‖ũε‖L∞((0,T );L2(RN )K) + ε‖∇ũε‖L2((0,T )×RN )N×K ≤ C‖u0
ε‖L2(RN )K , (91)

and there exists a bounded scalar sequence vε in L2
(
(0, T );H1(RN)

)
such

that
ũε(t, x) = ψn

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x), (92)

where limε→0 ‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN .
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Theorem 7.2 Assume that the initial data u0
ε ∈ L2(RN)K is of the form

(87) or (88). The solution of (84) can be written as

uε(t, x) = e−
λn(θ0)t

ε2

(
ψn

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x)

)
, (93)

where rε is a remainder term such that

lim
ε→0
‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN , (94)

and vε converges weakly in L2
(
(0, T );H1(RN)

)
to the solution v of the scalar

homogenized problem
∂v

∂t
− div (A∗n∇v) = 0 in RN × (0, T ),

v(t = 0, x) = v0(x) in RN ,
(95)

with A∗n = 1
4π2∇θ∇θλn(θ0).

Remark 7.3 In the context of the Schrödinger equation Theorem 7.2 is
called an effective mass theorem [22], [24], [25]. Even in the case of a scalar
equation, Theorem 7.2 is new since the factorization principle does not work
for an energy level n > 1, namely one can not divide the unknown uε by
ψn
(
x
ε
, θ0

)
which necessarily vanishes at some points in TN .

Remark 7.4 An initial data of the type (87) or (88) would yield a zero limit
if homogenized in the setting of Theorem 3.2. The solution uε, given by (93),
decays much faster than that given by (22) because λn(θ0) > λ1(θ0). There-
fore, we can interpret Theorem 7.2 as describing initial layers in time, com-
pared to Theorem 3.2 which captures the average behavior. This is consistent
with the classical homogenization of parabolic equations, when c ≡ 0, where
initial layers in time are known to exist [12] but can not be characterized by
the classical homogenization theory.

Proof of Lemma 7.1. We apply the rescaled Bloch decomposition (16) to
equation (90)

ũε(t, x) =
∑
k≥1

∫
ε−1TN

αεk(t, η)ψk(
x

ε
, θ0 + εη)e2iπη·xe2iπ

θ0·x
ε dη,
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with

αεk(t, η) = αεk(0, η)e
(λn−λk)(θ0+εη)

ε2
t.

¿From assumption (86) we deduce that αεk(t, η) = 0 for any k < n. Therefore,
for any time t, we have Πn

ε ũε(t, x) = ũε(t, x). Thus,∫
RN

(
A
(x
ε

)
∇ũε · ∇ũε +

c
(
x
ε

)
− λn(θ0)

ε2
ũε · ũε

)
dx ≥ 0,

which easily yields the a priori estimate (91). We now mimick the argu-
ments of the proof of Lemma 4.2 (replacing the label 1 by n) to obtain the
compactness result (92). 2

Proof of Theorem 7.2. The proof is very similar to that of Theorem 3.2
so we simply sketch the main points. We introduce, as before, a sequence wε
defined by

wε(t, x) = ũε(t, x)e−2iπ
θ0·x
ε .

By the a priori estimates of Lemma 7.1, there exist a subsequence and a
limit w(t, x, y) ∈ L2

(
(0, T )× RN ;H1(TN)K

)
such that wε and ε∇wε two-

scale converges to w and ∇yw respectively [2], [23]). Similarly, by its very
definition, wε(0, x) two-scale converges to ψn (y, θ0) v0(x). In a first step we

multiply (90) by the complex conjugate of ε2φ(t, x, x
ε
)e2iπ

θ0·x
ε where φ(t, x, y)

is a smooth test function defined in [0, T ) × RN × TN with values in CK .
Passing to the two-scale limit yields the existence of a scalar function v(t, x) ∈
L2
(
(0, T )× RN

)
such that w(t, x, y) = v(t, x)ψn(y, θ0). In a second step we

multiply (90) by the complex conjugate of

Ψε = e2iπ
θ0·x
ε

(
ψn(

x

ε
, θ0)φ(t, x) + ε

N∑
k=1

∂φ

∂xk
(t, x)ζk(

x

ε
)

)

where φ(t, x) is a smooth, compactly supported, test function defined from
[0, T ) × RN into R, and ζk(y) is the solution of (14) where the label 1 is
replaced by n. Passing to the two-scale limit yields a very weak form of the
homogenized equation (95). It is routine to show that its solution v(t, x) is
indeed a classical weak solution. Then, by uniqueness of the solution, we
deduce that the entire sequence wε two-scale converges to ψn (y, θ0) v(t, x).
2
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Remark 7.5 All the results of this section are specific to the case of the
whole space, i.e. Ω = RN , and can not be extended to the case of an additional
zero-order term d(x, x

ε
) because we crucially use the Bloch diagonalization to

get a priori estimates.

8 Fourth order homogenized problem

By changing the main assumption on the Bloch spectrum it is possible to
obtain a fourth order homogenized equation from a second order parabolic
problem. Specifically we consider

ε2
∂uε
∂t
− div

(
A
(x
ε

)
∇uε

)
+
(
ε−2c

(x
ε

)
+ ε2d

(
x,
x

ε

))
uε = 0 in Ω× (0, T ),

uε = 0 on ∂Ω× (0, T ),
uε(t = 0, x) = u0

ε(x) in Ω.

(96)
Remark that the time scaling in (96) is not the same than that in (17):
this means that we are looking for an asymptotic for longer time of order
ε−2 in (96), compared to (17). Instead of (9), we now make the following
assumption

(i) θ0 is the unique minimizer of λ1(θ) in TN ,
(ii) λ1(θ0) is a simple eigenvalue,
(iii) ∇θ∇θλ1(θ0) = 0,
(iv) the fourth-order tensor ∇θ∇θ∇θ∇θλ1(θ0) is positive definite.

(97)

Remark 8.1 We do not know if assumption (97) is satisfied for any practical
example.

Since λ1(θ0) is a minimum, we also have ∇θλ1(θ0) = 0 and ∇θ∇θ∇θλ1(θ0) =
0. Under assumption (97) the first eigencouple of (8) is analytic at θ0. Recall
that, for θ = θ0, the two first derivatives of ψ1 are given by

∂ψ1

∂θk
= 2iπζk,

∂2ψ1

∂θk∂θl
= −4π2χkl, (98)

where ζk is the solution of (14) and χkl is the solution of (15) (remark that
this last equation simplifies since ∇θ∇θλ1(θ0) = 0). Similarly, the third
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derivative is
∂3ψ1

∂θj∂θk∂θl
= −8iπ3ξjkl, (99)

where

A(θ0)ξjkl = ejA(y)(∇y + 2iπθ0)χkl + (divy + 2iπθ0) (A(y)ejχkl)

+ekA(y)(∇y + 2iπθ0)χjl + (divy + 2iπθ0) (A(y)ekχjl)

+elA(y)(∇y + 2iπθ0)χkj + (divy + 2iπθ0) (A(y)elχkj)

+ekA(y)elζj + ejA(y)elζk + ekA(y)ejζl.

(100)

There exists a unique solution of (100), up to the addition of a multiple of
ψ1. Indeed, the right hand side of (100) satisfies the required compatibility
condition (i.e. it is orthogonal to ψ1) because all derivatives of λ1(θ), up to
third order, are zero at θ = θ0.

We perform a time renormalization by introducing a new unknown

ũε(t, x) = e
λ1(θ0)t

ε4 uε(t, x), (101)

which satisfies
∂ũε
∂t
− ε−2div

(
A
(x
ε

)
∇ũε

)
+
c
(
x
ε

)
− λ1(θ0)

ε4
ũε + d

(
x,
x

ε

)
ũε = 0 in Ω× (0, T ),

ũε = 0 on ∂Ω× (0, T ),
ũε(t = 0, x) = u0

ε(x) in Ω.
(102)

As usual we obtain the following a priori estimate

‖ũε‖L∞((0,T );L2(Ω)K) + ε‖∇ũε‖L2((0,T )×Ω)N×K ≤ C‖u0
ε‖L2(Ω)K ,

where the constant C > 0 does not depend on ε.

Theorem 8.2 Assume that the initial data u0
ε ∈ L2(Ω)K is of the form

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε v0(x), (103)

with v0 ∈ L2(Ω). The solution of (96) can be written as

uε(t, x) = e−
λ1(θ0)t

ε4

(
ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x)

)
, (104)
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where rε is a remainder term such that

lim
ε→0
‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ RN ,

and vε converges weakly in L2 ((0, T );H2(Ω)) to the solution v of the scalar
fourth-order homogenized problem

∂v

∂t
+ div div (A∗∇∇v) = 0 in Ω× (0, T ),

∂v

∂n
= v = 0 on ∂Ω× (0, T ),

v(t = 0, x) = v0(x) in Ω,

(105)

with A∗ = 1
16π4∇θ∇θ∇θ∇θλ1(θ0).

To prove Theorem 8.2 we need the following generalization of Lemma 4.2.

Lemma 8.3 Let uε be a bounded sequence in L2(RN)K. Assume that there
exists a finite constant C such that∫

RN

(
A
(x
ε

)
∇uε · ∇uε +

c
(
x
ε

)
− λ1(θ0)

ε2
uε · uε

)
dx ≤ Cε2. (106)

Then, under assumption (97),

uε(x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(x) + rε(x), (107)

where vε is a bounded scalar sequence in H2(RN) and limε→0 ‖rε‖L2(ω)K = 0
for any compact set ω ⊂ RN .

Proof. Introducing the rescaled Bloch decomposition (16) of uε(x) with
η = θ−θ0

ε
,

uε(x) =
∑
k≥1

∫
ε−1TN

αεk(η)ψk(
x

ε
, θ0 + εη)e2iπη·xe2iπ

θ0·x
ε dη,

the same arguments than those in the proof of Lemma 4.2 and the estimate

λ1(θ)− λ1(θ0) ≥ C|θ − θ0|4 ∀θ ∈ TN ,
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shows that ∫
ε−1TN

|η|4|αε1(η)|2dη ≤ C.

Defining vε(x) as the inverse Fourier transform of αε1(η), we deduce that vε
is uniformly bounded in H2(RN). 2

Proof of Theorem 8.2. The proof is similar to that of Theorem 3.2.

The first step is identical: the function wε(t, x) = uε(t, x)e−2iπ
θ0·x
ε two-scale

converges to a limit v(t, x)ψ1(y, θ0). In the second step, we multiply (102)
by the complex conjugate of

Ψε = e2iπ
θ0·x
ε

(
ψ1(

x

ε
, θ0)φ(t, x) + ε

N∑
k=1

∂φ

∂xk
(t, x)ζk(

x

ε
)

+ε2
N∑

k,l=1

∂2φ

∂xk∂xl
(t, x)χkl(

x

ε
) + ε3

N∑
j,k,l=1

∂3φ

∂xj∂xk∂xl
(t, x)ξjkl(

x

ε
)

)
,

(108)
where φ(t, x) is a smooth, compactly supported, test function defined from
[0, T )× Ω into R, ζk(y) is the solution of (14), χkl(y) is the solution of (15),
and ξjkl(y) is the solution of (100). After some tedious algebra we find that∫

Ω

|ψε1|2v0φ(0) dx−
∫ T

0

∫
Ω

wε · ψ
ε

1

∂φ

∂t
dt dx

−
∫ T

0

∫
Ω

Aεwε∇
∂3φ

∂xj∂xk∂xl
· ekχεjl dt dx

−
∫ T

0

∫
Ω

Aεwε∇
∂3φ

∂xj∂xk∂xl
· (ε∇− 2iπθ0)ηεjkl dt dx

+

∫ T

0

∫
Ω

Aεηεjkl(ε∇+ 2iπθ0)wε · ∇
∂3φ

∂xj∂xk∂xl
dt dx

+

∫ T

0

∫
Ω

dεwε · ψ
ε

1φ dt dx = O(ε).

(109)
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Passing to the two-scale limit in each term of (109) gives∫
Ω

∫
TN
|ψ1|2v0φ(0) dx dy −

∫ T

0

∫
Ω

∫
TN
|ψ1|2v

∂φ

∂t
dt dx dy

−
∫ T

0

∫
Ω

∫
TN
Aψ1v∇

∂3φ

∂xj∂xk∂xl
· ekχjl dt dx dy

−
∫ T

0

∫
Ω

∫
TN
Aψ1v∇

∂3φ

∂xj∂xk∂xl
· (∇y − 2iπθ0)ηjkl dt dx dy

+

∫ T

0

∫
Ω

∫
TN
Aηjkl(∇y + 2iπθ0)ψ1v · ∇

∂3φ

∂xj∂xk∂xl
dt dx dy

+

∫ T

0

∫
Ω

∫
TN
dψ1v · ψ1φ dt dx dy = 0.

(110)

Recalling the normalization
∫
TN |ψ1|2dy = 1, and introducing

A∗jklm =

∫
TN

(
− Aψ1em · ekχjl − Aψ1em · (∇y − 2iπθ0)ηjkl

+Aηjkl(∇y + 2iπθ0)ψ1 · em
)
dy

(111)

(which has to be symmetrized), and d∗(x) =
∫
TN d(x, y)ψ1(y) ·ψ1(y) dy, (110)

is equivalent to∫
Ω

v0φ(0) dx−
∫ T

0

∫
Ω

(
v
∂φ

∂t
− A∗v · ∇∇∇∇φ− d∗(x)vφ

)
dt dx = 0

which is a very weak form of the homogenized equation (105). To recover
the Dirichlet boundary condition, we use Lemma 8.3 which implies that
v ∈ H2(RN) and v = 0 in any compact set ω ⊂

(
RN \ Ω

)
. Thus v belongs

to H2
0 (Ω).

The compatibility condition of the equation giving the fourth deriva-
tive of ψ1 yields that the tensor A∗, defined by (111), is indeed equal to

1
16π4∇θ∇θ∇θ∇θλ1(θ0), and thus is real, symmetric, positive definite by as-
sumption (97). Therefore, the homogenized problem (105) is well posed. By
uniqueness of the solution, the entire sequence vε converges to v. 2

9 Homogenization of a fourth-order equation

Our method also applies to fourth-order problems. Although systems of
equations can be treated, for simplicity we focus on the case of a single
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equation, without loss of generality since there is no maximum principle
for fourth-order elliptic equation. Let us introduce the following symmetric
fourth-order operator

Aε = div div
(

Θ(
x

ε
)∇∇

)
− 1

ε2
div
(
A(
x

ε
)∇
)

+
1

ε4
c(
x

ε
) + d(x,

x

ε
), (112)

with periodic coefficients Θ(y) = {Θijkl(y)}, A(y) = {Aij(y)} and c(y) which
are real periodic functions in L∞(TN). Furthermore, Θ and A are symmetric
tensors, and Θ is uniformly elliptic. The locally periodic term d(x, y) belongs
to L∞

(
Ω;C(TN)

)
.

Under these assumptions the Bloch decomposition for (112) is basically
the same as that for second order operators. On the torus TN we introduce
the Bloch operators

A(θ)ψ(y) = e−2iπy·θAe−2iπy·θψ(y) =

(∇y + 2iπθ)(∇y + 2iπθ) · (Θ(y)(∇y + 2iπθ)(∇y + 2iπθ))ψ(y)+

−(∇y + 2iπθ) · (A(y)(∇y + 2iπθ)ψ(y) + c(y)ψ(y),

with A = div div(Θ(y)∇∇) − div(A(y)∇) + c(y). Then, the Bloch spectral
cell problem

A(θ)ψn = λn(θ)ψn in L2(TN)

has a discrete spectrum λ1(θ) ≤ λ2(θ) ≤ . . . ≤ λn(θ) → +∞. Moreover, all
the statements of Lemma 2.4 (and its rescaled version) remain valid.

It is quite natural to make assumption (97) which implies ∇θ∇θλ1(θ0) =
0. For example, (97) is easily seen to be satisfied with θ0 = 0 if there are no
zero and second order terms in (112), i.e. A ≡ 0, c ≡ 0.

We begin with the parabolic Cauchy problem
∂uε
∂t

+Aε uε = 0 in Ω× (0, T ),

uε = 0,
∂uε
∂n

= 0 on ∂Ω× (0, T ),

uε(t = 0, x) = u0
ε(x) in Ω.

(113)

Theorem 9.1 Assume (97). Let uε(t, x) be a solution of (113) with Aε given
by (112), and u0

ε ∈ L2(Ω) be an initial data of the form

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε v0(x),
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with v0 ∈ L2(Ω). Then uε can be written as

uε(t, x) = e−
λ1(θ0)t

ε4

(
ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x)

)
,

where the remainder term rε satisfies the relation

lim
ε→0
‖rε‖L2((0,T )×ω) = 0 for any compact set ω ⊂ RN ,

and vε converges weakly in L2 ((0, T );H2(Ω)) to the solution v of
∂v

∂t
+A∗v = 0 in Ω× (0, T ),

v = 0,
∂v

∂n
= 0 on ∂Ω× (0, T ),

v(t = 0, x) = v0(x) in Ω,

with the homogenized operator

A∗ = div div (Θ∗∇∇) + d∗(x) (114)

and Θ∗ = 1
16π4∇θ∇θ∇θ∇θλ1(θ0), d∗(x) =

∫
TN d(x, y)|ψ1(y, θ0)|2dy.

The proof of Theorem 9.1 is very similar to that of Theorem 8.2. Upon

defining ũε(t, x) = e
λ1(θ0)t

ε4 uε(t, x), the a priori estimates are

‖ũε‖L2(Ω) + ε‖∇ũε‖L2(Ω)N + ε2‖∇∇ũε‖L2(Ω)N
2 ≤ C,

which, up to a subsequence, implies the following two-scale convergences for
wε = e−2iπx·θ0/εũε(t, x)

wε
2s
⇀ v(t, x)ψ1(y, θ0), ε∇wε 2s

⇀ v(t, x)∇yψ1(y, θ0), ε2∇∇wε 2s
⇀ v(t, x)∇y∇yψ1(y, θ0)

where v(t, x) is a limit point of a sequence vε, bounded in L2
(
(0, T );H2(RN)

)
,

introduced in a variant of Lemmas 4.2 and 8.3. Eventually, we use the same
test function defined in (108). We safely leave the details to the reader.

We then study the Dirichlet spectral problem

Aεuεn = λεnu
ε
n, uεn ∈ H2

0 (Ω)

stated in a bounded domain Ω ⊂ RN , which, under the standing ellipticity
assumptions, admits a discrete spectrum, λεn → +∞ as n → +∞, with
corresponding normalized eigenfunctions denoted by uεn.
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Theorem 9.2 Assume (97). Then for any n ≥ 1

λεn =
λ1(θ0)

ε4
+ µn + o(1) as ε→ 0

and the corresponding eigenfunction uεn(x) admits the representation

uεn(x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vεn(x) + rεn(x), (115)

where

lim
ε→0
‖rεn‖L2(Ω) = 0, ‖vεn‖H2(Ω) ≤ C, lim

ε→0
‖vεn‖L2(Ω) = 1, (116)

and the family vεn is relatively compact in L2(Ω). Moreover, any limit point
v0
n, as ε → 0, of the sequence vεn is a normalized eigenfunction associated to

the n-th eigenvalue µn of the scalar homogenized spectral problem

A∗v = µv in Ω, v ∈ H2
0 (Ω),

with A∗ defined by (114). If µn is a simple eigenvalue of the latter problem,
the entire sequence vεn converges to the homogenized eigenfunction vn.

The proof is a combination of those of Theorems 3.6 and 8.2. The crucial
point is to obtain a uniform estimate for the energy (Aεuεn, uεn). To this end
we use a test function of the type of (108).

Finally, for the hyperbolic system

∂2uε
∂t2

+Aεuε = 0 in Ω× (0, T ),

uε = 0,
∂uε
∂n

= 0 on ∂Ω× (0, T ),

uε(0, x) = u0
ε(x) in Ω,

∂uε
∂t

(0, x) = u1
ε(x) in Ω,

(117)

we obtain different homogenized limits according to the sign of λ1(θ0).

Theorem 9.3 Let (97) be fulfilled, and assume that λ1(θ0) = 0 and the
initial data are

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε v0(x) ∈ H2

0 (Ω),

u1
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε v1(x) ∈ L2(Ω),
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with v0 ∈ H2
0 (Ω) and v1 ∈ L2(Ω). The solution of (117), with Aε given by

(112), can be written as

uε(t, x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x),

where the remainder term rε satisfies the relation

lim
ε→0
‖rε‖L2((0,T )×ω) = 0 for any compact set ω ⊂ RN ,

and vε converges weakly in L2 ((0, T );H2(Ω)) to the solution v of

∂2v

∂t2
+A∗v = 0 in Ω× (0, T ),

v = 0,
∂v

∂n
= 0 on ∂Ω× (0, T ),

v(t = 0, x) = v0(x) in Ω,
∂v
∂t

(t = 0, x) = v1(x) in Ω,

with A∗ defined by (114).

The proof is the same as that of Theorem 3.7. If λ1(θ0) 6= 0, then we
need to look at a different time scaling. Instead of (117), we now consider

ε4
∂2uε
∂t2

+Aεuε = 0 in Ω× (0, T ),

uε = 0,
∂uε
∂n

= 0 on ∂Ω× (0, T ),

uε(0, x) = u0
ε(x) in Ω,

∂uε
∂t

(0, x) = u1
ε(x) in Ω,

(118)

Theorem 9.4 Let (97) be fulfilled, and assume that the initial data are

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε v0(x) ∈ H2

0 (Ω),

with v0 ∈ H2
0 (Ω), and that ε4u1

ε(x) is bounded in L2(Ω) while ε4ψ1

(
x
ε
, θ0

)
u1
ε(x)

converges weakly to 0 in L2(Ω).
If λ1(θ0) < 0 the solution of (118) can be written as

uε(t, x) = e

√
−λ1(θ0)t
ε4

(
ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x)

)
,
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where lim
ε→0
‖rε‖L2((0,T )×ω) = 0 for any compact set ω ⊂ RN , and vε converges

weakly in L2 ((0, T );H2(Ω)) to the solution v of
2
√
−λ1(θ0)

∂v

∂t
+A∗v = 0 in Ω× (0, T ),

v = 0,
∂v

∂n
= 0 on ∂Ω× (0, T ),

v(t = 0, x) = 1
2
v0(x) in Ω.

If λ1(θ0) > 0 the solution of (118) satisifies

uε(t, x) = ei
√
λ1(θ0)t

ε4 e2iπ
θ0·x
ε vε(t, x),

where vε two-scale converges to ψ1(y, θ0)v(t, x) and v ∈ L2 ((0, T );H2
0 (Ω)) is

the solution of
2i
√
λ1(θ0)

∂v

∂t
+A∗v = 0 in Ω× (0, T ),

v = 0,
∂v

∂n
= 0 on ∂Ω× (0, T ),

v(t = 0, x) = 1
2
v0(x) in Ω,

with A∗ defined by (114).

Again the proof is similar to those of Theorems 3.8 and 3.10.

Assumption (97) is not the only possible one. In particular, it may happen
that ∇θ∇θλ1(θ0) does not vanish at the minimum value θ0. Therefore, we
now make assumption (9), i.e. ∇θ∇θλ1(θ0) is positive definite instead of (97).

Remark 9.5 We give an explicit example where (9) is satisfied rather than
(97). Consider an arbitrary periodic, symmetric, uniformly elliptic, operator
B of the form B = −divy(B(y)∇y) + c(y) and its Bloch spectrum µ1(θ) ≤
µ2(θ) ≤ . . .. Adding, if necessary, a sufficiently large positive constant to c,
we can assume that µ1(θ) ≥ C > 0. Considering the relation(

e−2iπy·θB2e−2iπy·θ)ψ =
(
e−2iπy·θBe−2iπy·θ) (e−2iπy·θBe−2iπy·θ)ψ

we conclude that the Bloch spectrum of the operator A = B2 is (λn(θ) = µ2
n(θ))n≥1.

According to Remark 2.1 the unique minimum point of µ1 is attained at θ0 = 0
and the matrix ∇θ∇θµ1(0) is positive definite. Since µ1(θ) is strictly positive,
the function λ1(θ) = µ2

1(θ) also has a unique minimum point at θ0 = 0 and
its Hessian at 0 is positive definite.
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Under assumption (9) we need to change the scaling of (112) and consider
instead the new operator

Aε = ε2div div
(

Θ(
x

ε
)∇∇

)
− div

(
A(
x

ε
)∇
)

+
1

ε2
c(
x

ε
) + d(x,

x

ε
). (119)

Then, the homogenization of the parabolic equation is given by a result
similar to Theorem 3.2.

Theorem 9.6 Assume (9). Let uε(t, x) be a solution of the parabolic equa-
tion (113) with Aε given by (119), and u0

ε ∈ L2(Ω) be an initial data of the
form

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2πi

θ0·x
ε v0(x),

with v0 ∈ L2(Ω). Then uε can be written as

uε(t, x) = e−
λ1(θ0)t

ε2

(
ψ1

(x
ε
, θ0

)
e2iπ

θ0·x
ε vε(t, x) + rε(t, x)

)
,

where the remainder term rε satisfies

lim
ε→0
‖rε‖L2((0,T )×ω) = 0

on any compact set ω ⊂ RN , and vε converges weakly in L2 ((0, T );H1(Ω))
to the solution v of the scalar homogenized problem

∂v

∂t
− div (A∗∇v) + d∗(x) v = 0 in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),
v(0, x) = v0(x) in Ω,

with A∗ = 1
4π2∇θ∇θλ1(θ0) and d∗(x) =

∫
TN d(x, y)|ψ1(y, θ0)|2dy.

The proof of Theorem 9.6 relies on the same test function than in the
proof of Theorem 3.2. It should be noted that although uε(t, x) belongs to
L2 ((0, T );H2

0 (Ω)), the sequence vε, defined in Theorem 9.6, is only bounded
in L2

(
(0, T );H1(RN)

)
, uniformly with respect to ε. This is due to assump-

tion (9) which allows us to prove Lemma 4.2 but not Lemma 8.3.
Of course, similar results can be obtained for the spectral problem and

for the hyperbolic equation: in both cases the homogenized operator is of
second-order in space as in Theorem 9.6.
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