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Homogenization and lo
alization for a 1-d eigenvalue problem in

a periodi
 medium with an interfa
e

Gr�egoire Allaire

�

Yves Capdebos
q

y

Mar
h 6, 2002

Abstra
t

In one spa
e dimension we address the homogenization of the spe
tral problem for a singularly

perturbed di�usion equation in a periodi
 medium. Denoting by � the period, the di�usion 
oeÆ-


ient is s
aled as �

2

. The domain is made of two purely periodi
 media separated by an interfa
e.

Depending on the 
onne
tion between the two 
ell spe
tral equations, three di�erent situations arise

when � goes to zero. First, there is a global homogenized problem as in the 
ase without interfa
e.

Se
ond, the limit is made of two homogenized problems with a Diri
hlet boundary 
ondition on the

interfa
e. Third, there is an exponential lo
alization near the interfa
e of the �rst eigenfun
tion.

1 Introdu
tion

This paper is devoted to the homogenization of the eigenvalue problem for a singularly perturbed di�usion

equation in a periodi
 medium. Although this problem is of interest in higher spa
e dimensions, we

restri
t ourselves to the one-dimensional 
ase be
ause of the diÆ
ulty of the analysis. In parti
ular,

one of our key tool is the theory of Hill's ordinary di�erential equation [Eas73℄ for whi
h there is no

equivalent in higher dimensions. Denoting by � the period, the di�usion 
oeÆ
ient is assumed to be of

the order of �

2

. Thus, we 
onsider the following model

8

>

>

<

>

>

:

��

2

d

dx

�

a

�

x;

x

�

�

d

dx

�

�

�

+�

�

x;

x

�

�

�

�

= �

�

�

�

x;

x

�

�

�

�

in
;

�

�

= 0 on �
;

(1.1)

where �

�

; �

�

is an eigenvalue and eigenfun
tion (throughout this paper, the eigenfun
tions are normalized

by k�

�

k

L

2

(
)

= 1). In (1.1) the 
oeÆ
ients are periodi
 of period 1 with respe
t to the fast variable x=�.

The general study of the homogenization of (1.1) is far from being 
omplete. When the 
oeÆ
ients are

not rapidly os
illating (i.e., they depend on the slow variable x but not on x=�), it is a problem of singular
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perturbation (without homogenization) whi
h is quite well understood now in any spa
e dimension (see,

e.g., [Pia98℄). When the 
oeÆ
ients are purely periodi
 fun
tions (i.e., they depend solely on x=�), the

homogenization of (1.1) (and similar models in higher dimension) has been a
hieved in [AB99℄, [AC00℄,

[AM97℄. In the 
ase of smooth 
oeÆ
ients with a 
on
entration hypothesis, partial results have re
ently

been obtained in [AP02℄ (again in any spa
e dimension). Here we fo
us on the di�erent 
ase (of pra
ti
al

as well as theoreti
al importan
e) where the 
oeÆ
ients are dis
ontinuous. More pre
isely, we fo
us on

the simplest possible model in this 
ontext, assuming that the domain is 
omposed of two periodi
al

media separated by an interfa
e.

The domain 
 is of the form (�l; L), where l and L are stri
tly positive 
onstants, and we introdu
e the

two sub-domains 


1

= (�l; 0) and 


2

= (0; L) separated by an interfa
e lo
ated at the point 0. Denoting

by �

i

(x) the 
hara
teristi
 fun
tion of 


i

(satisfying �

1

+ �

2

= 1 and �

1

�

2

= 0 in 
), the 
oeÆ
ients

are assumed to be given as

8

<

:

a(x; y) = �

1

(x)a

1

(y) + �

2

(x)a

2

(y);

�(x; y) = �

1

(x)�

1

(y) + �

2

(x)�

2

(y);

�(x; y) = �

1

(x)�

1

(y) + �

2

(x)�

2

(y):

(1.2)

All fun
tions a

1

; a

2

;�

1

;�

2

; �

1

and �

2

are assumed to be measurable, 1-periodi
, bounded from above

and below by positive 
onstants. Under these assumptions, it is well known that equation (1.1) admits

a 
ountable in�nite number of non-trivial solutions (�

�

m

; �

�

m

)

m�1

. By standard regularity results, ea
h

eigenfun
tion �

�

m

belongs to H

1

0

(
) \ C

0;s

(
), with s > 0, and by the Krein-Rutman theorem the

�rst eigenvalue is simple and the 
orresponding eigenfun
tion 
an be 
hosen positive. Be
ause of this

property, the �rst eigenpair has a spe
ial physi
al signi�
ation, and we are mostly interested in its

behavior, although the 
ase of higher level eigenpairs is also treated in some o

asions.

The motivation for studying this model 
omes from several appli
ations. First, it 
an be seen as a semi-


lassi
al limit problem for a S
hr�odinger-type equation with periodi
 potential, as well as periodi
 metri


(this is the so-
alled ground-state asymptoti
 problem, see, e.g., [KP93℄, [Pia98℄). Se
ond, it plays an

important role in the uniform 
ontrollability of the wave equation (see, e.g., [CZ℄). Third, and this is

our main motivation, it is a simple model for 
omputing the power distribution in a nu
lear rea
tor 
ore.

This is the so-
alled 
riti
ality problem for the one-group neutron di�usion equation (for more details,

we refer to [AC00℄, [Cap99℄ and referen
es therein). In all these appli
ations, the assumption of a purely

periodi
 medium (i.e., no dependen
e on x of the 
oeÆ
ients) is mu
h too strong. On the other hand the


oeÆ
ients are not smoothly varying but exhibit jumps at material interfa
es. This makes model (1.1)

with assumptions (1.2) physi
ally relevant.

The limit behavior of (1.1) is mainly governed by the �rst eigenpair ( 

i

; �

i

) in the unit 
ell of 


i

, i = 1; 2,

solution of

(

�

d

dy

�

a

i

(y)

d

dy

 

i

�

+�

i

(y) 

i

= �

i

�

i

(y) 

i

in [0; 1℄;

y !  

i

(y) 1� periodi
 and positive:

(1.3)

Before we explain our main results, let us re
all what was already proved in [AM97℄ in the purely periodi



ase, namely when a

1

= a

2

, �

1

= �

2

, and �

1

= �

2

. Asymptoti
ally, the ma
ros
opi
 trend of �

�

is given

by an homogeneous eigenvalue problem, whereas its os
illatory behavior is governed by  

1

(

x

�

) (we 
all

this a fa
torization prin
iple). More pre
isely, the result of [AM97℄ is
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Theorem 1.1. Assuming that a

2

= a

1

, �

2

= �

1

, and �

2

= �

1

, the m

th

eigenpair �

�

m

; �

�

m

of (1.1)

satis�es

�

�

m

(x) = u

�

m

(x) 

1

(

x

�

) and �

�

m

= �

1

+ �

2

�

m

+ o

�

�

2

�

;

where, up to a subsequen
e, the sequen
e u

�

m


onverges weakly in H

1

0

(
) to u

m

, and (�

m

; u

m

) is the m

th

eigenvalue and eigenve
tor for the homogenized problem

�

�D

d

2

dx

2

u

m

= �

m

�u

m

in 
;

u

m

= 0 on �
:

(1.4)

The homogenized 
oeÆ
ients are given by

D =

Z

1

0

a

1

(y) 

2

1

(y)

�

1 +

d�

dy

(y)

�

dy and � =

Z

1

0

�

1

(y) 

2

1

(y)dy; (1.5)

where the fun
tion � is the solution of

(

�

d

dy

�

a

1

(y) 

2

1

(y)

�

d�

dy

+ 1

��

= 0 in [0; 1℄;

pny ! �(y) 1� periodi
:

(1.6)

Let us summarize our results in the 
ase of equal �rst eigenvalue in the 
ells, �

1

= �

2

. In the sequel we


hoose to normalize the �rst periodi
 eigenfun
tions as follows

 

1

(0) =  

2

(0) = 1: (1.7)

We introdu
e a so-
alled dis
ontinuity 
onstant � de�ned by

� = a

1

(0)

d 

1

dy

(0)� a

2

(0)

d 

2

dy

(0): (1.8)

Note that a

i

d 

i

dy

belongs to H

1

(


i

) whi
h is embedded in C(


i

) (in 1-D) and therefore � is well de�ned

as the tra
e of a 
ontinuous fun
tion at the origin. Three di�erent situations are possible a

ording to

the sign of �.

If � = 0, then the two periodi
 media are said to be well-
onne
ted. In parti
ular, the fun
tion equal

to a

i

(d 

i

)=(dx) in 


i

is 
ontinuous through the interfa
e (as well as  

i

be
ause of the normalization


ondition (1.7)). Therefore, Theorem 1.1 extends easily to this 
ase, and the dis
ontinuity at the interfa
e

is not seen in the limit. Introdu
ing a fun
tion  (x=�) = �

1

(x) 

1

(x=�) + �

2

(x) 

2

(x=�), the eigenpairs

(�

�

m

; �

�

m

)

m�1

satisfy

�

�

m

= �

1

+ �

2

�

m

+ o(�

2

) and �

�

m

(x) = u

�

m

(x) 

�

x

�

�

; (1.9)

where u

�

m


onverges weakly to u

m

, and (�

m

; u

m

)

m�1

are the eigenpairs of the homogenized problem (see

Theorem 3.1 and Figure 3.1)

8

>

>

<

>

>

:

�

d

dx

�

�

�

1

(x)D

1

+ �

2

(x)D

2

�

du

dx

�

= � (�

1

(x)�

1

+ �

2

(x)�

2

)u in 
;

u = 0 on �
:
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If � > 0, the interfa
e has a repelling e�e
t, and ea
h eigenfun
tion goes to 0 at the interfa
e. The 
on-

vergen
e result (1.9) still holds true, but the homogenized problem has an additional Diri
hlet boundary


ondition at x = 0. More pre
isely, the limit homogenized problem is (see Theorem 3.1 and Figure 3.2)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�D

1

d

2

dx

2

u = ��

1

u in 


1

;

�D

2

d

2

dx

2

u = ��

2

u in 


2

;

u = 0 on �


1

[ �


2

:

If � < 0, the situation is 
ompletely di�erent sin
e the �rst eigenfun
tion 
on
entrates exponentially

fast at the interfa
e. In this latter 
ase, there is no fa
torization prin
iple as in Theorem 1.1, but rather

a lo
alization prin
iple at the dis
ontinuity (see Theorem 3.5 and Figure 3.3). The �rst eigenvalue �

�

1


onverges to a limit 0 < �

1

< �

1

= �

2

, and 0 < �

�

1

� �

1

< C exp(��=�), whereas the �rst normalized

eigenve
tor satis�es













d

dx

�

�

1

(x)�

1

p

�

d

dx

�

	

�

x

�

��













L

2

(
)

+













�

�

1

(x)�

1

p

�

	(

x

�

)













L

2

(
)

� C exp

�

�

�

�

�

:

The limit fun
tion 	 2 H

1

(R) de
reases exponentially away from the interfa
e, sin
e it is given by

	(x) =

�

 

1;�

1

(x) for x < 0;

 

2;�

2

(x) for x > 0;

with �

1

= �

1

(�

1

) = �

2

(�

2

), and ea
h of the eigenpairs (�

i

(�

i

);  

i;�

i

) being the �rst eigen
ouple of the

following spe
tral 
ell problem

8

>

>

<

>

>

:

�

d

dx

�

a

i

(x)

d 

i;�

i

dx

�

+�

i

(x) 

i;�

i

= �

i

(�

i

)�

i

(x) 

i;�

i

in [0; 1℄;

x!  

i;�

i

(x)e

��

i

x

1-periodi
.

(1.10)

The required properties of the �-parameterized family of spe
tral 
ell problems (1.10) are given in se
-

tion 2.

We now turn to the 
ase �

1

6= �

2

, and with no loss of generality we assume �

1

> �

2

. In this 
ase too,

the spe
tral 
ell problems (1.10) govern the limit behavior of (1.1). We introdu
e a positive parameter

�

0

> 0, su
h that �

1

(�

0

) = �

2

, and another dis
ontinuity 
onstant (see Lemma 3.9)

�(�

0

) = a

1

(0)

d 

1;�

0

dy

(0)� a

2

(0)

d 

2

dy

(0):

The sign of this new dis
ontinuity 
onstant determines the asymptoti
 behavior of (1.1).

If �(�

0

) > 0, the eigenfun
tions �

�

m


on
entrate in the sub-domain 


2

where the �rst periodi
 eigenvalue

is the smallest (see Theorem 3.8 in the simpler 
ase when � � 0, and Theorem 3.11 when �(�

0

) > 0).

4



More pre
isely, the limit of �

�

m

vanishes in the sub-domain 


1

. Introdu
ing the fa
torization �

�

m

(x) =

u

�

m

(x) 

2

(x=�) in 


2

, the homogenized problem for the limit of u

�

m

is simply (see Figure 3.4)

8

>

<

>

:

�D

2

d

2

dx

2

u = ��

2

u in 


2

;

u = 0 on �


2

:

The 
ase � (�

0

) = 0 
orresponds to the limit between lo
alization at the interfa
e and 
on
entration in




2

. The limit of the eigenfun
tion �

�

m

still vanishes in 


1

, but in the homogenized problem the Diri
hlet

boundary 
ondition at x = 0 is repla
ed by a Neumann boundary 
ondition (see Theorem 3.12)

8

>

>

>

<

>

>

>

:

�D

2

d

2

dx

2

u = ��

2

u in 


2

;

u(L) = 0 and

du

dx

(0) = 0:

Finally, when � (�

0

) < 0, a lo
alization phenomenon appears, and the �rst eigenfun
tion 
on
entrates

exponentially fast at the interfa
e. The result is then similar to the one obtained when �

1

= �

2

and

� < 0 (see Theorem 3.10).

Our main results are stated in se
tion 3 when �

1

is equal or not to �

2

. Previously, in se
tion 2 we give a

few te
hni
al results on the spe
tral 
ell problems that are 
ru
ial not only for the proof, but also for the

statement of our main results. Se
tion 4 
ontains the proofs when the dis
ontinuity 
onstant is positive,

� � 0, while se
tion 5 fo
us on the lo
alization phenomena, namely � < 0 or �(�

0

) < 0. Se
tion 6


ontains the proofs in the spe
ial situation when � < 0 but no lo
alization o

urs (�(�

0

) � 0), as it 
an

happen when �

1

is not equal to �

2

. Se
tion 7 
ontains the proof of a 
ru
ial te
hni
al result about the

Hill equation in one dimension.

2 Cell problems

In order to state pre
isely our 
onvergen
e results, the knowledge of the spe
tral 
ell problem (1.3) is not

enough. As in [Cap98℄, we need to introdu
e a parameterized family of spe
tral 
ell problems. They are

reminis
ent of the so-
alled Blo
h wave de
omposition (see e.g. [CPV95℄, [RS78℄), but they involve real

exponentials instead of 
omplex ones. All the results in this se
tion are proved under the assumption

that the periodi
 
oeÆ
ients a

i

;�

i

; �

i

are positive, bounded, measurable fun
tions, ex
ept Proposition

2.2 whi
h asks for more smoothness or pie
ewise 
onstant 
oeÆ
ients.

Lemma 2.1. For ea
h � 2 R there exists a unique �rst eigen
ouple ( 

i;�

; �

i

(�)), of the problem

8

<

:

�

d

dx

�

a

i

(x)

d 

i;�

dx

�

+�

i

(x) 

i;�

= �

i

(�)�

i

(x) 

i;�

in [0; 1℄;

x!  

i;�

(x)e

��x

1� periodi
 and positive;

(2.1)

whi
h is normalized by

 

i;�

(0) = 1: (2.2)
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The map � ! �

i

(�) is stri
tly 
on
ave with a maximum at � = 0, and satis�es the following inequalities


�

2

� �

i

(0)� �

i

(�) � C�

2

;

where C and 
 are positive 
onstants, independent of �.

A further property of the �rst eigenfun
tion  

i;�

; is given in the next Proposition. Its proof is quite

deli
ate and relies on purely 1-D arguments (we postpone it to se
tion 7). We give two di�erent proofs:

�rst in the 
ase of C

2


oeÆ
ients, whi
h allows to perform a Liouville transformation and to use 
lassi
al

results on the 1-D Hill equation, se
ond in the 
ase of pie
ewise 
onstant 
oeÆ
ients, whi
h permits to

do expli
it 
omputations.

Proposition 2.2. Assuming that the 
oeÆ
ients are C

2

or pie
ewise 
onstant, for ea
h � 2 R the �rst

eigenve
tor  

i;�

of problem (2.1) with the normalization  

i;�

(0) = 1 satis�es

lim

�!�1

d 

i;�

dx

(0) = �1 and lim

�!+1

d 

i;�

dx

(0) = +1:

Proof of Lemma 2.1. By introdu
ing the 
hange of variable

�

i;�

(x) =  

i;�

(x)e

��x

;

equation (2.1) is equivalent to

8

<

:

�

d

dx

�

a

i

d�

i;�

dx

�

� �

�

d

dx

(a

i

�

i;�

) + a

i

d�

i;�

dx

�

+

�

�

i

� a

i

�

2

�

�

i;�

= �

i

(�)�

i

�

i;�

in [0; 1℄;

x! �

i;�

(x)1� periodi
 and positive;

(2.3)

with the same normalization 
ondition

�

i;�

(0) = 1:

The existen
e of a unique �rst positive eigen
ouple for problem (2.3) is known, see e.g. [GT83, Theorem

8.38℄, and we have �

i;�

2 H

1

#

([0; 1℄)\C

0;s

([0; 1℄), with s > 0. In parti
ular, this imply that C > �

i;�

(x) >


 > 0 in [0; 1℄. It is proved in [Cap98℄ that the fun
tion � ! �

i

(�) is smooth, stri
tly 
on
ave on all R,

and rea
hes its maximum at � = 0.

To obtain the growth 
ondition on �

i

(�), we perform the following 
hange of unknown

u

�

(x) =

 

i;�

(x)

 

i;0

(x)

whi
h is li
it by virtue of Proposition 4.1. Then, u

�

is solution of the following problem

8

<

:

�

d

dx

�

b(x)

du

�

dx

�

= �(�)s(x)u

�

in [0; 1℄;

x! u

�

(x)e

��x

1� periodi
 ;

(2.4)

with b(x) = a

i

(x) 

2

i;0

(x), s(x) = �

i

(x) 

2

i;0

(x), and �(�) = �

i

(�)� �

i

(0). These 
oeÆ
ients are bounded,

and we 
an therefore apply Lemma 2.3.

6



Lemma 2.3. Let b and s be measurable fun
tions on [0; 1℄, bounded above and below by two positive


onstant M > m > 0. For ea
h � 2 R the �rst eigenvalue �(�) of problem (2.4) satis�es

m

M

�

2

� ��(�) �

M

m

�

2

:

Proof. We already know that �(�) < 0 for all � 6= 0. We 
an assume that � > 0 sin
e 
hanging the sign of

� in (2.4) is equivalent to 
onsider its adjoint equation whi
h has the same �rst eigenvalue. Be
ause we

are working in one spa
e dimension, (2.4) 
an be written as a system of ordinary di�erential equations.

Namely, denoting by 0 the x-derivation,

Y

0

(x) = A(x)Y (x) and A =

2

4

0 b

�1

��(�)s 0

3

5

and Y =

0

�

Y

1

= u

�

Y

2

= bu

0

�

1

A

: (2.5)

By enfor
ing the normalization u

�

(0) = Y

1

(0) = 1, the Krein-Rutman Theorem implies that Y

1

is

positive, and thus Y

2

is in
reasing. Sin
e Y

2

(n) = e

n�

Y

2

(0), and � > 0, this implies that Y

2

(0) > 0, and

thus Y

2

(x) > 0 for x � 0. This in turn gives, by the �rst equation, that Y

1

is in
reasing thus Y

1

� 1 for

x � 0. Be
ause Y

1

and Y

2

are positive fun
tions on R

+

; we 
an write

A

�

Y � Y

0

� A

+

Y with A

+

=

2

4

0 m

�1

��(�)M 0

3

5

; and A

�

=

2

4

0 M

�1

��(�)m 0

3

5

:

Sin
e the matri
es A

+

and A

�

have 
onstant 
oeÆ
ients, it is straightforward to obtain the solutions of

the initial value problems

Z

0

= �(A

�

)

T

Z; Z(0) = Z

0

; and X

0

= �(A

+

)

T

X; X(0) = X

0

:

In parti
ular, the 
hoi
e Z

0

= X

0

=

�

1; (��(�)mM)

�1=2

�

leads to the positive solutions

Z(x) = Z

0

exp

 

�x

r

��(�)m

M

!

and X(x) = X

0

exp

 

�x

r

��(�)M

m

!

:

We 
an 
ompute that (Y � Z)

0

= Y

0

� Z + Y � Z

0

= (Y

0

�A

�

Y ) � Z � 0 sin
e Z is positive. Thus

Y � Z � Y (0) � Z(0) for all x � 0, and 
hoosing x = n 2 N leads to

Y (n) � Z(n) = exp

 

n

 

� �

r

(��(�))m

M

!!

Y (0) � Z(0) � Y (0) � Z(0);

and therefore � �

q

(��(�))m

M

. Similarly, we have (Y �X)

0

= (Y

0

�A

+

Y ) � X � 0 sin
e X is positive,

whi
h gives in turn for all n,

Y (n) �X(n) = exp

 

n

 

� �

r

(��(�))M

m

!!

Y (0) �X(0) � Y (0) �X(0);

and therefore � �

q

(��(�))M

m

.
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Remark 2.4. Lemma 2.3 
an be generalized to higher spa
e dimensions by using the maximum prin
iple.

It is proved in [Cap02℄ that in general � ! �(�) is a stri
tly 
on
ave fun
tion, i.e., that on any bounded

subset K � R

N

(with N the spa
e dimension) the Hessian matrix H =

�

�

2

�

��

i

��

j

�

1�i;j�N

is negative

de�nite and Hx � x � �C(K)x � x with C(K) > 0. The fun
tion �(�) a
hieves its maximum in 0 and

lim

j�j!1

�(�) = �1.

3 Main results

In the spirit of the method of proof of Theorem 1.1 (see [AM97℄), we introdu
e in (1.1) the 
hange of

unknown

u

�

(x) =

�

�

(x)

 

�

x;

x

�

�

;

with a fun
tion  (x; y) de�ned by

 (x; y) = �

1

(x) 

1

(y) + �

2

(x) 

2

(y); (3.1)

where ( 

1

; �

1

) and ( 

2

; �

2

) are the �rst eigen
ouples in ea
h periodi
 
ell of (1.3). By our normalization


ondition (1.7), the fun
tion  (x; x=�) is 
ontinuous at the interfa
e x = 0. On the 
ontrary, the fun
tion

a(x; x=�)(d (x; x=�))=(dx) is not ne
essarily 
ontinuous and its jump at the interfa
e is measured by the

dis
ontinuity 
onstant � introdu
ed in (1.8).

The �rst result 
on
erns the spe
ial 
ase when the �rst 
ell eigenvalues of (1.3) are equal, �

1

= �

2

, and

the dis
ontinuity 
onstant is non-negative, � � 0. Under these assumptions, we obtain a generalization

of Theorem 1.1.

Theorem 3.1. Let �

�

m

and �

�

m

be the m-th eigenvalue and normalized eigenve
tors of (1.1). Assume

that the dis
ontinuity 
onstant de�ned in (1.8) is non negative � � 0, and that �

1

= �

2

. Then

�

�

m

(x) = u

�

m

(x) 

�

x;

x

�

�

and �

�

m

= �

1

+ �

2

�

m

+ o

�

�

2

�

;

up to a sub-sequen
e, u

�

m


onverges weakly in H

1

0

(
) towards u

m

, and (�

m

; u

m

) is the m-th eigen
ouple

of the homogenized problem, whi
h, if � = 0, is

8

>

>

<

>

>

:

�

d

dx

�

�

�

1

(x)D

1

+ �

2

(x)D

2

�

du

dx

�

= � (�

1

(x)�

1

+ �

2

(x)�

2

)u in 
;

u = 0 on �
;

(3.2)

and, if � > 0, is

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�D

1

d

2

dx

2

u = ��

1

u in 


1

;

�D

2

d

2

dx

2

u = ��

2

u in 


2

;

u = 0 on �


1

[ �


2

:

(3.3)

In both 
ases, the homogenized 
oeÆ
ients are de�ned by formula (1.5) for ea
h half domain.
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Figure 3.1: First eigenfun
tion for problem (1.1) in the 
ase of two well-
onne
ted media, i.e., � = 0.
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Figure 3.2: First eigenfun
tion for problem (1.1) in the 
ase of non well-
onne
ted media with a positive

dis
ontinuity 
onstant � > 0.

As an illustration of Theorem 3.1, we present some dire
t 
omputations of the �rst eigenfun
tion �

�

1

of

problem (1.1). The 
ase �

1

= �

2

and � = 0 is shown on Figure 3.1. (The domain is 
omposed of an

homogeneous medium on the left and an heterogeneous one on the right). The 
ase �

1

= �

2

and � > 0 is

shown on Figure 3.2 (the domain is 
omposed of two heterogeneous media with the same 
ell 
oeÆ
ients

but with a 
onstant phase shift between the right and the left). The data used for the 
omputation is

presented in Remark 3.7.

Remark 3.2. Of 
ourse, sin
e the homogenized 
oeÆ
ients are 
onstant in ea
h sub-domain we 
an


ompute expli
itly the eigenvalues of the homogenized problems in Theorem 3.1.

Remark 3.3. There is a simple suÆ
ient 
ondition for having well-
onne
ted media, i.e., � = 0. If all


oeÆ
ients satisfy a 
entral symmetry 
ondition, i.e., are symmetri
 with respe
t to the 
enter of the

unit 
ell [0; 1℄, then it is easy to 
he
k that  

i

satis�es a Neumann boundary 
ondition at x = 0 and

x = 1, and therefore � = 0. A
tually, Theorem 3.1 was already proved by Malige [Mal96℄ under this

assumption. The symmetry was used for the 
onstru
tion of the example shown in Figure 3.1: in 


2

, the

periodi
 
oeÆ
ients are pie
ewise 
onstant on (0:3; 0:7) and (0:1; 0:3) [ (0:7; 1:0); in 


1

, a

1

� 1, �

1

� 1

and �

1

= �

2

.
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Remark 3.4. When � > 0, the homogenized problem is posed on two disjoint sub-domains 


1

and 


2

.

In other words, there are two de
oupled homogenized problems. Therefore, there always exist two non-

negative eigenfun
tions with disjoint supports, u

1

(x) = sin(�

�

l

x)�

1

(x) 
orresponding to the eigenvalue

�

1

= �

2

D

1

�

1

l

2

and u

2

(x) = sin(

�

L

x)�

2

(x) 
orresponding to the eigenvalue �

2

= �

2

D

2

�

2

L

2

. If the �rst

eigenvalues in ea
h sub-domain are distin
t, e.g., L

2

�

2

D

1

> l

2

�

1

D

2

, the �rst fa
torized eigenfun
tion

u

�

1

will tend to u

2

, i.e., will 
on
entrate in the sub-domain that has the smallest �rst eigenvalue and


onverge to zero in the other one. In the other 
ase where the �rst eigenvalues in 


1

and 


2

are equal,

the �rst eigen-subspa
e is of dimension 2, span by u

1

and u

2

and the uniqueness of the limit of �

�

1

is lost

(on Figure 3.2 the limit seems to be a linear 
ombination of the �rst eigenfun
tions on ea
h sub-domain).

Our se
ond result 
ompletes the 
ase �

1

= �

2

when the dis
ontinuity 
onstant is negative, � < 0. Under

these assumptions, we obtain a lo
alization phenomena.

Theorem 3.5. Let (�

�

1

; �

�

1

) be the �rst normalized eigen
ouple of (1.1). Assume that �

1

= �

2

and � < 0.

Then, there exists a unique �

1

> 0 and a unique positive 	(x) 2 H

1

(R) su
h that

0 � �

�

1

� �

1

� C exp

�

�

�

�

�

and













d

dx

�

�

1

(x) �

1

p

�

d

dx

�

	

�

x

�

��













L

2

(
)

+













�

�

1

(x)�

1

p

�

	(

x

�

)













L

2

(
)

� C exp

�

�

�

�

�

;

where C and � are positive 
onstant, independent of �. The limit eigenvalue satis�es �

1

< �

1

= �

2

, and

the limit eigenfun
tion is de�ned by

	(x) =

�

 

1;�

1

(x) for x < 0;

 

2;�

2

(x) for x > 0;

with �

1

> 0 and �

2

< 0 and (�

1

;  

i;�

i

) is the �rst eigen
ouple of the 
ell problem (2.1), i.e.,

8

>

>

<

>

>

:

�

d

dx

�

a

i

(x)

d 

i;�

i

dx

�

+�

i

(x) 

i;�

i

= �

1

�

i

(x) 

i;�

i

in [0; 1℄;

x!  

i;�

i

(x)e

��

i

x

1� periodi
 :

Remark 3.6. Theorem 3.5 is illustrated by Figure 3.3: the �rst eigenve
tor of system (1.1) 
onverges

exponentially fast towards a lo
alized eigenfun
tion near the interfa
e between the two domains. Fur-

thermore, the 
orresponding eigenvalue is smaller than �

1

= �

2

, whi
h is the limit obtained in all the

other 
ases. In 
ontrast with Theorem 3.1, no fa
torization, or limit homogenized problem appear in

the wording of Theorem 3.5. The limit eigenfun
tion 	 
ontains both the periodi
al os
illations and the

ma
ros
opi
 trend.

Remark 3.7. The 
omputations shown on Figure 3.2 and Figure 3.3 were performed with the same two

media, but their positions are swit
hed with respe
t to the interfa
e when passing from one 
ase to the

other. We take �l = L = 1 with 100 periodi
ity 
ells, whi
h yields � = 0:02. All the more the periodi
 
ell


oeÆ
ients for the two media are the same up to a phase shift in the unit 
ell. More pre
isely, in Figure 3.2

the 
oeÆ
ients are a

1

(y) = a(y), a

2

(y) = a(y + 
), �

1

(y) = �(y), �

2

(y) = �(y + 
), �

1

(y) = �(y),

�

2

(y) = �(y + 
), while in Figure 3.3 they are a

1

(y) = a(y + 
), a

2

(y) = a(y), �

1

(y) = �(y + 
),

�

2

(y) = �(y), �

1

(y) = �(y + 
), �

2

(y) = �(y), where 
 = 0:6 is a 
onstant phase shift, and a; � and �

are periodi
 fun
tions. Ea
h periodi
ity 
ell is made of three di�erent media or 
onstituents arranged in
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Figure 3.3: First eigenfun
tion for problem (1.1) in the 
ase of non well-
onne
ted media with a negative

dis
ontinuity 
onstant � < 0.

spe
i�ed order as follows

(a;�; �) =

8

>

>

<

>

>

:

(a

I

;�

I

; �

I

) if 0 < y < 0:1

(a

II

;�

II

; �

II

) if 0:1 < y < 0:5

(a

III

;�

III

; �

III

) if 0:5 < y < 0:8

(a

I

;�

I

; �

I

) if 0:8 < y < 1

with

Constituent I a

I

= 0:9666 �

I

= 2:1080 �

I

= 2:8283

Constituent II a

II

= 2:0086 �

II

= 2:3878 �

II

= 2:9451

Constituent III a

III

= 2:0444 �

III

= 2:9945 �

III

= 1:1493

Note that, by 
onstru
tion, �

1

= �

2

� 1:3863. The shape of the �rst eigenve
tor �

�

1

on Figure 3.2 (with

eigenvalue �

�

1

� 1:3899), 
orresponds to what is announ
ed by Theorem 3.1: asymptoti
ally, both media

tend to separate when � > 0. Therefore, by symmetry Figure 3.3 
orresponds to a situation where � < 0:

the �rst eigenve
tor 
on
entrates exponentially at the interfa
e between the two media. The numeri
al


al
ulation 
on�rms that the 
orresponding eigenvalue (�

�

1

� 1:3720) is below that of the periodi
ity


ell. This phenomenon is explained by Lemma 5.4 whi
h gives a ne
essary and suÆ
ient 
ondition for

the existen
e of a lo
alized eigensolution.

We now turn to the general 
ase �

1

6= �

2

. In the sequel, we shall assume, without loss of generality, that

�

1

> �

2

:

If the dis
ontinuity 
onstant is non-negative, i.e., � � 0, the eigenfun
tions 
on
entrate asymptoti
ally

in the sub-domain 


2

where the �rst periodi
 eigenvalue is the smallest.

Theorem 3.8. Let �

�

m

and �

�

m

be the m-th eigenvalue and normalized eigenfun
tion of (1.1). Assume

that � � 0 and �

1

> �

2

. Then,

�

�

m

(x) = u

�

m

(x) 

�

x;

x

�

�

and �

�

m

= �

2

+ �

2

�

m

+ o

�

�

2

�

;
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Figure 3.4: First eigenfun
tion of (1.1) in the 
ase of two media with �

1

> �

2

and � = 0.

where, up to a subsequen
e, u

�

m


onverges weakly in H

1

0

(
) to u

m

, with u

m

= 0 in 


1

and (�

m

; u

m

) is

the m-th eigenpair of the following homogenized problem

�

�D

2

d

2

dx

2

u

m

= �

m

�

2

u

m

in 


2

;

u

m

= 0 on �


2

;

(3.4)

and the homogenized 
oeÆ
ients are still given by (1.5).

Figure 3.4 illustrates Theorem 3.8. It displays the �rst eigenfun
tion �

�

1

in the 
ase of two media with

symmetri
 periodi
 stru
tures (so that � = 0), with �

1

' 1:58 and �

2

' 0:43 and 20 periodi
 
ells on

ea
h side of the interfa
e.

When �

1

> �

2

, a lo
alization phenomena 
an also o

ur. Let us �rst remark that, as an obvious


onsequen
e of Lemma 2.1, we have the following result.

Lemma 3.9. For all �

1

> �

2

there exists a unique �

0

> 0 su
h that �

1

(�

0

) = �

2

.

Indeed, Lemma 3.9 is obvious by remarking that �

1

(�), de�ned in Lemma 2.1, is a 
on
ave fun
tion

with quadrati
 growth at in�nity and rea
hing its maximum at � = 0, �

1

(0) = �

1

> �

2

. The �rst

eigenve
tors 
orresponding to �

2

and �

1

(�

0

) are denoted by  

2

and  

1;�

0

. They are 
ontinuous at the

interfa
e, i.e.,  

2

(0) =  

1;�

0

(0) = 1, and we introdu
e a new dis
ontinuity 
onstant that will 
hara
terize

the lo
alization phenomena

�(�

0

) = a

1

(0)

d 

1;�

0

dy

(0)� a

2

(0)

d 

2

dy

(0):

Theorem 3.10. Let (�

�

1

; �

�

1

) be the �rst normalized eigen
ouple of (1.1). Assume that �(�

0

) < 0. Then,

there exists a unique �

1

> 0 and a unique positive 	 2 H

1

(R) su
h that

0 � �

�

1

� �

1

� C exp

�

�

�

�

�

and













d

dx

�

�

1

(x) �

1

p

�

d

dx

�

	

�

x

�

��













L

2

(
)

+













�

�

1

(x)�

1

p

�

	(

x

�

)













L

2

(
)

� C exp

�

�

�

�

�

;

(3.5)
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where C and � are positive 
onstant, independent of �. The limit eigenvalue satis�es �

1

< �

2

< �

1

, and

the limit eigenfun
tion is de�ned by

	(x) =

�

 

1;�

1

(x) for x < 0;

 

2;�

2

(x) for x > 0;

with �

1

> 0 and �

2

< 0 and (�

1

;  

i;�

i

) is the �rst eigen
ouple of the 
ell problem (2.1), i.e.,

8

>

>

<

>

>

:

�

d

dx

�

a

i

(x)

d 

i;�

i

dx

�

+�

i

(x) 

i;�

i

= �

1

�

i

(x) 

i;�

i

in [0; 1℄;

x!  

i;�

i

(x)e

��

i

x

1� periodi
 :

Finally, in the remaining 
ase � < 0 and �(�

0

) � 0, there is no lo
alization, and the eigenfun
tions

still 
on
entrate asymptoti
ally in the sub-domain 


2

where the �rst periodi
 eigenvalue is the smallest.

When �(�

0

) > 0, the limit problem has Diri
hlet boundary 
onditions. When �(�

0

) = 0, the limit

problem has a Neumann boundary 
ondition at the interfa
e.

Theorem 3.11. Let �

�

m

and �

�

m

be the m-th eigenvalue and normalized eigenfun
tion of (1.1). Assume

that �

1

> �

2

, � < 0 and �(�

0

) > 0. Then,

�

�

m

= �

2

+ �

2

�

m

+ o

�

�

2

�

; �

�

m

(x)! 0 in L

2

(


1

) and �

�

m

(x) = u

�

m

(x) 

2

�

x

�

�

;

where, up to a subsequen
e, u

�

m


onverges weakly in H

1

(


2

) to u

m

, and (�

m

; u

m

) is the m-th eigenpair

of the following homogenized problem

�

�D

2

d

2

dx

2

u

m

= �

m

�

2

u

m

in 


2

;

u

m

= 0 on �


2

;

(3.6)

and the homogenized 
oeÆ
ients are still given by (1.5).

Theorem 3.12. Let �

�

m

and �

�

m

be the m-th eigenvalue and normalized eigenfun
tion of (1.1). Assume

that �

1

> �

2

, � < 0 and �(�

0

) = 0. Then,

�

�

m

= �

2

+ �

2

�

m

+ o

�

�

2

�

; �

�

m

(x)! 0 in L

2

(


1

) and �

�

m

(x) = u

�

m

(x) 

2

�

x

�

�

;

where, up to a subsequen
e, u

�

m


onverges weakly in H

1

(


2

) to u

m

, and (�

m

; u

m

) is the m-th eigenpair

of the following homogenized problem

�

�D

2

d

2

dx

2

u

m

= �

m

�

2

u

m

in 


2

;

u

m

(L) = 0; and

du

m

dx

(0) = 0;

(3.7)

and the homogenized 
oeÆ
ients are still given by (1.5).

Remark 3.13. Note that the homogenized problems of Theorems 3.11 and 3.12 (
orresponding to �(�

0

) >

0 and �(�

0

) = 0, respe
tively) are similar ex
ept the boundary 
ondition at x = 0. Then a simple


omputation shows that the �rst homogenized eigenvalue �

1

is four times smaller when �(�

0

) = 0 than

when �(�

0

) > 0.
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Remark 3.14. At the di�eren
e of Theorem 3.8, we do not prove in Theorems 3.11 and 3.12 that the

fa
torized eigensolutions u

�

m

have bounded gradients in all of 
, but simply within 


2

. It is therefore

diÆ
ult (at least for us) to study the possible o

urren
e of boundary layers in 


1

. In the limit 
ase

of Theorem 3.12, be
ause of the homogenized Neumann boundary 
ondition at x = 0, we expe
t a

nontrivial boundary layer in 


1

.

Remark 3.15. The generalization of the results of this se
tion to higher spa
e dimensions is not obvious

for at least two reasons. First, Theorems 3.5 and 3.10 relies on Proposition 2.2 whi
h is proved only in

one dimension (by using o.d.e. te
hniques). Se
ond, even Theorems 3.1 and 3.8 (whi
h do not depend

on Proposition 2.2) are not straightforward in higher dimensions be
ause we 
an not assume a perfe
t

transmission 
ondition (1.7) at the interfa
e. Of 
ourse, if it happens by 
han
e that, for a dimension

N > 1, we have

 

1;�

0

(0; y

0

) =  

2

(0; y

0

) (3.8)

for almost every y

0

2 [0; 1℄

N�1

, and

0 � �(y

0

) = a

1

(0; y

0

)

d 

1;�

0

dy

(0; y

0

)� a

2

(0; y

0

)

d 

2

dy

(0; y

0

) �M < +1; (3.9)

then Theorems 3.1 and 3.8 extend easily sin
e at the interfa
e the problem is essentially one-dimensional

(see [Cap99℄). Of 
ourse, these 
onditions are very stri
t and almost never satis�ed in pra
ti
e. In

general, we believe that boundary layers at the interfa
e must be taken into a

ount.

Remark 3.16. Throughout this paper we assume that, after res
aling by �, the periodi
ity on both sides

of the interfa
e is exa
tly one. The fa
t that the period is the same in 


1

and 


2

is not important,

and this is purely by 
onvenien
e that we made this 
hoi
e. All our results apply if the two periods are

di�erent, provided that the dis
ontinuity 
onstants � and �(�

0

) are properly de�ned.

4 Proofs in the 
ase � � 0

In order to prove Theorem 3.1 and 3.8, we �rst need to justify the fa
torization �

�

(x) = u

�

(x) 

�

x;

x

�

�

.

This is the goal of the next Proposition whi
h is a generalization of a previous result of [AM97℄ (see also

[AC00℄).

Proposition 4.1. Let  (x; y) be the fun
tion de�ned by (3.1). Then, the linear operator T de�ned by

T : H

1

0

(
) ! H

1

0

(
)

�(x) !

�(x)

 

�

x;

x

�

�

is bounded, invertible and bi
ontinuous.

Proof. Thanks to the normalization 
ondition (1.7) the fun
tion  (x; x=�) is 
ontinuous on R. By virtue

of Lemma 2.1 we know that there exist two positive 
onstants C > 
 > 0 su
h that C �  

1

(y);  

2

(y) � 


for all y 2 [0; 1℄, and these bounds also holds for  . Therefore, for all � 2 H

1

0

(
), if we de�ne u = T (�),

we have

C

�1

k�k

L

2

(
)

� kuk

L

2

(
)

� 


�1

k�k

L

2

(
)

; (4.1)
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and T is an homeomorphism on L

2

(
). On the other hand,

Z




a

d�

dx

d�

dx

=

Z




1

a

1

 

2

1

du

dx

du

dx

+

Z




2

a

2

 

2

2

du

dx

du

dx

+

Z




1

a

1

d 

1

dx

d(u

2

 

1

)

dx

+

Z




2

a

2

d 

2

dx

d(u

2

 

2

)

dx

:

(4.2)

Equation (1.3) de�ning  

1

(x=�) tested against u

2

(x) 

1

(x=�) writes

Z




1

a

1

d 

1

dx

d(u

2

 

1

)

dx

�

1

�

a

1

(0)

d 

1

dy

(0)u

2

(0) =

1

�

2

�

�

1

Z




1

�

1

 

2

1

u

2

�

Z




1

�

1

 

2

1

u

2

�

; (4.3)

and similarly we have

Z




2

a

2

d 

2

dx

d(u

2

 

2

)

dx

+

1

�

a

2

(0)

d 

2

dy

(0)u

2

(0) =

1

�

2

�

�

2

Z




2

�

2

 

2

2

u

2

�

Z




2

�

2

 

2

2

u

2

�

: (4.4)

When we repla
e (4.3) and (4.4) into (4.2) we obtain

Z




a

�

x;

x

�

�

d�

dx

d�

dx

dx +

1

�

2

Z




�

�

x;

x

�

�

�

2

dx =

2

X

i=1

Z




i

a

i

�

x

�

�

 

2

i

�

x

�

�

du

dx

du

dx

dx

+

1

�

2

2

X

i=1

Z




i

�

i

�

i

�

x

�

�

 

2

i

�

x

�

�

u

2

dx

+

1

�

� u

2

(0):

(4.5)

Where � is the dis
ontinuity 
onstant given by (1.8). If � � 0, all the left hand side terms are non-

negative in (4.5). Sin
e a

1

; a

2

;  

1

and  

2

are bounded below by positive 
onstants, we 
an dedu
e that













du

dx













2

L

2

(
)

+ kuk

2

L

2

(
)

� C(�)

 













d�

dx













2

L

2

(
)

+ k�k

2

L

2

(
)

!

: (4.6)

Conversely, we have

0 � �u

2

(0) � C

Z




�

du

dx

�

2

dx; (4.7)

therefore we also obtain from (4.5) that













d�

dx













2

L

2

(
)

+ k�k

2

L

2

(
)

� C(�)

 













du

dx













2

L

2

(
)

+ kuk

2

L

2

(
)

!

(4.8)

and this 
on
ludes the proof of the proposition for � � 0. If � � 0, note that thanks to the normalization


ondition (1.7), u

2

(0) = �

2

(0). Consequently, identity (4.5) is also

Z




a

�

x;

x

�

�

�

d�

dx

�

2

dx+

1

�

2

Z




�

�

x;

x

�

�

�

2

dx�

1

�

��

2

(0) =

2

X

i=1

Z




i

a

i

�

x

�

�

 

2

i

�

x

�

�

�

du

dx

�

2

dx

+

1

�

2

2

X

i=1

Z




i

�

i

�

i

�

x

�

�

 

2

i

�

x

�

�

u

2

dx:
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We therefore obtain the same 
on
lusion, reverting the positions of u and � in (4.6-4.8).

If we pro
eed to the 
hange of unknown u

�

= T (�

�

), problem (1.1) is transformed into a new eigenvalue

problem, where the singular perturbation in front of the divergen
e term has disappeared. Proposition 4.2

gives the form of this new problem after some simple algebra.

Proposition 4.2. Introdu
ing u

�

(x) = �

�

(x)= 

�

x;

x

�

�

, (1.1) is equivalent to the following eigenvalue

problem

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�

d

dx

�

D

�

x;

x

�

�

du

�

dx

�

+

�

1

� �

2

�

2

�

1

(x)B

�

x;

x

�

�

u

�

+�

�1

�u

�

(0)Æ(x) = �

�

B

�

x;

x

�

�

u

�

u

�

= 0 on �


in 
 (4.9)

where Æ(x) is the Dira
 fun
tion, the (positive) di�usion 
oeÆ
ient is de�ned by

D

�

x;

x

�

�

= �

1

(x) 

2

1

�

x

�

�

a

1

�

x

�

�

+ �

2

(x) 

2

2

�

x

�

�

a

2

�

x

�

�

;

the (positive) 
oeÆ
ient B by

B

�

x;

x

�

�

= �

1

(x) 

2

1

�

x

�

�

�

1

�

x

�

�

+ �

2

(x) 

2

2

�

x

�

�

�

2

�

x

�

�

;

and the new eigenvalue by

�

�

=

�

�

� �

2

�

2

:

Remark 4.3. We proved Proposition 4.1 regardless of the sign of �, therefore Proposition 4.2 is also valid

when � < 0. We shall use this equivalent form of (1.1) in Se
tion 6.

Following a strategy already used in [AC00℄, [AC98℄, the asymptoti
 study of the eigenvalue problem

(4.9) relies on the detailed homogenization, as � tend to zero, of the following problem

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�

d

dx

�

D

�

x;

x

�

�

du

�

dx

�

+

�

1

� �

2

�

2

�

1

(x)B

�

x;

x

�

�

u

�

+�

�1

�u

�

(0)Æ(x) = f

�

u

�

= 0 on �
;

in 
 (4.10)

with a right hand side f

�

whi
h is a bounded sequen
e of L

2

(
), weakly 
onverging to a limit f 2 L

2

(
).

We �rst obtain a priori estimates

Proposition 4.4. If � � 0, the solution u

�

of equation (4.10) satis�es

ku

�

k

H

1

0

(
)

+

�

1

� �

2

�

ku

�

k

L

2

(


1

)

+

r

�

�

ku

�

(0)k � C kf

�

k

L

2

(
)

(4.11)

where C is a 
onstant independent of �. Therefore, up to a subsequen
e, u

�


onverges weakly to a limit

u in H

1

0

(
). Furthermore,
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� if �

1

> �

2

, the limit u vanishes in 


1

and thus belongs to H

1

0

(


2

),

� if �

1

= �

2

and � > 0, the limit satis�es u(0) = 0 and thus 
an be written u = u

1

+ u

2

with

u

1

2 H

1

0

(


1

) and u

2

2 H

1

0

(


2

).

Proof. If we test variationally equation (4.10) de�ning u

�

against u

�

, we obtain

Z




D

�

x;

x

�

�

�

du

�

dx

�

2

dx+

�

1

� �

2

�

2

Z




1

B

�

x;

x

�

�

(u

�

)

2

dx+

1

�

�(u

�

)

2

(0) =

Z




f

�

u

�

dx:

Sin
e D and B are bounded below by a positive 
onstant, and sin
e we assume that �

1

� �

2

and � � 0,

we obtain













du

�

dx













2

L

2

(
)

+

�

1

� �

2

�

2

ku

�

k

2

L

2

(


1

)

+

�

�

ku

�

(0)k

2

� C kf

�

k

L

2

(
)

ku

�

k

L

2

(
)

;

whi
h yields the desired result thanks to Poin
ar�e inequality.

Lemma 4.5. Let S

�

be the operator de�ned by

S

�

: L

2

(
)! L

2

(
)

f ! u

�

unique solution in H

1

0

(
)

of equation (4.10) with r.h.s. f:

(4.12)

For all �xed � > 0, S

�

is a linear 
ompa
t operator in L

2

(
).

This result is a 
onsequen
e of the a priori estimate (4.11) and of the 
ompa
t in
lusion of H

1

0

(
) in

L

2

(
). We shall show the following result

Proposition 4.6. Let f

�

be a weakly 
onverging sequen
e to a limit f in L

2

(
). The sequen
e u

�

= S

�

(f

�

)

weakly 
onverges in H

1

0

(
) towards u

0

de�ned by u

0

= S(f).

1. If � = 0 and �

1

= �

2

then S is the following 
ompa
t operator

S : L

2

(
) ! L

2

(
)

f ! u unique solution of

�

�

d

dx

��

�

1

(x)D

1

+ �

2

(x)D

2

�

d

dx

u(x)

�

= f in 
;

u = 0 on �
:

where D

1

and D

2

are given by (1.5).

2. If � � 0 and �

1

> �

2

then S is the following 
ompa
t operator

S : L

2

(
) ! L

2

(
)

f ! u unique solution of

�

�D

2

d

2

dx

2

u(x) = f in 


2

;

u = 0 on 
 n


2

:
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3. If � > 0 and �

1

= �

2

then S is the following 
ompa
t operator

S : L

2

(
) ! L

2

(
)

f ! u unique solution of

8

<

:

�D

1

d

2

dx

2

u(x) = f in 


1

;

�D

2

d

2

dx

2

u(x) = f in 


2

;

u = 0 on �


2

[ �


2

:

Proof. The proof is quite standard in homogenization theory. For example, using the notion of two-s
ale


onvergen
e (see [All92℄, [Ngu89℄) it is an easy exer
ise that we safely leave to the reader (the details


an be found in [Cap99℄ if ne
essary). Let us simply remark that, if �

1

= �

2

and � = 0, then the

homogenization of (4.10) is 
ompletely obvious. If �

1

= �

2

and � > 0, then the a priori estimates of

Proposition 4.4 shows that u

�

(0) goes to zero, while, if �

1

> �

2

and � � 0, they imply that u

�

goes to

zero in 


1

.

We are now able to 
on
lude the proof of Theorem 3.1 and Theorem 3.8.

Proof of Theorem 3.1 and Theorem 3.8. Let us �rst remark that Proposition 4.6 imply that the sequen
e

of operators S

�

, de�ned by (4.12), uniformly 
onverges to the limit operator S. The asymptoti
 analysis

of the eigenvalue problem (4.9) is truly given by that of T

�

given by

T

�

: L

2

(
) ! L

2

(
)

f ! S

�

(B

�

x;

x

�

�

f):

The eigenvalues of T

�

being the inverse of that of (4.9). Introdu
ing �(x) =

R

1

0

B(x; y)dy whi
h is the

weak limit of B(x;

x

�

); we de�ne the limit operator T by

T : L

2

(
) ! L

2

(
)

f ! S (�f) :

The sequen
e T

�

does not uniformly 
onverge to T , but the sequen
e T

�

is nevertheless sequentially


ompa
t, in the sense that

�

8f 2 L

2

(
) lim

�!0

kT

�

(f)� T (f)k

L

2

(
)

= 0;

the set fT

�

(f); kfk

L

2

(
)

� 1; � � 0g is sequentially 
ompa
t:

Theorems 3.1 and 3.8 are then 
onsequen
es of Theorem 4.7 (see also 
hapter 11 in [JKO95℄).

Theorem 4.7. (see e.g. [Ans71℄, [Cha83℄) Let T

n

be a sequen
e of 
ompa
t operators that 
onverges to

T . Assume that (T

n

)

n�1

is 
olle
tively 
ompa
t and T is 
ompa
t. Let � 2 C be an eigenvalue of T , of

multipli
ity m. Let � be a smooth 
urve en
losing � in the 
omplex plane and leaving outside the rest of

the spe
trum of T . Then, for suÆ
iently large values of n , � en
loses also exa
tly m eigenvalues of T

n

and leaves outside the rest of the spe
trum of T

n

.
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5 Proofs in the 
ase �(�

0

) < 0.

The goal of this se
tion is to prove Theorems 3.5 and 3.10. To understand the asymptoti
 behavior

of problem (1.1) when the dis
ontinuity 
onstant �(�

0

) is negative, we �rst res
ale the equations by

introdu
ing the 
hange of variables y =

x

�

. Then, problem (1.1) is equivalent to

8

>

>

<

>

>

:

�

d

dy

�

a(y)

d'

�

dy

�

+�(y)'

�

= �

�

�(y)'

�

in 


�

;

'

�

(��

�1

l) = '

�

(�

�1

L) = 0;

(5.1)

with 


�

=℄� �

�1

l; �

�1

L[, '

�

(y) = �

�

(

x

�

), and

a(y) ( resp: �(y); �(y)) =

�

a

1

(y) ( resp: �

1

(y); �

1

(y)) if y < 0;

a

2

(y) ( resp: �

2

(y); �

2

(y)) if y > 0:

As � goes to 0, the domain 


�


onverges to R, and formally the limit problem of (5.1) is

8

>

>

<

>

>

:

�

d

dx

�

a(x)

d	

dx

�

+�(x)	 = ��(x)	 in R;

	 2 H

1

(R):

(5.2)

We �rst re
all some properties of the spe
trum of (5.2). We introdu
e the Green operator S a
ting in

L

2

(R) de�ned by

S : L

2

(R) ! L

2

(R)

f ! u unique solution in H

1

(R) of

�

d

dx

�

a(x)

du

dx

�

+�(x)u = �(x)f in R:

(5.3)

The eigenvalues of S are pre
isely the inverse of those of (5.2). Nevertheless, to simplify the dis
ussion

we shall say that � is an eigenvalue of S, or (5.2), if its inverse belongs to the spe
trum of S.

Proposition 5.1. The operator S is self-adjoint and non-
ompa
t. Its spe
trum 
an be de
omposed in

its dis
rete and essential part, �(S) = �

dis


(S) [ �

ess

(S). The lower bound of the essential spe
trum is

equal to the smallest 
ell �rst eigenvalue in (1.3), namely

min�

ess

(S) = min (�

1

; �

2

) :

If (�;	) is an eigen
ouple in the dis
rete spe
trum, then there exist �

1

> 0 and �

2

< 0 su
h that

	(x) =

�

 

1

(x) if x < 0;

 

2

(x) if x > 0;

and (�;  

i

) is an eigen
ouple of

8

>

>

<

>

>

:

�

d

dx

�

a

i

(x)

d 

i

dx

�

+�

i

(x) 

i

= ��

i

(x) 

i

in [0; 1℄;

x!  

i

(x)e

��

i

x

1� periodi
:

(5.4)
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Remark 5.2. By de�nition, the dis
rete spe
trum of S is 
omposed of isolated eigenvalues of �nite mul-

tipli
ity, while its essential spe
trum is 
hara
terized by Weyl 
riterion, i.e., 8� 2 �

ess

(S) there exists a

sequen
e fu

n

g 2 L

2

(R) su
h that

�

ku

n

k

L

2

(R)

= 1; u

n

! 0 in L

2

(R) weakly;

(S � �Id)u

n

! 0 in L

2

(R) strongly:

Proposition 5.1 tells us in parti
ular that �

ess

(S) is not empty and that any dis
rete eigenve
tor de
ays

exponentially at in�nity. Remark that equation (5.4) is similar to (2.1).

Proof. The study of the spe
trum of S is 
lassi
al. The exponential de
ay of the dis
rete eigenfun
tions

is obtained through Floquet Theory (see, e.g., [MR73℄, [RS78℄). The same tool yields the lower bound

of the essential spe
trum (see [AC98℄, [CPV95℄). Note that these results are obtained under the mere

assumption that the 
oeÆ
ients of equation (5.3) are positive measurable fun
tions (no smoothness is

required).

In order to pass to the limit �! 0 in (5.1), we also introdu
e an operator S

�

a
ting in L

2

(R) de�ned by

S

�

: L

2

(R) ! L

2

(R)

f ! u

�

unique solution in H

1

0

(


�

) of

8

>

>

<

>

>

:

�

d

dx

�

a(x)

du

�

dx

�

+�(x)u

�

= �(x)f; in 


�

u

�

(x) = 0 on �


�

:

(5.5)

The operator S

�

is 
ompa
t and its eigenvalues are the inverses of that of (5.1). Unfortunately, the


onvergen
e of the sequen
e S

�

to S is not uniform, so that the limit of the spe
trum of S

�

is not the

spe
trum of S. Nevertheless, this limit 
an be 
hara
terized expli
itly and we re
all the following result

that may be found in [AC98℄.

Proposition 5.3. For all f 2 L

2

(R), S

�

(f) 
onverges strongly to S(f) in L

2

(R), and we have

lim

�!0

� (S

�

) = �(S) [ �

BL

:

Furthermore, the �rst eigenvalue �

�

1


onverges to a limit �

1

whi
h does belong to the spe
trum of S and

is thus the smallest element of �(S). We also have

min�

BL

= min�

ess

(S) = min (�

1

; �

2

) : (5.6)

That part of the limit spe
trum, denoted by �

BL

, is 
alled the boundary layer spe
trum. It 
an be


hara
terized 
ompletely in terms of an equation similar to (5.2) but in the half-line (for details, see

[AC98℄). We do not dwell on this boundary layer spe
trum sin
e we only need to know (5.6) in the

sequel.

Lemma 5.4. Let �

0

be de�ned as in Lemma 3.9, i.e., �

1

(�

0

) = �

2

, and  

1;�

0

the 
orresponding eigen-

ve
tor de�ned by (2.1). Let � (�

0

) be de�ned by

�(�

0

) = a

1

(0)

d 

1;�

0

dy

(0)� a

2

(0)

d 

2

dy

(0):
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If and only if

� (�

0

) < 0; (5.7)

the limit �

1

of the �rst eigenvalue �

�

1

of problem (1.1) satis�es

�

1

< min(�

1

; �

2

):

Remark 5.5. In parti
ular, this Lemma applies when �

1

= �

2

, and � � �(�

0

) < 0. It implies that, when

the dis
ontinuity 
onstant is negative, the limit �rst eigenvalue 
annot be predi
ted by the homogenized

models obtained under stri
t periodi
ity assumption on ea
h side of the interfa
e. The proof of Lemma 5.4

relies on Proposition 2.2, that we have not been able to prove in the general 
ase, but under the additional

assumption that the 
oeÆ
ients are C

2

, or pie
ewise 
onstant.

Proof of Lemma 5.4. For all � 2 [�

0

;+1[, where �

0

is de�ned in Lemma 3.9, be
ause of the 
on
avity

of �

1

(�) and �

2

(�), we 
an asso
iate to ea
h � a unique �

0

� 0 su
h that �

1

(�) = �

2

(�

0

) and  

2;�

0

is the

�rst eigenve
tor de�ned by

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�

d

dx

�

a

2

(x)

d 

2;�

0

dx

�

+�

2

(x) 

2;�

0

= �

2

(�

0

)�

2

(x) 

2;�

0

in [0; 1℄

x!  

2;�

(x)e

��

0

x

1� periodi
 ;

 

2;�

0

(0) = 1:

(5.8)

Note that for � = �

0

, we have �

0

= 0. The pair (�;	) de�ned by

� = �

1

(�) = �

2

(�

0

)

	 =  

1;�

for x > 0;

	 =  

2;�0

for x < 0;

is an eigen
ouple for problem (5.2) if and only if

�(�) = a

1

(0)

d 

1;�

dx

(0)� a

2

(0)

d 

2;�

0

dx

(0) = 0: (5.9)

Thanks to Proposition 2.2, we have

lim

�!+1

�(�) = lim

�!+1

a

1

(0)

d 

1;�

dx

(0)� lim

�

0

!�1

a

2

(0)

d 

2;�

0

dx

(0) = +1:

Therefore, if we assume �(�

0

) < 0 then Equation (5.9) admits a solution, for some � < �

0

, and �

0

> 0.

We have thus obtained a value of � su
h that � < min(�

1

; �

2

). Finally, sin
e �

1

� �, by virtue of

Proposition 5.1, we have �

1

2 �

dis


(S).

Conversely, if �

1

< min(�

1

; �

2

) we know from Proposition 5.6 that on both sides of the origin the


orresponding eigenfun
tion 	 has an exponential de
ay. Then Proposition 5.1 show that it must of the

form 	 = 
 

1;�

and 	 = 
 

2;�0

for some � and �

0

on ea
h half line. Sin
e identity (5.9) is a ne
essary

and suÆ
ient 
ondition for the existen
e of su
h a 	, the proof is 
omplete.
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Proof of Theorems 3.5 and 3.10. Thanks to Lemma 5.4 and Proposition 5.1, if 
ondition (5.7) is satis�ed

then �

1

is in the dis
rete spe
trum of problem (5.2). Theorems 3.5 and 3.10 are then a 
onsequen
e of

Proposition 5.6. Indeed the eigenfun
tion �

�

1

(x) in Theorems 3.5 and 3.10 is equal to

1

p

�

'

�

1

�

x

�

�

where

'

�

1

is the �rst eigenfun
tion in Proposition 5.6. Inequality (5.10) then be
omes

�

2













d

dx

�

�

1

(x)�

1

p

�

d

dx

�

	

�

x

�

��













L

2

(
)

+













�

�

1

(x) �

1

p

�

	

�

x

�

�













L

2

(
)

� C exp

�

�

�

�

�

whi
h in turn imply













d

dx

�

�

1

(x)�

1

p

�

d

dx

�

	

�

x

�

��













L

2

(
)

+













�

�

1

(x) �

1

p

�

	

�

x

�

�













L

2

(
)

� C

0

exp

�

�

�

0

�

�

for any �

0

< � .

Proposition 5.6. Assume that problem (5.2), or equivalently operator S, admits a �rst positive nor-

malized eigen
ouple (�

1

;	) su
h that �

1

< min (�

1

; �

2

). Then the �rst positive normalized eigen
ouple

(�

�

1

; '

�

1

) of (5.1), or of S

�

, satis�es

0 � �

�

1

� �

1

� C exp

�

�

�

�

�

and













d

dx

'

�

1

�

d

dx

	













L

2

(


�

)

+ k'

�

1

�	k

L

2

(


�

)

� C exp

�

�

�

�

�

(5.10)

where C and � are stri
tly positive 
onstant independent of �.

Proof. Sin
e we assumed �

1

< min�

ess

(S), we have

�

1

= min

'2H

1

(R)

� 6= 0

Z

R

a (x) j

d

dx

'j

2

dx +

Z

R

� (x)�

2

dx

Z

R

� (x)'

2

dx

;

and this minimum is attained for ' = 	 whi
h belongs to the dis
rete spe
trum of S. We also have

�

�

1

= min

'2H

1

0

(


�

)

� 6= 0

Z




�

a (x) j

d

dx

'j

2

dx+

Z




�

� (x)'

2

dx

Z




�

� (x)'

2

dx

;

and this implies, by in
lusion of spa
es that �

1

� �

�

1

. Let � be a smooth 
ut-o� fun
tion, vanishing

outside 


�

=

�

�

l

�

;

L

�

�

, equal to 1 on

�

�

l

�

+ 1;

L

�

� 1

�

, su
h that 0 � � � 1; and

d�

dx

does not depend on �

(see Figure 5.1). We then have �	 2 H

1

0

(


�

), and

�

�

1

�

Z




�

a (x) j

d

dx

(�	) j

2

dx+

Z




�

� (x) (�	)

2

dx

Z




�

� (x) (�	)

2

dx

: (5.11)
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�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

N

�

�

N

�

+ 1

N

�

� 1

N

�

Figure 5.1: Cut-o� fun
tion �.

By 
onstru
tion

d�

dx

has its support in [�

l

�

;�

l

�

+ 1℄ [ [

L

�

� 1;

L

�

℄ and inequality (5.11) be
omes

�

�

1

�

Z

R

a(x)j

d

dx

	j

2

dx+

Z

R

� (x) 	

2

dx+R

�

1

(1�R

�

2

)

Z

R

� (x) 	

2

dx

; (5.12)

with

R

�

1

= 2

Z

[

�

l

�

;�

l

�

+1

℄

[

[

L

�

�1;

L

�

℄

a(x) j	(x)j

�

�

�

�

d

dx

�

�

�

�

�

�

�

�

�

�

�

d

dx

	

�

�

�

�

+

�

�

�

�

	

d

dx

�

�

�

�

�

�

dx

and

R

�

2

=

Z

�

l

�

+1

�1

�(x)	(x)

2

+

Z

+1

L

�

�1

�(x)	(x)

2

Z

R

�(x)	(x)

2

:

Thanks to Proposition 5.1, we know that

sup

x2(�1;�

l

�

)

j	(x)j � C exp

�

��

1

l

�

�

; and sup

x2(

L

�

;+1)

j	(x)j � C exp

�

�

2

L

�

�

with �

1

> 0 and �

2

< 0. We 
an dedu
e that R

�

1

� C exp

�

�

�

�

�

and R

�

2

� C exp

�

�

�

�

�

with � =

min(lj�

1

j; Lj�

2

j), and inserting these inequalities in (5.12) we obtain

�

�

1

� �

1

�

1 + C exp

�

�

�

�

��

: (5.13)

Let us now show that '

�

1


onverges to 	. In order to obtain an approximation of 	 that vanishes on the

boundaries of the domain 


�

, we add to 	 an aÆne fun
tion whi
h 
ompensates its values at both ends

of the domain. We de�ne 	

�

(x) = 	(x) + `

�

(x) where `

�

is the aÆne fun
tion su
h that

	

�

�

l

�

�

+ `

�

�

�

l

�

�

= 0 and 	

�

L

�

�

+ `

�

�

L

�

�

= 0:

By 
onstru
tion, 	

�

2 H

1

0

(


�

), and 	

�

is solution of the same problem than '

�

1

up to a perturbation r

�

.

8

>

>

>

<

>

>

>

:

�

d

dx

�

a (x)

d	

�

dx

�

+�(x)	

�

= �

�

1

� (x)	

�

+ r

�

in ℄�

l

�

;

L

�

[

	

�

(�

l

�

) = 	

�

(

L

�

) = 0:

(5.14)
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The perturbation is r

�

= (�

1

� �

�

1

)�	

�

+ �`

�

� �

1

�`

�

�

d

dx

�

a

d`

�

dx

�

2 H

�1

(


�

). The 
oeÆ
ients being

bounded, we obtain that for all � 2 H

1

0

(


�

),

�

�

�

�

Z




�

r

�

�

�

�

�

�

� C

�

j�� �

�

1

j+ sup




�

j`

�

j

�

k�k

L

2

(


�

)

+ C













d`

�

dx













L

2

(


�

)













d�

dx













L

2

(


�

)

;

where C is a 
onstant whi
h does not depend on �. From the exponential de
ay of 	 we dedu
e that

sup




�

j`

�

j � C exp

�

�

�

�

�

and













d`

�

dx













L

2

(


�

)

� C

p

� exp

�

�

�

�

�

; (5.15)

and with the help of estimate (5.13) we obtain

�

�

�

�

Z




�

r

�

�

�

�

�

�

� C exp

�

�

�

�

�

 

k�k

L

2

(


�

)

+













d�

dx













L

2

(


�

)

!

: (5.16)

The �rst eigenvalue �

�

1

being simple, by a Fredholm alternative we 
an de
ompose 	

�

into a 
omponent

proportional to '

�

1

and a 
omponent orthogonal to '

�

1

. We write 	

�

= �

�

�

�

1

+ g

�

, where �

�

is a 
onstant,

and

kg

�

k

L

2

(


�

)

+













dg

�

dx













L

2

(


�

)

� C

�

kr

�

k

H

�1

(


�

)

where C

�

is the norm of

�

S

�

�1

� �

�

1

Id

�

�1

, a bounded operator de�ned on the orthogonal of the line

generated by '

�

1

. We have C

�

�

C

j

�

�

1

��

�

2

j

, where C is a 
onstant independent of �, and �

�

2

is the next

eigenvalue of S

�

. If we obtain that j�

�

1

� �

�

2

j > 
 > 0, with 
 independent of �, we then dedu
e, with the

help of inequality (5.16)

kg

�

k

L

2

(


�

)

+













dg

�

dx













L

2

(


�

)

�

C




exp

�

�

�

�

�

: (5.17)

From the de
omposition 	

�

= �

�

'

�

1

+ g

�

, we get

j�

�

j k'

�

1

k

L

2

(


�

)

� kg

�

k

L

2

(


�

)

� k	

�

k

L

2

(


�

)

� j�

�

j k'

�

1

k

L

2

(


�

)

+ kg

�

k

L

2

(


�

)

:

We have k'

�

1

k

L

2

(


�

)

= 1 and k	k

L

2

(R)

= 1 thus

�

�

�

k	

�

k

L

2

(


�

)

� 1

�

�

�

=

�

�

�

k`

�

k

L

2

(


�

)

� k	k

L

2

(Rn


�

)

�

�

�

� k`

�

k

L

2

(


�

)

+ k	k

L

2

(Rn


�

)

� C

1

�

exp

�

�

�

�

�

thanks to estimate (5.15) and the exponential de
ay of 	. As a 
onsequen
e, jj�

�

j � 1j � C

1

�

exp

�

�

�

�

�

and 	

�

and '

�

1

being positives, we also have

j�

�

� 1j � C

1

�

exp

�

�

�

�

�

: (5.18)

Finally, if we write '

�

1

(x)�	(x) = (1��

�

)'

�

1

(x)� g

�

(x)+ `

�

(x) on 


�

and using estimates (5.15), (5.17)

and (5.18) we obtain













d'

�

1

dx

�

d	

dx













L

2

(


�

)

+ k'

�

1

�	k

L

2

(


�

)

� C

1

�

exp

�

�

�

�

�

� C exp

�

�

�

0

�

�
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and this 
on
ludes the proof.

Let us now show that the spe
tral gap is uniformly bounded, i.e., 0 < 
 < �

�

2

� �

�

1

< C. We know that

�

�

2


onverges to a limit �

2

whi
h either belongs to �

BL

[ �

ess

(S) or to �

dis


(S). In the latter 
ase, the

eigenvalues of the dis
rete spe
trum are isolated so that 0 < 
 < �

2

� �

1

< C. In the former 
ase, we

know from (5.6) that �

2

� min(�

1

; �

2

) whi
h is stri
tly larger than �

1

by assumption, so that again

0 < 
 < �

2

� �

1

< C. This yields the desired result for suÆ
iently small �.

6 Proofs in the 
ase � < 0 and �(�

0

) � 0.

In this se
tion we prove Theorems 3.11 and 3.12 following the strategy used in se
tion 4 for the 
ase

� � 0. A

ording to Proposition 4.2 and Remark 4.3, the original problem (1.1) is equivalent to the

fa
torized problem (4.9) for any value of the dis
ontinuity 
onstant �. Introdu
ing, as in Lemma 4.5,

an operator S

�

, the 
onvergen
e of (4.9) is governed by the homogenization of problem (4.10) with given

right hand side. The key element for the proof of Proposition 4.6, and in turn Theorem 3.8, is the a

priori estimate given by Proposition 4.4. It does not hold for � < 0. Nevertheless, the arguments of the

proof of Proposition 4.4 yields a similar result that we state in Proposition 6.1 below.

Proposition 6.1. The solution u

�

of equation (4.10) satis�es

ku

�

k

2

H

1

0

(
)

+

�

1

� �

2

�

2

ku

�

k

2

L

2

(


1

)

+

�

�

ju

�

(0)j

2

� C kf

�

k

L

2

(
)

ku

�

k

L

2

(
)

(6.1)

where C is a 
onstant independent of �.

Sin
e we assumed � < 0, (6.1) alone does not furnish suÆ
ient a priori estimates for 
on
luding. Thus,

for the proof of Theorems 3.11 and 3.12 we need an additional lemma.

Lemma 6.2. Assume that �

1

> �

2

, � < 0 and �(�

0

) > 0. Then, the solution u

�

of equation (4.10)

satis�es













du

�

dx













L

2

(
)

� C kf

�

k

L

2

(
)

; ku

�

k

L

2

(


1

)

� C� kf

�

k

L

2

(
)

; and ju

�

(0)j � C

p

� kf

�

k

L

2

(
)

:

Assume that �

1

> �

2

, � < 0 and �(�

0

) = 0. Then, the solution u

�

of equation (4.10) satis�es













du

�

dx













L

2

(


2

)

� C kf

�

k

L

2

(
)

; ku

�

k

L

2

(


1

)

� C

p

� kf

�

k

L

2

(
)

; and













e

�

0

x

�

dv

�

dx













L

2

(


1

)

� C kf

�

k

L

2

(
)

;

where v

�

= u

�

 

1

(x; x=�)= 

1;�

0

(x; x=�) in 


1

.

Proof of Theorem 3.11. Thanks to the a priori estimate of Lemma 6.2, the 
ase �

1

> �

2

, � < 0 and

�(�

0

) > 0 is 
ompletely similar to the 
ase �

1

> �

2

and � � 0, whi
h is already solved in se
tion 4.

Proof of Theorem 3.12. Let u

�

be the solution of (4.10) with right hand side f

�

whi
h is a bounded

sequen
e in L

2

(
). We introdu
e the fun
tion

 

�

0

(x; y) = �

1

(x) 

1;�

0

(y) + �

2

(x) 

2

(y); (6.2)
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and de�ne a new fa
torization (or 
hange of unknown whi
h is li
it by virtue of Proposition 4.1)

v

�

(x) = u

�

(x)

 

�

x;

x

�

�

 

�

0

�

x;

x

�

�

:

Remark that v

�

= u

�

in 


2

, and v

�

(0) = u

�

(0) (be
ause of the normalization 
ondition (2.2)). Testing

variationally equation (4.10) against

 

�

0

(

x;

x

�

)

 

(

x;

x

�

)

�

�

(x), where �

�

is a test fun
tion in H

1

0

(
), we obtain

Z




D

�

x;

x

�

�

du

�

dx

d

dx

 

 

�

0

�

x;

x

�

�

 

�

x;

x

�

�

�

�

!

dx+

�

1

� �

2

�

2

Z




1

B

�

x;

x

�

�

u

�

 

 

�

0

�

x;

x

�

�

 

�

x;

x

�

�

�

�

!

dx (6.3)

+

1

�

�u

�

(0)�

�

(0) =

Z




f

�

 

 

�

0

�

x;

x

�

�

 

�

x;

x

�

�

�

�

!

dx:

Repla
ing u

�

by v

�

in its left hand side, identity (6.3) be
omes

Z




1

a

1

�

x

�

�

 

2

1

�

x

�

�

d

dx

 

v

�

 

1;�

0

�

x

�

�

 

1

�

x

�

�

!

d

dx

 

�

�

 

1;�

0

�

x

�

�

 

1

�

x

�

�

!

dx+

Z




2

D

�

x;

x

�

�

dv

�

dx

d�

�

dx

dx (6.4)

+

�

1

� �

2

�

2

Z




1

�

1

�

x

�

�

 

2

1;�

0

�

x

�

�

v

�

�

�

dx+

1

�

�v

�

(0)u

�

(0) =

Z




 

1;�

0

�

x

�

�

 

1

�

x

�

�

f

�

�

�

dx:

Note that

Z




1

a

1

�

x

�

�

 

2

1

�

x

�

�

d

dx

 

v

�

 

1;�

0

�

x

�

�

 

1

�

x

�

�

!

d

dx

 

�

�

 

1;�

0

�

x

�

�

 

1

�

x

�

�

!

dx =

Z




1

a

1

�

x

�

�

 

2

1;�

0

�

x

�

�

dv

�

dx

d�

�

dx

dx

+

Z




1

a

1

�

x

�

�

d

dx

�

 

1;�

0

�

x

�

��

d

dx

�

v

�

�

�

 

1;�

0

�

x

�

��

�

Z




1

a

1

�

x

�

�

d

dx

�

 

1

�

x

�

��

d

dx

 

�

 

1;�

0

�

x

�

��

2

 

1

�

x

�

�

v

�

�

�

!

;

and, by integration by parts and de�nition (2.1) of  

1;�

, we have

Z




1

a

1

�

x

�

�

d

dx

�

 

1;�

0

�

x

�

��

d

dx

�

v

�

�

�

 

1;�

0

�

x

�

��

�

Z




1

a

1

�

x

�

�

d

dx

�

 

1

�

x

�

��

d

dx

 

 

2

1;�

0

�

x

�

�

 

1

�

x

�

�

v

�

�

�

!

=

1

�

(�(�

0

)� �) v

�

(0)�

�

(0) +

�

2

� �

1

�

2

Z




1

�

1

�

x

�

�

 

2

1;�

0

�

x

�

�

v

�

�

�

:

As a 
onsequen
e, identity (6.4) be
omes

Z




1

a

1

�

x

�

�

 

2

1;�

0

�

x

�

�

dv

�

dx

d�

�

dx

dx+

Z




2

D

�

x;

x

�

�

dv

�

dx

d�

�

dx

dx (6.5)

+

1

�

�(�

0

)v

�

(0)�

�

(0) =

Z




 

1;�

0

�

x

�

�

 

1

�

x

�

�

f

�

�

�

dx
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Sin
e �(�

0

) = 0, we have

Z




1

a

1

�

x

�

�

 

2

1;�

0

�

x

�

�

dv

�

dx

d�

�

dx

dx+

Z




2

D

�

x;

x

�

�

dv

�

dx

d�

�

dx

dx =

Z




 

1;�

0

�

x

�

�

 

1

�

x

�

�

f

�

�

�

dx

Note that for any bounded sequen
e �

�

in W

1;1

(
),

�

�

�

�

Z




1

a

1

�

x

�

�

 

2

1;�

0

�

x

�

�

dv

�

dx

d�

�

dx

dx

�

�

�

�

� C













e

�

0

x

�

dv

�

dx













L

2

(


1

)







e

�

0

x

�







L

2

(


1

)

! 0

sin
e ke

�

0

x

�

dv

�

dx

k

L

2

(


1

)

is bounded, thanks to Lemma 6.2. Of 
ourse

R




1

 

1;�

0

(

x

�

)

 

1

(

x

�

)

f

�

�

�

goes to 0 exponen-

tially fast. For su
h bounded �

�

, (6.3) therefore writes

Z




2

D

�

x;

x

�

�

du

�

dx

d�

�

dx

dx =

Z




2

f

�

�

�

dx+ o(1): (6.6)

Sin
e the test fun
tions in the two-s
ale 
onvergen
e method are of the type �

�

(x) = �

0

(x) + ��

1

(x; x=�)

with smooth fun
tions �

0

; �

1

, they are uniformly bounded in W

1;1

(
) and one 
an use (6.6) to pass to

the limit. Classi
al arguments of homogenization allow to 
on
lude.

Proof of Lemma 6.2. With the 
hoi
e �

�

= v

�

in (6.5) we obtain

Z




1

a

1

�

x

�

�

 

2

1;�

0

�

x

�

�

�

dv

�

dx

�

2

dx+

Z




2

D

�

x;

x

�

�

�

dv

�

dx

�

2

dx+

1

�

�(�

0

) (v

�

)

2

(0) =

Z




f

�

u

�

dx: (6.7)

If �(�

0

) > 0, this implies that

jv

�

(0)j

2

� C� kf

�

k

L

2

(
)

ku

�

k

L

2

(
)

: (6.8)

Be
ause u

�

(0) = v

�

(0), plugging (6.8) in (6.1) yields the desired results.

If �(�

0

) = 0, identity (6.7) only implies that













e

�

0

x

�

dv

�

dx













2

L

2

(


1

)

� C kf

�

k

L

2

(
)

ku

�

k

L

2

(
)

; and













du

�

dx













2

L

2

(


2

)

� C kf

�

k

L

2

(
)

ku

�

k

L

2

(
)

: (6.9)

We will next show that

ku

�

k

2

L

2

(
)

� C

�

� kf

�

k

2

L

2

(
)

+ ku

�

k

2

L

2

(


2

)

�

(6.10)

and, together with (6.9) and Poin
ar�e inequality in 


2

, this yields the desired results.

Note that

u

�

(0)

2

� j


2

j

2

Z




2

�

du

�

dx

�

2

� C kf

�

k

L

2

(
)

ku

�

k

L

2

(
)

:

Using this inequality in (6.1) gives

ku

�

k

2

L

2

(


1

)

� C� kf

�

k

L

2

(
)

ku

�

k

L

2

(
)

� C�

�

kf

�

k

2

L

2

(
)

+ ku

�

k

2

L

2

(
)

�

whi
h in turn implies (6.10).
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7 Proof of Proposition 2.2.

7.1 The 
ase of C

2


oeÆ
ients.

The �rst step is similar to the proof of Lemma 2.1, namely we transform (2.1) into (2.4). If we assume that

the 
oeÆ
ients a

i

;�

i

and �

i

are C

2

periodi
 fun
tions on [0; 1℄, then the �rst eigenfun
tion  

i;0

is a
tually

two times di�erentiable, and thus the 
oeÆ
ients b and s of (2.4) are also of 
lass C

2

. Proposition 2.2 is

then a 
onsequen
e of Lemma 7.1.

Lemma 7.1. Let b and s be periodi
 positive fun
tions on [0; 1℄ su
h that their se
ond derivative b

00

and s

00

exist and are pie
ewise 
ontinuous. Denote by M > m > 0 two positive 
onstant whi
h are the

upper and lower bounds of b and s. For ea
h � 2 R the �rst eigenve
tor u

�

of problem (2.4) with the

normalization u

�

(0) = 1 satis�es

�C

1

�

C

2

p

��(�)

+ C

3

p

��(�) �

�

j�j

u

0

�

(0) � C

3

p

��(�) + C

1

+

C

2

p

��(�)

; (7.1)

where the positive 
onstants C

1

; C

2

and C

3

depend only on b and s.

Proof. The assumed smoothness of b and s enables us to perform a Liouville transformation of problem

(2.4). Introdu
ing

t =

1




Z

x

0

�

s(z)

b(z)

�

1

2

dz 
 =

Z

1

0

�

s(z)

b(z)

�

1

2

dz; and f

�

(t) = (s(x)b(x))

1

4

u

�

(x); (7.2)

the transformed equation is, see [Eas73℄,

8

<

:

d

2

f

�

dt

2

(t) + (


2

�(�) +Q(t))f

�

= 0 in [0; 1℄;

t! f

�

(t)e

��t

1� periodi
 ;

(7.3)

with

Q(t) = 


2

b

1

4

(x)s

�

3

4

(x)

d

dx

�

b(x)

d

dx

(b(x)s(x))

�

1

4

�

:

We 
an assume without loss of generality that 
 = 1. The boundary 
onditions are preserved sin
e this


hange of variable preserves periodi
ity. We shall use the fa
t that Q is a bounded 1-periodi
 fun
tion.

It is suÆ
ient to prove (7.1) for � > 0, sin
e in the other 
ase the fun
tion g

�

(t) = f

�

(�t) is solution of

(7.3), with � > 0, if Q is repla
ed by Q(�t), whi
h is also a bounded 1-periodi
 fun
tion. By adding a


onstant to Q (and subtra
ting it from �(�)), we 
an always assume that �M < Q(t) < �1. On the

other hand, thanks to Lemma 2.3, for suÆ
iently large � we 
an also assume that �(�) translated by the

above 
onstant is negative.

Next, we introdu
e g

1

and g

2

as the two fundamental solutions of the Cau
hy problem for the ordinary

di�erential equation

d

2

g

dt

2

+ (�(�) +Q(t))g = 0, satisfying

g

1

(0) = 1; g

0

1

(0) = 0; andg

2

(0) = 0; g

0

2

(0) = 1:
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It is a 
lassi
al result of Floquet theory that X

1

= e

�

and X

2

= e

��

are the roots of the 
hara
teristi


equation

X

2

� (g

1

(1) + g

0

2

(1))X + 1 = 0:

By linearity, we 
an write f

�

(t) = f

�

(0)g

1

(t) + f

0

�

(0)g

2

(t). Sin
e � > 0, e

�

= � +

�

�

2

� 1

�

1

2

where

2� = (g

1

(1) + g

0

2

(1)). Consequently, � > 1 and

g

1

(1) + g

2

0(1) = 2� > e

�

and e

�

> 2��

1

�

> 2�� 2e

��

= g

1

(1) + g

2

0(1)� 2e

��

: (7.4)

From the relation f

�

(1) = e

�

f

�

(0) we dedu
e that

f

0

�

(0)

f

�

(0)

g

2

(1) = e

�

� g

1

(1). Using relation (7.4) we have

obtained that

g

0

2

(1) >

f

0

�

(0)

f

�

(0)

g

2

(1) > g

0

2

(1)� 2e

��

: (7.5)

Following Pi
ard's iteration method (see e.g. [MW79℄), we de�ne re
ursively a sequen
e (v

n

(t))

n2N

by

v

0

(t) =

1

!

sinh(!t)and v

n

(t) = �

1

!

Z

t

0

sinh (!(t� �))Q(�)v

n�1

(�)d� for all n � 1:

For ! =

p

��(�), we �nd that g

2

(x) =

P

+1

n=0

v

n

(x). Sin
e � sinh (!(t� �))Q(�) > 0 for all 0 < � < t,

and v

0

(t) > 0 for all t > 0, by indu
tion, we 
an 
on
lude that W

n

(x) � v

n

(x) � w

n

(x), for all n � 0

and x � 0, where W

n

and w

n

are two other sequen
es de�ned by W

0

= v

0

= w

0

, and

W

n

=

M

!

Z

t

0

sinh (!(t� �))W

n�1

(�)d�; w

n

=

1

!

Z

t

0

sinh (!(t� �))w

n�1

(�)d� for n � 1:

Note that W (t) =

P

+1

0

W

n

(t) (resp. w(t) =

P

+1

0

w

n

(t)) is a solution of

d

2

W

dt

2

+ (��M)W = 0

�

resp.

d

2

w

dt

2

+ (�� 1)w = 0

�

;

and therefore is given by W (t) = sinh

�

t

p

M � �

�

(resp. w(t) = sinh

�

t

p

1� �

�

) and 
onsequently

sinh

�

p

M � �

�

=W (1) � g

2

(1) � w(1) = sinh

�

p

1� �

�

: (7.6)

Similarly W

0

n

(t) � v

0

n

(t) � w

0

n

(t), and

p

M � � 
osh

�

p

M � �

�

=W

0

(1) � g

0

2

(1) � w

0

(1) =

p

1� � 
osh

�

p

1� �

�

: (7.7)

Using inequalities (7.6) and (7.7) in (7.5) yields,

Ce

M�1

2

p

��

p

M � � �

f

0

�

(0)

f

�

(0)

� 


p

1� �e

�

M�1

2

p

��

� 2e

��

:

Using the 
hange of variables (7.2), and using the result of Lemma 2.3 to bound e

��

in terms of �(�)

this inequality 
on
ludes the proof.
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7.2 The 
ase of pie
ewise 
onstant 
oeÆ
ients.

As in the previous subse
tion, it is suÆ
ient to 
onsider system (2.4), whi
h is equivalent to (2.1), and

to study the 
ase � going to +1. As in Lemma 2.3, we rewrite (2.4) as a �rst-order system

�

Y

0

(x) = A(x)Y (x)

Y (1) = e

�

Y (0)

; A =

�

0 b

�1

��(�)s 0

�

; and Y =

�

Y

1

= u

�

Y

2

= bu

0

�

�

:

Here we assume that the 
oeÆ
ients b; s are pie
ewise 
onstant fun
tions. More pre
isely, there exists

a number N , a family of points (x

i

)

0�i�N

satisfying x

0

= 0 < x

i�1

< x

i

< x

i+1

< x

N

= 1 for

2 � i � N � 2, and positive values (b

i

)

1�i�N

and (s

i

)

1�i�N

su
h that

b(x) = b

i

and s(x) = s

i

for x 2 (x

i�1

; x

i

); 1 � i � N:

The goal is to prove that Y

2

(0) grows linearly as � goes to +1, whi
h in turn proves Proposition 2.2,

sin
e

d 

i;�

dx

(0) = b

�1

(0)Y

2

(0) +

d 

i;0

dx

(0):

By Lemma 2.3 we already know that �(�) < 0 for � 6= 0 and has quadrati
 growth at in�nity. A

straightforward 
omputation yields for any x 2 (x

i�1

; x

i

)

Y (x) =M

i

(�; x)Y (x

i�1

); M

i

(�; x) =

2

6

4


osh'

i

(x)

1

p

��(�)b

i

s

i

sinh'

i

(x)

p

��(�)b

i

s

i

sinh'

i

(x) 
osh'

i

(x)

3

7

5

; (7.8)

with '

i

(x) =

q

��(�)s

i

b

i

(x� x

i�1

). Thus

Y (1) =M(�)Y (0) = e

�

Y (0);withM(�) =

N

Y

i=1

M

i

(�; x

i

):

Ea
h matrix M

i

(�; x) has its determinant equal to 1, as well as M(�). Thus the two eigenvalues of M(�)

are e

�

and e

��

. Let us 
ompare these exa
t eigenvalues with those of the leading order term of M(�) as

� goes to +1. Introdu
ing D(�) = diag

�

p

��(�); 1

�

, we have

M

i

(�; x

i

) = e

'

i

(x

i

)

D(�)

�1

M

0

i

D(�)

�

1 +O

�

e

���

��

;withM

0

i

=

1

2

2

4

1

1

p

b

i

s

i

p

b

i

s

i

1

3

5

;

and � = min

1�i�N

�

2 (x

i

� x

i�1

)

q

s

i

m

b

i

M

�

> 0. Therefore, noti
ing that

P

N

i=1

'

i

(x

i

) = C

p

��(�) where

C > 0 does not depend on �, we obtain

M(�) = e

C

p

��(�)

D(�)

�1

M

0

D(�)

�

1 +O

�

e

���

��

;withM

0

=

N

Y

i=1

M

0

i

:
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Up to a small remainder, the eigenvalues of M(�) are thus equal to those of M

0

times the multipli
ative

fa
tor exp (C

p

��(�)). Sin
e M

0

does not depend on �, this proves that �(�) = �
�

2

+ o(1) for some

positive 
onstant 
 > 0. On the other hand, the eigenve
tors of M(�) are equal to D(�)

�1

times those of

M

0

(up to a small remainder). Choosing the normalization Y

1

(0) = 1, this yields that Y

2

(0) = 


0

�+ o(1)

for some 
onstant 


0

, whi
h is positive as already remarked in the proof of Lemma 2.3.

Note Added in Proof. After submission of this paper for publi
ation, we found an alternative proof of

Lemma 5.4, whi
h do not rely on Proposition 2.2. This enables us to prove Theorem 3.5 and Theorem 3.10

assuming only that the periodi
 
oeÆ
ients are positive, bounded, measurable fun
tions. This proof will

be presented in a future work in 
ollaboration with A. Piatnitski.
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