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Abstract

We consider the homogenization of a spectral problem for a diffusion equation posed in a singularly
perturbed periodic medium. Denoting by ε the period, the diffusion coefficients are scaled as ε2. The
domain is composed of two periodic medium separated by a planar interface, aligned with the periods.
Three different situations arise when ε goes to zero. First, there is a global homogenized problem as
if there were no interface. Second, the limit is made of two homogenized problems with a Dirichlet
boundary condition on the interface. Third, there is an exponential localization near the interface of
the first eigenfunction.

1 Introduction

This paper is devoted to the homogenization of the eigenvalue problem for a singularly perturbed diffusion
equation in a periodic medium with an interface. Denoting by ε the period, the diffusion coefficient is
assumed to be of the order of ε2. For simplicity we suppose the domains to be cylindrical of the form
Ω = Tn−1 × [−l, L] where Tn−1 is the unit torus Rn−1/Zn−1. We consider the following model

−ε2 div
(
a
(x
ε
, xn

)
∇φε

)
+ Σ

(x
ε
, xn

)
φε = λεσ

(x
ε
, xn

)
φε in Ω,

φε(·,−l) = 0 and φε(·, L) = 0,

(x1, ..., xn−1)→ φε(x) Tn−1-periodic,

(1.1)

where λε, φε is an eigenvalue and eigenfunction (throughout this paper, the eigenfunctions are normalized
by ‖φε‖L2(Ω) = 1). In (1.1) the coefficients are periodic of period [0, 1]n with respect to the fast variable
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y = x/ε. We introduce the two sub-domains Ω1 = Tn−1 × (−l, 0) and Ω2 = Tn−1 × (0, L) separated by
an interface located at xn = 0, the hyperplane Γ = Tn−1 × {0}. Denoting by χi(xn) the characteristic
function of Ωi (satisfying χ1 + χ2 = 1 and χ1χ2 = 0 in Ω), the coefficients are assumed to be given as a(y, xn) = χ1(xn)a1(y) + χ2(xn)a2(y),

Σ(y, xn) = χ1(xn)Σ1(y) + χ2(xn)Σ2(y),
σ(y, xn) = χ1(xn)σ1(y) + χ2(xn)σ2(y).

(1.2)

The periodic boundary conditions with respect to the variables (x1, ..., xn−1) (tangential to the inter-
face) is not crucial but simplifies the exposition (all our results would hold for Dirichlet or Neumann
boundary conditions). Problem (1.1) is supposed to be uniformly elliptic and self-adjoint so that it ad-
mits a countable infinite number of non-trivial solutions (λεm, φ

ε
m)m≥1. The precise assumptions on the

coefficients of (1.1) are given in Section 2. In any case, by standard regularity results, each eigenfunction
φεm is continuous, and by virtue of the Krein-Rutman theorem the first eigenvalue λε1 is simple and the
corresponding eigenfunction φε1 can be chosen positive. Because of this property, the first eigenpair has
a special physical signification, and we are mostly interested in its behavior as ε goes to zero, although
the case of higher level eigenpairs is also treated in some occasions.

The motivation for studying this model comes from several applications. First, it can be seen as a semi-
classical limit problem for a Schrödinger-type equation with periodic potential, as well as periodic metric.
As is well known, the long time behavior (for times of order ε−2) of the corresponding parabolic equation
is governed by the first eigenpair of (1.1): this is the so-called ground-state asymptotic problem (see,
e.g., [19], [27]). Second, it plays an important role in the uniform controllability of the corresponding
wave equation (see, e.g., [14]). Third, (1.1) is a model of a reaction-diffusion equation which is used for
determining the power distribution in a nuclear reactor core. This is the so-called criticality problem for
the one-group neutron diffusion equation (for more details, we refer to [2] and references therein). In this
last application the homogenization results for (1.1) are at the basis of many multiscale-type numerical
methods for computing its solutions (see, e.g., [12] and references therein). There are other works in the
literature concerned with the effect of interfaces in homogenization theory (see e.g. [8], [9], chapter 9 in
[10]). However, these previous works focus on a different scaling of (1.1), namely without the ε2 factor
in front of the diffusion operator.

The homogenization of (1.1) is classical in the case of purely periodic coefficients, i.e. depending only on
the fast variable x/ε [5], [2]. When the coefficients depend smoothly on the slow variable x (which is not
the case here), the asymptotic of (1.1) is also partly understood [6] (see also [4], [27] for related results).
However, in most applications, the coefficients actually depend on the slow variable x in a non-smooth
manner since they usually exhibit jumps at material interfaces. This makes model (1.1) with assumptions
(1.2) physically relevant. Such an “interface” model has already been studied by two of the authors [3]
in one space dimension.

The limit behavior of (1.1) is mainly governed by the first eigenpair (ψ1, µ1) in the unit cell of Ω1, and
(ψ2, µ2) in the unit cell of Ω2, solutions of{

− div (ai(y)∇ψi) + Σi(y)ψi = µiσi(y)ψi in Tn,
y → ψi(y) Tn-periodic and positive,

i = 1, 2. (1.3)

Before we explain our results, let us recall the result of [5] in the purely periodic case, namely when
a1 = a2, Σ1 = Σ2, and σ1 = σ2. Asymptotically, each eigenfunction φε is the product of the oscillatory
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term ψ1(x/ε) and of an eigenfunction for an homogenized spectral problem (we call this a factorization
principle).

Theorem 1.1 ([5]). Assuming that a2 = a1, Σ2 = Σ1, and σ2 = σ1, the mth eigenpair (λεm, φ
ε
m) of (1.1)

satisfies

φεm(x) = ψ1

(x
ε

)
uεm(x) and λεm = µ1 + ε2νm + o

(
ε2
)
,

where, up to a subsequence, the sequence uεm converges weakly in H1(Ω) to um, and (νm, um) is the mth

eigenvalue and eigenvector for the homogenized problem − div
(
D∇um

)
= νm σum in Ω,

um(·,−l) = um(·, L) = 0 ,
(x1, ..., xn−1)→ um(x) Tn−1-periodic.

The homogenized coefficients are given by

Dij =

∫
Tn
ψ2

1(y)a1(y) (∇ξi + ei) · (∇ξj + ej) dy and σ =

∫
Tn
σ1(y)ψ2

1(y)dy, (1.4)

where the function ξi, for 1 ≤ i ≤ n, is the solution of{
− div

(
ψ2

1(y)a1(y)(∇ξi + ei)
)

= 0 in Tn,
y → ξi(y) Tn-periodic.

(1.5)

In the case of smooth coefficients with respect to the slow variable x, we now recall the results of [6].
The unit cell problem (1.3) is now parametrized by the point x ∈ Ω and we denote by

(
µ(x), ψ(y, x)

)
its

first positive eigenpair.

Theorem 1.2 ([6]). Assume that a(y, x), Σ(y, x), and σ(y, x) are of class C2, and that the cell eigenvalue
µ(x) admits a unique non-degenerate minimum x0 ∈ Ω. Then, the mth eigenpair (λεm, φ

ε
m) of (1.1)

satisfies

φεm(x) = ψ
(x
ε
, x
)
uεm

(
x− x0√

ε

)
and λεm = µ(x0) + ενm + o (ε) ,

where, up to a subsequence and a multiplicative factor (for renormalization), the sequence uεm(z) converges
weakly in H1(Rn) to um(z), and (νm, um) is the mth eigenvalue and eigenvector for the homogenized
problem

− divz
(
D∇zum

)
+

(
1

2
∇∇µ(x0)z · z + c

)
um = νm σum in Rn.

The homogenized coefficients are given by formula (1.4) and (1.5) evaluated at x0.

It is worth pointing out the main differences between Theorems 1.1 and 1.2. First, the corrector term
in the ansatz for the eigenvalue is not of the same order in both cases. Second, there is a localization
phenomenon at the scale

√
ε in Theorem 1.2.

The situation considered in the present paper is intermediate between these of Theorems 1.1 and 1.2.
It turns out that several different limit behaviors of the eigensolutions, as ε tends to zero, can occur
depending on a criterion, defined by (2.18) and (3.1). We omit momentarily to define precisely this
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selection criterion since it requires the introduction of additional variational problems as it will be shown
in the next section. There are four different limit behaviors of the eigensolutions, some of them being
very closed to that of Theorem 1.1 (i.e. the interface is “transparent”), and some others featuring a
localization phenomenon at the interface in the spirit of Theorem 1.2.

The first limiting case, which can occur only when µ1 = µ2, can be interpreted as a “transparent”
interface. Indeed, the second part of Theorem 3.1 shows that there is still a factorization principle,
namely there exists a function ψ(y) converging away from the interface to the cell eigensolutions ψ1 and
ψ2 of (1.3) such that

φεm(x) = ψ
(x
ε

)
uεm(x) and λεm = µ2 + ε2νm + o(ε2), (1.6)

where uεm converges weakly to um in H1(Ω), and (λm, um)m≥1 are the eigenpairs of the homogenized
problem  − div

((
χ1(x)D1 + χ2(x)D2

)
∇u
)

= ν (χ1(x)σ1 + χ2(x)σ2)u in Ω,
u(·,−l) = 0 and u(·, L) = 0,
(x1, ..., xn−1)→ u(x) Tn−1-periodic,

where the homogenized coefficients are computed by formula similar to (1.4) and (1.5). This case is a
simple extension of the purely periodic case since the interface does not affect the type of limit problem.

The second limiting case, which can occur only when µ1 6= µ2 (without loss of generality, we always
assume µ1 ≥ µ2) is when the eigenfunctions concentrate on one half domain and vanish in the other
half. The same factorization (1.6) (with a slightly different function ψ) takes place, but the homogenized
problem is limited to Ω2 (see Theorem 3.4)

u ≡ 0 in Ω1 and

 − div
(
D2∇u

)
= νσ2u in Ω2,

u(·, 0) = 0 and u(·, L) = 0,
(x1, ..., xn−1)→ u(x) Tn−1-periodic.

The third limiting case, which can occur only when µ1 = µ2, corresponds to a “repulsive” interface.
Asymptotically each half domain tends to separate, and the homogenized problem is posed on the two
disconnected subdomains, with a Dirichlet condition on the interface. The same factorization (1.6) takes
place but the homogenized problem is (see Theorem 3.4) − div

(
D1∇u

)
= νσ1u in Ω2,

u(·,−l) = 0 and u(·, 0) = 0,
(x1, ..., xn−1)→ u(x) Tn−1-periodic,

and

 − div
(
D2∇u

)
= νσ2u in Ω2,

u(·, 0) = 0 and u(·, L) = 0,
(x1, ..., xn−1)→ u(x) Tn−1-periodic.

Finally, the interface can induce a drastic change in the type of limit problem, since the first eigenfunction
concentrates exponentially fast at the interface. In the fourth limiting case, there is no factorization
principle as above, but rather a localization principle at the discontinuity (see Theorem 3.5). The first
eigenvalue λε1 converges to a limit λ1 which is below the cell eigenvalues, 0 < λ1 < min (µ1, µ2), and the
convergence is exponential in the sense that there exists τ > 0 such that

|λε1 − λ1| ≤ C exp
(
−τ
ε

)
,
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whereas the first normalized eigenvector satisfies∥∥∥∥∇φε1(x)− 1√
ε
∇
(

Ψ
(x
ε

))∥∥∥∥
L2(Ω)

+

∥∥∥∥φε1(x)− 1√
ε
Ψ
(x
ε

)∥∥∥∥
L2(Ω)

≤ C exp
(
−τ
ε

)
.

The limit function Ψ(y) decreases exponentially away from the interface, and (λ1,Ψ) is the first eigenpair
of an equation posed in an infinite strip

− div (a (y, yn)∇Ψ) + Σ (y, yn) Ψ = λ1σ (y, yn) Ψ in Tn−1 × (−∞,∞).

This paper is organized as follows. Our main results and the precise definition of the situations described
above are given in section 3. Previously, in section 2 we introduce our notations and the auxiliary
variational problems that are crucial to the statement of our main results. Section 4 contains the proofs
corresponding to the situations when homogenization takes place without localization. Section 5 is
devoted to the proof of our results when a localization phenomenon occurs. Eventually section 6 is
concerned with an auxiliary interface variational problem which is at the basis of the proposed selection
criterion between the different cases.

2 Notations and auxiliary variational problems

We first introduce the notations and assumptions used throughout this paper. Our assumptions on the
coefficients of problem (1.1) are as follows.

All functions (a1,ij)1≤i,j≤n, (a2,ij)1≤i,j≤n, Σ1, Σ2, σ1 and σ2 are assumed to be measurable, [0, 1]n

periodic, and bounded. The coefficients Σ1, Σ2, σ1, σ2 are also bounded from below by positive constants.
The diffusion matrices a1 and a2 are symmetric n× n matrices, assumed to be coercive, i.e. there exists
a constant C > 0 such that for any ξ ∈ Rn,

a1 (y) ξ · ξ ≥ C|ξ|2 and a2 (y) ξ · ξ ≥ C|ξ|2 for a.e. y ∈ [0, 1]n.

Moreover, we assume that all coefficients of (1.1) have a minimal regularity in order that all the solutions
involved possess W 1,∞ regularity. For instance, if all the coefficients are of Hölder class Cγ , γ > 0, then
this condition is satisfied, see [17]. In particular, this assumption is crucial to state that the discontinuity
function α, defined by (2.18), is bounded in L∞.

The domain Ω under consideration is Ω = Tn−1 × [−l, L]. The right-hand-side and left-hand-side sub-
domains are Ω1 = Tn−1 × (−l, 0) and Ω2 = Tn−1 × (0, L). The interface is Γ = Ω ∩ {xn = 0}.
We also define the infinite strip G = Tn−1 × (−∞,+∞), which has an interface Γ = G ∩ {xn = 0}
(we give the same name to the interface in G and Ω). The two left and right semi-infinite strips are
noted G1 = G ∩ {xn < 0} and G2 = G ∩ {xn > 0}. For all x = (x1, x2, . . . , xn) ∈ Ω, we note
x′ = (x1, . . . , xn−1) the first n − 1 coordinates of x, living in Tn−1. We therefore write x = (x′, xn).
We use the same notation for y = (y′, yn) ∈ G. The solutions of problem (1.1) belongs to the space
H1

#,0(Ω) = {u ∈ H1(Ω) s. t. x′ → u(x′, xn) is Tn−1 periodic and u(x′,−l) = u(x′, L) = 0}. Also, to
make the micro and macro periods consistent we assume that ε = 1/k with an integer k, k →∞.

Let us now introduce the cell problems which will govern the limit behavior of (1.1). At the difference of
the one dimensional case (see [3]), it is not possible to choose a normalization condition of the cell eigen-
functions ψ1 and ψ2, solutions of (1.3), such that ψ1 = ψ2 on the interface Γ. To connect continuously
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ψ1 in Ω1 and ψ2 in Ω2, we need to introduce boundary layers N1,0 and N2,0 given by
− div

(
ψ2

1a1(y)∇N1,0

)
= 0 in G1

N1,0(·, yn) Tn−1-periodic,

N1,0(·, 0) = ψ2

ψ1
(·, 0),

and


− div

(
ψ2

2a2(y)∇N2,0

)
= 0 in G2

N2,0(·, yn) Tn−1-periodic,

N2,0(·, 0) = ψ1

ψ2
(·, 0).

(2.1)

Then, Corollary 2.5 states that the function ψ0 defined by

ψ0(y) =

{
ψ1(y)(1 +N1,0(y)) for yn < 0
ψ2(y)(1 +N2,0(y)) for yn > 0

(2.2)

belongs to H1(G), is continuous through the interface Γ and is an eigenfunction in G1 and in G2. In the
generic case when µ1 6= µ2 (without loss of generality we assume that µ1 ≥ µ2) the function ψ0 would
correspond to two different eigenvalues on each side of the interface Γ. Clearly, only the smallest one
has a chance to appear in the limiting process. For this reason we use an alternative cell eigensolution,
described in the following lemma (for a proof, see [13]).

Lemma 2.1. For any θ ∈ R, there exists a first normalized eigenpair (µ1(θ), ψ1,θ) of the eigenvalue
problem {

− div (a1(y)∇ψ1,θ) + Σ1(y)ψ1,θ = µ1(θ)σ1(y)ψ1,θ in [0, 1]n

ψ1,θ(y)e−θyn Tn-periodic,
(2.3)

where yn is the n-th coordinate of y (normal to the interface). The first eigenvalue µ1(θ) is simple and
the first eigenfunction ψ1,θ can be chosen positive. Furthermore, the map θ → µ1(θ) is a strictly concave
function reaching its maximum at θ = 0. Thus, if µ1 ≡ µ1(0) > µ2 ≡ µ2(0), there exists a unique θ > 0
such that µ1(θ) = µ2.

Remark that ψ1,θ, extended to G1, is the product of a periodic function and of an exponentially decreasing
function exp (θyn). As before, it is not possible in general to connect continuously ψ1,θ in G1 and ψ2 in
G2. To ensure continuity on Γ, we also introduce boundary layers defined by

− div
(
ψ2

1,θa1(y)∇N1

)
= 0 in G1

N1(·, yn) Tn−1-periodic,

N1(·, 0) = ψ2

ψ1,θ
(·, 0)

and


− div

(
ψ2

2a2(y)∇N2

)
= 0 in G2

N2(·, yn) Tn−1-periodic,

N2(·, 0) =
ψ1,θ

ψ2
(·, 0).

(2.4)

Proposition 2.2. The function ψ defined by

ψ(y) =

{
ψ1,θ(y)(1 +N1(y)) for yn ≤ 0
ψ2(y)(1 +N2(y)) for yn > 0

(2.5)

belongs to H1(G), is continuous through the interface Γ, and satisfies, for i = 1, 2 (with the same
eigenvalue µ2),

− div (ai∇ψ) + Σiψ = µ2σiψ in Gi. (2.6)

Furthermore, there exist three positive constants τ > 0, c1 > 1 and c2 > 1 such that

lim
yn→−∞

e−τyne−θyn |∇ (ψ(y)− c1ψ1,θ(y))| = 0 and lim
yn→∞

eτyn |∇ (ψ(y)− c2ψ2(y))| = 0. (2.7)
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As a consequence, there exists a positive constant C > 0 such that

1

C
≤ e−θynψ(y) ≤ C for yn < 0 and

1

C
≤ ψ(y) ≤ C for yn > 0. (2.8)

The mapping
T : H1

#,0(Ω) → H1
#,0(Ω)

f(x) → f(x)ψ
(
x
ε

)
is bounded, invertible and bicontinuous.

Remark 2.3. Recall that ψ1,θ is exponentially decreasing as (exp (θyn)) when yn goes to −∞. The first
part of (2.7) tells us that ψ has the same behavior and that the difference between ψ and a multiple of
ψ1,θ is decreasing with a faster exponential decay. Another way of writing (2.7) is to state that

lim
yn→−∞

e−τyn
∣∣∣∣∇( ψ(y)

ψ1,θ(y)

)∣∣∣∣ = 0.

Remark 2.4. The constants c1 and c2 appearing in (2.7) depend on the normalization of the cell eigen-
functions ψ1,θ and ψ2. We can choose this normalization such that c1 = c2 = 1. Indeed, denoting by
n1 > 0 and n2 > 0 the positive constants to which N1 and N2 stabilize at infinity, multiplying ψ1,θ

by a constant K changes the constants c1 = 1 + n1 and c2 = 1 + n2 in new constants (1 + K−1n1)
and (1 + Kn2). Taking K =

√
n1/n2 gives (1 + K−1n1) = (1 + Kn2) and this unique constant can be

eliminated by multiplying it to the resulting ψ.

Similar results can be obtained for ψ0 which is defined with the two periodic eigensolutions ψ1 and ψ2.

Corollary 2.5. The function ψ0 defined by (2.2) belongs to H1(G), is continuous through the interface
Γ, and satisfies, for i = 1, 2 (with different eigenvalues µi),

− div (ai∇ψ0) + Σiψ0 = µiσiψ0 in Gi,

and there exist three positive constants τ > 0, c01 > 1 and c02 > 1 such that

lim
yn→−∞

e−τyn
∣∣∇ (ψ0(y)− c01ψ1(y)

)∣∣ = 0 and lim
yn→∞

eτyn
∣∣∇ (ψ0(y)− c02ψ2(y)

)∣∣ = 0.

As a consequence, there exists a positive constant C > 0 such that C−1 ≤ ψ0(y) ≤ C in G. The mapping

T0 : H1
#,0(Ω) → H1

#,0(Ω)

f(x) → f(x)ψ0

(
x
ε

)
is also a homeomorphism.

Remark 2.6. Note that we can always multiply ψ by an appropriate constant so that ψ/ψ0 converges
strongly to 1 in Lp(Ω2) for any 1 ≤ p < ∞. In the sequel, we will always assume that such choice was
made.

The proof of Corollary 2.5 is quite standard and much easier than that of Proposition 2.2. Actually,
the boundary layers N1,0 and N2,0, defined by (2.1), are solutions of self-adjoint problems with periodic
coefficients. In such a case, the exponential stabilization to a constant of N1,0, N2,0, as well as the
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exponential decay of their gradients in the direction normal to the interface is a well known result (see
e.g. [20], [21], [22]). However, the proof of Proposition 2.2 is delicate because the coefficients of problem
(2.4) are exponentially decreasing in G1. The main trick of the proof is to show that (2.4) is equivalent
to a problem with periodic coefficients which is no longer self-adjoint. Therefore, we need to replace the
classical results of [20], [21], [22] by a more general result of [25, 26] (see Theorem 2.7 below).

Proof of Proposition 2.2. First of all, equation (2.6) is just a matter of simple algebra. If ψ exists, by our
smoothness assumption on the coefficients it belongs to W 1,∞(G), so the mapping T is a homeomorphism.
Therefore, the only point to check carefully is the well-posedness of the boundary layer problems (2.4).
The existence, uniqueness, and behavior at infinity of N2 is classical (see e.g. [20], [21], [22]). Indeed,
because of our smoothness assumption on the coefficients, the cell eigenfunction ψ2 is continuous, so
there exists a positive constants C > 0 such that C ≥ ψ2(y) ≥ C−1 for all y ∈ G. The boundary layer
N2 is thus uniquely defined in a Deny-Lions space as the solution of an uniformly elliptic boundary value
problem posed on a semi-infinite strip. Furthermore, there exist two constants n2 and τ > 0 such that

lim
yn→+∞

eτyn
(
|N2(y)− n2|+ |∇N2(y)|

)
= 0.

By the maximum principle, the constant n2 must be positive since
ψ1,θ

ψ2
is positive on Γ. Finally we have

c2 = 1 + n2.

Let us now turn to the case of N1. We introduce a periodic function φ1,θ defined by

φ1,θ(y) = ψ1,θ(y)e−θyn .

Because of our smoothness assumption on the coefficients, this function is continuous and there exists a
positive constants C > 0 such that C ≥ φ1,θ(y) ≥ C−1 for all y ∈ G. We then rewrite equation (2.4) in
G1 as 

− div
(
φ2

1,θa1(y)∇N1

)
− 2θφ2

1,θa
n
1 (y) · ∇N1 = 0 in G1

N1(·, yn) Tn−1periodic,

N1(·, 0) = ψ2

ψ1,θ
(·, 0),

(2.9)

where an1 is the nth column of the matrix a1. The point is that (2.9) has purely periodic coefficients. By
application of Theorem 2.7 below, there exists a unique solution of (2.9) with the required asymptotic
behavior at infinity if we can show that

b =

∫
Tn

(
− div(φ2

1,θa1)− 2θφ2
1,θa

n
1

)
p∗dy

satisfies b · en ≤ 0 with p∗ the first eigenfunction of the adjoint cell problem satisfying

− div
(
φ2

1,θa1(y)∇p∗
)

+ 2θ div
(
φ2

1,θa
n
1 (y)p∗

)
= 0 in Tn. (2.10)

Let us show that

b =
dµ1

dθ
(θ) (2.11)

which is non-positive since θ ≥ 0 and θ → µ1(θ) is strictly concave by Lemma 2.1. To obtain (2.11) we
rewrite (2.3) as

− div (a1∇φ1,θ)− 2θan1 · ∇φ1,θ +
(
Σ1 − θ div(an1 )− θ2ann1

)
φ1,θ = µ1(θ)σ1φ1,θ in Tn, (2.12)
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where ann1 is the nth component of the vector an1 , or equivalently the (n, n)-entry of the matrix a1. We
introduce the adjoint equation of (2.12), which admits the same first eigenvalue µ1(θ),

− div
(
a1∇φ∗1,θ

)
+ 2θ div(an1φ

∗
1,θ) +

(
Σ1 − θ div(an1 )− θ2ann1

)
φ∗1,θ = µ1(θ)σ1φ

∗
1,θ in Tn. (2.13)

We normalize the first eigenfunction φ∗1,θ by∫
Tn
σ1φ1,θφ

∗
1,θ dy = 1.

As a matter of simple algebra we have φ∗1,θ = φ1,θp
∗ with p∗ the solution of (2.10). Since the first

eigenvalue of (2.12) is simple, we can differentiate (2.12) with respect to θ. We write (2.12) in abstract
form as A(θ)φ1,θ = 0, where A(θ) is an operator acting in Tn. We obtain

A(θ)
dφ1,θ

dθ
= −dA(θ)

dθ
φ1,θ = 2an1 · ∇φ1,θ +

(
div(an1 ) + 2θann1 +

dµ1

dθ
(θ)σ1

)
φ1,θ in Tn,

where the right hand side must satisfy the Fredholm compatibility condition, namely must be orthogonal
to φ∗1,θ. This condition implies that

dµ1

dθ
(θ) = −

∫
Tn

(
2an1 · ∇φ1,θ + ( div(an1 ) + 2θann1 )φ1,θ

)
φ∗1,θ dy,

which is precisely the definition of b.

We now recall a result of [25, 26] concerning the existence and uniqueness of solutions of − div(a∇v) + b · ∇v = 0 in G1

v(y′, 0) = v0 on Γ,
(2.14)

where a is a Tn-periodic uniformly coercive tensor, b is a Tn-periodic vector field, and v0 is a given
boundary data. As usual, we assume that these data have enough smoothness in order that the solutions
of (2.14) are, at least locally, in W 1,∞(G1). We consider here the semi-infinite strip G1, but a similar
result holds for G2. We shall need the cell eigenvalue problem

− div(a∇p) + b · ∇p = λp in Tn, (2.15)

and its adjoint
− div(a∇p∗)− div(bp∗) = λp∗ in Tn. (2.16)

Clearly, the first eigenvalue of (2.15) is λ = 0 with the corresponding eigenfunction p = 1, and thus,
there exists a positive first eigenfunction p∗ of (2.16) which satisfies − div(a∇p∗)− div(bp∗) = 0. From
now on p∗ denotes this positive first eigenfunction.

Theorem 2.7 ([25, 26]). Define

b =

∫
Tn

(− diva+ b)p∗dy. (2.17)
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If b · en ≤ 0, problem (2.14) has a unique bounded solution. Moreover, there exist three constants K ∈ R,
C > 0 and τ > 0 such that

|u(y)−K| ≤ Ceτyn .

If b · en > 0, for any K ∈ R there exist a bounded solution of (2.14) and two positve constants C > 0
and τ > 0 such that

|u(y)−K| ≤ Ceτyn .

For each K, such a solution is unique, and there are no other bounded solutions.

Even though we are able to build a continuous function ψ in the infinite band G that stabilizes at
infinity to c1ψ1,θ and c2ψ2, c1, c2 > 1, we cannot enforce the continuity of the flow (a∇ψ)n normal to
the interface Γ. In other words, ψ is not the solution of equation (2.6) in the whole strip G. We introduce
a so-called discontinuity function α defined by

α(y′) =

n∑
j=1

a1,nj(y
′, 0)ψ1,θ(y

′, 0)(1 +N1(y′, 0))
∂ (ψ1,θ(1 +N1))

∂yj
(y′, 0) (2.18)

− a2,nj(y
′, 0)ψ2(y′, 0)(1 +N2(y′, 0))

∂ (ψ2(1 +N2))

∂yj
(y′, 0) for all y′ ∈ Γ.

Due to our smoothness assumptions on the coefficients, α(y′) is a function in L∞(Γ). We also introduce

α0(y′) =

n∑
j=1

a1,nj(y
′, 0)ψ1(y′, 0)(1 +N1,0(y′, 0))

∂ (ψ1(1 +N1,0))

∂yj
(y′, 0) (2.19)

− a2,nj(y
′, 0)ψ2(y′, 0)(1 +N2,0(y′, 0))

∂ (ψ2(1 +N2,0))

∂yj
(y′, 0) for all y′ ∈ Γ.

Clearly, α = α0 if µ1 = µ2.

3 Main results

The different situations referred to in Section 1 will depend on the discontinuity function α, defined by
(2.18), through the following variational problem (when it admits a solution)

Λ =

 inf
u ∈ D1,2(G)∫

Γ
α(y′)u2(y′, 0)dy′ = −1

∫
G

D(y)∇u · ∇u dy

 (3.1)

where D(y) = a(y, yn)ψ2(y) for all y ∈ G and D1,2(G) is a weighted Deny-Lions (or Beppo-Levi) space
[16] defined by

D1,2(G) =

{
φ ∈ H1

loc(G) | y′ → φ(y′, yn)Tn−1-periodic,

∫
G1

eθyn |∇φ|2dy +

∫
G2

|∇φ|2dy < +∞
}
. (3.2)
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This problem is studied in detail in Section 6 below. At this point, remark simply that there is no
admissible test functions in (3.1) if α ≥ 0 on Γ, and in such a case we set Λ = +∞ as is usual in
optimization.

The first result concerns the special case when the discontinuity function α defined by (2.18) is identically
zero. We then obtain a generalization of Theorem 1.1.

Theorem 3.1. Let λεm and φεm be the m-th eigenvalue and normalized eigenfunction of (1.1), and assume
that α defined by (2.18) is such that α ≡ 0 on Γ. Let ψ be the function defined by (2.5). Then

φεm(x) = uεm(x)ψ
(x
ε

)
and λεm = µ2 + ε2νm + o

(
ε2
)
,

where

• if µ1 > µ2 then, up to a subsequence, uεm converges strongly in L2(Ω) to um, with um = 0 in Ω1

and (νm, um) is the m-th eigenpair of the following homogenized problem{
− div

(
D2∇u

)
= νσ2u in Ω2,

D2,nj
∂u
∂xj

(·, 0) = u(·, L) = 0.
(3.3)

• if µ1 = µ2 then, up to a sub-sequence, uεm converges weakly in H1
#,0(Ω) to um, and (νm, um) is the

m-th eigenpair of the following homogenized problem{
− div

((
χ1(x)D1 + χ2(x)D2

)
∇u
)

= ν (χ1(x)σ1 + χ2(x)σ2)u in Ω,
u(·,−l) = 0 and u(·, L) = 0.

(3.4)

In both cases, the homogenized coefficients are given, for k = 1, 2, by(
Dk

)
ij

=

∫
Tn
c2kψ

2
k(y)ak(y) (∇ξi + ei) · (∇ξj + ej) dy and σk =

∫
Tn
σk(y)c2kψ

2
k(y)dy, (3.5)

where ck is the positive constant such that the function ψ is asymptotically equal to ckψk at infinity in
Gk (see Proposition 2.2) and the function ξi, for 1 ≤ i ≤ n, is the solution of{

− div
(
ψ2
k(y)ak(y)(∇ξi + ei)

)
= 0 in Tn,

y → ξi(y) Tn-periodic.
(3.6)

Remark 3.2. In truth Proposition 2.2 claims that ψ is asymptotically equal to c1ψ1,θ at infinity in G1.
Nevertheless, the homogenized coefficients D1 is required only in the case µ1 = µ2 which corresponds to
θ = 0 and thus ψ1,θ = ψ1. Therefore, in such a case it is true that ψ is asymptotically equal to c1ψ1 at
infinity in G1.

If the discontinuity function is not zero almost everywhere but Λ = 1, then the discontinuity is removable,
and we obtain the following result.

Theorem 3.3. Let λεm and φεm be the m-th eigenvalue and normalized eigenfunction of (1.1). Assume
that the minimal value of problem (3.1) is precisely Λ = 1. Then the conclusions of Theorem 3.1 are also
valid provided that ψ is replaced by ψ∗ = (u∗ψ), where u∗ is given by Theorem 6.2. (Here the homogenized
coefficients are still defined by (3.5), but with constants ck > 0 being such that ψ∗ is asymptotically equal
to ckψk at infinity.)
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Let us now turn to the cases where the discontinuity is not removable. Our first result concerns the case
when no localization occurs and a Dirichlet boundary condition appears at the interface.

Theorem 3.4. Let λεm and φεm be the m-th eigenvalue and normalized eigenfunction of (1.1). Assume
that either Λ > 1, or

α(y′) ≥ 0 a.e. on Γ and

∫
Γ

αdy′ > 0.

Then,

φεm(x) = uεm(x)ψ
(x
ε

)
and λεm = µ2 + ε2νm + o(ε2),

where

• if µ1 = µ2, then, up to a sub-sequence, uεm converges weakly in H1
#,0(Ω) to um, and (νm, um) is

the m-th eigencouple of the homogenized problem − div
(
D1∇u

)
= νσ1u in Ω1,

− div
(
D2∇u

)
= νσ2u in Ω2,

u(·,−l) = u(·, 0) = u(·, L) = 0.
(3.7)

• if µ1 > µ2, then uεm converges strongly to 0 in L2(Ω1), and, up to a subsequence, uεm converges
weakly in H1

#,0(Ω2) to um, and (νm, um) is the m-th eigenpair of the homogenized problem{
− div

(
D2∇u

)
= νσ2u in Ω2,

u(·, 0) = u(·, L) = 0.
(3.8)

In both cases, the homogenized coefficients are defined by formula (3.5) for each half domain.

Finally, in all other cases we obtain a localization phenomena.

Theorem 3.5. Assume that the minimal value of problem (3.1) satisfies Λ < 1. The first eigenvalue λε1
of (1.1) converges to a limit 0 < λ1 < min (µ1, µ2), and, for some τ > 0,

|λε1 − λ1| < C exp
(
−τ
ε

)
,

whereas the first normalized eigenvector satisfies∥∥∥∥∇φε1(x)− 1√
ε
∇
(

Ψ
(x
ε

))∥∥∥∥
L2(Ω)

+

∥∥∥∥φε1(x)− 1√
ε
Ψ
(x
ε

)∥∥∥∥
L2(Ω)

≤ C exp
(
−τ
ε

)
,

and (λ1,Ψ(y)) is the first eigenpair of the eigenvalue problem

− div (a(y, yn)∇Ψ) + Σ(y, yn)Ψ = λ1σ(y, yn)Ψ in G.

Furthermore, λ1 is simple, while Ψ can be chosen positive and is exponentially decreasing away from the
interface.

Remark 3.6. The criterion which selects the different limit cases is mainly the minimal value Λ of the
auxiliary variational problem (3.1). In one dimension this criterion can be further explicited in terms of
the value of α (a constant) at the interface (see [3]). The reason is that one can use ordinary differential
techniques and Floquet theory in one dimension to build explicit solutions of (3.1). This is, of course,
not possible in higher dimension. In particular the refined one-dimensional analysis of [3] shows that any
positive value of Λ > 0 can be achieved and thus all limit behaviors described above are attainable. This
is indeed confirmed by numerical simulations [3].
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4 Proofs in absence of localization

This section is devoted to the proofs of Theorems 3.1, 3.3 and 3.4. The strategy is to perform a change
of unknowns (the so-called factorization principle) and then to prove the convergence of the spectrum
by studying the convergence of the Green operator of a source problem. With the help of the particular
solution ψ defined by (2.5), the eigenvalue problem (1.1) can be transformed into the following one,
where the singular perturbation in front of the divergence term has disappeared. Proposition 4.1 gives
the form of this new problem after some simple algebra.

Proposition 4.1. Introducing uε(x) = φε(x)/ψ
(
x
ε

)
, the eigenvalue problem (1.1) is equivalent to

− div (Dε∇uε) +
1

ε
α

(
x′

ε

)
uε(x′, 0)δxn=0 = νεB

εuε in Ω

uε ∈ H1
#,0(Ω).

(4.1)

where α(y′) is the periodic function on Γ defined by (2.18), and with the notation

Dε(x) = a
(x
ε
, xn

)
ψ2
(x
ε

)
, Bε(x) = σ

(x
ε
, xn

)
ψ2
(x
ε

)
, νε =

λε − µ2

ε2
.

Note that the coefficients Dε and Bε are no longer periodic but rather the superposition of periodic
and exponential functions. Following a strategy already used in [4], [3], the asymptotic study of the
eigenvalue problem (4.1) relies on the detailed homogenization, as ε tend to zero, of the following source
problem (i.e. with given right hand side)

− div (Dε∇vε) +
1

ε
α

(
x′

ε

)
vε(x

′, 0)δxn=0 = P εfε in Ω

vε ∈ H1
#,0(Ω).

(4.2)

with P ε(x) =
ψ( xε )
ψ0( xε )

, and with a right hand side fε which is a bounded sequence of L2(Ω), weakly

converging to a limit f ∈ L2(Ω). We first obtain a priori estimates.

Proposition 4.2. Suppose that either α ≥ 0 or Λ > 1. Then the solution vε of equation (4.2) satisfies

‖∇vε‖L2(Ω2) +
∥∥∥eθ xnε ∇vε∥∥∥

L2(Ω1)
+

√
µ1 − µ2

ε
‖P εvε‖L2(Ω1) ≤ C ‖fε‖L2(Ω) (4.3)

and
1

ε

∣∣∣∣∫
Γ

α

(
x′

ε

)
vε(x

′, 0)2dx

∣∣∣∣ ≤ C ‖fε‖2L2(Ω) (4.4)

where C is a constant independent of ε.

As a consequence, if Λ > 1, or if α ≥ 0 and
∫

Γ
α(y′)dy′ > 0, then

• if µ1 = µ2, up to a subsequence, vε converges weakly to a limit v in H1
0 (Ω). The limit satisfies

v(x′, 0) = 0 and thus can be written as v = v1 + v2 with v1 ∈ H1
0 (Ω1) and v2 ∈ H1

0 (Ω2).
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• if µ1 > µ2, P εvε tends to zero in L2(Ω1), and up to a subsequence, vε converges weakly in H1(Ω2)
to a limit v ∈ H1

0 (Ω2).

Alternatively, if α(y′) = 0 almost everywhere on Γ,

• if µ1 = µ2, up to a subsequence, vε converges weakly in H1
0 (Ω).

• if µ1 > µ2, P εvε tends to zero in L2(Ω1), and up to a subsequence, vε converges weakly in H1(Ω2).

Admitting momentarily this proposition, let us turn to the proofs of our main results. We introduce a
Green operator Sε defined by

Sε : L2(Ω)→ L2(Ω)
f → wε = P εvε with vε being the unique solution in H1

0 (Ω)
of equation (4.2) with r.h.s. f.

(4.5)

For all fixed ε > 0, Sε is clearly a linear compact operator in L2(Ω). We shall show the following result

Proposition 4.3. Let fε be a sequence weakly converging to a limit f in L2(Ω). The sequence wε =
P εvε = Sε(fε) converges strongly in L2(Ω) to w defined by w = S(f).

A.1 If α ≡ 0 and µ1 = µ2, then S is the following compact operator

S : L2(Ω) → L2(Ω)
f → w unique solution of − div

((
χ1(x)D1 + χ2(x)D2

)
∇w
)

= f in Ω,
w(·,−l) = 0 and w(·, L) = 0,
y′ → w(y) Tn−1-periodic.

A.2 If α ≡ 0 and µ1 > µ2, then S is the following compact operator

S : L2(Ω) → L2(Ω)
f → w = 0 in Ω1 and unique solution in Ω2 of

− div
(
D2∇w

)
= f in Ω2,

D2, nj
∂w
∂xj

(·, 0) = w(·, L) = 0,

y′ → w(y) Tn−1-periodic.

B.1 If α ≥ 0 and
∫

Γ
αdy′ > 0, or Λ > 1, and µ1 = µ2, then S is the following compact operator

S : L2(Ω) → L2(Ω)
f → w unique solution of

− div
(
D1∇w

)
= f in Ω1,

− div
(
D2∇w

)
= f in Ω2,

w(·,−l) = w(·, 0) = w(·, L) = 0,
y′ → w(y) Tn−1-periodic.
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B.2 If α ≥ 0 and
∫

Γ
αdy′ > 0, or Λ > 1, and µ1 > µ2 then S is the following compact operator

S : L2(Ω) → L2(Ω)
f → w = 0 in Ω1 and unique solution in Ω2 of − div

(
D2∇w

)
= f in Ω2,

w(·, 0) = w(·, L) = 0,
y′ → w(y) Tn−1-periodic.

In all cases, D1 and D2 are given by (3.5).

Proof. In the cases A.1 and B.1 we have µ1 = µ2, so that ψ = ψ0, i.e. P ε = 1, and thus wε = vε. In
these cases the diffusion coefficient of (4.2) stabilizes at infinity to coercive periodic coefficients (indeed,
they are the superposition of periodic and exponentially decreasing functions of the type exp(−ε−1|xn|)
which converges strongly to zero in any Lp(Ω) with 1 ≤ p < +∞). The proof in Cases A.1 and B.1 are
quite standard in homogenization theory, with the a priori estimates of Proposition 4.2. For example,
using the method of the oscillating test function [11], [23], or that of two-scale convergence [1], [24], it
is an easy exercise that we safely leave to the reader. Let us simply remark that the homogenization of
(4.2) is completely obvious in Case A.1, while in Case B.1, Proposition 4.2 shows that vε(·, 0) converges
to zero in L2(Γ). Let us now turn to the other two cases for which wε 6= vε.
Case A.2. From Proposition 4.2 we know that wε converges strongly to 0 in L2(Ω1). On the other hand,
see Remark 2.6, P ε converges strongly to 1 in Lp(Ω2) for any 1 ≤ p < +∞. Therefore, it is enough to
prove the weak convergence of vε in H1(Ω2) to obtain the desired result. Testing variationally equation
(4.2) against a test function φε ∈ H1

#,0(Ω), we obtain∫
Ω

a
(x
ε
, xn

)
ψ2
(x
ε

)
∇vε · ∇φεdx =

∫
Ω

P εfεφεdx. (4.6)

Note that for any bounded sequence φε ∈W 1,∞(Ω),∣∣∣∣∫
Ω1

a
(x
ε
, xn

)
ψ2
(x
ε

)
∇vε · ∇φεdx

∣∣∣∣ ≤ C ∥∥∥exp
(
θ
xn
ε

)
∇vε

∥∥∥
L2(Ω1)

∥∥∥exp
(
θ
xn
ε

)
∇φε

∥∥∥
L2(Ω1)

→ 0

since
∥∥exp

(
θ xnε

)
∇vε

∥∥
L2(Ω1)

is bounded, thanks to Proposition 4.2. Of course,
∫

Ω1
P εfεφεdx goes to zero.

Consequently, for such sequences φε uniformly bounded in W 1,∞(Ω), identity (4.6) writes∫
Ω2

Dε∇vε · ∇φεdx =

∫
Ω2

P εfεφε + o(1). (4.7)

Since the test functions in the homogenization method are of the type φε(x) = φ0(x) + εφ1(x, x/ε) with
smooth functions φ0 and φ1, they are uniformly bounded in W 1,∞(Ω) and one can use (4.7) to pass to
the limit. Classical arguments of homogenization theory allow us to conclude.
Case B.2. As in case A.2 it is enough to study the weak convergence of vε in H1(Ω2) to obtain the desired
result. Proposition 4.2 shows that vε(y

′, 0) converges to zero in L2(Γ). Testing variationally equation
(4.2) against φε, where φε is a test function in W 1,∞(Ω)∩H1

0,#(Ω2), we obtain again equation (4.7), and
conclude using similar arguments to that of Case A.2.

We are now able to conclude the proof of Theorem 3.1 and Theorem 3.4.
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Proof of Theorem 3.1 and Theorem 3.4. Let us first remark that, since S is compact, Proposition 4.3
implies that the sequence of operators Sε, defined by (4.5), uniformly converges to the limit operator
S. The asymptotic analysis of the eigenvalue problem (4.1) is truly governed by the convergence of Tε
defined by

Tε : L2(Ω) → L2(Ω)

f → Sε

(
Bε

(P ε)2 f
)
,

since the eigenvalues of Tε are the inverse of that of (4.1). Remark that

Bε(x)

(P ε(x))
2 = σ

(x
ε
, xn

)(
ψ0

(x
ε

))2

,

which is a superposition of periodic functions and exponentially decreasing ones. Thus, in Ωi, for i = 1, 2,
it converges to a positive constant which is the average on the unit torus of the periodic function σiψ

2
i .

Denoting by σ(xn) the weak limit of Bε/(P ε)2, we define the limit operator T by

T : L2(Ω) → L2(Ω)
f → S (σf) .

The sequence Tε does not uniformly converge to T , but the sequence Tε is nevertheless collectively
compact, in the sense that{

∀f ∈ L2(Ω) limε→0 ‖Tε(f)− T (f)‖L2(Ω) = 0,
the set {Tε(f), ‖f‖L2(Ω) ≤ 1, ε ≥ 0} is sequentially compact.

Theorems 3.1 and 3.4 are then consequences of a classical result in operator theory (see e.g. [7], [15], or
chapter 11 in [18]).

Proof of Theorem 3.3. Let u∗(y) be the unique positive minimizer to problem (3.1). Since Λ = 1, it is a
positive solution of

− div (D∇u∗) + δyn=0α(y′)u∗ = 0 in G.

Therefore, the function ψ∗(y) = u∗(y)ψ(y) is positive and satisfies

− div (a∇ψ∗) + Σψ∗ =
1

ψ

(
− div (D∇u∗) + δyn=0α(y′)u∗

)
+ µ2σu

∗ψ = µ2σψ
∗ in G.

The difference between ψ∗ and ψ is that ψ∗ is a solution in the entire strip G. In other words, there is
no discontinuity function for ψ∗, i.e. α∗ ≡ 0 on the interface Γ. Consequently, by the new change of
variables u∗ε(x) = φε(x)/ψ∗

(
x
ε

)
, the eigenvalue problem (1.1) is equivalent to{
− div (D∗ε∇u∗ε) = νεB

∗εu∗ε in Ω
u∗ε ∈ H1

#,0(Ω),

with the notation

D∗ε(x) = a
(x
ε
, xn

)(
ψ∗
(x
ε

))2

, B∗ε(x) = σ
(x
ε
, xn

)(
ψ∗
(x
ε

))2

, νε =
λε − µ2

ε2
.

This eigenvalue problem is equivalent to (4.1) with α ≡ 0 and its homogenization is easy according to
Proposition 4.3.
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Proof of Proposition 4.2. Multiplying equation (4.2) by vε and integrating by parts, we obtain∫
Ω

Dε∇vε · ∇vεdx+
1

ε

∫
Γ

α

(
x′

ε

)
vε(x

′, 0)2dx′ =

∫
Ω

P εfεvεdx. (4.8)

Introducing wε = P εvε, the right-hand-side of (4.8) is bounded by ‖fε‖L2(Ω) ‖wε‖L2(Ω). Thus, we deduce

from (4.8) that

• if α ≥ 0, both left hand side terms are positive, and a being coercive and because of the bounds
(2.8) for ψ we obtain

‖∇vε‖2L2(Ω2) +
∥∥∥eθ xnε ∇vε∥∥∥2

L2(Ω1)
≤ C ‖fε‖L2(Ω) ‖wε‖L2(Ω) . (4.9)

• if Λ > 1, then from Lemma 6.4 we deduce that

Λ− 1

Λ

∫
Ω

Dε∇vε · ∇vεdx ≤
∫

Ω

Dε∇vε · ∇vεdx+
1

ε

∫
Γ

α

(
x′

ε

)
v2
ε (x′, 0)dx′,

and therefore inequality (4.9) is also satisfied.

To conclude we also need to estimate wε. For this aim, we write the equation satisfied by wε = P εvε. A
computation similar to that of Proposition 2.2 shows that problem (4.2) is equivalent to

− div (Dε
0∇wε) +

µ1 − µ2

ε2
Bε0χΩ1

(x)wε +
1

ε
α0

(
x′

ε

)
wε(x

′, 0)δxn=0 = fε in Ω

wε ∈ H1
#,0(Ω),

(4.10)

with
Dε

0(x) = a
(x
ε
, xn

)
ψ2

0

(x
ε

)
, Bε0(x) = σ

(x
ε
, xn

)
ψ2

0

(x
ε

)
.

By an integration by parts of (4.10) tested against wε we obtain∫
Ω

Dε
0∇wε · ∇wεdx+

µ1 − µ2

ε2

∫
Ω1

Bε0w
2
εdx+

1

ε

∫
Γ

α0

(
x′

ε

)
wε(x

′, 0)2dx′ =

∫
Ω

fεwεdx. (4.11)

Let us next show that

‖∇vε‖L2(Ω2) ≤ C ‖fε‖L2(Ω) and
√
µ1 − µ2 ‖wε‖L2(Ω1) ≤ Cε

1
2 ‖fε‖L2(Ω) . (4.12)

Note that since C−1vε(x
′, 0) ≤ wε(x′, 0) ≤ Cvε(x′, 0), where C is a positive constant which do not depend

on ε, we have the following bound∫
Γ

wε(x
′, 0)2dx′ ≤ C ‖∇vε‖2L2(Ω2) ≤ C ‖fε‖L2(Ω) ‖wε‖L2(Ω)

Consequently, identity (4.11) yields

(µ1 − µ2) ‖wε‖2L2(Ω1) ≤ Cε ‖fε‖L2(Ω) ‖wε‖L2(Ω) ≤ Cε ‖fε‖L2(Ω) (‖wε‖L2(Ω1) + ‖wε‖L2(Ω2)),
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and the r.h.s. in (4.9) can be estimated as follows

‖fε‖L2(Ω) ‖wε‖L2(Ω) ≤ C ‖fε‖L2(Ω) ‖wε‖L2(Ω2) ≤ C ‖fε‖L2(Ω) ‖vε‖L2(Ω2) ,

which implies (4.12). Finally, combining (4.9) and (4.12) we obtain (4.3). Estimate (4.4) is then a
consequence of (4.8).

Let us now turn to the consequences of these estimates.

If µ1 = µ2, then θ = 0, wε = vε and estimate (4.3) shows that wε is bounded in H1
0 (Ω). This yields that,

up to a subsequence, vε converges strongly to a limit v in L2(Γ). Thus

lim
ε→0

∫
Γ

α

(
x′

ε

)
vε(x

′, 0)2dx =

∫
Γ

α(y′)dy′
∫

Γ

v(x′, 0)2dx.

Note that
∫

Γ
α(y′)dy′ 6= 0, either by assumption, or because Λ 6= 0 implies

∫
Γ
α(y′)dy′ 6= 0 according to

Theorem 6.2. Passing to the limit in estimate (4.4) then proves that v(x′, 0) = 0.

If µ1 6= µ2, then estimate (4.3) shows that wε converges to zero in L2(Ω1). Furthermore, ‖∇vε‖L2(Ω2) is

bounded. Thus, up to a subsequence, vε converges to a limit in H1(Ω2), and therefore strongly in L2(Γ).
The argument with (4.4), already used in the case µ1 = µ2, proves here also that v(x′, 0) = 0.

5 Proofs for the localization phenomenon

This section is devoted to the proof of Theorem 3.5.

Proposition 5.1. If the minimal value Λ of problem (3.1) is smaller than 1, i.e. Λ < 1, then the first
eigenvalue λ1

ε of problem (1.1) is decreasing as ε goes to zero, and satisfies

lim
ε→0

λ1
ε < µ2 = min(µ1, µ2),

where µ1 and µ2 are the periodic cell eigenvalues defined in (1.3).

Proof. Problem (1.1) is self-adjoint: its first eigenvalue is given by

λ1
ε = min

φ∈H1
#,0(Ω)

φ 6= 0

ε2
∫

Ω

a
(x
ε
, xn

)
∇φ · ∇φdx+

∫
Ω

Σ
(x
ε
, xn

)
φ2dx∫

Ω

σ
(x
ε
, xn

)
φ2dx

,

which, thanks to Proposition 4.1, is equivalent to

λ1
ε = µ2 + min

φ∈H1
#,0(Ω)

φ 6= 0

ε2
∫

Ω

Dε∇φ · ∇φdx+ ε

∫
Γ

α

(
x′

ε

)
φ(x′, 0)2dx′∫

Ω

Bεφ2dx

. (5.1)
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Since the first eigenvalue of (1.1) is simple, the minimization problem in the right hand side of (5.1)
admits a minimizer ϕ, unique up to a multiplicative constant (chosen in such a way that ϕ is positive
and normalized). Furthermore, ϕ must be periodic of period ε in all coordinate directions tangential to
the interface. Indeed, because of the periodicity of the coefficients, the function ϕ̃(x′, xn) = ϕ(x′+ iε, xn)
is also a positive and normalized minimizer, for all i ∈ Nn−1. By uniqueness of the minimizer, it must be
equal to ϕ(x′, xn). Thus, by periodicity the integrals in (5.1) reduce to a single band

(
εTn−1

)
×]− l, L[.

By the change of variables y = ε−1x, (5.1) is thus equivalent to

λ1
ε = µ2 + min

φ∈H1
#,0(Gε)

φ 6= 0

∫
Gε

D(y)∇φ(y) · ∇φ(y)dy +

∫
Γ

α(y′)φ(y′, 0)2dy′∫
Gε

B(y)φ(y)2dy

, (5.2)

where Gε = Tn−1×]−lε−1, Lε−1[ and D(y) = a(y, yn)ψ(y)2, B(y) = σ(y, yn)ψ(y)2. By virtue of Theorem
6.2, there exist u ∈ D1,2(G) such that∫

G

D(y)∇u · ∇u dy ≤ 1 + Λ

2
< 1 and

∫
Γ

α (y′)u2 (y′, 0) dy = −1

(if Λ > 0, we take u as the unique positive minimizer of the auxiliary problem (3.1), while, if Λ = 0, u is
chosen as one element of the minimizing sequence built in the proof of Theorem 6.2). Furthermore, away
from the interface Γ, ∇u decays exponentially to zero while u stabilizes exponentially to a constant. Let
us consider the function zε(y) = u(y)Cε(yn) where Cε(yn) is a cut-off function defined by

Cε(yn) =


0 for yn < −ε−1l

η
(
yn + ε−1l

)
for − ε−1l ≤ yn < η−1 − ε−1l

1 for η−1 − ε−1l ≤ yn < −η−1 + ε−1L
η
(
ε−1L− yn

)
for ε−1L− η−1 ≤ yn < ε−1L

0 for ε−1L ≤ yn

The value of the (small) constant η > 0 will be chosen later. Then, zε ∈ H1
#,0(Gε), and∫

Gε

D(y)∇zε · ∇zε dy ≤
1 + Λ

2
+

∫
Bε

D(y)∇zε · ∇zε dy,

where Bε = Gε∩
(
[−ε−1l, η−1 − ε−1l] ∪ [ε−1L− η−1, ε−1L]

)
. Using Cauchy-Schwarz inequality we obtain∫

Bε

D(y)∇zε · ∇zε dy ≤ C
(
‖∇u‖2L2(Bε)

+ η2 ‖u‖2L2(Bε)

)
.

Since u is uniformly bounded in G, we have ‖u‖2L2(Bε)
≤ Cη−1, uniformly with respect to ε. Thus, for

sufficiently small η we can make η2 ‖u‖2L2(Bε)
as small as we want. Now, for a fixed η we can choose ε

small enough such that ‖∇u‖L2(Bε)
is small. Consequently, for some η and some ε0 we have∫
Bε0

D(y)∇zε0 · ∇zε0 dy ≤
1− Λ

4
.
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This implies that ∫
Gε0

D(y)∇zε0 · ∇zε0 dy +

∫
Γ

α(y′)zε0(y′, 0)2dy′ ≤ Λ− 1

4
< 0.

Consequently, plugging the test function zε0 in (5.2) yields

λ1
ε0 < µ2.

To conclude, remark that, by inclusion of spaces, identity (5.2) implies that λ1
ε is non increasing as ε

goes to zero.

We perform a change of unknowns for the first eigenvector of (1.1)

uε(x) =
φ1
ε(x)

ψ0

(
x
ε

) .
The new unknown is a solution of an equation similar to (4.10)

− div (Dε
0∇uε) +

µ1 − µ2

ε2
Bε0χΩ1(x)uε +

1

ε
α0

(
x′

ε

)
uεδxn=0 =

λ1
ε − µ2

ε2
Bε0uε in Ω

uε ∈ H1
#,0(Ω).

(5.3)

By the same argument as in the proof of Proposition 5.1, uε is periodic in the tangential coordinate
directions, so we can reduce (5.3) to a single strip. Then, performing the change of variables y = x/ε,
we obtain that uε(y) = uε(x) satisfies

− divy (D0(y)∇yuε) + (µ1 − µ2)B0(y)χyn<0(y)uε + α0(y)uε(y
′, 0)δyn=0

= (λ1
ε − µ2)B0(y)uε in Gε

uε ∈ H1
#,0(Gε).

(5.4)

Lemma 5.2. Assume that Λ < 1. Then, the function uε (and its gradient) decays exponentially to zero
away from the interface, uniformly with respect to ε.

Proof. We rewrite (5.4) in G2
ε = Gε ∩ {yn > 0} as − divy (D0(y)∇yuε) + (µ2 − λ1

ε)B0(y)uε = 0 in G2
ε

uε(x
′, Lε−1) = 0 and uε(x

′, 0) = gε,
(5.5)

for some trace condition gε. Since µ2 − λ1
ε ≥ C > 0 by virtue of Proposition 5.1, we can prove that

uε decays exponentially away from the interface yn = 0 uniformly in ε. Indeed, for k ∈ N, defining
G2,k
ε = Gε ∩ {yn > k} and Γ2,k

ε = Gε ∩ {yn = k}, uε is also a solution of − divy (D0(y)∇yuε) + (µ2 − λ1
ε)B0(y)uε = 0 in G2,k

ε

uε(x
′, Lε−1) = 0 and uε = uε(x

′, k) on Γ2,k
ε ,
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and thus it satisfies the a priori estimate

‖uε‖2H1(G2,k
ε ) ≤ C ‖uε‖

2
H1/2(Γ2,k

ε ) ,

where the constant C > 0 depends on D0, B0, (µ2 − limε→0 λ
1
ε) but not on ε nor on k. Clearly, we also

have
‖uε‖2H1/2(Γ2,k

ε ) ≤ ‖uε‖
2
H1(G2,k−1

ε \G2,k
ε ) ≤ ‖uε‖

2
H1(G2,k−1

ε ) − ‖uε‖
2
H1(G2,k

ε ) .

Combining these two inequalities implies

‖uε‖2H1(G2,k
ε ) ≤

C

C + 1
‖uε‖2H1(G2,k−1

ε ) . (5.6)

It is then a classical matter to deduce from (5.6) that there exist τ > 0 and C > 0 (independent of ε)
such that

‖exp(τyn)uε‖H1(G2
ε)
≤ C.

A similar argument works for G1
ε = Gε ∩ {yn < 0}.

As a consequence of Lemma 5.2, the sequence uε (extended by zero at infinity) is precompact in H1
#(G).

Therefore, up to a subsequence, it converges to a limit u which satisfies
− divy (D0(y)∇yu) + (µ1 − µ2)B0(y)χyn<0u+ α0(y)uδyn=0 =

(
lim
ε→0

λ1
ε − µ2

)
B0(y)u in G

u ∈ H1
#(G).

(5.7)

Lemma 5.3. The solution u is the first eigenfunction of problem (5.7) which has a simple first eigenvalue.
In particular, this implies that the entire sequence uε converges to u.

Proof. Let us denote by (λ − µ2) and v a generic eigenvalue and eigenfunction of (5.7). The usual
factorization argument tells us that φ = ψ0v is an eigenfunction for{

− divy
(
a(y)∇yφ

)
+ Σ(y)φ = λσ(y)φ in G

φ ∈ H1
#(G).

(5.8)

It is well known that the spectrum of equation (5.8) can be decomposed as the union of an essential
spectrum and of a discrete spectrum, and that eigenfunctions corresponding to eigenvalues in the discrete
spectrum are exponentially decaying to 0 at infinity. We also know that the minimum value of the
essential spectrum is precisely equal to µ2 = min(µ1, µ2). Therefore, limε→0 λ

1
ε is an eigenvalue of (5.8)

which belongs to its discrete spectrum. Thus, the first eigenvalue λ1 of (5.8) is also in the discrete
spectrum and its corresponding eigenvectors are exponentially decaying to 0 at infinity: it is then a
classical matter to prove that λ1 is simple and that its eigenvector can be chosen positive. Since u is a
positive, exponentially decaying, solution of (5.7), we deduce that λ1 = limε→0 λ

1
ε and ψ0u is the first

eigenfunction of (5.8).
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Proof of Theorem 3.5. Let us denote by Ψ the first normalized eigenfunction and by λ1 the first eigen-
value of (5.8). From Lemma 5.3 we know that Ψ = ψ0u. Let us consider the function

vε(x) = Ψ
(x
ε

)
C(xn),

where C(xn) is a smooth cut-off function such that C(xn) ≡ 1 in a neighborhood of 0, and it has compact
support in ]− l,+L[. Because of the exponential decay of u, we have∥∥∥∇(Ψ

(x
ε

))
−∇vε(x)

∥∥∥
L2(Ω)

+
∥∥∥Ψ
(x
ε

)
− vε(x)

∥∥∥
L2(Ω)

≤ C exp
(
−τ
ε

)
.

Thus, it remains to prove that

‖∇φε1(x)−∇ṽε(x)‖L2(Ω) + ‖φε1(x)− ṽε(x)‖L2(Ω) ≤ C exp
(
−τ
ε

)
, |λ1 − λε1| ≤ C exp

(
−τ
ε

)
(5.9)

with ṽε = vε
‖vε‖L2(Ω)

and ‖vε‖L2(Ω) ≈
√
ε. The variational formulations of (5.8) and (1.1) read respectively

λ1 = min
φ∈H1

#(G)\{0}

∫
G
a(y)∇yφ · ∇yφdy +

∫
G

Σ(y)φ2dy∫
G
σ(y)φ2dy

(5.10)

λε1 = min
φ∈H1

#,0(Gε)\{0}

∫
Gε
a(y)∇yφ · ∇yφdy +

∫
Gε

Σ(y)φ2dy∫
Gε
σ(y)φ2dy

(5.11)

We obviously have λ1 ≤ λε1. On the other hand, by substituting the test function φ(y) = vε(εy) in (5.11)
we get λε1 ≤ λ1 +C exp

(
− τε
)

and the second inequality (5.9) follows. The first one can now be justified
by standard spectral gap arguments.

6 Auxiliary variational problem

This section deals with the variational problem (3.1), namely

Λ =

 inf
u ∈ D1,2(G)∫

Γ
α(y′)u2(y′, 0)dy′ = −1

∫
G

D(y)∇u · ∇u dy


where D(y) = a(y, yn)ψ2(y) and D1,2(G) is the weighted Deny-Lions space defined by (3.2). One of the
difficulty of this problem is that, when µ1 6= µ2, the tensor D(y) is exponentially decreasing as yn tends
to −∞ (it is uniformly coercive for yn > 0). Nevertheless, we show that this problem is well-posed if the
discontinuity function α is not non-negative and has a non-zero average.

Remark 6.1. If α ≥ 0, there is clearly no admissible test function for (3.1) and, as is usual in optimization,
we set Λ = +∞. In such a case, either Theorem 3.1 or Theorem 3.4 apply. If

∫
Γ
α < 0, then Λ = 0 and

the minimum is realized by the constant function
(
−
∫

Γ
α
)− 1

2 .
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Theorem 6.2. Assume that the set M = {y′ ∈ Γ | α(y′) < 0} is of non zero measure. Then, if∫
Γ
α(y′)dy′ 6= 0, there exists a unique positive minimizer u∗ to problem (3.1). If

∫
Γ
α(y′)dy′ = 0, then

Λ = 0 and the minimum is not attained. When it exists, the minimizer u∗ stabilizes to a constant at
infinity while its gradient decays exponentially to zero.

Proof. Let us first consider the case
∫

Γ
α(y′)dy′ = 0. Consider a smooth function v with compact support

in G such that B =
∫

Γ
αv dy′ is not zero, and define A =

∫
Γ
αv2dy′ and 0 < C =

∫
G
D∇v · ∇v dy < ∞.

Then for all k > 0, the function vk = 1
kv −

k2+A
2kB satisfies∫

Γ

α(y′)v2
k(y′, 0)dy′ = −1, and

∫
G

D∇vk · ∇vkdy =
C

k2
,

so that 0 ≤ Λ ≤ C
k2 for all k. This implies that the minimum is zero and is not attained.

Let us now turn to the case
∫

Γ
α(y′)dy′ 6= 0 and prove that the infimum of (3.1) is attained in the

space D1,2(G) defined by (3.2). Define a compact subset of G by G0 = Tn−1 × (−1, 1). Remark
that, in G0, the tensor D(y) is uniformly coercive. Consider a minimizing sequence uk. It satisfies∫
G0
D(y)∇uk · ∇uk dy < C for some constant C. Because of the coercivity of D on G0 this implies ,

‖∇uk‖L2(G0) < C. The Poincaré–Wirtinger inequality∥∥∥∥uk − ∫
Γ

uk(y′, 0)dy′
∥∥∥∥
L2(G0)

≤ c ‖∇uk‖L2(G0) , (6.1)

shows the boundedness of the sequence uk −
∫

Γ
uk(y′, 0)dy′ in L2(G0). Remark that

1∫
Γ
α

∫
Γ

αu2
k =

1∫
Γ
α

∫
Γ

α

(
uk −

∫
Γ

uk

)2

+
2∫
Γ
α

∫
Γ

α

{(
uk −

∫
Γ

uk

)(∫
Γ

uk

)
+

(∫
Γ

uk

)2
}
.

Since
∫

Γ
α (y′)u2

k (y′, 0) dy′ = −1 this implies
(∫

Γ
uk (y′, 0) dy′

)2 ≤ C
(
1 +

∣∣∫
Γ
uk (y′, 0) dy′

∣∣) and conse-

quently
∣∣∫

Γ
uk (y′, 0) dy′

∣∣ and in turn ‖uk‖L2(G0) are bounded. Thus, the sequence uk is bounded in

H1(G0) and, up to a subsequence, uk converges to a limit u weakly in H1(G0) and strongly in L2(Γ).
In particular this implies that the limit still satisfies the constraint

∫
Γ
α(y′)u2(y′, 0)dy′ = −1. Actually,

the sequence uk converges weakly to u in D1,2(G), and the weak lower semicontinuity of the quadratic
functional

∫
G
D∇u · ∇u dy yields that u is a minimizer. Remark that, if u is a minimizer, then |u| is

also a minimizer, so we can assume from now on that u is non-negative. Let us show that there exists a
unique positive minimizer u∗. The Euler-Lagrange equation for a non-negative minimizer u∗ of (3.1) is

− div(D∇u∗) + Λα(y′)δyn=0u
∗ = 0 in G.

Applying Lemma 6.3 shows that u∗ is indeed positive in G. On the same token, u∗ is also bounded by a
posivite constant K in a neighbourhood G0 of the interface Γ. Define the truncation uK = min(u∗,K)
which is well defined in D1,2(G), and satisfies uK = u∗ on Γ. Furthermore, ∇uK = ∇u∗ where uK = u∗,
and ∇uK = 0 where u∗ > K. Thus, we have

Λ =

∫
G

D∇u∗ · ∇u∗ dy ≥
∫
G

D∇uK · ∇uK dy
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and the inequality is strict if uK 6= u∗, which contradicts the fact that u∗ is a minimizer. Therefore, u∗ is
uniformly bounded in G. Eventually, arguing as in the proof of Proposition 2.2, we may invoke Theorem
2.7 to obtain the uniqueness of the bounded positive solution of the Euler-Lagrange equation (as well as
its desired behavior at infinity) and thus of the positive minimizer u∗ of (3.1).

Lemma 6.3. There is a strong maximum principle for the equation

− div(D∇u) + α(y′)δyn=0u = 0 in G,

i.e., if a nonnegative solution u is strictly positive at least at one point of G, then this solution is strictly
positive everywhere in G.

Proof. We assume for definiteness that u(y0) > 0 for some y0 ∈ Ḡ1. Then, by the standard strong
maximum principle, u(y) > 0 for any y ∈ G1. The same holds true for G2. It remains to prove that u is
also positive on the interface Γ. Let v1 and v2 be the unique solutions of the following problems:

− div(D∇v1) = 0 in Tn−1 × (−1, 0),

v1(y′,−1) = 1 + β, v1(y′, 0) = β,

and

− div(D∇v2) = 0 in Tn−1 × (0, 1),

v1(y′, 0) = β, v1(y′, 1) = 0.

with β > 0. By the maximum principle, we have

−D1j(y
′, 0)

∂

∂yj
v1(y′, 0) = −D11(y′, 0)

∂

∂y1
v1(y′, 0) > 0

for any y′ ∈ Γ. By uniform continuity arguments this implies

−D11(y′, 0)
∂

∂y1
v1(y′, 0) ≥ c > 0.

It is easy to see that the gradient of v1 does not depend on β. It is also clear that

0 < −D11(y′, 0)
∂

∂y1
v2(y′, 0) ≤ c1β.

The function

v =

{
v1, −1 ≤ yn ≤ 0
v2, 0 ≤ yn ≤ 1,

is continuous and satisfies the equation

− div(D∇v) = D11(y′, 0)
∂

∂y1
v1(·, 0)−D11(y′, 0)

∂

∂y1
v2(·, 0)δ(yn). (6.2)

Denoting κ(y′) = −β−1
(
D11(y′, 0)∂v1

∂y1
(y′, 0)−D11(y′, 0)∂v2

∂y1
(y′, 0)

)
, since v(y′, 0) = β on Γ, equation

(6.2) can be rewritten as follows

− div(D∇v) + κ(y′)δyn=0v = 0.
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For sufficiently small β we get

κ(y′) ≥ c

2β
,

which gives in turn κ(y′) ≥ α(y′). Multiplying, if necessary, v by an appropriate positive constant γ, we
obtain u(y′,−1)− γv(y′,−1) > 0 for all y′ ∈ Tn−1. Substituting in the equation gives

− div(D∇(u− γv)) + αδyn=0(u− γv) = γ(κ− α)v in Tn−1 × (−1,+1),

(u− γv)(y′,−1) ≥ 0, (u− γv)(y′, 1) ≥ 0,

and, by the maximum principle, u(y′, 0) ≥ γv(y′, 0) = γβ. The positivity of u in G2 now follows from
the standard strong maximum principle.

Lemma 6.4. If the minimal value of problem (3.1) is such that Λ > 1, then there exists a constant
Cε > 0 such that, for all φ ∈ H1

#,0(Ω),

1

ε

∫
Γ

α

(
x′

ε

)
φ(x′, 0)2dx′ +

1

Λ

∫
Ω

Dε∇φ · ∇φdx ≥ Cε
∫

Ω

φ2 dx.

Proof. Consider ϕ a function which realizes the minimum of

min
φ∈H1

#,0(Ω),
∫
Ω
φ2=1

1

ε

∫
Γ

α(
x′

ε
)φ(x′, 0)2 +

1

Λ

∫
Ω

D(
x

ε
, xn)∇φ · ∇φ.

Clearly |ϕ| is also a minimizer so we can assume that ϕ is non negative. Thanks to the strong maximum
principle introduced in Lemma 6.3, ϕ is positive and uniquely determined. Remark that ϕ must be
εTn−1-periodic. Indeed, because of the periodicity of the coefficients α and D, the function ϕ̃(x′, xn) =
ϕ(x′ + iε, xn) is also a positive and minimizer, for all i ∈ Nn−1. Because of the uniqueness of such a
minimizer, they must be equal. Consequently, after the change of variable y = x

ε we obtain

1

ε

∫
Γ

α(
x′

ε
)ϕ(x′, 0)2dx′ +

1

Λ

∫
Ω

Dε∇ϕ · ∇ϕdx =
εn−2

εn−1

(∫
Γ

α(y′)ϕ̃(y′, 0)2dy′ +
1

Λ

∫
Gε

D(y)∇ϕ̃ · ∇ϕ̃ dy
)
,

where ϕ̃(y) = ϕ(εy) for all y. If we extend ϕ̃ by 0 on G \Gε, we obtain

1

ε

∫
Γ

α(
x′

ε
)ϕ(x′, 0)2dx′ +

1

Λ

∫
Ω

Dε∇ϕ · ∇ϕdx =
1

ε

(∫
Γ

α(y′)ϕ̃(y′, 0)2dy′ +
1

Λ

∫
G

D(y)∇ϕ̃ · ∇ϕ̃ dy
)

≥ Cε > 0,

because ϕ̃, being equal to zero in G \Gε, is not the minimizer of problem (3.1).
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