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Homogenization and loalization for a 1-d eigenvalue problem in

a periodi medium with an interfae

Gr�egoire Allaire

�

Yves Capdebosq

y

Marh 6, 2002

Abstrat

In one spae dimension we address the homogenization of the spetral problem for a singularly

perturbed di�usion equation in a periodi medium. Denoting by � the period, the di�usion oeÆ-

ient is saled as �

2

. The domain is made of two purely periodi media separated by an interfae.

Depending on the onnetion between the two ell spetral equations, three di�erent situations arise

when � goes to zero. First, there is a global homogenized problem as in the ase without interfae.

Seond, the limit is made of two homogenized problems with a Dirihlet boundary ondition on the

interfae. Third, there is an exponential loalization near the interfae of the �rst eigenfuntion.

1 Introdution

This paper is devoted to the homogenization of the eigenvalue problem for a singularly perturbed di�usion

equation in a periodi medium. Although this problem is of interest in higher spae dimensions, we

restrit ourselves to the one-dimensional ase beause of the diÆulty of the analysis. In partiular,

one of our key tool is the theory of Hill's ordinary di�erential equation [Eas73℄ for whih there is no

equivalent in higher dimensions. Denoting by � the period, the di�usion oeÆient is assumed to be of

the order of �

2

. Thus, we onsider the following model

8

>

>

<

>

>

:

��

2

d

dx

�

a

�

x;

x

�

�

d

dx

�

�

�

+�

�

x;

x

�

�

�

�

= �

�

�

�

x;

x

�

�

�

�

in
;

�

�

= 0 on �
;

(1.1)

where �

�

; �

�

is an eigenvalue and eigenfuntion (throughout this paper, the eigenfuntions are normalized

by k�

�

k

L

2

(
)

= 1). In (1.1) the oeÆients are periodi of period 1 with respet to the fast variable x=�.

The general study of the homogenization of (1.1) is far from being omplete. When the oeÆients are

not rapidly osillating (i.e., they depend on the slow variable x but not on x=�), it is a problem of singular
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perturbation (without homogenization) whih is quite well understood now in any spae dimension (see,

e.g., [Pia98℄). When the oeÆients are purely periodi funtions (i.e., they depend solely on x=�), the

homogenization of (1.1) (and similar models in higher dimension) has been ahieved in [AB99℄, [AC00℄,

[AM97℄. In the ase of smooth oeÆients with a onentration hypothesis, partial results have reently

been obtained in [AP02℄ (again in any spae dimension). Here we fous on the di�erent ase (of pratial

as well as theoretial importane) where the oeÆients are disontinuous. More preisely, we fous on

the simplest possible model in this ontext, assuming that the domain is omposed of two periodial

media separated by an interfae.

The domain 
 is of the form (�l; L), where l and L are stritly positive onstants, and we introdue the

two sub-domains 


1

= (�l; 0) and 


2

= (0; L) separated by an interfae loated at the point 0. Denoting

by �

i

(x) the harateristi funtion of 


i

(satisfying �

1

+ �

2

= 1 and �

1

�

2

= 0 in 
), the oeÆients

are assumed to be given as

8

<

:

a(x; y) = �

1

(x)a

1

(y) + �

2

(x)a

2

(y);

�(x; y) = �

1

(x)�

1

(y) + �

2

(x)�

2

(y);

�(x; y) = �

1

(x)�

1

(y) + �

2

(x)�

2

(y):

(1.2)

All funtions a

1

; a

2

;�

1

;�

2

; �

1

and �

2

are assumed to be measurable, 1-periodi, bounded from above

and below by positive onstants. Under these assumptions, it is well known that equation (1.1) admits

a ountable in�nite number of non-trivial solutions (�

�

m

; �

�

m

)

m�1

. By standard regularity results, eah

eigenfuntion �

�

m

belongs to H

1

0

(
) \ C

0;s

(
), with s > 0, and by the Krein-Rutman theorem the

�rst eigenvalue is simple and the orresponding eigenfuntion an be hosen positive. Beause of this

property, the �rst eigenpair has a speial physial signi�ation, and we are mostly interested in its

behavior, although the ase of higher level eigenpairs is also treated in some oasions.

The motivation for studying this model omes from several appliations. First, it an be seen as a semi-

lassial limit problem for a Shr�odinger-type equation with periodi potential, as well as periodi metri

(this is the so-alled ground-state asymptoti problem, see, e.g., [KP93℄, [Pia98℄). Seond, it plays an

important role in the uniform ontrollability of the wave equation (see, e.g., [CZ℄). Third, and this is

our main motivation, it is a simple model for omputing the power distribution in a nulear reator ore.

This is the so-alled ritiality problem for the one-group neutron di�usion equation (for more details,

we refer to [AC00℄, [Cap99℄ and referenes therein). In all these appliations, the assumption of a purely

periodi medium (i.e., no dependene on x of the oeÆients) is muh too strong. On the other hand the

oeÆients are not smoothly varying but exhibit jumps at material interfaes. This makes model (1.1)

with assumptions (1.2) physially relevant.

The limit behavior of (1.1) is mainly governed by the �rst eigenpair ( 

i

; �

i

) in the unit ell of 


i

, i = 1; 2,

solution of

(

�

d

dy

�

a

i

(y)

d

dy

 

i

�

+�

i

(y) 

i

= �

i

�

i

(y) 

i

in [0; 1℄;

y !  

i

(y) 1� periodi and positive:

(1.3)

Before we explain our main results, let us reall what was already proved in [AM97℄ in the purely periodi

ase, namely when a

1

= a

2

, �

1

= �

2

, and �

1

= �

2

. Asymptotially, the marosopi trend of �

�

is given

by an homogeneous eigenvalue problem, whereas its osillatory behavior is governed by  

1

(

x

�

) (we all

this a fatorization priniple). More preisely, the result of [AM97℄ is
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Theorem 1.1. Assuming that a

2

= a

1

, �

2

= �

1

, and �

2

= �

1

, the m

th

eigenpair �

�

m

; �

�

m

of (1.1)

satis�es

�

�

m

(x) = u

�

m

(x) 

1

(

x

�

) and �

�

m

= �

1

+ �

2

�

m

+ o

�

�

2

�

;

where, up to a subsequene, the sequene u

�

m

onverges weakly in H

1

0

(
) to u

m

, and (�

m

; u

m

) is the m

th

eigenvalue and eigenvetor for the homogenized problem

�

�D

d

2

dx

2

u

m

= �

m

�u

m

in 
;

u

m

= 0 on �
:

(1.4)

The homogenized oeÆients are given by

D =

Z

1

0

a

1

(y) 

2

1

(y)

�

1 +

d�

dy

(y)

�

dy and � =

Z

1

0

�

1

(y) 

2

1

(y)dy; (1.5)

where the funtion � is the solution of

(

�

d

dy

�

a

1

(y) 

2

1

(y)

�

d�

dy

+ 1

��

= 0 in [0; 1℄;

pny ! �(y) 1� periodi:

(1.6)

Let us summarize our results in the ase of equal �rst eigenvalue in the ells, �

1

= �

2

. In the sequel we

hoose to normalize the �rst periodi eigenfuntions as follows

 

1

(0) =  

2

(0) = 1: (1.7)

We introdue a so-alled disontinuity onstant � de�ned by

� = a

1

(0)

d 

1

dy

(0)� a

2

(0)

d 

2

dy

(0): (1.8)

Note that a

i

d 

i

dy

belongs to H

1

(


i

) whih is embedded in C(


i

) (in 1-D) and therefore � is well de�ned

as the trae of a ontinuous funtion at the origin. Three di�erent situations are possible aording to

the sign of �.

If � = 0, then the two periodi media are said to be well-onneted. In partiular, the funtion equal

to a

i

(d 

i

)=(dx) in 


i

is ontinuous through the interfae (as well as  

i

beause of the normalization

ondition (1.7)). Therefore, Theorem 1.1 extends easily to this ase, and the disontinuity at the interfae

is not seen in the limit. Introduing a funtion  (x=�) = �

1

(x) 

1

(x=�) + �

2

(x) 

2

(x=�), the eigenpairs

(�

�

m

; �

�

m

)

m�1

satisfy

�

�

m

= �

1

+ �

2

�

m

+ o(�

2

) and �

�

m

(x) = u

�

m

(x) 

�

x

�

�

; (1.9)

where u

�

m

onverges weakly to u

m

, and (�

m

; u

m

)

m�1

are the eigenpairs of the homogenized problem (see

Theorem 3.1 and Figure 3.1)

8

>

>

<

>

>

:

�

d

dx

�

�

�

1

(x)D

1

+ �

2

(x)D

2

�

du

dx

�

= � (�

1

(x)�

1

+ �

2

(x)�

2

)u in 
;

u = 0 on �
:
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If � > 0, the interfae has a repelling e�et, and eah eigenfuntion goes to 0 at the interfae. The on-

vergene result (1.9) still holds true, but the homogenized problem has an additional Dirihlet boundary

ondition at x = 0. More preisely, the limit homogenized problem is (see Theorem 3.1 and Figure 3.2)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�D

1

d

2

dx

2

u = ��

1

u in 


1

;

�D

2

d

2

dx

2

u = ��

2

u in 


2

;

u = 0 on �


1

[ �


2

:

If � < 0, the situation is ompletely di�erent sine the �rst eigenfuntion onentrates exponentially

fast at the interfae. In this latter ase, there is no fatorization priniple as in Theorem 1.1, but rather

a loalization priniple at the disontinuity (see Theorem 3.5 and Figure 3.3). The �rst eigenvalue �

�

1

onverges to a limit 0 < �

1

< �

1

= �

2

, and 0 < �

�

1

� �

1

< C exp(��=�), whereas the �rst normalized

eigenvetor satis�es









d

dx

�

�

1

(x)�

1

p

�

d

dx

�

	

�

x

�

��









L

2

(
)

+









�

�

1

(x)�

1

p

�

	(

x

�

)









L

2

(
)

� C exp

�

�

�

�

�

:

The limit funtion 	 2 H

1

(R) dereases exponentially away from the interfae, sine it is given by

	(x) =

�

 

1;�

1

(x) for x < 0;

 

2;�

2

(x) for x > 0;

with �

1

= �

1

(�

1

) = �

2

(�

2

), and eah of the eigenpairs (�

i

(�

i

);  

i;�

i

) being the �rst eigenouple of the

following spetral ell problem

8

>

>

<

>

>

:

�

d

dx

�

a

i

(x)

d 

i;�

i

dx

�

+�

i

(x) 

i;�

i

= �

i

(�

i

)�

i

(x) 

i;�

i

in [0; 1℄;

x!  

i;�

i

(x)e

��

i

x

1-periodi.

(1.10)

The required properties of the �-parameterized family of spetral ell problems (1.10) are given in se-

tion 2.

We now turn to the ase �

1

6= �

2

, and with no loss of generality we assume �

1

> �

2

. In this ase too,

the spetral ell problems (1.10) govern the limit behavior of (1.1). We introdue a positive parameter

�

0

> 0, suh that �

1

(�

0

) = �

2

, and another disontinuity onstant (see Lemma 3.9)

�(�

0

) = a

1

(0)

d 

1;�

0

dy

(0)� a

2

(0)

d 

2

dy

(0):

The sign of this new disontinuity onstant determines the asymptoti behavior of (1.1).

If �(�

0

) > 0, the eigenfuntions �

�

m

onentrate in the sub-domain 


2

where the �rst periodi eigenvalue

is the smallest (see Theorem 3.8 in the simpler ase when � � 0, and Theorem 3.11 when �(�

0

) > 0).

4



More preisely, the limit of �

�

m

vanishes in the sub-domain 


1

. Introduing the fatorization �

�

m

(x) =

u

�

m

(x) 

2

(x=�) in 


2

, the homogenized problem for the limit of u

�

m

is simply (see Figure 3.4)

8

>

<

>

:

�D

2

d

2

dx

2

u = ��

2

u in 


2

;

u = 0 on �


2

:

The ase � (�

0

) = 0 orresponds to the limit between loalization at the interfae and onentration in




2

. The limit of the eigenfuntion �

�

m

still vanishes in 


1

, but in the homogenized problem the Dirihlet

boundary ondition at x = 0 is replaed by a Neumann boundary ondition (see Theorem 3.12)

8

>

>

>

<

>

>

>

:

�D

2

d

2

dx

2

u = ��

2

u in 


2

;

u(L) = 0 and

du

dx

(0) = 0:

Finally, when � (�

0

) < 0, a loalization phenomenon appears, and the �rst eigenfuntion onentrates

exponentially fast at the interfae. The result is then similar to the one obtained when �

1

= �

2

and

� < 0 (see Theorem 3.10).

Our main results are stated in setion 3 when �

1

is equal or not to �

2

. Previously, in setion 2 we give a

few tehnial results on the spetral ell problems that are ruial not only for the proof, but also for the

statement of our main results. Setion 4 ontains the proofs when the disontinuity onstant is positive,

� � 0, while setion 5 fous on the loalization phenomena, namely � < 0 or �(�

0

) < 0. Setion 6

ontains the proofs in the speial situation when � < 0 but no loalization ours (�(�

0

) � 0), as it an

happen when �

1

is not equal to �

2

. Setion 7 ontains the proof of a ruial tehnial result about the

Hill equation in one dimension.

2 Cell problems

In order to state preisely our onvergene results, the knowledge of the spetral ell problem (1.3) is not

enough. As in [Cap98℄, we need to introdue a parameterized family of spetral ell problems. They are

reminisent of the so-alled Bloh wave deomposition (see e.g. [CPV95℄, [RS78℄), but they involve real

exponentials instead of omplex ones. All the results in this setion are proved under the assumption

that the periodi oeÆients a

i

;�

i

; �

i

are positive, bounded, measurable funtions, exept Proposition

2.2 whih asks for more smoothness or pieewise onstant oeÆients.

Lemma 2.1. For eah � 2 R there exists a unique �rst eigenouple ( 

i;�

; �

i

(�)), of the problem

8

<

:

�

d

dx

�

a

i

(x)

d 

i;�

dx

�

+�

i

(x) 

i;�

= �

i

(�)�

i

(x) 

i;�

in [0; 1℄;

x!  

i;�

(x)e

��x

1� periodi and positive;

(2.1)

whih is normalized by

 

i;�

(0) = 1: (2.2)
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The map � ! �

i

(�) is stritly onave with a maximum at � = 0, and satis�es the following inequalities

�

2

� �

i

(0)� �

i

(�) � C�

2

;

where C and  are positive onstants, independent of �.

A further property of the �rst eigenfuntion  

i;�

; is given in the next Proposition. Its proof is quite

deliate and relies on purely 1-D arguments (we postpone it to setion 7). We give two di�erent proofs:

�rst in the ase of C

2

oeÆients, whih allows to perform a Liouville transformation and to use lassial

results on the 1-D Hill equation, seond in the ase of pieewise onstant oeÆients, whih permits to

do expliit omputations.

Proposition 2.2. Assuming that the oeÆients are C

2

or pieewise onstant, for eah � 2 R the �rst

eigenvetor  

i;�

of problem (2.1) with the normalization  

i;�

(0) = 1 satis�es

lim

�!�1

d 

i;�

dx

(0) = �1 and lim

�!+1

d 

i;�

dx

(0) = +1:

Proof of Lemma 2.1. By introduing the hange of variable

�

i;�

(x) =  

i;�

(x)e

��x

;

equation (2.1) is equivalent to

8

<

:

�

d

dx

�

a

i

d�

i;�

dx

�

� �

�

d

dx

(a

i

�

i;�

) + a

i

d�

i;�

dx

�

+

�

�

i

� a

i

�

2

�

�

i;�

= �

i

(�)�

i

�

i;�

in [0; 1℄;

x! �

i;�

(x)1� periodi and positive;

(2.3)

with the same normalization ondition

�

i;�

(0) = 1:

The existene of a unique �rst positive eigenouple for problem (2.3) is known, see e.g. [GT83, Theorem

8.38℄, and we have �

i;�

2 H

1

#

([0; 1℄)\C

0;s

([0; 1℄), with s > 0. In partiular, this imply that C > �

i;�

(x) >

 > 0 in [0; 1℄. It is proved in [Cap98℄ that the funtion � ! �

i

(�) is smooth, stritly onave on all R,

and reahes its maximum at � = 0.

To obtain the growth ondition on �

i

(�), we perform the following hange of unknown

u

�

(x) =

 

i;�

(x)

 

i;0

(x)

whih is liit by virtue of Proposition 4.1. Then, u

�

is solution of the following problem

8

<

:

�

d

dx

�

b(x)

du

�

dx

�

= �(�)s(x)u

�

in [0; 1℄;

x! u

�

(x)e

��x

1� periodi ;

(2.4)

with b(x) = a

i

(x) 

2

i;0

(x), s(x) = �

i

(x) 

2

i;0

(x), and �(�) = �

i

(�)� �

i

(0). These oeÆients are bounded,

and we an therefore apply Lemma 2.3.

6



Lemma 2.3. Let b and s be measurable funtions on [0; 1℄, bounded above and below by two positive

onstant M > m > 0. For eah � 2 R the �rst eigenvalue �(�) of problem (2.4) satis�es

m

M

�

2

� ��(�) �

M

m

�

2

:

Proof. We already know that �(�) < 0 for all � 6= 0. We an assume that � > 0 sine hanging the sign of

� in (2.4) is equivalent to onsider its adjoint equation whih has the same �rst eigenvalue. Beause we

are working in one spae dimension, (2.4) an be written as a system of ordinary di�erential equations.

Namely, denoting by 0 the x-derivation,

Y

0

(x) = A(x)Y (x) and A =

2

4

0 b

�1

��(�)s 0

3

5

and Y =

0

�

Y

1

= u

�

Y

2

= bu

0

�

1

A

: (2.5)

By enforing the normalization u

�

(0) = Y

1

(0) = 1, the Krein-Rutman Theorem implies that Y

1

is

positive, and thus Y

2

is inreasing. Sine Y

2

(n) = e

n�

Y

2

(0), and � > 0, this implies that Y

2

(0) > 0, and

thus Y

2

(x) > 0 for x � 0. This in turn gives, by the �rst equation, that Y

1

is inreasing thus Y

1

� 1 for

x � 0. Beause Y

1

and Y

2

are positive funtions on R

+

; we an write

A

�

Y � Y

0

� A

+

Y with A

+

=

2

4

0 m

�1

��(�)M 0

3

5

; and A

�

=

2

4

0 M

�1

��(�)m 0

3

5

:

Sine the matries A

+

and A

�

have onstant oeÆients, it is straightforward to obtain the solutions of

the initial value problems

Z

0

= �(A

�

)

T

Z; Z(0) = Z

0

; and X

0

= �(A

+

)

T

X; X(0) = X

0

:

In partiular, the hoie Z

0

= X

0

=

�

1; (��(�)mM)

�1=2

�

leads to the positive solutions

Z(x) = Z

0

exp

 

�x

r

��(�)m

M

!

and X(x) = X

0

exp

 

�x

r

��(�)M

m

!

:

We an ompute that (Y � Z)

0

= Y

0

� Z + Y � Z

0

= (Y

0

�A

�

Y ) � Z � 0 sine Z is positive. Thus

Y � Z � Y (0) � Z(0) for all x � 0, and hoosing x = n 2 N leads to

Y (n) � Z(n) = exp

 

n

 

� �

r

(��(�))m

M

!!

Y (0) � Z(0) � Y (0) � Z(0);

and therefore � �

q

(��(�))m

M

. Similarly, we have (Y �X)

0

= (Y

0

�A

+

Y ) � X � 0 sine X is positive,

whih gives in turn for all n,

Y (n) �X(n) = exp

 

n

 

� �

r

(��(�))M

m

!!

Y (0) �X(0) � Y (0) �X(0);

and therefore � �

q

(��(�))M

m

.
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Remark 2.4. Lemma 2.3 an be generalized to higher spae dimensions by using the maximum priniple.

It is proved in [Cap02℄ that in general � ! �(�) is a stritly onave funtion, i.e., that on any bounded

subset K � R

N

(with N the spae dimension) the Hessian matrix H =

�

�

2

�

��

i

��

j

�

1�i;j�N

is negative

de�nite and Hx � x � �C(K)x � x with C(K) > 0. The funtion �(�) ahieves its maximum in 0 and

lim

j�j!1

�(�) = �1.

3 Main results

In the spirit of the method of proof of Theorem 1.1 (see [AM97℄), we introdue in (1.1) the hange of

unknown

u

�

(x) =

�

�

(x)

 

�

x;

x

�

�

;

with a funtion  (x; y) de�ned by

 (x; y) = �

1

(x) 

1

(y) + �

2

(x) 

2

(y); (3.1)

where ( 

1

; �

1

) and ( 

2

; �

2

) are the �rst eigenouples in eah periodi ell of (1.3). By our normalization

ondition (1.7), the funtion  (x; x=�) is ontinuous at the interfae x = 0. On the ontrary, the funtion

a(x; x=�)(d (x; x=�))=(dx) is not neessarily ontinuous and its jump at the interfae is measured by the

disontinuity onstant � introdued in (1.8).

The �rst result onerns the speial ase when the �rst ell eigenvalues of (1.3) are equal, �

1

= �

2

, and

the disontinuity onstant is non-negative, � � 0. Under these assumptions, we obtain a generalization

of Theorem 1.1.

Theorem 3.1. Let �

�

m

and �

�

m

be the m-th eigenvalue and normalized eigenvetors of (1.1). Assume

that the disontinuity onstant de�ned in (1.8) is non negative � � 0, and that �

1

= �

2

. Then

�

�

m

(x) = u

�

m

(x) 

�

x;

x

�

�

and �

�

m

= �

1

+ �

2

�

m

+ o

�

�

2

�

;

up to a sub-sequene, u

�

m

onverges weakly in H

1

0

(
) towards u

m

, and (�

m

; u

m

) is the m-th eigenouple

of the homogenized problem, whih, if � = 0, is

8

>

>

<

>

>

:

�

d

dx

�

�

�

1

(x)D

1

+ �

2

(x)D

2

�

du

dx

�

= � (�

1

(x)�

1

+ �

2

(x)�

2

)u in 
;

u = 0 on �
;

(3.2)

and, if � > 0, is

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�D

1

d

2

dx

2

u = ��

1

u in 


1

;

�D

2

d

2

dx

2

u = ��

2

u in 


2

;

u = 0 on �


1

[ �


2

:

(3.3)

In both ases, the homogenized oeÆients are de�ned by formula (1.5) for eah half domain.
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Figure 3.1: First eigenfuntion for problem (1.1) in the ase of two well-onneted media, i.e., � = 0.
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Figure 3.2: First eigenfuntion for problem (1.1) in the ase of non well-onneted media with a positive

disontinuity onstant � > 0.

As an illustration of Theorem 3.1, we present some diret omputations of the �rst eigenfuntion �

�

1

of

problem (1.1). The ase �

1

= �

2

and � = 0 is shown on Figure 3.1. (The domain is omposed of an

homogeneous medium on the left and an heterogeneous one on the right). The ase �

1

= �

2

and � > 0 is

shown on Figure 3.2 (the domain is omposed of two heterogeneous media with the same ell oeÆients

but with a onstant phase shift between the right and the left). The data used for the omputation is

presented in Remark 3.7.

Remark 3.2. Of ourse, sine the homogenized oeÆients are onstant in eah sub-domain we an

ompute expliitly the eigenvalues of the homogenized problems in Theorem 3.1.

Remark 3.3. There is a simple suÆient ondition for having well-onneted media, i.e., � = 0. If all

oeÆients satisfy a entral symmetry ondition, i.e., are symmetri with respet to the enter of the

unit ell [0; 1℄, then it is easy to hek that  

i

satis�es a Neumann boundary ondition at x = 0 and

x = 1, and therefore � = 0. Atually, Theorem 3.1 was already proved by Malige [Mal96℄ under this

assumption. The symmetry was used for the onstrution of the example shown in Figure 3.1: in 


2

, the

periodi oeÆients are pieewise onstant on (0:3; 0:7) and (0:1; 0:3) [ (0:7; 1:0); in 


1

, a

1

� 1, �

1

� 1

and �

1

= �

2

.

9



Remark 3.4. When � > 0, the homogenized problem is posed on two disjoint sub-domains 


1

and 


2

.

In other words, there are two deoupled homogenized problems. Therefore, there always exist two non-

negative eigenfuntions with disjoint supports, u

1

(x) = sin(�

�

l

x)�

1

(x) orresponding to the eigenvalue

�

1

= �

2

D

1

�

1

l

2

and u

2

(x) = sin(

�

L

x)�

2

(x) orresponding to the eigenvalue �

2

= �

2

D

2

�

2

L

2

. If the �rst

eigenvalues in eah sub-domain are distint, e.g., L

2

�

2

D

1

> l

2

�

1

D

2

, the �rst fatorized eigenfuntion

u

�

1

will tend to u

2

, i.e., will onentrate in the sub-domain that has the smallest �rst eigenvalue and

onverge to zero in the other one. In the other ase where the �rst eigenvalues in 


1

and 


2

are equal,

the �rst eigen-subspae is of dimension 2, span by u

1

and u

2

and the uniqueness of the limit of �

�

1

is lost

(on Figure 3.2 the limit seems to be a linear ombination of the �rst eigenfuntions on eah sub-domain).

Our seond result ompletes the ase �

1

= �

2

when the disontinuity onstant is negative, � < 0. Under

these assumptions, we obtain a loalization phenomena.

Theorem 3.5. Let (�

�

1

; �

�

1

) be the �rst normalized eigenouple of (1.1). Assume that �

1

= �

2

and � < 0.

Then, there exists a unique �

1

> 0 and a unique positive 	(x) 2 H

1

(R) suh that

0 � �

�

1

� �

1

� C exp

�

�

�

�

�

and









d

dx

�

�

1

(x) �

1

p

�

d

dx

�

	

�

x

�

��









L

2

(
)

+









�

�

1

(x)�

1

p

�

	(

x

�

)









L

2

(
)

� C exp

�

�

�

�

�

;

where C and � are positive onstant, independent of �. The limit eigenvalue satis�es �

1

< �

1

= �

2

, and

the limit eigenfuntion is de�ned by

	(x) =

�

 

1;�

1

(x) for x < 0;

 

2;�

2

(x) for x > 0;

with �

1

> 0 and �

2

< 0 and (�

1

;  

i;�

i

) is the �rst eigenouple of the ell problem (2.1), i.e.,

8

>

>

<

>

>

:

�

d

dx

�

a

i

(x)

d 

i;�

i

dx

�

+�

i

(x) 

i;�

i

= �

1

�

i

(x) 

i;�

i

in [0; 1℄;

x!  

i;�

i

(x)e

��

i

x

1� periodi :

Remark 3.6. Theorem 3.5 is illustrated by Figure 3.3: the �rst eigenvetor of system (1.1) onverges

exponentially fast towards a loalized eigenfuntion near the interfae between the two domains. Fur-

thermore, the orresponding eigenvalue is smaller than �

1

= �

2

, whih is the limit obtained in all the

other ases. In ontrast with Theorem 3.1, no fatorization, or limit homogenized problem appear in

the wording of Theorem 3.5. The limit eigenfuntion 	 ontains both the periodial osillations and the

marosopi trend.

Remark 3.7. The omputations shown on Figure 3.2 and Figure 3.3 were performed with the same two

media, but their positions are swithed with respet to the interfae when passing from one ase to the

other. We take �l = L = 1 with 100 periodiity ells, whih yields � = 0:02. All the more the periodi ell

oeÆients for the two media are the same up to a phase shift in the unit ell. More preisely, in Figure 3.2

the oeÆients are a

1

(y) = a(y), a

2

(y) = a(y + ), �

1

(y) = �(y), �

2

(y) = �(y + ), �

1

(y) = �(y),

�

2

(y) = �(y + ), while in Figure 3.3 they are a

1

(y) = a(y + ), a

2

(y) = a(y), �

1

(y) = �(y + ),

�

2

(y) = �(y), �

1

(y) = �(y + ), �

2

(y) = �(y), where  = 0:6 is a onstant phase shift, and a; � and �

are periodi funtions. Eah periodiity ell is made of three di�erent media or onstituents arranged in
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Figure 3.3: First eigenfuntion for problem (1.1) in the ase of non well-onneted media with a negative

disontinuity onstant � < 0.

spei�ed order as follows

(a;�; �) =

8

>

>

<

>

>

:

(a

I

;�

I

; �

I

) if 0 < y < 0:1

(a

II

;�

II

; �

II

) if 0:1 < y < 0:5

(a

III

;�

III

; �

III

) if 0:5 < y < 0:8

(a

I

;�

I

; �

I

) if 0:8 < y < 1

with

Constituent I a

I

= 0:9666 �

I

= 2:1080 �

I

= 2:8283

Constituent II a

II

= 2:0086 �

II

= 2:3878 �

II

= 2:9451

Constituent III a

III

= 2:0444 �

III

= 2:9945 �

III

= 1:1493

Note that, by onstrution, �

1

= �

2

� 1:3863. The shape of the �rst eigenvetor �

�

1

on Figure 3.2 (with

eigenvalue �

�

1

� 1:3899), orresponds to what is announed by Theorem 3.1: asymptotially, both media

tend to separate when � > 0. Therefore, by symmetry Figure 3.3 orresponds to a situation where � < 0:

the �rst eigenvetor onentrates exponentially at the interfae between the two media. The numerial

alulation on�rms that the orresponding eigenvalue (�

�

1

� 1:3720) is below that of the periodiity

ell. This phenomenon is explained by Lemma 5.4 whih gives a neessary and suÆient ondition for

the existene of a loalized eigensolution.

We now turn to the general ase �

1

6= �

2

. In the sequel, we shall assume, without loss of generality, that

�

1

> �

2

:

If the disontinuity onstant is non-negative, i.e., � � 0, the eigenfuntions onentrate asymptotially

in the sub-domain 


2

where the �rst periodi eigenvalue is the smallest.

Theorem 3.8. Let �

�

m

and �

�

m

be the m-th eigenvalue and normalized eigenfuntion of (1.1). Assume

that � � 0 and �

1

> �

2

. Then,

�

�

m

(x) = u

�

m

(x) 

�

x;

x

�

�

and �

�

m

= �

2

+ �

2

�

m

+ o

�

�

2

�

;
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Figure 3.4: First eigenfuntion of (1.1) in the ase of two media with �

1

> �

2

and � = 0.

where, up to a subsequene, u

�

m

onverges weakly in H

1

0

(
) to u

m

, with u

m

= 0 in 


1

and (�

m

; u

m

) is

the m-th eigenpair of the following homogenized problem

�

�D

2

d

2

dx

2

u

m

= �

m

�

2

u

m

in 


2

;

u

m

= 0 on �


2

;

(3.4)

and the homogenized oeÆients are still given by (1.5).

Figure 3.4 illustrates Theorem 3.8. It displays the �rst eigenfuntion �

�

1

in the ase of two media with

symmetri periodi strutures (so that � = 0), with �

1

' 1:58 and �

2

' 0:43 and 20 periodi ells on

eah side of the interfae.

When �

1

> �

2

, a loalization phenomena an also our. Let us �rst remark that, as an obvious

onsequene of Lemma 2.1, we have the following result.

Lemma 3.9. For all �

1

> �

2

there exists a unique �

0

> 0 suh that �

1

(�

0

) = �

2

.

Indeed, Lemma 3.9 is obvious by remarking that �

1

(�), de�ned in Lemma 2.1, is a onave funtion

with quadrati growth at in�nity and reahing its maximum at � = 0, �

1

(0) = �

1

> �

2

. The �rst

eigenvetors orresponding to �

2

and �

1

(�

0

) are denoted by  

2

and  

1;�

0

. They are ontinuous at the

interfae, i.e.,  

2

(0) =  

1;�

0

(0) = 1, and we introdue a new disontinuity onstant that will haraterize

the loalization phenomena

�(�

0

) = a

1

(0)

d 

1;�

0

dy

(0)� a

2

(0)

d 

2

dy

(0):

Theorem 3.10. Let (�

�

1

; �

�

1

) be the �rst normalized eigenouple of (1.1). Assume that �(�

0

) < 0. Then,

there exists a unique �

1

> 0 and a unique positive 	 2 H

1

(R) suh that

0 � �

�

1

� �

1

� C exp

�

�

�

�

�

and









d

dx

�

�

1

(x) �

1

p

�

d

dx

�

	

�

x

�

��









L

2

(
)

+









�

�

1

(x)�

1

p

�

	(

x

�

)









L

2

(
)

� C exp

�

�

�

�

�

;

(3.5)
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where C and � are positive onstant, independent of �. The limit eigenvalue satis�es �

1

< �

2

< �

1

, and

the limit eigenfuntion is de�ned by

	(x) =

�

 

1;�

1

(x) for x < 0;

 

2;�

2

(x) for x > 0;

with �

1

> 0 and �

2

< 0 and (�

1

;  

i;�

i

) is the �rst eigenouple of the ell problem (2.1), i.e.,

8

>

>

<

>

>

:

�

d

dx

�

a

i

(x)

d 

i;�

i

dx

�

+�

i

(x) 

i;�

i

= �

1

�

i

(x) 

i;�

i

in [0; 1℄;

x!  

i;�

i

(x)e

��

i

x

1� periodi :

Finally, in the remaining ase � < 0 and �(�

0

) � 0, there is no loalization, and the eigenfuntions

still onentrate asymptotially in the sub-domain 


2

where the �rst periodi eigenvalue is the smallest.

When �(�

0

) > 0, the limit problem has Dirihlet boundary onditions. When �(�

0

) = 0, the limit

problem has a Neumann boundary ondition at the interfae.

Theorem 3.11. Let �

�

m

and �

�

m

be the m-th eigenvalue and normalized eigenfuntion of (1.1). Assume

that �

1

> �

2

, � < 0 and �(�

0

) > 0. Then,

�

�

m

= �

2

+ �

2

�

m

+ o

�

�

2

�

; �

�

m

(x)! 0 in L

2

(


1

) and �

�

m

(x) = u

�

m

(x) 

2

�

x

�

�

;

where, up to a subsequene, u

�

m

onverges weakly in H

1

(


2

) to u

m

, and (�

m

; u

m

) is the m-th eigenpair

of the following homogenized problem

�

�D

2

d

2

dx

2

u

m

= �

m

�

2

u

m

in 


2

;

u

m

= 0 on �


2

;

(3.6)

and the homogenized oeÆients are still given by (1.5).

Theorem 3.12. Let �

�

m

and �

�

m

be the m-th eigenvalue and normalized eigenfuntion of (1.1). Assume

that �

1

> �

2

, � < 0 and �(�

0

) = 0. Then,

�

�

m

= �

2

+ �

2

�

m

+ o

�

�

2

�

; �

�

m

(x)! 0 in L

2

(


1

) and �

�

m

(x) = u

�

m

(x) 

2

�

x

�

�

;

where, up to a subsequene, u

�

m

onverges weakly in H

1

(


2

) to u

m

, and (�

m

; u

m

) is the m-th eigenpair

of the following homogenized problem

�

�D

2

d

2

dx

2

u

m

= �

m

�

2

u

m

in 


2

;

u

m

(L) = 0; and

du

m

dx

(0) = 0;

(3.7)

and the homogenized oeÆients are still given by (1.5).

Remark 3.13. Note that the homogenized problems of Theorems 3.11 and 3.12 (orresponding to �(�

0

) >

0 and �(�

0

) = 0, respetively) are similar exept the boundary ondition at x = 0. Then a simple

omputation shows that the �rst homogenized eigenvalue �

1

is four times smaller when �(�

0

) = 0 than

when �(�

0

) > 0.
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Remark 3.14. At the di�erene of Theorem 3.8, we do not prove in Theorems 3.11 and 3.12 that the

fatorized eigensolutions u

�

m

have bounded gradients in all of 
, but simply within 


2

. It is therefore

diÆult (at least for us) to study the possible ourrene of boundary layers in 


1

. In the limit ase

of Theorem 3.12, beause of the homogenized Neumann boundary ondition at x = 0, we expet a

nontrivial boundary layer in 


1

.

Remark 3.15. The generalization of the results of this setion to higher spae dimensions is not obvious

for at least two reasons. First, Theorems 3.5 and 3.10 relies on Proposition 2.2 whih is proved only in

one dimension (by using o.d.e. tehniques). Seond, even Theorems 3.1 and 3.8 (whih do not depend

on Proposition 2.2) are not straightforward in higher dimensions beause we an not assume a perfet

transmission ondition (1.7) at the interfae. Of ourse, if it happens by hane that, for a dimension

N > 1, we have

 

1;�

0

(0; y

0

) =  

2

(0; y

0

) (3.8)

for almost every y

0

2 [0; 1℄

N�1

, and

0 � �(y

0

) = a

1

(0; y

0

)

d 

1;�

0

dy

(0; y

0

)� a

2

(0; y

0

)

d 

2

dy

(0; y

0

) �M < +1; (3.9)

then Theorems 3.1 and 3.8 extend easily sine at the interfae the problem is essentially one-dimensional

(see [Cap99℄). Of ourse, these onditions are very strit and almost never satis�ed in pratie. In

general, we believe that boundary layers at the interfae must be taken into aount.

Remark 3.16. Throughout this paper we assume that, after resaling by �, the periodiity on both sides

of the interfae is exatly one. The fat that the period is the same in 


1

and 


2

is not important,

and this is purely by onveniene that we made this hoie. All our results apply if the two periods are

di�erent, provided that the disontinuity onstants � and �(�

0

) are properly de�ned.

4 Proofs in the ase � � 0

In order to prove Theorem 3.1 and 3.8, we �rst need to justify the fatorization �

�

(x) = u

�

(x) 

�

x;

x

�

�

.

This is the goal of the next Proposition whih is a generalization of a previous result of [AM97℄ (see also

[AC00℄).

Proposition 4.1. Let  (x; y) be the funtion de�ned by (3.1). Then, the linear operator T de�ned by

T : H

1

0

(
) ! H

1

0

(
)

�(x) !

�(x)

 

�

x;

x

�

�

is bounded, invertible and biontinuous.

Proof. Thanks to the normalization ondition (1.7) the funtion  (x; x=�) is ontinuous on R. By virtue

of Lemma 2.1 we know that there exist two positive onstants C >  > 0 suh that C �  

1

(y);  

2

(y) � 

for all y 2 [0; 1℄, and these bounds also holds for  . Therefore, for all � 2 H

1

0

(
), if we de�ne u = T (�),

we have

C

�1

k�k

L

2

(
)

� kuk

L

2

(
)

� 

�1

k�k

L

2

(
)

; (4.1)
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and T is an homeomorphism on L

2

(
). On the other hand,

Z




a

d�

dx

d�

dx

=

Z




1

a

1

 

2

1

du

dx

du

dx

+

Z




2

a

2

 

2

2

du

dx

du

dx

+

Z




1

a

1

d 

1

dx

d(u

2

 

1

)

dx

+

Z




2

a

2

d 

2

dx

d(u

2

 

2

)

dx

:

(4.2)

Equation (1.3) de�ning  

1

(x=�) tested against u

2

(x) 

1

(x=�) writes

Z




1

a

1

d 

1

dx

d(u

2

 

1

)

dx

�

1

�

a

1

(0)

d 

1

dy

(0)u

2

(0) =

1

�

2

�

�

1

Z




1

�

1

 

2

1

u

2

�

Z




1

�

1

 

2

1

u

2

�

; (4.3)

and similarly we have

Z




2

a

2

d 

2

dx

d(u

2

 

2

)

dx

+

1

�

a

2

(0)

d 

2

dy

(0)u

2

(0) =

1

�

2

�

�

2

Z




2

�

2

 

2

2

u

2

�

Z




2

�

2

 

2

2

u

2

�

: (4.4)

When we replae (4.3) and (4.4) into (4.2) we obtain

Z




a

�

x;

x

�

�

d�

dx

d�

dx

dx +

1

�

2

Z




�

�

x;

x

�

�

�

2

dx =

2

X

i=1

Z




i

a

i

�

x

�

�

 

2

i

�

x

�

�

du

dx

du

dx

dx

+

1

�

2

2

X

i=1

Z




i

�

i

�

i

�

x

�

�

 

2

i

�

x

�

�

u

2

dx

+

1

�

� u

2

(0):

(4.5)

Where � is the disontinuity onstant given by (1.8). If � � 0, all the left hand side terms are non-

negative in (4.5). Sine a

1

; a

2

;  

1

and  

2

are bounded below by positive onstants, we an dedue that









du

dx









2

L

2

(
)

+ kuk

2

L

2

(
)

� C(�)

 









d�

dx









2

L

2

(
)

+ k�k

2

L

2

(
)

!

: (4.6)

Conversely, we have

0 � �u

2

(0) � C

Z




�

du

dx

�

2

dx; (4.7)

therefore we also obtain from (4.5) that









d�

dx









2

L

2

(
)

+ k�k

2

L

2

(
)

� C(�)

 









du

dx









2

L

2

(
)

+ kuk

2

L

2

(
)

!

(4.8)

and this onludes the proof of the proposition for � � 0. If � � 0, note that thanks to the normalization

ondition (1.7), u

2

(0) = �

2

(0). Consequently, identity (4.5) is also

Z




a

�

x;

x

�

�

�

d�

dx

�

2

dx+

1

�

2

Z




�

�

x;

x

�

�

�

2

dx�

1

�

��

2

(0) =

2

X

i=1

Z




i

a

i

�

x

�

�

 

2

i

�

x

�

�

�

du

dx

�

2

dx

+

1

�

2

2

X

i=1

Z




i

�

i

�

i

�

x

�

�

 

2

i

�

x

�

�

u

2

dx:
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We therefore obtain the same onlusion, reverting the positions of u and � in (4.6-4.8).

If we proeed to the hange of unknown u

�

= T (�

�

), problem (1.1) is transformed into a new eigenvalue

problem, where the singular perturbation in front of the divergene term has disappeared. Proposition 4.2

gives the form of this new problem after some simple algebra.

Proposition 4.2. Introduing u

�

(x) = �

�

(x)= 

�

x;

x

�

�

, (1.1) is equivalent to the following eigenvalue

problem

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�

d

dx

�

D

�

x;

x

�

�

du

�

dx

�

+

�

1

� �

2

�

2

�

1

(x)B

�

x;

x

�

�

u

�

+�

�1

�u

�

(0)Æ(x) = �

�

B

�

x;

x

�

�

u

�

u

�

= 0 on �


in 
 (4.9)

where Æ(x) is the Dira funtion, the (positive) di�usion oeÆient is de�ned by

D

�

x;

x

�

�

= �

1

(x) 

2

1

�

x

�

�

a

1

�

x

�

�

+ �

2

(x) 

2

2

�

x

�

�

a

2

�

x

�

�

;

the (positive) oeÆient B by

B

�

x;

x

�

�

= �

1

(x) 

2

1

�

x

�

�

�

1

�

x

�

�

+ �

2

(x) 

2

2

�

x

�

�

�

2

�

x

�

�

;

and the new eigenvalue by

�

�

=

�

�

� �

2

�

2

:

Remark 4.3. We proved Proposition 4.1 regardless of the sign of �, therefore Proposition 4.2 is also valid

when � < 0. We shall use this equivalent form of (1.1) in Setion 6.

Following a strategy already used in [AC00℄, [AC98℄, the asymptoti study of the eigenvalue problem

(4.9) relies on the detailed homogenization, as � tend to zero, of the following problem

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�

d

dx

�

D

�

x;

x

�

�

du

�

dx

�

+

�

1

� �

2

�

2

�

1

(x)B

�

x;

x

�

�

u

�

+�

�1

�u

�

(0)Æ(x) = f

�

u

�

= 0 on �
;

in 
 (4.10)

with a right hand side f

�

whih is a bounded sequene of L

2

(
), weakly onverging to a limit f 2 L

2

(
).

We �rst obtain a priori estimates

Proposition 4.4. If � � 0, the solution u

�

of equation (4.10) satis�es

ku

�

k

H

1

0

(
)

+

�

1

� �

2

�

ku

�

k

L

2

(


1

)

+

r

�

�

ku

�

(0)k � C kf

�

k

L

2

(
)

(4.11)

where C is a onstant independent of �. Therefore, up to a subsequene, u

�

onverges weakly to a limit

u in H

1

0

(
). Furthermore,
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� if �

1

> �

2

, the limit u vanishes in 


1

and thus belongs to H

1

0

(


2

),

� if �

1

= �

2

and � > 0, the limit satis�es u(0) = 0 and thus an be written u = u

1

+ u

2

with

u

1

2 H

1

0

(


1

) and u

2

2 H

1

0

(


2

).

Proof. If we test variationally equation (4.10) de�ning u

�

against u

�

, we obtain

Z




D

�

x;

x

�

�

�

du

�

dx

�

2

dx+

�

1

� �

2

�

2

Z




1

B

�

x;

x

�

�

(u

�

)

2

dx+

1

�

�(u

�

)

2

(0) =

Z




f

�

u

�

dx:

Sine D and B are bounded below by a positive onstant, and sine we assume that �

1

� �

2

and � � 0,

we obtain









du

�

dx









2

L

2

(
)

+

�

1

� �

2

�

2

ku

�

k

2

L

2

(


1

)

+

�

�

ku

�

(0)k

2

� C kf

�

k

L

2

(
)

ku

�

k

L

2

(
)

;

whih yields the desired result thanks to Poinar�e inequality.

Lemma 4.5. Let S

�

be the operator de�ned by

S

�

: L

2

(
)! L

2

(
)

f ! u

�

unique solution in H

1

0

(
)

of equation (4.10) with r.h.s. f:

(4.12)

For all �xed � > 0, S

�

is a linear ompat operator in L

2

(
).

This result is a onsequene of the a priori estimate (4.11) and of the ompat inlusion of H

1

0

(
) in

L

2

(
). We shall show the following result

Proposition 4.6. Let f

�

be a weakly onverging sequene to a limit f in L

2

(
). The sequene u

�

= S

�

(f

�

)

weakly onverges in H

1

0

(
) towards u

0

de�ned by u

0

= S(f).

1. If � = 0 and �

1

= �

2

then S is the following ompat operator

S : L

2

(
) ! L

2

(
)

f ! u unique solution of

�

�

d

dx

��

�

1

(x)D

1

+ �

2

(x)D

2

�

d

dx

u(x)

�

= f in 
;

u = 0 on �
:

where D

1

and D

2

are given by (1.5).

2. If � � 0 and �

1

> �

2

then S is the following ompat operator

S : L

2

(
) ! L

2

(
)

f ! u unique solution of

�

�D

2

d

2

dx

2

u(x) = f in 


2

;

u = 0 on 
 n


2

:
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3. If � > 0 and �

1

= �

2

then S is the following ompat operator

S : L

2

(
) ! L

2

(
)

f ! u unique solution of

8

<

:

�D

1

d

2

dx

2

u(x) = f in 


1

;

�D

2

d

2

dx

2

u(x) = f in 


2

;

u = 0 on �


2

[ �


2

:

Proof. The proof is quite standard in homogenization theory. For example, using the notion of two-sale

onvergene (see [All92℄, [Ngu89℄) it is an easy exerise that we safely leave to the reader (the details

an be found in [Cap99℄ if neessary). Let us simply remark that, if �

1

= �

2

and � = 0, then the

homogenization of (4.10) is ompletely obvious. If �

1

= �

2

and � > 0, then the a priori estimates of

Proposition 4.4 shows that u

�

(0) goes to zero, while, if �

1

> �

2

and � � 0, they imply that u

�

goes to

zero in 


1

.

We are now able to onlude the proof of Theorem 3.1 and Theorem 3.8.

Proof of Theorem 3.1 and Theorem 3.8. Let us �rst remark that Proposition 4.6 imply that the sequene

of operators S

�

, de�ned by (4.12), uniformly onverges to the limit operator S. The asymptoti analysis

of the eigenvalue problem (4.9) is truly given by that of T

�

given by

T

�

: L

2

(
) ! L

2

(
)

f ! S

�

(B

�

x;

x

�

�

f):

The eigenvalues of T

�

being the inverse of that of (4.9). Introduing �(x) =

R

1

0

B(x; y)dy whih is the

weak limit of B(x;

x

�

); we de�ne the limit operator T by

T : L

2

(
) ! L

2

(
)

f ! S (�f) :

The sequene T

�

does not uniformly onverge to T , but the sequene T

�

is nevertheless sequentially

ompat, in the sense that

�

8f 2 L

2

(
) lim

�!0

kT

�

(f)� T (f)k

L

2

(
)

= 0;

the set fT

�

(f); kfk

L

2

(
)

� 1; � � 0g is sequentially ompat:

Theorems 3.1 and 3.8 are then onsequenes of Theorem 4.7 (see also hapter 11 in [JKO95℄).

Theorem 4.7. (see e.g. [Ans71℄, [Cha83℄) Let T

n

be a sequene of ompat operators that onverges to

T . Assume that (T

n

)

n�1

is olletively ompat and T is ompat. Let � 2 C be an eigenvalue of T , of

multipliity m. Let � be a smooth urve enlosing � in the omplex plane and leaving outside the rest of

the spetrum of T . Then, for suÆiently large values of n , � enloses also exatly m eigenvalues of T

n

and leaves outside the rest of the spetrum of T

n

.
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5 Proofs in the ase �(�

0

) < 0.

The goal of this setion is to prove Theorems 3.5 and 3.10. To understand the asymptoti behavior

of problem (1.1) when the disontinuity onstant �(�

0

) is negative, we �rst resale the equations by

introduing the hange of variables y =

x

�

. Then, problem (1.1) is equivalent to

8

>

>

<

>

>

:

�

d

dy

�

a(y)

d'

�

dy

�

+�(y)'

�

= �

�

�(y)'

�

in 


�

;

'

�

(��

�1

l) = '

�

(�

�1

L) = 0;

(5.1)

with 


�

=℄� �

�1

l; �

�1

L[, '

�

(y) = �

�

(

x

�

), and

a(y) ( resp: �(y); �(y)) =

�

a

1

(y) ( resp: �

1

(y); �

1

(y)) if y < 0;

a

2

(y) ( resp: �

2

(y); �

2

(y)) if y > 0:

As � goes to 0, the domain 


�

onverges to R, and formally the limit problem of (5.1) is

8

>

>

<

>

>

:

�

d

dx

�

a(x)

d	

dx

�

+�(x)	 = ��(x)	 in R;

	 2 H

1

(R):

(5.2)

We �rst reall some properties of the spetrum of (5.2). We introdue the Green operator S ating in

L

2

(R) de�ned by

S : L

2

(R) ! L

2

(R)

f ! u unique solution in H

1

(R) of

�

d

dx

�

a(x)

du

dx

�

+�(x)u = �(x)f in R:

(5.3)

The eigenvalues of S are preisely the inverse of those of (5.2). Nevertheless, to simplify the disussion

we shall say that � is an eigenvalue of S, or (5.2), if its inverse belongs to the spetrum of S.

Proposition 5.1. The operator S is self-adjoint and non-ompat. Its spetrum an be deomposed in

its disrete and essential part, �(S) = �

dis

(S) [ �

ess

(S). The lower bound of the essential spetrum is

equal to the smallest ell �rst eigenvalue in (1.3), namely

min�

ess

(S) = min (�

1

; �

2

) :

If (�;	) is an eigenouple in the disrete spetrum, then there exist �

1

> 0 and �

2

< 0 suh that

	(x) =

�

 

1

(x) if x < 0;

 

2

(x) if x > 0;

and (�;  

i

) is an eigenouple of

8

>

>

<

>

>

:

�

d

dx

�

a

i

(x)

d 

i

dx

�

+�

i

(x) 

i

= ��

i

(x) 

i

in [0; 1℄;

x!  

i

(x)e

��

i

x

1� periodi:

(5.4)
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Remark 5.2. By de�nition, the disrete spetrum of S is omposed of isolated eigenvalues of �nite mul-

tipliity, while its essential spetrum is haraterized by Weyl riterion, i.e., 8� 2 �

ess

(S) there exists a

sequene fu

n

g 2 L

2

(R) suh that

�

ku

n

k

L

2

(R)

= 1; u

n

! 0 in L

2

(R) weakly;

(S � �Id)u

n

! 0 in L

2

(R) strongly:

Proposition 5.1 tells us in partiular that �

ess

(S) is not empty and that any disrete eigenvetor deays

exponentially at in�nity. Remark that equation (5.4) is similar to (2.1).

Proof. The study of the spetrum of S is lassial. The exponential deay of the disrete eigenfuntions

is obtained through Floquet Theory (see, e.g., [MR73℄, [RS78℄). The same tool yields the lower bound

of the essential spetrum (see [AC98℄, [CPV95℄). Note that these results are obtained under the mere

assumption that the oeÆients of equation (5.3) are positive measurable funtions (no smoothness is

required).

In order to pass to the limit �! 0 in (5.1), we also introdue an operator S

�

ating in L

2

(R) de�ned by

S

�

: L

2

(R) ! L

2

(R)

f ! u

�

unique solution in H

1

0

(


�

) of

8

>

>

<

>

>

:

�

d

dx

�

a(x)

du

�

dx

�

+�(x)u

�

= �(x)f; in 


�

u

�

(x) = 0 on �


�

:

(5.5)

The operator S

�

is ompat and its eigenvalues are the inverses of that of (5.1). Unfortunately, the

onvergene of the sequene S

�

to S is not uniform, so that the limit of the spetrum of S

�

is not the

spetrum of S. Nevertheless, this limit an be haraterized expliitly and we reall the following result

that may be found in [AC98℄.

Proposition 5.3. For all f 2 L

2

(R), S

�

(f) onverges strongly to S(f) in L

2

(R), and we have

lim

�!0

� (S

�

) = �(S) [ �

BL

:

Furthermore, the �rst eigenvalue �

�

1

onverges to a limit �

1

whih does belong to the spetrum of S and

is thus the smallest element of �(S). We also have

min�

BL

= min�

ess

(S) = min (�

1

; �

2

) : (5.6)

That part of the limit spetrum, denoted by �

BL

, is alled the boundary layer spetrum. It an be

haraterized ompletely in terms of an equation similar to (5.2) but in the half-line (for details, see

[AC98℄). We do not dwell on this boundary layer spetrum sine we only need to know (5.6) in the

sequel.

Lemma 5.4. Let �

0

be de�ned as in Lemma 3.9, i.e., �

1

(�

0

) = �

2

, and  

1;�

0

the orresponding eigen-

vetor de�ned by (2.1). Let � (�

0

) be de�ned by

�(�

0

) = a

1

(0)

d 

1;�

0

dy

(0)� a

2

(0)

d 

2

dy

(0):
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If and only if

� (�

0

) < 0; (5.7)

the limit �

1

of the �rst eigenvalue �

�

1

of problem (1.1) satis�es

�

1

< min(�

1

; �

2

):

Remark 5.5. In partiular, this Lemma applies when �

1

= �

2

, and � � �(�

0

) < 0. It implies that, when

the disontinuity onstant is negative, the limit �rst eigenvalue annot be predited by the homogenized

models obtained under strit periodiity assumption on eah side of the interfae. The proof of Lemma 5.4

relies on Proposition 2.2, that we have not been able to prove in the general ase, but under the additional

assumption that the oeÆients are C

2

, or pieewise onstant.

Proof of Lemma 5.4. For all � 2 [�

0

;+1[, where �

0

is de�ned in Lemma 3.9, beause of the onavity

of �

1

(�) and �

2

(�), we an assoiate to eah � a unique �

0

� 0 suh that �

1

(�) = �

2

(�

0

) and  

2;�

0

is the

�rst eigenvetor de�ned by

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�

d

dx

�

a

2

(x)

d 

2;�

0

dx

�

+�

2

(x) 

2;�

0

= �

2

(�

0

)�

2

(x) 

2;�

0

in [0; 1℄

x!  

2;�

(x)e

��

0

x

1� periodi ;

 

2;�

0

(0) = 1:

(5.8)

Note that for � = �

0

, we have �

0

= 0. The pair (�;	) de�ned by

� = �

1

(�) = �

2

(�

0

)

	 =  

1;�

for x > 0;

	 =  

2;�0

for x < 0;

is an eigenouple for problem (5.2) if and only if

�(�) = a

1

(0)

d 

1;�

dx

(0)� a

2

(0)

d 

2;�

0

dx

(0) = 0: (5.9)

Thanks to Proposition 2.2, we have

lim

�!+1

�(�) = lim

�!+1

a

1

(0)

d 

1;�

dx

(0)� lim

�

0

!�1

a

2

(0)

d 

2;�

0

dx

(0) = +1:

Therefore, if we assume �(�

0

) < 0 then Equation (5.9) admits a solution, for some � < �

0

, and �

0

> 0.

We have thus obtained a value of � suh that � < min(�

1

; �

2

). Finally, sine �

1

� �, by virtue of

Proposition 5.1, we have �

1

2 �

dis

(S).

Conversely, if �

1

< min(�

1

; �

2

) we know from Proposition 5.6 that on both sides of the origin the

orresponding eigenfuntion 	 has an exponential deay. Then Proposition 5.1 show that it must of the

form 	 =  

1;�

and 	 =  

2;�0

for some � and �

0

on eah half line. Sine identity (5.9) is a neessary

and suÆient ondition for the existene of suh a 	, the proof is omplete.
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Proof of Theorems 3.5 and 3.10. Thanks to Lemma 5.4 and Proposition 5.1, if ondition (5.7) is satis�ed

then �

1

is in the disrete spetrum of problem (5.2). Theorems 3.5 and 3.10 are then a onsequene of

Proposition 5.6. Indeed the eigenfuntion �

�

1

(x) in Theorems 3.5 and 3.10 is equal to

1

p

�

'

�

1

�

x

�

�

where

'

�

1

is the �rst eigenfuntion in Proposition 5.6. Inequality (5.10) then beomes

�

2









d

dx

�

�

1

(x)�

1

p

�

d

dx

�

	

�

x

�

��









L

2

(
)

+









�

�

1

(x) �

1

p

�

	

�

x

�

�









L

2

(
)

� C exp

�

�

�

�

�

whih in turn imply









d

dx

�

�

1

(x)�

1

p

�

d

dx

�

	

�

x

�

��









L

2

(
)

+









�

�

1

(x) �

1

p

�

	

�

x

�

�









L

2

(
)

� C

0

exp

�

�

�

0

�

�

for any �

0

< � .

Proposition 5.6. Assume that problem (5.2), or equivalently operator S, admits a �rst positive nor-

malized eigenouple (�

1

;	) suh that �

1

< min (�

1

; �

2

). Then the �rst positive normalized eigenouple

(�

�

1

; '

�

1

) of (5.1), or of S

�

, satis�es

0 � �

�

1

� �

1

� C exp

�

�

�

�

�

and









d

dx

'

�

1

�

d

dx

	









L

2

(


�

)

+ k'

�

1

�	k

L

2

(


�

)

� C exp

�

�

�

�

�

(5.10)

where C and � are stritly positive onstant independent of �.

Proof. Sine we assumed �

1

< min�

ess

(S), we have

�

1

= min

'2H

1

(R)

� 6= 0

Z

R

a (x) j

d

dx

'j

2

dx +

Z

R

� (x)�

2

dx

Z

R

� (x)'

2

dx

;

and this minimum is attained for ' = 	 whih belongs to the disrete spetrum of S. We also have

�

�

1

= min

'2H

1

0

(


�

)

� 6= 0

Z




�

a (x) j

d

dx

'j

2

dx+

Z




�

� (x)'

2

dx

Z




�

� (x)'

2

dx

;

and this implies, by inlusion of spaes that �

1

� �

�

1

. Let � be a smooth ut-o� funtion, vanishing

outside 


�

=

�

�

l

�

;

L

�

�

, equal to 1 on

�

�

l

�

+ 1;

L

�

� 1

�

, suh that 0 � � � 1; and

d�

dx

does not depend on �

(see Figure 5.1). We then have �	 2 H

1

0

(


�

), and

�

�

1

�

Z




�

a (x) j

d

dx

(�	) j

2

dx+

Z




�

� (x) (�	)

2

dx

Z




�

� (x) (�	)

2

dx

: (5.11)
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�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

N

�

�

N

�

+ 1

N

�

� 1

N

�

Figure 5.1: Cut-o� funtion �.

By onstrution

d�

dx

has its support in [�

l

�

;�

l

�

+ 1℄ [ [

L

�

� 1;

L

�

℄ and inequality (5.11) beomes

�

�

1

�

Z

R

a(x)j

d

dx

	j

2

dx+

Z

R

� (x) 	

2

dx+R

�

1

(1�R

�

2

)

Z

R

� (x) 	

2

dx

; (5.12)

with

R

�

1

= 2

Z

[

�

l

�

;�

l

�

+1

℄

[

[

L

�

�1;

L

�

℄

a(x) j	(x)j

�

�

�

�

d

dx

�

�

�

�

�

�

�

�

�

�

�

d

dx

	

�

�

�

�

+

�

�

�

�

	

d

dx

�

�

�

�

�

�

dx

and

R

�

2

=

Z

�

l

�

+1

�1

�(x)	(x)

2

+

Z

+1

L

�

�1

�(x)	(x)

2

Z

R

�(x)	(x)

2

:

Thanks to Proposition 5.1, we know that

sup

x2(�1;�

l

�

)

j	(x)j � C exp

�

��

1

l

�

�

; and sup

x2(

L

�

;+1)

j	(x)j � C exp

�

�

2

L

�

�

with �

1

> 0 and �

2

< 0. We an dedue that R

�

1

� C exp

�

�

�

�

�

and R

�

2

� C exp

�

�

�

�

�

with � =

min(lj�

1

j; Lj�

2

j), and inserting these inequalities in (5.12) we obtain

�

�

1

� �

1

�

1 + C exp

�

�

�

�

��

: (5.13)

Let us now show that '

�

1

onverges to 	. In order to obtain an approximation of 	 that vanishes on the

boundaries of the domain 


�

, we add to 	 an aÆne funtion whih ompensates its values at both ends

of the domain. We de�ne 	

�

(x) = 	(x) + `

�

(x) where `

�

is the aÆne funtion suh that

	

�

�

l

�

�

+ `

�

�

�

l

�

�

= 0 and 	

�

L

�

�

+ `

�

�

L

�

�

= 0:

By onstrution, 	

�

2 H

1

0

(


�

), and 	

�

is solution of the same problem than '

�

1

up to a perturbation r

�

.

8

>

>

>

<

>

>

>

:

�

d

dx

�

a (x)

d	

�

dx

�

+�(x)	

�

= �

�

1

� (x)	

�

+ r

�

in ℄�

l

�

;

L

�

[

	

�

(�

l

�

) = 	

�

(

L

�

) = 0:

(5.14)
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The perturbation is r

�

= (�

1

� �

�

1

)�	

�

+ �`

�

� �

1

�`

�

�

d

dx

�

a

d`

�

dx

�

2 H

�1

(


�

). The oeÆients being

bounded, we obtain that for all � 2 H

1

0

(


�

),

�

�

�

�

Z




�

r

�

�

�

�

�

�

� C

�

j�� �

�

1

j+ sup




�

j`

�

j

�

k�k

L

2

(


�

)

+ C









d`

�

dx









L

2

(


�

)









d�

dx









L

2

(


�

)

;

where C is a onstant whih does not depend on �. From the exponential deay of 	 we dedue that

sup




�

j`

�

j � C exp

�

�

�

�

�

and









d`

�

dx









L

2

(


�

)

� C

p

� exp

�

�

�

�

�

; (5.15)

and with the help of estimate (5.13) we obtain

�

�

�

�

Z




�

r

�

�

�

�

�

�

� C exp

�

�

�

�

�

 

k�k

L

2

(


�

)

+









d�

dx









L

2

(


�

)

!

: (5.16)

The �rst eigenvalue �

�

1

being simple, by a Fredholm alternative we an deompose 	

�

into a omponent

proportional to '

�

1

and a omponent orthogonal to '

�

1

. We write 	

�

= �

�

�

�

1

+ g

�

, where �

�

is a onstant,

and

kg

�

k

L

2

(


�

)

+









dg

�

dx









L

2

(


�

)

� C

�

kr

�

k

H

�1

(


�

)

where C

�

is the norm of

�

S

�

�1

� �

�

1

Id

�

�1

, a bounded operator de�ned on the orthogonal of the line

generated by '

�

1

. We have C

�

�

C

j

�

�

1

��

�

2

j

, where C is a onstant independent of �, and �

�

2

is the next

eigenvalue of S

�

. If we obtain that j�

�

1

� �

�

2

j >  > 0, with  independent of �, we then dedue, with the

help of inequality (5.16)

kg

�

k

L

2

(


�

)

+









dg

�

dx









L

2

(


�

)

�

C



exp

�

�

�

�

�

: (5.17)

From the deomposition 	

�

= �

�

'

�

1

+ g

�

, we get

j�

�

j k'

�

1

k

L

2

(


�

)

� kg

�

k

L

2

(


�

)

� k	

�

k

L

2

(


�

)

� j�

�

j k'

�

1

k

L

2

(


�

)

+ kg

�

k

L

2

(


�

)

:

We have k'

�

1

k

L

2

(


�

)

= 1 and k	k

L

2

(R)

= 1 thus

�

�

�

k	

�

k

L

2

(


�

)

� 1

�

�

�

=

�

�

�

k`

�

k

L

2

(


�

)

� k	k

L

2

(Rn


�

)

�

�

�

� k`

�

k

L

2

(


�

)

+ k	k

L

2

(Rn


�

)

� C

1

�

exp

�

�

�

�

�

thanks to estimate (5.15) and the exponential deay of 	. As a onsequene, jj�

�

j � 1j � C

1

�

exp

�

�

�

�

�

and 	

�

and '

�

1

being positives, we also have

j�

�

� 1j � C

1

�

exp

�

�

�

�

�

: (5.18)

Finally, if we write '

�

1

(x)�	(x) = (1��

�

)'

�

1

(x)� g

�

(x)+ `

�

(x) on 


�

and using estimates (5.15), (5.17)

and (5.18) we obtain









d'

�

1

dx

�

d	

dx









L

2

(


�

)

+ k'

�

1

�	k

L

2

(


�

)

� C

1

�

exp

�

�

�

�

�

� C exp

�

�

�

0

�

�
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and this onludes the proof.

Let us now show that the spetral gap is uniformly bounded, i.e., 0 <  < �

�

2

� �

�

1

< C. We know that

�

�

2

onverges to a limit �

2

whih either belongs to �

BL

[ �

ess

(S) or to �

dis

(S). In the latter ase, the

eigenvalues of the disrete spetrum are isolated so that 0 <  < �

2

� �

1

< C. In the former ase, we

know from (5.6) that �

2

� min(�

1

; �

2

) whih is stritly larger than �

1

by assumption, so that again

0 <  < �

2

� �

1

< C. This yields the desired result for suÆiently small �.

6 Proofs in the ase � < 0 and �(�

0

) � 0.

In this setion we prove Theorems 3.11 and 3.12 following the strategy used in setion 4 for the ase

� � 0. Aording to Proposition 4.2 and Remark 4.3, the original problem (1.1) is equivalent to the

fatorized problem (4.9) for any value of the disontinuity onstant �. Introduing, as in Lemma 4.5,

an operator S

�

, the onvergene of (4.9) is governed by the homogenization of problem (4.10) with given

right hand side. The key element for the proof of Proposition 4.6, and in turn Theorem 3.8, is the a

priori estimate given by Proposition 4.4. It does not hold for � < 0. Nevertheless, the arguments of the

proof of Proposition 4.4 yields a similar result that we state in Proposition 6.1 below.

Proposition 6.1. The solution u

�

of equation (4.10) satis�es

ku

�

k

2

H

1

0

(
)

+

�

1

� �

2

�

2

ku

�

k

2

L

2

(


1

)

+

�

�

ju

�

(0)j

2

� C kf

�

k

L

2

(
)

ku

�

k

L

2

(
)

(6.1)

where C is a onstant independent of �.

Sine we assumed � < 0, (6.1) alone does not furnish suÆient a priori estimates for onluding. Thus,

for the proof of Theorems 3.11 and 3.12 we need an additional lemma.

Lemma 6.2. Assume that �

1

> �

2

, � < 0 and �(�

0

) > 0. Then, the solution u

�

of equation (4.10)

satis�es









du

�
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2
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L

2

(
)

; ku

�

k

L

2
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1

)

� C� kf

�

k

L

2

(
)

; and ju

�

(0)j � C

p

� kf

�

k

L

2

(
)

:

Assume that �

1

> �

2

, � < 0 and �(�

0

) = 0. Then, the solution u

�

of equation (4.10) satis�es









du
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dx
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; and
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dv
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dx
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2
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1

)

� C kf

�

k

L

2

(
)

;

where v

�

= u

�

 

1

(x; x=�)= 

1;�

0

(x; x=�) in 


1

.

Proof of Theorem 3.11. Thanks to the a priori estimate of Lemma 6.2, the ase �

1

> �

2

, � < 0 and

�(�

0

) > 0 is ompletely similar to the ase �

1

> �

2

and � � 0, whih is already solved in setion 4.

Proof of Theorem 3.12. Let u

�

be the solution of (4.10) with right hand side f

�

whih is a bounded

sequene in L

2

(
). We introdue the funtion

 

�

0

(x; y) = �

1

(x) 

1;�

0

(y) + �

2

(x) 

2

(y); (6.2)
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and de�ne a new fatorization (or hange of unknown whih is liit by virtue of Proposition 4.1)

v

�

(x) = u

�

(x)

 

�

x;

x

�

�

 

�

0

�

x;

x

�

�

:

Remark that v

�

= u

�

in 


2

, and v

�

(0) = u

�

(0) (beause of the normalization ondition (2.2)). Testing

variationally equation (4.10) against

 

�

0

(

x;

x

�

)

 

(

x;

x

�

)

�

�

(x), where �

�

is a test funtion in H

1

0

(
), we obtain
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�
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d
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dx+
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2
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�
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dx (6.3)

+

1

�

�u

�

(0)�
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(0) =

Z
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�

0

�

x;

x

�

�

 

�

x;

x

�

�

�

�

!

dx:

Replaing u

�

by v

�

in its left hand side, identity (6.3) beomes
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�

2

Z




1

�

1

�

x

�

�

 

2

1;�

0

�

x

�

�

v

�

�

�

dx+

1

�

�v

�

(0)u

�

(0) =

Z




 

1;�

0

�

x

�

�

 

1

�

x

�

�

f

�

�

�

dx:

Note that

Z




1

a

1

�

x

�

�

 

2

1

�

x

�

�

d

dx

 

v

�

 

1;�

0

�

x

�

�

 

1

�

x

�

�

!

d

dx

 

�

�

 

1;�

0

�

x

�

�

 

1

�

x

�

�

!

dx =

Z




1

a

1

�

x

�

�

 

2

1;�

0

�

x

�

�

dv

�

dx

d�

�

dx

dx

+

Z




1

a

1

�

x

�

�

d

dx

�

 

1;�

0

�

x

�

��

d

dx

�

v

�

�

�

 

1;�

0

�

x

�

��

�

Z




1

a

1

�

x

�

�

d

dx

�

 

1

�

x

�

��

d

dx

 

�

 

1;�

0

�

x

�

��

2

 

1

�

x

�

�

v

�

�

�

!

;

and, by integration by parts and de�nition (2.1) of  

1;�

, we have

Z




1

a

1

�

x

�

�

d

dx

�

 

1;�

0

�

x

�

��

d

dx

�

v

�

�

�

 

1;�

0

�

x

�

��

�

Z




1

a

1

�

x

�

�

d

dx

�

 

1

�

x

�

��

d

dx

 

 

2

1;�

0

�

x

�

�

 

1

�

x

�

�

v

�

�

�

!

=

1

�

(�(�

0

)� �) v

�

(0)�

�

(0) +

�

2

� �

1

�

2

Z




1

�

1

�

x

�

�

 

2

1;�

0

�

x

�

�

v

�

�

�

:

As a onsequene, identity (6.4) beomes

Z




1

a

1

�

x

�

�

 

2

1;�

0

�

x

�

�

dv

�

dx

d�

�

dx

dx+

Z




2

D

�

x;

x

�

�

dv

�

dx

d�

�

dx

dx (6.5)

+

1

�

�(�

0

)v

�

(0)�

�

(0) =

Z




 

1;�

0

�

x

�

�

 

1

�

x

�

�

f

�

�

�

dx
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Sine �(�

0

) = 0, we have

Z




1

a

1

�

x

�

�

 

2

1;�

0

�

x

�

�

dv

�

dx

d�

�

dx

dx+

Z




2

D

�

x;

x

�

�

dv

�

dx

d�

�

dx

dx =

Z




 

1;�

0

�

x

�

�

 

1

�

x

�

�

f

�

�

�

dx

Note that for any bounded sequene �

�

in W

1;1

(
),

�

�

�

�

Z




1

a

1

�

x

�

�

 

2

1;�

0

�

x

�

�

dv

�

dx

d�

�

dx

dx

�

�

�

�

� C









e

�

0

x

�

dv

�

dx









L

2

(


1

)





e

�

0

x

�





L

2

(


1

)

! 0

sine ke

�

0

x

�

dv

�

dx

k

L

2

(


1

)

is bounded, thanks to Lemma 6.2. Of ourse

R




1

 

1;�

0

(

x

�

)

 

1

(

x

�

)

f

�

�

�

goes to 0 exponen-

tially fast. For suh bounded �

�

, (6.3) therefore writes

Z




2

D

�

x;

x

�

�

du

�

dx

d�

�

dx

dx =

Z




2

f

�

�

�

dx+ o(1): (6.6)

Sine the test funtions in the two-sale onvergene method are of the type �

�

(x) = �

0

(x) + ��

1

(x; x=�)

with smooth funtions �

0

; �

1

, they are uniformly bounded in W

1;1

(
) and one an use (6.6) to pass to

the limit. Classial arguments of homogenization allow to onlude.

Proof of Lemma 6.2. With the hoie �

�

= v

�

in (6.5) we obtain

Z




1

a

1

�

x

�

�

 

2

1;�

0

�

x

�

�

�

dv

�

dx

�

2

dx+

Z




2

D

�

x;

x

�

�

�

dv

�

dx

�

2

dx+

1

�

�(�

0

) (v

�

)

2

(0) =

Z




f

�

u

�

dx: (6.7)

If �(�

0

) > 0, this implies that

jv

�

(0)j

2

� C� kf

�

k

L

2

(
)

ku

�

k

L

2

(
)

: (6.8)

Beause u

�

(0) = v

�

(0), plugging (6.8) in (6.1) yields the desired results.

If �(�

0

) = 0, identity (6.7) only implies that









e

�

0

x

�

dv

�

dx









2

L

2

(


1

)

� C kf

�

k

L

2

(
)

ku

�

k

L

2

(
)

; and









du

�

dx









2

L

2

(


2

)

� C kf

�

k

L

2

(
)

ku

�

k

L

2

(
)

: (6.9)

We will next show that

ku

�

k

2

L

2

(
)

� C

�

� kf

�

k

2

L

2

(
)

+ ku

�

k

2

L

2

(


2

)

�

(6.10)

and, together with (6.9) and Poinar�e inequality in 


2

, this yields the desired results.

Note that

u

�

(0)

2

� j


2

j

2

Z




2

�

du

�

dx

�

2

� C kf

�

k

L

2

(
)

ku

�

k

L

2

(
)

:

Using this inequality in (6.1) gives

ku

�

k

2

L

2

(


1

)

� C� kf

�

k

L

2

(
)

ku

�

k

L

2

(
)

� C�

�

kf

�

k

2

L

2

(
)

+ ku

�

k

2

L

2

(
)

�

whih in turn implies (6.10).
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7 Proof of Proposition 2.2.

7.1 The ase of C

2

oeÆients.

The �rst step is similar to the proof of Lemma 2.1, namely we transform (2.1) into (2.4). If we assume that

the oeÆients a

i

;�

i

and �

i

are C

2

periodi funtions on [0; 1℄, then the �rst eigenfuntion  

i;0

is atually

two times di�erentiable, and thus the oeÆients b and s of (2.4) are also of lass C

2

. Proposition 2.2 is

then a onsequene of Lemma 7.1.

Lemma 7.1. Let b and s be periodi positive funtions on [0; 1℄ suh that their seond derivative b

00

and s

00

exist and are pieewise ontinuous. Denote by M > m > 0 two positive onstant whih are the

upper and lower bounds of b and s. For eah � 2 R the �rst eigenvetor u

�

of problem (2.4) with the

normalization u

�

(0) = 1 satis�es

�C

1

�

C

2

p

��(�)

+ C

3

p

��(�) �

�

j�j

u

0

�

(0) � C

3

p

��(�) + C

1

+

C

2

p

��(�)

; (7.1)

where the positive onstants C

1

; C

2

and C

3

depend only on b and s.

Proof. The assumed smoothness of b and s enables us to perform a Liouville transformation of problem

(2.4). Introduing

t =

1



Z

x

0

�

s(z)

b(z)

�

1

2

dz  =

Z

1

0

�

s(z)

b(z)

�

1

2

dz; and f

�

(t) = (s(x)b(x))

1

4

u

�

(x); (7.2)

the transformed equation is, see [Eas73℄,

8

<

:

d

2

f

�

dt

2

(t) + (

2

�(�) +Q(t))f

�

= 0 in [0; 1℄;

t! f

�

(t)e

��t

1� periodi ;

(7.3)

with

Q(t) = 

2

b

1

4

(x)s

�

3

4

(x)

d

dx

�

b(x)

d

dx

(b(x)s(x))

�

1

4

�

:

We an assume without loss of generality that  = 1. The boundary onditions are preserved sine this

hange of variable preserves periodiity. We shall use the fat that Q is a bounded 1-periodi funtion.

It is suÆient to prove (7.1) for � > 0, sine in the other ase the funtion g

�

(t) = f

�

(�t) is solution of

(7.3), with � > 0, if Q is replaed by Q(�t), whih is also a bounded 1-periodi funtion. By adding a

onstant to Q (and subtrating it from �(�)), we an always assume that �M < Q(t) < �1. On the

other hand, thanks to Lemma 2.3, for suÆiently large � we an also assume that �(�) translated by the

above onstant is negative.

Next, we introdue g

1

and g

2

as the two fundamental solutions of the Cauhy problem for the ordinary

di�erential equation

d

2

g

dt

2

+ (�(�) +Q(t))g = 0, satisfying

g

1

(0) = 1; g

0

1

(0) = 0; andg

2

(0) = 0; g

0

2

(0) = 1:
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It is a lassial result of Floquet theory that X

1

= e

�

and X

2

= e

��

are the roots of the harateristi

equation

X

2

� (g

1

(1) + g

0

2

(1))X + 1 = 0:

By linearity, we an write f

�

(t) = f

�

(0)g

1

(t) + f

0

�

(0)g

2

(t). Sine � > 0, e

�

= � +

�

�

2

� 1

�

1

2

where

2� = (g

1

(1) + g

0

2

(1)). Consequently, � > 1 and

g

1

(1) + g

2

0(1) = 2� > e

�

and e

�

> 2��

1

�

> 2�� 2e

��

= g

1

(1) + g

2

0(1)� 2e

��

: (7.4)

From the relation f

�

(1) = e

�

f

�

(0) we dedue that

f

0

�

(0)

f

�

(0)

g

2

(1) = e

�

� g

1

(1). Using relation (7.4) we have

obtained that

g

0

2

(1) >

f

0

�

(0)

f

�

(0)

g

2

(1) > g

0

2

(1)� 2e

��

: (7.5)

Following Piard's iteration method (see e.g. [MW79℄), we de�ne reursively a sequene (v

n

(t))

n2N

by

v

0

(t) =

1

!

sinh(!t)and v

n

(t) = �

1

!

Z

t

0

sinh (!(t� �))Q(�)v

n�1

(�)d� for all n � 1:

For ! =

p

��(�), we �nd that g

2

(x) =

P

+1

n=0

v

n

(x). Sine � sinh (!(t� �))Q(�) > 0 for all 0 < � < t,

and v

0

(t) > 0 for all t > 0, by indution, we an onlude that W

n

(x) � v

n

(x) � w

n

(x), for all n � 0

and x � 0, where W

n

and w

n

are two other sequenes de�ned by W

0

= v

0

= w

0

, and

W

n

=

M

!

Z

t

0

sinh (!(t� �))W

n�1

(�)d�; w

n

=

1

!

Z

t

0

sinh (!(t� �))w

n�1

(�)d� for n � 1:

Note that W (t) =

P

+1

0

W

n

(t) (resp. w(t) =

P

+1

0

w

n

(t)) is a solution of

d

2

W

dt

2

+ (��M)W = 0

�

resp.

d

2

w

dt

2

+ (�� 1)w = 0

�

;

and therefore is given by W (t) = sinh

�

t

p

M � �

�

(resp. w(t) = sinh

�

t

p

1� �

�

) and onsequently

sinh

�

p

M � �

�

=W (1) � g

2

(1) � w(1) = sinh

�

p

1� �

�

: (7.6)

Similarly W

0

n

(t) � v

0

n

(t) � w

0

n

(t), and

p

M � � osh

�

p

M � �

�

=W

0

(1) � g

0

2

(1) � w

0

(1) =

p

1� � osh

�

p

1� �

�

: (7.7)

Using inequalities (7.6) and (7.7) in (7.5) yields,

Ce

M�1

2

p

��

p

M � � �

f

0

�

(0)

f

�

(0)

� 

p

1� �e

�

M�1

2

p

��

� 2e

��

:

Using the hange of variables (7.2), and using the result of Lemma 2.3 to bound e

��

in terms of �(�)

this inequality onludes the proof.
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7.2 The ase of pieewise onstant oeÆients.

As in the previous subsetion, it is suÆient to onsider system (2.4), whih is equivalent to (2.1), and

to study the ase � going to +1. As in Lemma 2.3, we rewrite (2.4) as a �rst-order system

�

Y

0

(x) = A(x)Y (x)

Y (1) = e

�

Y (0)

; A =

�

0 b

�1

��(�)s 0

�

; and Y =

�

Y

1

= u

�

Y

2

= bu

0

�

�

:

Here we assume that the oeÆients b; s are pieewise onstant funtions. More preisely, there exists

a number N , a family of points (x

i

)

0�i�N

satisfying x

0

= 0 < x

i�1

< x

i

< x

i+1

< x

N

= 1 for

2 � i � N � 2, and positive values (b

i

)

1�i�N

and (s

i

)

1�i�N

suh that

b(x) = b

i

and s(x) = s

i

for x 2 (x

i�1

; x

i

); 1 � i � N:

The goal is to prove that Y

2

(0) grows linearly as � goes to +1, whih in turn proves Proposition 2.2,

sine

d 

i;�

dx

(0) = b

�1

(0)Y

2

(0) +

d 

i;0

dx

(0):

By Lemma 2.3 we already know that �(�) < 0 for � 6= 0 and has quadrati growth at in�nity. A

straightforward omputation yields for any x 2 (x

i�1

; x

i

)

Y (x) =M

i

(�; x)Y (x

i�1

); M

i

(�; x) =

2

6

4

osh'

i

(x)

1

p

��(�)b

i

s

i

sinh'

i

(x)

p

��(�)b

i

s

i

sinh'

i

(x) osh'

i

(x)

3

7

5

; (7.8)

with '

i

(x) =

q

��(�)s

i

b

i

(x� x

i�1

). Thus

Y (1) =M(�)Y (0) = e

�

Y (0);withM(�) =

N

Y

i=1

M

i

(�; x

i

):

Eah matrix M

i

(�; x) has its determinant equal to 1, as well as M(�). Thus the two eigenvalues of M(�)

are e

�

and e

��

. Let us ompare these exat eigenvalues with those of the leading order term of M(�) as

� goes to +1. Introduing D(�) = diag

�

p

��(�); 1

�

, we have

M

i

(�; x

i

) = e

'

i

(x

i

)

D(�)

�1

M

0

i

D(�)

�

1 +O

�

e

���

��

;withM

0

i

=

1

2

2

4

1

1

p

b

i

s

i

p

b

i

s

i

1

3

5

;

and � = min

1�i�N

�

2 (x

i

� x

i�1

)

q

s

i

m

b

i

M

�

> 0. Therefore, notiing that

P

N

i=1

'

i

(x

i

) = C

p

��(�) where

C > 0 does not depend on �, we obtain

M(�) = e

C

p

��(�)

D(�)

�1

M

0

D(�)

�

1 +O

�

e

���

��

;withM

0

=

N

Y

i=1

M

0

i

:
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Up to a small remainder, the eigenvalues of M(�) are thus equal to those of M

0

times the multipliative

fator exp (C

p

��(�)). Sine M

0

does not depend on �, this proves that �(�) = ��

2

+ o(1) for some

positive onstant  > 0. On the other hand, the eigenvetors of M(�) are equal to D(�)

�1

times those of

M

0

(up to a small remainder). Choosing the normalization Y

1

(0) = 1, this yields that Y

2

(0) = 

0

�+ o(1)

for some onstant 

0

, whih is positive as already remarked in the proof of Lemma 2.3.

Note Added in Proof. After submission of this paper for publiation, we found an alternative proof of

Lemma 5.4, whih do not rely on Proposition 2.2. This enables us to prove Theorem 3.5 and Theorem 3.10

assuming only that the periodi oeÆients are positive, bounded, measurable funtions. This proof will

be presented in a future work in ollaboration with A. Piatnitski.
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