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Homogenization and localization for a 1-d eigenvalue problem in
a periodic medium with an interface

Grégoire Allaire * Yves Capdeboscq

March 6, 2002

Abstract

In one space dimension we address the homogenization of the spectral problem for a singularly
perturbed diffusion equation in a periodic medium. Denoting by e the period, the diffusion coeffi-
cient is scaled as €2. The domain is made of two purely periodic media separated by an interface.
Depending on the connection between the two cell spectral equations, three different situations arise
when e goes to zero. First, there is a global homogenized problem as in the case without interface.
Second, the limit is made of two homogenized problems with a Dirichlet boundary condition on the
interface. Third, there is an exponential localization near the interface of the first eigenfunction.

1 Introduction

This paper is devoted to the homogenization of the eigenvalue problem for a singularly perturbed diffusion
equation in a periodic medium. Although this problem is of interest in higher space dimensions, we
restrict ourselves to the one-dimensional case because of the difficulty of the analysis. In particular,
one of our key tool is the theory of Hill’s ordinary differential equation [Eas73] for which there is no
equivalent in higher dimensions. Denoting by € the period, the diffusion coefficient is assumed to be of
the order of €2. Thus, we consider the following model

—62% <a (x, %) %qﬁE) +X (:1:, %) o = X0 (x, %) o in (),

¢ = 0 on A,

(1.1)

where A€, ¢¢ is an eigenvalue and eigenfunction (throughout this paper, the eigenfunctions are normalized
by [[¢¢||2(2) = 1). In (1.1) the coefficients are periodic of period 1 with respect to the fast variable z/e.
The general study of the homogenization of (1.1) is far from being complete. When the coefficients are
not rapidly oscillating (i.e., they depend on the slow variable z but not on x/¢), it is a problem of singular
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perturbation (without homogenization) which is quite well understood now in any space dimension (see,

g., [Pia98]). When the coefficients are purely periodic functions (i.e., they depend solely on z/¢), the
homogenization of (1.1) (and similar models in higher dimension) has been achieved in [AB99], [ACO00],
[AM97]. In the case of smooth coefficients with a concentration hypothesis, partial results have recently
been obtained in [AP02] (again in any space dimension). Here we focus on the different case (of practical
as well as theoretical importance) where the coefficients are discontinuous. More precisely, we focus on
the simplest possible model in this context, assuming that the domain is composed of two periodical
media separated by an interface.

The domain  is of the form (—I, L), where [ and L are strictly positive constants, and we introduce the
two sub-domains ; = (—I,0) and Qs = (0, L) separated by an interface located at the point 0. Denoting
by xi(z) the characteristic function of Q; (satisfying x1 + x2 = 1 and x1x2 = 0 in ), the coefficients
are assumed to be given as

a(z,y) = x1(z)ai(y) + x2(x)az(y),
Y(z,y) = x1(2)21(y) + xa2(2)B2(y), (1.2)
o(z,y) = x1(z)o1(y) + x2(z)o2(y).

All functions ai,as,¥1,X2,01 and o2 are assumed to be measurable, 1-periodic, bounded from above
and below by positive constants. Under these assumptions, it is well known that equation (1.1) admits
a countable infinite number of non-trivial solutions (AS,, ¢S,)m>1. By standard regularity results, each
eigenfunction ¢¢, belongs to Hg(2) N C*%(Q), with s > 0, and by the Krein-Rutman theorem the
first eigenvalue is simple and the corresponding eigenfunction can be chosen positive. Because of this
property, the first eigenpair has a special physical signification, and we are mostly interested in its
behavior, although the case of higher level eigenpairs is also treated in some occasions.

The motivation for studying this model comes from several applications. First, it can be seen as a semi-
classical limit problem for a Schrodinger-type equation with periodic potential, as well as periodic metric
(this is the so-called ground-state asymptotic problem, see, e.g., [KP93], [Pia98]). Second, it plays an
important role in the uniform controllability of the wave equation (see, e.g., [CZ]). Third, and this is
our main motivation, it is a simple model for computing the power distribution in a nuclear reactor core.
This is the so-called criticality problem for the one-group neutron diffusion equation (for more details,
we refer to [AC00], [Cap99] and references therein). In all these applications, the assumption of a purely
periodic medium (i.e., no dependence on z of the coefficients) is much too strong. On the other hand the
coefficients are not smoothly varying but exhibit jumps at material interfaces. This makes model (1.1)
with assumptions (1.2) physically relevant.

The limit behavior of (1.1) is mainly governed by the first eigenpair (v;, ;) in the unit cell of ;, ¢ =1, 2,
solution of

—dqy (az(y)d%,%) ( )% Nzaz( )1/]@ in [07 1]7 (13)
y = ¥i(y) 1 — periodic and positive.

Before we explain our main results, let us recall what was already proved in [AM97] in the purely periodic
case, namely when a; = as, X1 = ¥s, and 01 = 02. Asymptotically, the macroscopic trend of ¢¢ is given
by an homogeneous eigenvalue problem, whereas its oscillatory behavior is governed by (%) (we call
this a factorization principle). More precisely, the result of [AM97] is



Theorem 1.1. Assuming that as = a1, Yo = 21, and o0y = o1, the mtP

satisfies

eigenpair XS, ¢S, of (1.1)

o, (x) = Uﬁn(x)dll(%) and X5, = p1 + €2y + 0 (),

where, up to a subsequence, the sequence u, converges weakly in Hg () to uy,, and (Vm,uy,) is the m
eigenvalue and eigenvector for the homogenized problem

Dd2um—umaum in Q,
{ Um =0 on 0Q. (14)
The homogenized coefficients are given by
= _ [ 2 dg __ [ 2
D= [ a(y)yily) {1+ d—y(y) dy and G = | o1(y)¢1(y)dy, (1.5)
0 0

where the function £ is the solution of

{——( LW30) (£ +1)) =0 in 0,1, (L6)

pny — &(y) 1 — periodic.

Let us summarize our results in the case of equal first eigenvalue in the cells, g1 = pe. In the sequel we
choose to normalize the first periodic eigenfunctions as follows

$1(0) = ¢2(0) = 1. (L.7)
We introduce a so-called discontinuity constant « defined by
_ dipy dip2
= a0 (0) ~ a:(0) T2 ) (18)

Note that a; i helongs to H'(€2;) which is embedded in C(Q;) (in 1-D) and therefore « is well defined
as the trace ofy a continuous function at the origin. Three different situations are possible according to
the sign of a.

If @ = 0, then the two periodic media are said to be well-connected. In particular, the function equal
to a;(di;)/(dz) in €; is continuous through the interface (as well as ; because of the normalization
condition (1.7)). Therefore, Theorem 1.1 extends easily to this case, and the discontinuity at the interface
is not seen in the limit. Introducing a function ¥ (z/e) = x1(z)¥1(x/€) + x2(x)2(z/€), the eigenpairs
(A%, 05 )m>1 satisfy

x

Xow = i1 + € + 0{e?) and ¢, (@) = ufy ()0 () (1.9)

€

where uf, converges weakly to w,,, and (Ay,, Um)m>1 are the eigenpairs of the homogenized problem (see
Theorem 3.1 and Figure 3.1)

du

_% <(X1 (z)D1 + x2(2) D) %> =v(xi1(z)o1 + x2(z)72) v in Q,

u=~0 on O0f2.



If @ > 0, the interface has a repelling effect, and each eigenfunction goes to 0 at the interface. The con-
vergence result (1.9) still holds true, but the homogenized problem has an additional Dirichlet boundary
condition at = 0. More precisely, the limit homogenized problem is (see Theorem 3.1 and Figure 3.2)

( - d2
—Dlwu =voru in (),
2
—D2wu =vosu in (o,
L u=0 on 001 U 0Qs.

If a < 0, the situation is completely different since the first eigenfunction concentrates exponentially
fast at the interface. In this latter case, there is no factorization principle as in Theorem 1.1, but rather
a localization principle at the discontinuity (see Theorem 3.5 and Figure 3.3). The first eigenvalue A{
converges to a limit 0 < A\ < pg = po, and 0 < X — Ay < Cexp(—7/¢€), whereas the first normalized
eigenvector satisfies

[~ (¢ (7))

The limit function ¥ € H'(RR) decreases exponentially away from the interface, since it is given by

(@) = 2z (5)

+\

< Cexp (—E)

L2(Q) L2(Q)

| e, (x) forz <O,
ql(m) B { ¢;32 (‘T) for z > 07

with Ay = p1(01) = p2(62), and each of the eigenpairs (p:(6;),¥i,0,) being the first eigencouple of the
following spectral cell problem

d dii o, , (0 o i g, i
_% (ai (l’) W) + Ez(ﬂf)d)zﬂi - Nz(ez)gz(w)d)zﬂi mn [0’ 1]7 (]_].0)

T — 1 9, (v)e%® 1-periodic.

The required properties of the #-parameterized family of spectral cell problems (1.10) are given in sec-
tion 2.

We now turn to the case 1 # po, and with no loss of generality we assume p; > po. In this case too,
the spectral cell problems (1.10) govern the limit behavior of (1.1). We introduce a positive parameter
6o > 0, such that py(6y) = p2, and another discontinuity constant (see Lemma 3.9)

dip1,9, dipy

a(fp) = a1(0) a0 a

(0) = a2(0)—=(0).

The sign of this new discontinuity constant determines the asymptotic behavior of (1.1).

If a(6p) > 0, the eigenfunctions ¢, concentrate in the sub-domain > where the first periodic eigenvalue
is the smallest (see Theorem 3.8 in the simpler case when a > 0, and Theorem 3.11 when a(6y) > 0).



More precisely, the limit of ¢¢, vanishes in the sub-domain ;. Introducing the factorization ¢, (z) =
us, (x)2(z/€) in Qy, the homogenized problem for the limit of u¢, is simply (see Figure 3.4)
a2
—Dgwu =vosu in Q,
u=20 on 0.

The case a (6y) = 0 corresponds to the limit between localization at the interface and concentration in
Q5. The limit of the eigenfunction ¢, still vanishes in €21, but in the homogenized problem the Dirichlet
boundary condition at = 0 is replaced by a Neumann boundary condition (see Theorem 3.12)
B
—Dgwu = vosu in Qo,

du
u(L) =0 and %(0) =0.

Finally, when « (6p) < 0, a localization phenomenon appears, and the first eigenfunction concentrates
exponentially fast at the interface. The result is then similar to the one obtained when p; = po and
a < 0 (see Theorem 3.10).

Our main results are stated in section 3 when p; is equal or not to us. Previously, in section 2 we give a
few technical results on the spectral cell problems that are crucial not only for the proof, but also for the
statement of our main results. Section 4 contains the proofs when the discontinuity constant is positive,
a > 0, while section 5 focus on the localization phenomena, namely a < 0 or a(fp) < 0. Section 6
contains the proofs in the special situation when a < 0 but no localization occurs (a(fp) > 0), as it can
happen when p; is not equal to ps. Section 7 contains the proof of a crucial technical result about the
Hill equation in one dimension.

2 Cell problems

In order to state precisely our convergence results, the knowledge of the spectral cell problem (1.3) is not
enough. As in [Cap98], we need to introduce a parameterized family of spectral cell problems. They are
reminiscent of the so-called Bloch wave decomposition (see e.g. [CPV95], [RS78]), but they involve real
exponentials instead of complex ones. All the results in this section are proved under the assumption
that the periodic coefficients a;, X;, 0; are positive, bounded, measurable functions, except Proposition
2.2 which asks for more smoothness or piecewise constant coefficients.

Lemma 2.1. For each 6 € R there exists a unique first eigencouple (1;.9,1:(0)), of the problem

_dix <ai($)d:§_;g> + Xi(@)i,0 = pi(0)oi(x)ie in [0,1], (2.1)

x— 1/11',9(3:)6’9”’ 1 — periodic and positive,
which is normalized by

Pip(0) =1. (22)



The map 6 — p;(0) is strictly concave with a mazimum at 8 = 0, and satisfies the following inequalities
8? < i 0) — wi(6) < OB,

where C' and ¢ are positive constants, independent of 6.

A further property of the first eigenfunction t); ¢, is given in the next Proposition. Its proof is quite

delicate and relies on purely 1-D arguments (we postpone it to section 7). We give two different proofs:

first in the case of C? coefficients, which allows to perform a Liouville transformation and to use classical

results on the 1-D Hill equation, second in the case of piecewise constant coefficients, which permits to
do explicit computations.

Proposition 2.2. Assuming that the coefficients are C* or piecewise constant, for each 6 € R the first

eigenvector ;g of problem (2.1) with the normalization v; 9(0) = 1 satisfies

lim —dd]i’e (0) = —00 and lim —dd]i’g

§——oc0 dx 9—+oo dx (0) = +oo.

Proof of Lemma 2.1. By introducing the change of variable
io(x) = vig(z)e 7,
equation (2.1) is equivalent to

d do; d do; .
i (ai ¢ ’9> -0 <— (a;idip) + ai%) + (i — aib?) ¢ip = pi(0)oidip in [0,1], (2.3)

dx dx d
x — ¢;,9(x)1 — periodic and positive,

with the same normalization condition

¢z‘,9(0) =1

The existence of a unique first positive eigencouple for problem (2.3) is known, see e.g. [GT83, Theorem
8.38], and we have ¢; o € H}([0,1])NC®**([0,1]), with s > 0. In particular, this imply that C' > ¢;¢(z) >
¢ > 0in [0,1]. It is proved in [Cap98] that the function § — p; (@) is smooth, strictly concave on all R,
and reaches its maximum at 6 = 0.

To obtain the growth condition on u;(#), we perform the following change of unknown

_ Yig(T)
@) = @)

which is licit by virtue of Proposition 4.1. Then, wug is solution of the following problem

_% <b(x)%> = w(#)s(z)up in [0, 1], (24)

r — ug(z)e~% 1 — periodic ,

with b(z) = a;(x)97 (), s(z) = oi(x)7 (), and pu(f) = pi(6) — pi(0). These coefficients are bounded,
and we can therefore apply Lemma 2.3. O



Lemma 2.3. Let b and s be measurable functions on [0,1], bounded above and below by two positive
constant M > m > 0. For each 6 € R the first eigenvalue u(0) of problem (2.4) satisfies

m M

— 6% < —p(f) < —6%

3t S —ul) < —
Proof. We already know that u(#) < 0 for all 8 # 0. We can assume that 6 > 0 since changing the sign of
0 in (2.4) is equivalent to consider its adjoint equation which has the same first eigenvalue. Because we
are working in one space dimension, (2.4) can be written as a system of ordinary differential equations.
Namely, denoting by / the z-derivation,

0 b=t Y = ug
Y'(z) = A(z)Y (z) and A = and Y = . (2.5)
—1(0)s 0 Y, = buy,

By enforcing the normalization uy(0) = Y;(0) = 1, the Krein-Rutman Theorem implies that Y7 is
positive, and thus Y5 is increasing. Since Y2(n) = e™?Y5(0), and @ > 0, this implies that Y3(0) > 0, and
thus Y5(x) > 0 for z > 0. This in turn gives, by the first equation, that Y is increasing thus Y7 > 1 for
z > 0. Because Y; and Y5 are positive functions on R, we can write

0 m~L 0 M1
ATY <Y' < ATY with AT = ,and A” =
—p(0) M 0 —p(0)m 0

Since the matrices AT and A~ have constant coefficients, it is straightforward to obtain the solutions of
the initial value problems

7' =—(A)1'z, Z(0) = Zy, and X' = —(AT)TX, X(0) = X,.

In particular, the choice Zy = Xy = (1, (—u(@)mM)fl/Z) leads to the positive solutions

Z(x) = Zo exp (‘37 W) and X (z) = Xgexp (—;1: W)

We can compute that (Y -2) =Y'-Z+Y-Z = (Y'—=AY)-Z > 0 since Z is positive. Thus
Y-Z >Y(0)-Z(0) for all z > 0, and choosing z = n € N leads to

Y (n) - Z(n) = exp (n (9 - w»ym) - Z(0) > Y(0) - Z(0),

M
which gives in turn for all n,

and therefore § > /D™ Gimilarly, we have (V- X)' = (Y — A*Y) - X < 0 since X is positive,

Y(n) - X(n) =exp (n (0 -

and therefore § < /=DM O

m



Remark 2.4. Lemma 2.3 can be generalized to higher space dimensions by using the maximum principle.
It is proved in [Cap02] that in general 8 — u(6) is a strictly concave function, i.e., that on any bounded

subset K C RY (with N the space dimension) the Hessian matrix H = (%)
1995 )1<ij<N

definite and Hz - ¢ < —C(K)z -  with C(K) > 0. The function p(#) achieves its maximum in 0 and
lim|g| 0 () = —o0.

is negative

3 Main results

In the spirit of the method of proof of Theorem 1.1 (see [AM97]), we introduce in (1.1) the change of
unknown

with a function ¢ (z,y) defined by
P(@,y) = x1(2)P1(y) + x2(2)¥2(y), (3.1)

where (11, u1) and (1=, u2) are the first eigencouples in each periodic cell of (1.3). By our normalization
condition (1.7), the function 9 (x, /€) is continuous at the interface z = 0. On the contrary, the function
a(z,x/e)(dy(z,z/€))/(dz) is not necessarily continuous and its jump at the interface is measured by the
discontinuity constant « introduced in (1.8).

The first result concerns the special case when the first cell eigenvalues of (1.3) are equal, u; = po, and
the discontinuity constant is non-negative, a > 0. Under these assumptions, we obtain a generalization
of Theorem 1.1.

Theorem 3.1. Let X, and ¢S, be the m-th eigenvalue and normalized eigenvectors of (1.1). Assume
that the discontinuity constant defined in (1.8) is non negative « > 0, and that puy = pe. Then

o5, (2) = us, ()Y (a:, %) and N, = pi1 + €V + 0 (€7)

up to a sub-sequence, u, converges weakly in H}(Q) towards wy,, and (v, un) is the m-th eigencouple
of the homogenized problem, which, if a =0, is

d — — du .
- (Xl(ﬂf)Dl + Xz(ﬂJ)Dz) — ) =v(x1(x)or + x2(x)52) u in Q,
dx dx
(3.2)
u=20 on 012,
and, if « >0, is
4 - d2
—-D; @u =vou in §,
—d? . 3.3
—DQ@U =vosu in s, (3.3)
L u=0 on 02 U INs.

In both cases, the homogenized coefficients are defined by formula (1.5) for each half domain.
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Figure 3.1: First eigenfunction for problem (1.1) in the case of two well-connected media, i.e., a = 0.

1 -
08
06
04 -

02

0*50 4“10 ,3‘0 72‘0 fl‘Cl (; 16 2‘0 36 4‘0 50
Figure 3.2: First eigenfunction for problem (1.1) in the case of non well-connected media with a positive
discontinuity constant a > 0.

As an illustration of Theorem 3.1, we present some direct computations of the first eigenfunction ¢{ of
problem (1.1). The case p; = po and a = 0 is shown on Figure 3.1. (The domain is composed of an
homogeneous medium on the left and an heterogeneous one on the right). The case y1 = p and a > 0 is
shown on Figure 3.2 (the domain is composed of two heterogeneous media with the same cell coefficients
but with a constant phase shift between the right and the left). The data used for the computation is
presented in Remark 3.7.

Remark 3.2. Of course, since the homogenized coefficients are constant in each sub-domain we can
compute explicitly the eigenvalues of the homogenized problems in Theorem 3.1.

Remark 3.3. There is a simple sufficient condition for having well-connected media, i.e., a = 0. If all
coefficients satisfy a central symmetry condition, i.e., are symmetric with respect to the center of the
unit cell [0, 1], then it is easy to check that v; satisfies a Neumann boundary condition at z = 0 and
x = 1, and therefore @« = 0. Actually, Theorem 3.1 was already proved by Malige [Mal96] under this
assumption. The symmetry was used for the construction of the example shown in Figure 3.1: in 5, the
periodic coefficients are piecewise constant on (0.3,0.7) and (0.1,0.3) U (0.7,1.0); in @1, a1 =1, 01 =1
and 21 = 2.



Remark 3.4. When a > 0, the homogenized problem is posed on two disjoint sub-domains §2; and 5.
In other words, there are two decoupled homogenized problems. Therefore, there always exist two non-
negative eigenfunctions with disjoint supports, u1(x) = sin(—7%z)x1(x) corresponding to the eigenvalue

2?1;2 and uy(x) = sin(fx)x2(x) corresponding to the eigenvalue v, = 7* 5?52- If the first
eigenvalues in each sub-domain are distinct, e.g., L?G3D; > %67 D>, the first factorized eigenfunction
u§ will tend to us, i.e., will concentrate in the sub-domain that has the smallest first eigenvalue and
converge to zero in the other one. In the other case where the first eigenvalues in ; and Qs are equal,
the first eigen-subspace is of dimension 2, span by u; and u» and the uniqueness of the limit of ¢ is lost

(on Figure 3.2 the limit seems to be a linear combination of the first eigenfunctions on each sub-domain).

vy, = T

Our second result completes the case u; = s when the discontinuity constant is negative, a < 0. Under
these assumptions, we obtain a localization phenomena.

Theorem 3.5. Let (XS, ¢5) be the first normalized eigencouple of (1.1). Assume that p; = p2 and a < 0.
Then, there exists a unique A\; > 0 and a unique positive ¥(x) € H'(R) such that
. 1 z
51— (%)

zoi - 7z (¢ (2)) 7

where C' and T are positive constant, independent of €. The limit eigenvalue satisfies \y < p1 = p2, and
the limit eigenfunction is defined by

_ [ () forz <O,
¥(z) = { 1/1;,22 (x) for x>0,

0< A — X\ SCexp(—E) and ‘

+\

<con (D).

L2(Q) L3(Q)

with 601 > 0 and 02 < 0 and (A1,;,) is the first eigencouple of the cell problem (2.1), i.e.,

@ ( (x) dﬁ;ﬁ) + Si(@)ia, = Moi@)pi, i [0,1]

T — Y0, (x)efe”“' 1 — periodic .

Remark 3.6. Theorem 3.5 is illustrated by Figure 3.3: the first eigenvector of system (1.1) converges
exponentially fast towards a localized eigenfunction near the interface between the two domains. Fur-
thermore, the corresponding eigenvalue is smaller than p; = po, which is the limit obtained in all the
other cases. In contrast with Theorem 3.1, no factorization, or limit homogenized problem appear in
the wording of Theorem 3.5. The limit eigenfunction ¥ contains both the periodical oscillations and the
macroscopic trend.

Remark 3.7. The computations shown on Figure 3.2 and Figure 3.3 were performed with the same two
media, but their positions are switched with respect to the interface when passing from one case to the
other. We take — = L = 1 with 100 periodicity cells, which yields e = 0.02. All the more the periodic cell
coefficients for the two media are the same up to a phase shift in the unit cell. More precisely, in Figure 3.2
the coefficients are a1(y) = a(y), a2(y) = aly + ¢), X1(y) = E(y), Ba2(y) = Z(y +¢), 01(y) = o(y),
o2(y) = o(y + ¢), while in Figure 3.3 they are a1(y) = a(y + ¢), ax(y) = aly), 1(y) = E(y + ¢),
Eo(y) = 2(y), o1(y) = oy + ¢), 02(y) = o(y), where ¢ = 0.6 is a constant phase shift, and a, £ and o
are periodic functions. Each periodicity cell is made of three different media or constituents arranged in

10
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Figure 3.3: First eigenfunction for problem (1.1) in the case of non well-connected media with a negative
discontinuity constant o < 0.

specified order as follows

(a[,EI,U[) if0<y<0.1
) (arr, 211, 0101) if 0.1 <y <05
(a7270) B (aIII;EIII,O'III) if 0.5<y<0.8
(a[,E[,U[) if08<y<1
with
Constituent ar = 0.9666 ¥r =2.1080 or = 2.8283
Constituent 171 arr = 2.0086 X575 =23878 o5 =2.9451
Constituent I11 arry = 2.0444 E[[[ = 2.9945 orrr — 1.1493

Note that, by construction, g = ps = 1.3863. The shape of the first eigenvector ¢ on Figure 3.2 (with
eigenvalue X & 1.3899), corresponds to what is announced by Theorem 3.1: asymptotically, both media
tend to separate when a > 0. Therefore, by symmetry Figure 3.3 corresponds to a situation where a < 0:
the first eigenvector concentrates exponentially at the interface between the two media. The numerical
calculation confirms that the corresponding eigenvalue (A§ = 1.3720) is below that of the periodicity
cell. This phenomenon is explained by Lemma 5.4 which gives a necessary and sufficient condition for
the existence of a localized eigensolution.

We now turn to the general case u; # pe. In the sequel, we shall assume, without loss of generality, that

M1 > 2.

If the discontinuity constant is non-negative, i.e., a > 0, the eigenfunctions concentrate asymptotically
in the sub-domain Qs where the first periodic eigenvalue is the smallest.

Theorem 3.8. Let XS, and ¢S, be the m-th eigenvalue and normalized eigenfunction of (1.1). Assume
that o > 0 and py > pe. Then,

o5, (@) = ur, (@) (w, %) and Ao, = pis + €vm + 0 (€7)
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Figure 3.4: First eigenfunction of (1.1) in the case of two media with gy > p2 and a = 0.

where, up to a subsequence, uS, converges weakly in Hg () to Up, with uy = 0 in Q1 and (v, up) is
the m-th eigenpair of the following homogenized problem

_D_Z%Um = V02U, i1 (o, (3 4)
U = 0 on 90, '

and the homogenized coefficients are still given by (1.5).

Figure 3.4 illustrates Theorem 3.8. It displays the first eigenfunction ¢{ in the case of two media with
symmetric periodic structures (so that a = 0), with g1 ~ 1.58 and ps ~ 0.43 and 20 periodic cells on
each side of the interface.

When g1 > pe, a localization phenomena can also occur. Let us first remark that, as an obvious
consequence of Lemma 2.1, we have the following result.

Lemma 3.9. For all 1 > po there exists a unique 6y > 0 such that 1 (6p) = po.

Indeed, Lemma 3.9 is obvious by remarking that pu;(#), defined in Lemma 2.1, is a concave function
with quadratic growth at infinity and reaching its maximum at 8 = 0, u1(0) = g1 > po. The first
eigenvectors corresponding to ps and pi(6y) are denoted by 92 and 1 9,. They are continuous at the
interface, i.e., ¥)2(0) = 11 4,(0) = 1, and we introduce a new discontinuity constant that will characterize
the localization phenomena

Theorem 3.10. Let (XS, ¢5) be the first normalized eigencouple of (1.1). Assume that a(6y) < 0. Then,
there exists a unique A\; > 0 and a unique positive ¥ € H*(R) such that

$i(a) — (%)

03 =M< Coxp (= 1) ana || oo - -t (¥ (%)) g

Vedz €

+\

< Cewp (=7),
(3.5)

L2() L2()
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where C' and T are positive constant, independent of €. The limit eigenvalue satisfies \y < p2 < p1, and
the limit eigenfunction is defined by

_J e () forz <O,
¥(z) = { 1/1;32 ()  forx >0,

with 601 > 0 and 02 < 0 and (A\1,;,) is the first eigencouple of the cell problem (2.1), i.e.,

_% <ai (x) (hfi—;9> + i (2)i0, = Moi(x) i, in [0, 1],

T — Y0, (x)efe”“' 1 — periodic .

Finally, in the remaining case a < 0 and «(fy) > 0, there is no localization, and the eigenfunctions
still concentrate asymptotically in the sub-domain Qs where the first periodic eigenvalue is the smallest.
When «(fp) > 0, the limit problem has Dirichlet boundary conditions. When a(fp) = 0, the limit
problem has a Neumann boundary condition at the interface.

Theorem 3.11. Let XS, and ¢S, be the m-th eigenvalue and normalized eigenfunction of (1.1). Assume
that gy > po, a < 0 and a(8y) > 0. Then,

N = o+ Evn+0(), o5, (2) = 0in L*(Q)  and ¢, () = ug, (@)1 (%) 7

where, up to a subsequence, uS, converges weakly in H'(Q2) to uy,, and (Vpm,un) is the m-th eigenpair

of the following homogenized problem

_D_2j_:2um = VUpO2Um N 92: (3 6)
Um = 0 on 8927 .

and the homogenized coefficients are still given by (1.5).

Theorem 3.12. Let XS, and ¢S, be the m-th eigenvalue and normalized eigenfunction of (1.1). Assume
that g1 > pe, a < 0 and a(6y) = 0. Then,
€ 2 2 € : 2 € € T
Ay = 2 + €vm +0(7),  ¢5,(x) > 0in L*(Q1)  and ¢, (2) = ug, (2) (;) ,
where, up to a subsequence, uS, converges weakly in H*(Q2) t0 U, and (Vpm,u,y,) is the m-th eigenpair
of the following homogenized problem

{ _D_Zj_;um = VUmO2Um in QZ; (3 7)
um(L) =0, and L= (0) =0, '

and the homogenized coefficients are still given by (1.5).

Remark 3.13. Note that the homogenized problems of Theorems 3.11 and 3.12 (corresponding to a(6p) >
0 and «a(fy) = 0, respectively) are similar except the boundary condition at z = 0. Then a simple
computation shows that the first homogenized eigenvalue v; is four times smaller when a(6y) = 0 than
when «(6y) > 0.

13



Remark 3.14. At the difference of Theorem 3.8, we do not prove in Theorems 3.11 and 3.12 that the
factorized eigensolutions u, have bounded gradients in all of €2, but simply within Qs. It is therefore
difficult (at least for us) to study the possible occurrence of boundary layers in ;. In the limit case
of Theorem 3.12, because of the homogenized Neumann boundary condition at x = 0, we expect a
nontrivial boundary layer in ;.

Remark 3.15. The generalization of the results of this section to higher space dimensions is not obvious
for at least two reasons. First, Theorems 3.5 and 3.10 relies on Proposition 2.2 which is proved only in
one dimension (by using o.d.e. techniques). Second, even Theorems 3.1 and 3.8 (which do not depend
on Proposition 2.2) are not straightforward in higher dimensions because we can not assume a perfect
transmission condition (1.7) at the interface. Of course, if it happens by chance that, for a dimension
N > 1, we have

¥1,00(0,5') = 2(0,9) (39
for almost every y' € [0,1]V !, and
d d
0< aly) = @(0.) L 0,y) - al0,) T2 0.) < M < 40 (39

then Theorems 3.1 and 3.8 extend easily since at the interface the problem is essentially one-dimensional
(see [Cap99]). Of course, these conditions are very strict and almost never satisfied in practice. In
general, we believe that boundary layers at the interface must be taken into account.

Remark 3.16. Throughout this paper we assume that, after rescaling by ¢, the periodicity on both sides
of the interface is exactly one. The fact that the period is the same in ; and )5 is not important,
and this is purely by convenience that we made this choice. All our results apply if the two periods are
different, provided that the discontinuity constants a and a(fy) are properly defined.

4 Proofs in the case o > 0

In order to prove Theorem 3.1 and 3.8, we first need to justify the factorization ¢¢(x) = uf(z)y (m, %)
This is the goal of the next Proposition which is a generalization of a previous result of [AM97] (see also

[ACO00]).
Proposition 4.1. Let ¢ (z,y) be the function defined by (3.1). Then, the linear operator T' defined by

T:H;(Q) — Hi(Q)
plz) - P9

s bounded, invertible and bicontinuous.

Proof. Thanks to the normalization condition (1.7) the function ¢ (x,x/€) is continuous on R. By virtue
of Lemma 2.1 we know that there exist two positive constants C' > ¢ > 0 such that C' > 91 (y), ¥2(y) > ¢
for all y € [0,1], and these bounds also holds for 1. Therefore, for all ¢ € Hg (), if we define u =T (¢),

we have

c 11l L2y < llullp2) < ¢t 19l 20 » (4.1)

14



and 7T is an homeomorphism on L?(Q). On the other hand,

dpdp 5 du du o du du
/dazdm _/ 1¢1dazd +/ Q%dazdm

Equation (1.3) defining ¢1 (/€) tested against u?(z)ih (;1:/(—:) writes

[ ot L 0% 00 = 5 (i [ ot = [ mote). A
and similarly we have

/ ddf (dj’ 2) +%a2(0)‘;—¢;(0)u2(0): 1 ( /Q oo —/QZ 22¢§u2>. (4.4)

When we replace (4.3) and (4.4) into (4.2) we obtain
x\ do do 1 T\ o du du
) et — | o(z = = 2
/Qa(x’e)da:dmdx-i_@/g ($,6)¢d$ Z/ @i )dmdwd
2(T\ o (4.5)
il o (22 (2 d
+€2 iz:;/giula—l € ’l/}z (e)u €z

1 .
—l—gauz(O).

Where « is the discontinuity constant given by (1.8). If @ > 0, all the left hand side terms are non-
negative in (4.5). Since a1, a2, and ¥, are bounded below by positive constants, we can deduce that

2
‘ Z—z o + ||U||L2(Q) < Cfe (H dg ||” e + ||¢||22(Q)> : (4.6)
Conversely, we have
0 <au®(0) < C/ (d—“>2 dz, (4.7)
o \dz
therefore we also obtain from (4.5) that
2
H dg ||” . + ||¢)||12(Q) < C(e) (‘ % . + H“”i?(m) (4.8)

and this concludes the proof of the proposition for a > 0. If @ < 0, note that thanks to the normalization
condition (1.7), u?(0) = ¢*(0). Consequently, identity (4.5) is also

/Qa(a: )(%) de + — /QE(:U,g)d)zdx —a¢?(0) Z/ a; f )(%)2@0
+€—2;/Qi io; ; 1/}? (%) u? da.
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We therefore obtain the same conclusion, reverting the positions of v and ¢ in (4.6-4.8). |

If we proceed to the change of unknown u¢ = T'(¢¢), problem (1.1) is transformed into a new eigenvalue
problem, where the singular perturbation in front of the divergence term has disappeared. Proposition 4.2
gives the form of this new problem after some simple algebra.

Proposition 4.2. Introducing u®(z) = ¢(x)/1 (x, %), (1.1) is equivalent to the following eigenvalue

problem
( d z\ du® 1 — 2 T
S (B ) s B2 )B (2, L) ue
dz < ('T’ e) da:) + €2 xi(@) (;1:, e) “

+e tau(0)d(z) = v°B (x %) u in (4.9)

u® =0 on 09

\
where 6(x) is the Dirac function, the (positive) diffusion coefficient is defined by
T\ = 2 (2 z 2 (T, (%
D (e.2) =t (2)n (5)+ it (2) s (2.
the (positive) coefficient B by
2\ _ i@ (D)o ( NEAPNE:
B (s.2) = (£) 1 (2) 1 (D 2
and the new eigenvalue by

€
€ >\_I’L2
vV = > .
€

Remark 4.3. We proved Proposition 4.1 regardless of the sign of «, therefore Proposition 4.2 is also valid
when a < 0. We shall use this equivalent form of (1.1) in Section 6.

Following a strategy already used in [AC00], [AC98], the asymptotic study of the eigenvalue problem
(4.9) relies on the detailed homogenization, as € tend to zero, of the following problem

& (2 2) &) s (D)

e lau (0)6(z) = . in O (4.10)

u® = 0 on 01,

with a right hand side f. which is a bounded sequence of L?(2), weakly converging to a limit f € L%(f).
We first obtain a priori estimates

Proposition 4.4. If a > 0, the solution u¢ of equation (4.10) satisfies

€ M1 — 2 € Q €
gy + ol 2 10O < Ol (411)

€

where C' is a constant independent of €. Therefore, up to a subsequence, u¢ converges weakly to a limit
w in H}(Q). Furthermore,
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® if uy > po, the limit u vanishes in Q1 and thus belongs to Hi (),

e if pp = po and o > 0, the limit satisfies uw(0) = 0 and thus can be written u = uy + us with
uy € H} (Q1) and uy € HL(Qs).

Proof. If we test variationally equation (4.10) defining u¢ against u¢, we obtain

/QD (x, %) (C;l;e>2dw + % /Ql B (;1:, %) (u®)? dx + %a(ue)Q(O) = /Qfeu6 dz.

Since D and B are bounded below by a positive constant, and since we assume that g3 > pe and a > 0,
we obtain

which yields the desired result thanks to Poincaré inequality. O

2

du®
dx

+

M1 — [2 |
o) €

€12 o € 2 €
Wy + 2 IO < Ol [T

Lemma 4.5. Let S be the operator defined by

Se: L2(Q) —» L*(Q)
f—  u® unique solution in H(Q) (4.12)
of equation (4.10) with r.h.s. f.

For all fized € > 0, S, is a linear compact operator in L*(Q).

This result is a consequence of the a priori estimate (4.11) and of the compact inclusion of H}(Q) in
L?(f2). We shall show the following result

Proposition 4.6. Let f. be a weakly converging sequence to a limit f in L>(2). The sequence u¢ = S(f.)
weakly converges in HE(Q) towards u® defined by u® = S(f).

1. If a =0 and py = po then S is the following compact operator

S: L*(Q) — L*(Q)
f — u unique solution of

{ — 45 ((x1 (@) D1 + x2(2)Ds) fLu(z)) = f in Q,
u=0 on ON.

where Dy and Ds are given by (1.5).
2. If a« >0 and py > po then S is the following compact operator

S: L*(Q) — L*(Q)
f — u unique solution of
{ —D_zaid—;u(w) = f in Qo,
u=0 on Q\Q.
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3. If a >0 and py = po then S is the following compact operator

S: L*(Q) — L*(Q)
f — u unique solution of
—D_ldd—zzu(w) = fin Q,
—D_Z#U(ZL“) = f in 927
u=0 on O UOIN,.

Proof. The proof is quite standard in homogenization theory. For example, using the notion of two-scale
convergence (see [All92], [Ngu89]) it is an easy exercise that we safely leave to the reader (the details
can be found in [Cap99] if necessary). Let us simply remark that, if 41 = pe and a = 0, then the
homogenization of (4.10) is completely obvious. If u; = pe and a > 0, then the a priori estimates of
Proposition 4.4 shows that u¢(0) goes to zero, while, if u3 > ps and a > 0, they imply that u¢ goes to
zero in 2. O

We are now able to conclude the proof of Theorem 3.1 and Theorem 3.8.

Proof of Theorem 3.1 and Theorem 3.8. Let us first remark that Proposition 4.6 imply that the sequence
of operators S, defined by (4.12), uniformly converges to the limit operator S. The asymptotic analysis
of the eigenvalue problem (4.9) is truly given by that of T, given by

T, L2(Q) — L3(Q)
f — S.(B (x,2) f).

The eigenvalues of T, being the inverse of that of (4.9). Introducing o(z) = fol B(z,y)dy which is the
weak limit of B(z, £), we define the limit operator 7' by

T:L2(Q) — L2(Q)
f =+ S(f).

The sequence T, does not uniformly converge to T, but the sequence T, is nevertheless sequentially
compact, in the sense that

Ve L*(Q) limesol|Te(f) = T(f)llz20) =0,
the set {T(f), [|fll2(@) < 1,€ > 0} is sequentially compact.

Theorems 3.1 and 3.8 are then consequences of Theorem 4.7 (see also chapter 11 in [JKO95]). O

Theorem 4.7. (see e.g. [Ans71], [Cha83]) Let T,, be a sequence of compact operators that converges to
T. Assume that (Ty,),~, s collectively compact and T is compact. Let p € C be an eigenvalue of T, of
multiplicity m. Let ' be a smooth curve enclosing p in the complex plane and leaving outside the rest of
the spectrum of T'. Then, for sufficiently large values of n , I’ encloses also exactly m eigenvalues of T},
and leaves outside the rest of the spectrum of T,.
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5 Proofs in the case a(f)) < 0.

The goal of this section is to prove Theorems 3.5 and 3.10. To understand the asymptotic behavior
of problem (1.1) when the discontinuity constant a(fy) is negative, we first rescale the equations by
introducing the change of variables y = Z. Then, problem (1.1) is equivalent to

d dy* _
~ I <a(y) d ) + ()¢ = Ao(y)e in Q,

(5.1)
p(—e M) = ¢ (e7'L) =0,
with Q. =] — e, e L[, ¢ (y) = ¢ (%), and
ar(y) (resp. X1(y),01(y)) ify <0,
D)) = .
o) (rep S0 = o S Sh
As € goes to 0, the domain Q. converges to R, and formally the limit problem of (5.1) is
d dv
T <a(:1:)d—> + 3(x)¥ = Ao (2)¥P in R,
v o (5.2)

¥ € H'(R).

We first recall some properties of the spectrum of (5.2). We introduce the Green operator S acting in
L?(R) defined by

S : L*(R)
f

L2(R)
u unique solution in H!(R) of

_% <a(x);l_;‘> +S(2)u=o(z)f in R

%
- (5.3)

The eigenvalues of S are precisely the inverse of those of (5.2). Nevertheless, to simplify the discussion
we shall say that A is an eigenvalue of S, or (5.2), if its inverse belongs to the spectrum of S.

Proposition 5.1. The operator S is self-adjoint and non-compact. Its spectrum can be decomposed in
its discrete and essential part, 0(S) = 04is¢(S) U 0cs5(S). The lower bound of the essential spectrum is
equal to the smallest cell first eigenvalue in (1.3), namely

min 0,45 (S) = min (py, p2) .
If (\,®) is an eigencouple in the discrete spectrum, then there exist 1 > 0 and 0> < 0 such that

| i(x) ifx <O,
¥ (2) _{ o(z) if x>0,

and (A, ;) is an eigencouple of

_a a~a:d¢i i(T)Y; = Aoi(x)y; in
i (@G ) + S = Aoy in 0.1 -

x — Vi (x)e”% 1 — periodic.
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Remark 5.2. By definition, the discrete spectrum of S is composed of isolated eigenvalues of finite mul-
tiplicity, while its essential spectrum is characterized by Weyl criterion, i.e., VA € 0.ss(S) there exists a
sequence {u,} € L*(R) such that

”UnHLZ(R) =1, up = 0 in L*(R) weakly,
(S — M d)u,, — 0 in L*(R) strongly.

Proposition 5.1 tells us in particular that o.ss(S) is not empty and that any discrete eigenvector decays
exponentially at infinity. Remark that equation (5.4) is similar to (2.1).

Proof. The study of the spectrum of S is classical. The exponential decay of the discrete eigenfunctions
is obtained through Floquet Theory (see, e.g., [MR73], [RS78]). The same tool yields the lower bound
of the essential spectrum (see [AC98], [CPV95]). Note that these results are obtained under the mere
assumption that the coefficients of equation (5.3) are positive measurable functions (no smoothness is
required). O

In order to pass to the limit ¢ — 0 in (5.1), we also introduce an operator S, acting in L?(R) defined by

S.:L*(R) — L*R)
f — uf unique solution in H}(Q,) of

_% (a(az) Cf;g) + X(z)uf =o(z)f, in Q. (5.5)

uf(z) = 0 on O9,.

The operator S, is compact and its eigenvalues are the inverses of that of (5.1). Unfortunately, the
convergence of the sequence S, to S is not uniform, so that the limit of the spectrum of S is not the
spectrum of S. Nevertheless, this limit can be characterized explicitly and we recall the following result
that may be found in [AC98].

Proposition 5.3. For all f € L*(R), S.(f) converges strongly to S(f) in L*(R), and we have

limo (S.) =0(S)UopBL.

e—0
Furthermore, the first eigenvalue A§ converges to a limit Ay which does belong to the spectrum of S and
is thus the smallest element of o(S). We also have

minopr, = min oes5(S) = min (1, o) . (5.6)

That part of the limit spectrum, denoted by opyr, is called the boundary layer spectrum. It can be
characterized completely in terms of an equation similar to (5.2) but in the half-line (for details, see
[AC98]). We do not dwell on this boundary layer spectrum since we only need to know (5.6) in the
sequel.

Lemma 5.4. Let 6y be defined as in Lemma 3.9, i.e., u1(6o) = w2, and 1,9, the corresponding eigen-
vector defined by (2.1). Let a (6y) be defined by



If and only if
a(6p) <0, (5.7)
the limit \1 of the first eigenvalue X of problem (1.1) satisfies
AL < man(pq, o).

Remark 5.5. In particular, this Lemma applies when gy = po, and a = a(fp) < 0. It implies that, when
the discontinuity constant is negative, the limit first eigenvalue cannot be predicted by the homogenized
models obtained under strict periodicity assumption on each side of the interface. The proof of Lemma 5.4
relies on Proposition 2.2, that we have not been able to prove in the general case, but under the additional
assumption that the coefficients are C?, or piecewise constant.

Proof of Lemma 5.4. For all 6 € [0y, +0o[, where g is defined in Lemma 3.9, because of the concavity

of 1 (#) and p2 (), we can associate to each 6 a unique 6’ < 0 such that pq (8) = p2(0') and 2 g0 is the
first eigenvector defined by

(@™ ) + Sa(ang = @)oale)in in 0.1

dx d
z — ’11/12’9(1’)6_91z 1 — periodic , (5.8)
a,9/(0) = 1.
Note that for § = 6y, we have ' = 0. The pair (A, ¥) defined by
A= (6) = pa(6)
W =1y for o >0,
W =1y g, for x <0,
is an eigencouple for problem (5.2) if and only if
d dipy g0
a(f) = ax (0)%(0) - mm%m) 0. (5.9)
Thanks to Proposition 2.2, we have
di1,6 dipa,er

922100 a(®) = 9£I+noo a(0) dz 0) - 9/211100 a2(0) dz

(0) = +o0.

Therefore, if we assume a(fy) < 0 then Equation (5.9) admits a solution, for some 6 < 6y, and 8’ > 0.
We have thus obtained a value of € such that A\ < min(u;,p2). Finally, since Ay < A, by virtue of
Proposition 5.1, we have \; € 04;s.(95)-

Conversely, if Ay < min(ug, p2) we know from Proposition 5.6 that on both sides of the origin the
corresponding eigenfunction ¥ has an exponential decay. Then Proposition 5.1 show that it must of the
form ¥ = cypy p and ¥ = cihy 9, for some 6 and 6" on each half line. Since identity (5.9) is a necessary
and sufficient condition for the existence of such a ¥, the proof is complete. O
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Proof of Theorems 3.5 and 3.10. Thanks to Lemma 5.4 and Proposition 5.1, if condition (5.7) is satisfied

then A; is in the discrete spectrum of problem (5.2). Theorems 3.5 and 3.10 are then a consequence of

Proposition 5.6. Indeed the eigenfunction ¢5(z) in Theorems 3.5 and 3.10 is equal to ﬁgpi (£) where

€
©$ is the first eigenfunction in Proposition 5.6. Inequality (5.10) then becomes

slts- i @) <Jior-Lv@)] som(-)
which in turn imply
!
-2t @], -2 @] scw(-D)
for any 7’ < 7. O

Proposition 5.6. Assume that problem (5.2), or equivalently operator S, admits a first positive nor-
malized eigencouple (A1, ¥) such that Ay < min (u1, p2). Then the first positive normalized eigencouple

(AL, 91) of (5.1), or of S., satisfies

d d
0< Al — A1 <Cexp (—E) and H%goi — %\Il

.
+lof = ¥l 200 < Cexp (—— (5.10)
L2(Q) ' e ( 6)

where C' and T are strictly positive constant independent of e.

Proof. Since we assumed A\; < minoes5(S), we have

[a@Iekar+ [ @ s
A1 = min R il R

pEH'(R) / o (z) p*dx
6 #0 R

and this minimum is attained for ¢ = ¥ which belongs to the discrete spectrum of S. We also have

/a(w)|%<p|2da:+/g S (¢) P2da

€ €

)

Al = min

pEH () / o (z) p*dx
¢ #0 Qe

and this implies, by inclusion of spaces that A\; < A{. Let x be a smooth cut-off function, vanishing
outside 2, = ]—l L [, equal to 1 on ]—é + 1,% — 1[, such that 0 <y <1, and 3—’; does not depend on €

€l €

(see Figure 5.1). We then have y¥ € Hg (), and

)

d
a(z)|— (x¥) |*dz + ¥ (z) (x¥)° da
M/Qe @)1 0w P+ [ 5 0c) | -
/QU(:I:)(X\II)Zda:
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Figure 5.1: Cut-off function y.

By construction 3—’; has its support in [—é, —é +1JU [% -1, %] and inequality (5.11) becomes

/a(x)|diqf|2dx+/2(x) W2z + R
€ < IR i R (5.12)

(1—R§)/Ra($) Udx ,

1=

with

d d d
€ = u(r)| | = Lyllul
1 /[HHMLL@ ) 9@ | x| (g o]+ | ) do

and

Thanks to Proposition 5.1, we know that

L
sup |¥(z)| < Cexp (—61£>,and sup |¥(x)| < Cexp (62—)
€ €

ze(—o0,—1) ze(L,+00)

with #; > 0 and 6 < 0. We can deduce that R{ < Cexp(—Z) and R < Cexp (—ZI) with 7 =
min(1|61], L|62]), and inserting these inequalities in (5.12) we obtain

A< A (1 + Cexp (—E)) . (5.13)

Let us now show that ¢ converges to ¥. In order to obtain an approximation of ¥ that vanishes on the
boundaries of the domain 2., we add to ¥ an affine function which compensates its values at both ends
of the domain. We define ¥¢(z) = ¥(z) + £°(x) where £¢ is the affine function such that

() or () ome(2) e (2) -

By construction, ¥¢ € H}(€,), and ¥¢ is solution of the same problem than ¢$ up to a perturbation r¢.

_i <a(m) dlIlE) —f—E(l’) Pe = )\iU’(iL‘) U +r€in ] — £7£[

dx dx € €

(5.14)
€ l _ e£ _
We(-2) = ¥ (2) =0,
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The perturbation is 7€ = (A — A§)o ¥ + X4 — A\joflf — % (a‘é—[;) € H'(Q). The coefficients being
bounded, we obtain that for all ¢ € H}(Q.),

Je

where C' is a constant which does not depend on e. From the exponential decay of ¥ we deduce that

dee

ae do
dx

dx

<0 (= 21+501€1) [6ll20, + € |

L2(Qe) L2(Qe) ,

T dl
£ < - d ||—
sgp| |_Cexp( (—:) an ‘dw

< Ov/eexp (—E) (5.15)

L2(Q)

and with the help of estimate (5.13) we obtain

/ ' ) . (5.16)
Q. L2(Q.)

The first eigenvalue A{ being simple, by a Fredholm alternative we can decompose ¥€ into a component
proportional to ¢f{ and a component orthogonal to ¢f. We write ¥¢ = S.¢{ + g¢, where . is a constant,
and

d¢

€ dx

< Cexp ( T) (”QSHL?(QC) + ‘

; dg*
910000 + |

S Cellrllg-1(a,)
L2(Qe)

where C, is the norm of (S. ™' — A\{I d)fl, a bounded operator defined on the orthogonal of the line
generated by ¢f. We have C; < }\GC—)\S, where C' is a constant independent of €, and A§ is the next
1712
eigenvalue of S¢. If we obtain that |A{ — AS| > ¢ > 0, with ¢ independent of €, we then deduce, with the

help of inequality (5.16)

dg*

€ T
9N 2 + H%

exp (——). (5.17)

€

c
<=

2y ¢

From the decomposition ¥¢ = B.p{ + ¢, we get
Bel 121l L2y = N9 L2y S €N 20y S 1Bl loill L2,y + 9 L2(q,) -

We have ||<p§||L2(Q€) =1 and ||\I!||L2(R) =1 thus

€ 1 z
<Nl + 1¥limger0 < O oxp (<)

19020, = 1| = 1150y = 1202200

thanks to estimate (5.15) and the exponential decay of ¥. As a consequence, ||8| — 1| < C<exp (—Z)
and ¥ and ¢f being positives, we also have

|Be = 1] < C% exp (—E) (5.18)

Finally, if we write ¢ (z) — ¥(z) = (1 — Be)¢f (x) — g°(x) + £ () on Q. and using estimates (5.15), (5.17)
and (5.18) we obtain

dp; d¥

1 T 7"
.- <C-= )< -
P 11t = Wllgza,) < Cexp ( 6)_cexp( )

€

L3(2)
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and this concludes the proof.

Let us now show that the spectral gap is uniformly bounded, i.e., 0 < ¢ < A§ — A{ < C. We know that
A§ converges to a limit A2 which either belongs to o, U 0¢s5(S) or to o4is.(S). In the latter case, the
eigenvalues of the discrete spectrum are isolated so that 0 < ¢ < A2 — A\ < C. In the former case, we
know from (5.6) that Ay > min(u, pe) which is strictly larger than A; by assumption, so that again
0 < c< Ay —A; <C. This yields the desired result for sufficiently small e. O

6 Proofs in the case a < 0 and «(6y) > 0.

In this section we prove Theorems 3.11 and 3.12 following the strategy used in section 4 for the case
a > 0. According to Proposition 4.2 and Remark 4.3, the original problem (1.1) is equivalent to the
factorized problem (4.9) for any value of the discontinuity constant «. Introducing, as in Lemma 4.5,
an operator S, the convergence of (4.9) is governed by the homogenization of problem (4.10) with given
right hand side. The key element for the proof of Proposition 4.6, and in turn Theorem 3.8, is the a
priori estimate given by Proposition 4.4. It does not hold for a < 0. Nevertheless, the arguments of the
proof of Proposition 4.4 yields a similar result that we state in Proposition 6.1 below.

Proposition 6.1. The solution u¢ of equation (4.10) satisfies

€ M1 — [2 € a, €
[|u H?{é(ﬂ) T lu ||2Lz(91) t u(0)]* < CllFell 2oy 1wl L2 (q) (6.1)

where C' is a constant independent of €.

Since we assumed a < 0, (6.1) alone does not furnish sufficient a priori estimates for concluding. Thus,
for the proof of Theorems 3.11 and 3.12 we need an additional lemma.

Lemma 6.2. Assume that pn > p2, @ < 0 and a(bp) > 0. Then, the solution u¢ of equation (4.10)
satisfies
Assume that py > p2, a < 0 and a(6g) = 0. Then, the solution u¢ of equation (4.10) satisfies

<C ||fe||L2(Q) ) ||u€||L2(Ql) < C\/E”fe“LZ(Q) , and

‘ L2(Q2)

where v¢ = uyy(x,x/€) /11,0, (z, 2 /€) in Q.

du
dx

, <C ||f€||L2(Q) ) ||U’E||L2(Ql) < Ce ||f€||L2(Q) , and [u(0)] < C\/EerHLZ(Q) :
L2(Q)

du'
dx

= dv*
el — SC”fe“LZ(Q):

L2(Q1)

Proof of Theorem 3.11. Thanks to the a priori estimate of Lemma 6.2, the case u; > p2, a < 0 and
a(fp) > 0 is completely similar to the case g1 > pus and a > 0, which is already solved in section 4. O

Proof of Theorem 3.12. Let u® be the solution of (4.10) with right hand side f. which is a bounded
sequence in L?(2). We introduce the function

Voo (,y) = Xx1(2)1,0, (¥) + Xx2(2)P2(y), (6.2)
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and define a new factorization (or change of unknown which is licit by virtue of Proposition 4.1)

et e B %)
(z) = ()1/}00(,%)'

Remark that v¢ = u€ in Q,, and v¢(0) = u¢(0) (because of the normalization condition (2.2)). Testing

variationally equation (4.10) against tb;(,(ix;)) ¢°(z), where ¢¢ is a test function in H}(Q), we obtain

T P, [ 1 — M2 T 67/%33;%6
/QD(Q: )dwdm(;(i)ﬂ))d,)dm—f—%/ng(w,;)u (W¢>da~ (6.3)

€ €

+%au€(0)¢>6(0) = /Qfe (wjj‘)(i ’_f))¢s€> dz.

Replacing u€ by v€ in its left hand side, identity (6.3) becomes

V100 (£ WY1, (£ z\ dv® do*
/Ql (et ()@ (” o (é))> i <¢ b (é))>d +/92D(”“"’Z) Gl 60

V1,9, (£)
o 1 (%)

A [ () i, (£) 00 de+ pa 0)u0) = fo do

fo @@ () i (o) o [ G in (D
[ Qi o ) g oon @) - [ O 0 ) i (o)
and, by integration by parts and definition (2.1) of ¢, 5, we have

foo (2 o () s oo ()= [ o (3 (o () (i)

= ¢ alb0) =) v O 0) + 2 [ o1 (5) vtan (5) v

€ €

As a consequence, identity (6.4) becomes

oo (£)vta (2) e+ [ (e ) e (63)
ooy ey = [ Ll (2) foot de
¢ o Wi (%)
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Since a(fy) = 0, we have

[ (2ot (5) St [ (n2) e War= [ 22l

Note that for any bounded sequence ¢¢ in W1 (Q),

dv® d(;SE g = dve b0
de| < C|le"0c — efoe =0
/Ql ( ) Yo, ( ) dr dx ‘ ‘ dz || 20y | (Q1)
since |[efo % 4L ||L2(Ql is bounded, thanks to Lemma 6.2. Of course fQ oL fz())feqﬁf goes to 0 exponen-

tially fast. For such bounded ¢¢, (6.3) therefore writes

/ D(w )du d¢€ dex = fed® dx + o(1). (6.6)
Qo Q2

dr dz

Since the test functions in the two-scale convergence method are of the type ¢¢(z) = ¢°(z) + e¢! (z,x/€)
with smooth functions ¢°, ¢!, they are uniformly bounded in W1°°(Q2) and one can use (6.6) to pass to
the limit. Classical arguments of homogenization allow to conclude. O

Proof of Lemma 6.2. With the choice ¢ = v¢ in (6.5) we obtain

/91 (2) vt (2 )(%) da:+/QZD(a:,§) (‘Z;) dw+1a(90 /feu dr.  (6.7)

If a(fy) > 0, this implies that

[0 (O) < Cellfell2qy I1ull 2 - (6.8)

Because u¢(0) = v¢(0), plugging (6.8) in (6.1) yields the desired results.
If a(fy) = 0, identity (6.7) only implies that

@ d'UE 2 due 2
fo % € €
oy SOl Il and H B |y, €Ml ey - ©69)
We will next show that
11 0y < C (€ llfell oy + 181 20 ) (6.10)

and, together with (6.9) and Poincaré inequality in 2., this yields the desired results.

Note that )
w02 <108 [ () <Ollfilloe el
SER G ) =Y Wellza 1@

Using this inequality in (6.1) gives

1413200 < Cellfellagen Il oy < Ce (1fellfaay + 1l ey )

which in turn implies (6.10). O
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7 Proof of Proposition 2.2.

7.1 The case of C? coefficients.

The first step is similar to the proof of Lemma 2.1, namely we transform (2.1) into (2.4). If we assume that
the coefficients a;, ¥; and o; are C? periodic functions on [0, 1], then the first eigenfunction v; o is actually
two times differentiable, and thus the coefficients b and s of (2.4) are also of class C2. Proposition 2.2 is
then a consequence of Lemma 7.1.

Lemma 7.1. Let b and s be periodic positive functions on [0,1] such that their second derivative b
and s exist and are piecewise continuous. Denote by M > m > 0 two positive constant which are the
upper and lower bounds of b and s. For each 8 € R the first eigenvector ug of problem (2.4) with the
normalization ug(0) = 1 satisfies

Cs 0 =0l Cs
—C, — T(w + C3v/—pu(f) < |9| ) < Cs )+ 0+ —— M(9) (7.1)

where the positive constants C1,Cs and C3 depend only on b and s.

Proof. The assumed smoothness of b and s enables us to perform a Liouville transformation of problem
(2.4). Introducing

—lwﬂéz—lﬁézn = (s(z)b(x))* ug(z
=2 [(52) ar= [ (33) s ad 6= 6@ we,  @2)
the transformed equation is, see [Eas73],

LI 4) + (4u(8) + Q(®)fo = 0 n 0.1], 3)

t = fo(t)e=% 1 — periodic ,

with

Bl

@5~ o) g1 (80) 1 Ol)s(o)”

We can assume without loss of generality that v = 1. The boundary conditions are preserved since this
change of variable preserves periodicity. We shall use the fact that @ is a bounded 1-periodic function.
It is sufficient to prove (7.1) for > 0, since in the other case the function gg(t) = fo(—t) is solution of
(7.3), with 8 > 0, if @ is replaced by Q(—t), which is also a bounded 1-periodic function. By adding a
constant to () (and subtracting it from u(f)), we can always assume that —M < Q(t) < —1. On the
other hand, thanks to Lemma 2.3, for sufficiently large 6 we can also assume that u(6) translated by the
above constant is negative.

Next, we introduce 91 and g2 as the two fundamental solutions of the Cauchy problem for the ordinary
differential equation dt2 + (u(0) + Q(t))g = 0, satistying

91(0) =1, g1(0) = 0,andg2(0) =0, g5(0) = L.
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It is a classical result of Floquet theory that X; = e’ and X, = e ? are the roots of the characteristic

equation

X? = (() + (1)) X +1=0.

N

By linearity, we can write fy(t) = f5(0)g1(t) + f5(0)g2(t). Since 8 > 0, e’ = A + (A? — 1) where
2A = (g1(1) + ¢5(1)). Consequently, A > 1 and
1
g1(1) 4+ g2/(1) = 2A > €% and €/ > 2A — x> 2A- 2¢7" = g1 (1) + gor(1) — 2¢7°. (7.4)

From the relation fy(1) = €’ f(0) we deduce that ;ﬁggg go(1) = € — g1 (1). Using relation (7.4) we have
obtained that

f5(0)
fo(0)

Following Picard’s iteration method (see e.g. [MW79]), we define recursively a sequence (vy,(t))nen by

g(1) > g2(1) > g3(1) — 27", (7.5)

vo(t) = %sinh(wt)and v (t) = —% /t sinh (w(t — £)) Q(&)vp—1(&)d€ for all n > 1.
0

For w = v/—p(8), we find that g»(z) = 30 v,(2). Since —sinh (w(t —€)) Q(€) > 0 for all 0 < £ < ¢,
and vo(t) > 0 for all t > 0, by induction, we can conclude that W, (z) > v, (x) > wy(z), for alln >0
and x > 0, where W), and w,, are two other sequences defined by Wy = vy = wp, and

w

w, =M /Ot sinh (w(t — €)) Wi_1 (€)dE, wy, = % /Ot sinh (w(t — €)) wy_1 ()€ for n > 1.

Note that W (t) = S ¢® W, (t) (resp. w(t) = 3¢ > wy(t)) is a solution of

2

d? d
W—l—(,u—M)W:O (resp.%%—(u—l)w:O),

dit?
and therefore is given by W (t) = sinh (t/M — p) (resp. w(t) = sinh (¢,/T— p)) and consequently
sinh ( M — u) = W(1) > g2(1) > w(1) = sinh (\/m) . (7.6)
Similarly W} (¢) > v} (t) > w),(t), and
VM = peosh (VA = ) = W'(1) > gh(1) > w'(1) = /T = rcosh (VT = pr) (7.7)
Using inequalities (7.6) and (7.7) in (7.5) yields,
Ce%\/M——u > ]fcﬁgg; > cﬂef% — 27"

Using the change of variables (7.2), and using the result of Lemma 2.3 to bound e~? in terms of yu(6)
this inequality concludes the proof. O

29



7.2 The case of piecewise constant coefficients.

As in the previous subsection, it is sufficient to consider system (2.4), which is equivalent to (2.1), and
to study the case 6 going to +00. As in Lemma 2.3, we rewrite (2.4) as a first-order system

(VA [ o= ()

Here we assume that the coefficients b, s are piecewise constant functions. More precisely, there exists
a number N, a family of points (z;)o<i<n satisfying zp = 0 < z;—1 < #; < z341 < oy = 1 for
2 <i < N -2, and positive values (b;); ;< and (s;); ;< such that

b(z) = b; and s(z) = s; for x € (z;_1,2;), 1 <i < N.

The goal is to prove that Y5(0) grows linearly as 6 goes to +o0o, which in turn proves Proposition 2.2,
since

dii g
dx

(0) = b7 (0)y3(0) + L2 0.

By Lemma 2.3 we already know that p(f) < 0 for § # 0 and has quadratic growth at infinity. A
straightforward computation yields for any x € (x;—1,x;)

cosh p;(z) \/ﬁ sinh p;(z)
Y(l’) = Mi(G,x)Y(xi,l), MZ(0733) = ) (78)
—1(0)b;s; sinh p;(x) cosh p;(z)
with ¢;(z) = 1/%?)8"(30 —xi—1). Thus
N

Y(1) = M(0)Y(0) = "V (0), withM (0) = [ Mi(8, ).
i=1
Each matrix M;(0, ) has its determinant equal to 1, as well as M (#). Thus the two eigenvalues of M ()
are e’ and e~?. Let us compare these exact eigenvalues with those of the leading order term of M (6) as
0 goes to +o0o. Introducing D(6) = diag ( —u(8), 1), we have

1
M;i(8, ;) = e* @I D@O) " MID(9) (1 + O (7)) , withM? = 5 ,
b,‘S,‘ 1

and o = min;<;<ny (2 (i —@iz1) (/32 ) > 0. Therefore, noticing that Zl 1 pi(zs) = C/—p(f) where
C > 0 does not depend on 8, we obtaln

M(6) = e“V O D) MOD(B) (1+ O (e=*%)) , withM® = H M.
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Up to a small remainder, the eigenvalues of M (#) are thus equal to those of M° times the multiplicative
factor exp (C'/—u(f)). Since M does not depend on 6, this proves that u(f) = —c6? + o(1) for some
positive constant ¢ > 0. On the other hand, the eigenvectors of M (f) are equal to D(§)~! times those of
M?P (up to a small remainder). Choosing the normalization Y7 (0) = 1, this yields that Y5(0) = ¢’ + o(1)
for some constant ¢’, which is positive as already remarked in the proof of Lemma 2.3.

Note Added in Proof. After submission of this paper for publication, we found an alternative proof of
Lemma 5.4, which do not rely on Proposition 2.2. This enables us to prove Theorem 3.5 and Theorem 3.10
assuming only that the periodic coefficients are positive, bounded, measurable functions. This proof will
be presented in a future work in collaboration with A. Piatnitski.
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