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Homogenization of a spectral problem in neutronic multigroup di usion

This paper is concerned with the homogenization of an eigenvalue problem in a periodic heterogeneous domain for the multigroup neutron di usion system. Such a model is used for studying the criticality of nuclear reactor cores. We prove that the rst eigenvector of the multigroup system in the periodicity cell controls the oscillatory behavior of the solutions, whereas the global trend is asymptotically given by a homogenized di usion eigenvalue problem. The neutron ux, corresponding to the rst eigenvector of the multigroup system, tends to the product of the rst periodic and homogenized eigenvectors. This result justi es and improves the engineering procedure used in practice for nuclear reactor core computation.

Introduction

The power distribution in a nuclear reactor core is often obtained by solving an eigenvalue problem for a system of neutron di usion equations. In a steadystate regime, such a system expresses the balance between neutrons produced by ssion and neutrons absorbed or di used by the medium. The unknown is a vector of neutron uxes where each component corresponds to a given energy group, i.e. to neutrons with a given speed or kinetic energy. For a given bounded domain , this model reads div (A(x)r') + (x)' = 1 keff (x)' in ; ' = 0 on @ ;

(1)

where A is the di usion coe cient, the total cross section, the ssion cross section, and the Dirichlet boundary condition implies that no neutrons enter or leave the domain. In truth, the unknown is the couple (k 1 eff ; ') of the rst eigenvalue and eigenvector for (1). The eigenvalue k eff is a measure of the balance between production and removal of neutrons in a quasistatic limit. If k eff < 1, too many neutrons are di used or absorbed in the core compared to their production by ssion : the nuclear chain reaction dies out, and the reactor is said to be sub-critical. If k eff > 1, too many neutrons are created by ssion, and the reactor is said to be super-critical. In such a case, absorbing media (the so-called control rods) should be added to control the reaction. Eventually, when k eff = 1, the reactor is said to be critical : a perfect balance between ssion and absorption-di usion is obtained. Remark that (1) gives the spatial distribution of the neutron ux (which in turn yields the total power) but not its intensity since an eigenvector is de ned up to a multiplicative constant. In section 2 it is checked that, under suitable assumptions, the rst eigenvector of (1) is simple and positive which means that (1) makes physical sense (a neutron ux, as a density function, should be positive).

The di usion model ( 1) is routinely used in many industrial codes for studying and optimizing nuclear reactor cores. Unfortunately, such domains are very heterogeneous, composed of more than 40 000 di erent fuel rods immersed in a moderator (usually water), not to mention control rods, grids, and so on. Since a ne mesh is required, the direct computation of the solution is therefore long and expensive. Engineering procedures have been set up to obtain quick approximations of solutions. It amounts to homogenize (1) according to the following rule. The exact ux ' is decomposed in the product of two terms '(x) = (x)u(x); where is a rapidly varying ux computed in sub-domains seen as periodic cells, and u is a slowly varying ux computed in the whole domain with homogeneous averaged coe cients. More precisely (see e.g. 10], 15], 27], 28]), the microscopic ux is computed in each sub-domain p (typically a fuel assembly) as the solution p = j p of the so-called in nite medium equation div (A(x)r p ) + (x) p = p (x) p in p ; @ p @n = 0 on @ p : Then, averaged coe cients are evaluated by using some kinds of physically heuristic formulas as, for example in the one-energy-group case (other choices may be found in the above references and 23]), The macroscopic ux u(x) is then computed as a solution of (1) with the averaged coe cients (2), which are constant on each subdomain p . This homogenization procedure works ne in many practical numerical computations. Recently, there has been a renewed interest in nding precise homogenization formulas, since the usual ones are not completely satisfactory in very heterogeneous cores (for example when mixing UO2 and new MOX assemblies, see e.g. [START_REF] Larsen | Homogenized di usion approximations to the neutron transport equation[END_REF]). The goal of this paper is to deliver precise homogenization formulas and to mathematically justify this entire homogenization procedure.

Although the homogenization method (using asymptotic expansions) is well established in neutron transport since the pionneering work of Larsen 22], it is only recently that its mathematical justi cation has been rigorously obtained for criticality problems. Indeed Malige 4], 23], 24] proved a complete convergence theorem for the homogenization of (1) in the one-energy-group case (the same problem was addressed by Dorning & al. 16] using formal asymptotic expansions). Homogenization of criticality problems has also been rigorously justi ed in the context of neutron transport in 2], 3], 7], 8], 9].

In order to state precisely our main result, we introduce some notations. Let be a bounded open set in IR N (the nuclear reactor core), and Y = 0; 1] N the unit periodicity cell (a typical fuel assembly). Let be a small positive parameter which is intended to tend to zero. The domain is assumed to be periodic of period Y . Since the period is decreasing, for physical reasons (namely, the mean free path of a neutron must stay of the order of the cell size) the di usion is scaled to be of the order of 2 . Therefore, we shall study the homogenization of the following eigenvalue problem 2 div A x r + x = x in ; = 0 on @ ;

where A(y), (y) and (y) are Y -periodic functions. Let K denote the number of energy groups, i.e. the number of equations in the system (3). The unknown ux is a vector-valued function with K components. The cross sections and are K K matrices, and the di usion A is a fourth-order tensor acting in the space of K N matrices. We make a fundamental assumption about A which is assumed to be a block-diagonal tensor, i.e. the components of system (3) are coupled only by zero-order terms. We emphasize that this assumption is physically not restrictive (see e.g. 12], 28]) and implies that the rst eigenvector is positive as it should be since it is a density function. More details can be found in Section 2.

A particular case (and frequently used in practice) of ( 3) is the two-energygroup model (K = 2) which reads 8 < :

2 div a 1 x r 1 + 11 x 1 = 11 x 1 + 12 2 x 2 div a 2 x r 2 + 22 x 2 = 21 x 1 1 = 2 = 0 on @ ; (4) 
where all coe cients are positive Y -periodic functions. The rst component 1 is the fast neutrons ux, and the second one 2 is the slow (or thermal) neutrons ux. System (4) can be physically interpreted as follows : only fast neutrons are created by ssion, while slow neutrons are generated by the slackening of fast neutrons, but both groups contribute to the ssion source term.

Our main result is the following homogenization theorem that we state in a loose way in order to avoid technicalities (for a rigorous statement, see Theorem 3.2 below).

Theorem 1.1 Let 1 be the smallest eigenvalue and (y) a matching normalized eigenvector for the cell problem div (A(y)r ) + (y) = 1 (y) in Y; y ! (y) Y periodic [START_REF] Allaire | Analyse asymptotique spectrale d'un probl eme de di usion neutronique[END_REF] Let ;m be the m th eigenvalue of (3) and ;m an associated normalized eigenvector. Then, under a mild symmetry assumption for the coe cients (see [START_REF] Gilbarg | Elliptic Partial Di erential Equations of Second Order[END_REF]),

;m (x) = u m (x) x + o(1) and ;m = 1 + 2 m + o 2 ;
where m is the m th eigenvalue of the following homogenized one-group di usion equation and u m is an associated scalar eigenvector div Dru = u in ; u = 0 on @ ; [START_REF] Amann | Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces[END_REF] where D is a constant positive de nite N N matrix, and is a strictly positive constant, depending only on the coe cients A, and (their precise values may be found in Section 3).

This result justi es, in the case of a periodic medium, the aforementioned engineering procedure of ux factorization and averaging but it delivers new homogenized formulas (at least to our knowledge). Remark that the microscopic ux is still the solution of a multi-group di usion problem, but the macroscopic ux u is indeed a scalar ux, solution of a one-group di usion equation. As already mentioned, in the one-group case K = 1, Theorem 1.1 has rst been proved by Malige and his co-workers 4], 23], 24]. He also obtained formally the correct result in the two-group case K = 2 by using two-scale asymptotic expansions. Eventually, 23], 24] contain many numerical computations demonstrating the e ciency of such an homogenization rule.

The paper is organized as follows. In Section 2 we give detailed assumptions on the coe cients and we recall regularity and existence results for systems [START_REF] Allaire | Homog en eisation d'une equation spectrale du transport neutronique[END_REF] and [START_REF] Allaire | Homogenization of the criticality spectral equation in neutron transport[END_REF]. Such regularity results are needed to justify the factorization in the product of two terms. Section 3 is devoted to a precise statement of Theorem 1.1 and to its proof upon admitting the homogenization results of Section 5. Section 4 delivers energy-type formulas and a priori estimates, which implies the existence of two-scale limits. Then, Section 5 focus on the homogenization of a simpler associated source problem. Here, we use the two-scale convergence introduced in 1], 26]. Finally, in Section 6 we obtain further corrector results.

Existence and regularity results

The goal of this section is to give precise assumptions on the coe cients of the multi-group di usion system, and to establish some results concerning the existence and the regularity of its eigenvalues and eigenvectors. Most of the following theorems are variations of known results, and their proof is skipped or merely sketched.

Recall that N is the space dimension, and K is the number of energy groups.

We adopt the convention that latin indices i; j belong to f1; ::; Ng, i.e. refer to spatial coordinates, while greek indices ; vary in f1; ::; Kg, i.e. refer to the group label.

Throughout this paper we shall use the following assumptions without mentioning them again. The rst one is concerned with the di usion tensor A. Denoting by ( ) 1 K the components of the vector-valued ux , its gradient is the K N matrix r de ned by its entries r = @ @x i 1 K; 1 i N :

The current Ar is also a K N matrix (its divergence has to be taken line by line as usual). We assume that A is block diagonal, and we write A = diag(A 1 ; :::; A K ), in the sense that Ar = (A 1 r 1 ; :::; A K r K ) T ;

(7) where each (A ) 1 K is a symmetric N N matrix. Taking into account [START_REF] Anselone | Collectively Compact Operator Approximation Theory and Applications to Integral Equations[END_REF] the spectral problem (3) is rewritten, for each 1 K, 8 > < > :

2 div A x r + K X =1 ; x = K X =1 ;
x in ; = 0 on @ ; (8) which makes it a system of K equations coupled only through zero-order terms. This is a classical assumption which is physically not restrictive (see e.g. 12], 28]).

Our second assumption is that all coe cients in (8) are measurable and bounded, i.e. A ;ij (y); ; (y); ; (y) 2 L 1 (Y ) for 1 i; j N and 1

; K. This is the natural functional framework since we want to model heterogeneous media having discontinuous properties. Furthermore, the di usion matrices are assumed to be coercive, i.e. there exists a positive constant C > 0 such that, for any 2 f1; :::; Kg and for any 2 IR N , A (y) Cj j 2 for a.e. y 2 Y: [START_REF] Bal | First-order corrector for the homogenization of the criticality eigenvalue problem in the even parity formulation of the neutron transport[END_REF] For physical reasons, all ssion cross-sections are non-negative ; 0 ( ssion is a production process), while the matrix of the total (or scattering) crosssections is diagonal dominant, i.e. ; 0, ; 0 if 6 = , and K X =1 ;

0 (this means that there is a net absorption in each group). For mathematical reasons (mainly for Theorem 2.3 below), we need slightly stronger assumptions, namely that there exists a positive constant C > 0 such that, a.e. in Y , 8 > > > > > > > < > > > > > > > :

; C > 0;

; 1 C > 0; ; 0 1 ; K; 6 = 1;K C > 0; ; 0

1 ; K K X =1 ; C K X =1 ;
1 K (10) Finally, our third assumption is that the nuclear reactor core is periodic, i.e. all coe cients A(y), (y), and (y) are Y -periodic functions. This hypothesis is crucial for the homogenization procedure. In particular our results do not hold true any longer if the coe cients are the product of periodic functions with macroscopic modulations, as for example (x; x ) with a Y -periodic function (x; y). Let us mention however that some small perturbations of order 2 of the cross sections can be allowed (see Remark 4.3).

Remark 2.1 The second line of [START_REF] Bal | An asymptotic analysis for the homogenization of p.w.r. assemblies -the transport case[END_REF] implies that ssion occurs everywhere in the nuclear reactor core. This is not completely satisfactory since a core is a mixture of ssile materials and moderators where no ssion occurs (for example, in pressurized water reactors, ssion occurs in the fuel rods but not in the water surrounding the rods). However, as is shown in 28], if Y 0 is a non-empty open subset of Y , one can replace (10) by

8 > > > > > > > < > > > > > > > : ; C > 0; ; 0 1 ; K; 6 = ; 0 1 ; K K X =1 ; C K X =1 ; 1 K a.e. in Y; (11) and 8 < : 
;

1 C > 0 1 K 1;K C
a.e. in Y 0 ; (12) where the only change is in (12) which holds only in Y 0 . In 28] (11-12) is shown to yield the same results than [START_REF] Bal | An asymptotic analysis for the homogenization of p.w.r. assemblies -the transport case[END_REF] only for the two-group di usion system, but it is clear that all results in this section hold true also with this weaker assumption for any K 2.

In the one-energy group case K = 1, since the di usion matrix A is symmetric, equation (3) de nes a compact self-adjoint operator acting in L 2 ( ). Therefore, for any xed > 0, a well-known result asserts the existence of solutions to (8) and its regularity.

Theorem 2.2 Let the number of group be K = 1. Under assumptions [START_REF] Anselone | Collectively Compact Operator Approximation Theory and Applications to Integral Equations[END_REF], [START_REF] Bal | First-order corrector for the homogenization of the criticality eigenvalue problem in the even parity formulation of the neutron transport[END_REF], and [START_REF] Bal | An asymptotic analysis for the homogenization of p.w.r. assemblies -the transport case[END_REF], problem [START_REF] Bal | Couplage d' equations et homog en eisation en transport neutronique[END_REF] has a countable number of real positive eigenvalues. The rst (smallest) eigenvalue is simple and has an associated positive eigenfunction in . Furthermore, all eigenfunctions belong to H 1 0 ( )\C 0;s ( ) for some s > 0. Theorem 2.2 is classical. The fact that the spectrum is a countable discrete set is due to the compactness of the operator. The regularity result may be found e.g. in 17]. The fact that the minimum eigenvalue is simple and has a positive eigenfunction is a consequence of the Krein-Rutman Theorem 21]. The same result holds also for the periodic problem [START_REF] Allaire | Analyse asymptotique spectrale d'un probl eme de di usion neutronique[END_REF].

The generalization of Theorem 2.2 to the multi-group case K 2 is less obvious. In particular, system (8) is not self-adjoint. We rst address the existence of solutions, and then turn to the regularity question.

Theorem 2.3 Under assumptions [START_REF] Anselone | Collectively Compact Operator Approximation Theory and Applications to Integral Equations[END_REF], [START_REF] Bal | First-order corrector for the homogenization of the criticality eigenvalue problem in the even parity formulation of the neutron transport[END_REF], and [START_REF] Bal | An asymptotic analysis for the homogenization of p.w.r. assemblies -the transport case[END_REF], problem (8) admits at least one, and at most a countable number of eigenvalues (possibly complex) with associated eigenvectors in H 1 0 ( ) K . Furthermore, the rst eigenvalue of (8) (i.e. the smallest in modulus) is real and simple, and its corresponding eigenvector can be chosen to be positive in (i.e. each component is positive).

Remark 2.4 Throughout the paper, we label the eigenvalues by increasing order of their modulus, and we normalize the eigenvectors such that their L 2 -norm is equal to 1.

Theorem 2.3 has rst been proved by Habetler and Martino 18], with the help of Green functions inequalities given by Stampacchia and of the Krein-Rutman Theorem (see 30], 21], 5]). A modern exposition of this result may be found in the book of Planchard 28]. In this later reference, Theorem 2.3 is shown to hold true also if assumption [START_REF] Bal | An asymptotic analysis for the homogenization of p.w.r. assemblies -the transport case[END_REF] is replaced by [START_REF] Benoist | Th eorie du coe cient de di usion des neutrons dans un r eseau comportant des cavit es[END_REF](12) which is weaker but more realistic (a complete proof is only given in the 2-energy-groups case).

The factorization principle described in the introduction is based on the following eigenvalue problem in the unit cell Y (the so-called in nite medium equation) div (A(y)r ) + (y) = 1 (y) y ! (y) Y-periodic;

(

) 13 
where 1 is the rst eigenvalue. In order to compute the homogenized coecients, we also need to introduce the adjoint cell problem of ( 13) div (A(y)r ) + (y) = 1 (y) y ! (y) Y-periodic; [START_REF] Capdeboscq | Homogenization of a di usion equation with drift[END_REF] where and are the adjoint or transposed matrices of and respectively, and 1 is the rst eigenvalue (the same as for ( 13)). Throughout this paper we denote by ( ) 1 K (resp. ( ) 1 K ) the components of the eigenvector of (13) (resp. of ( 14)) associated to the rst eigenvalue 1 . Of course, for these two cell problems an obvious generalization of Theorem 2.3 holds.

Corollary 2.5 Under assumptions ( 7), [START_REF] Bal | First-order corrector for the homogenization of the criticality eigenvalue problem in the even parity formulation of the neutron transport[END_REF], and [START_REF] Bal | An asymptotic analysis for the homogenization of p.w.r. assemblies -the transport case[END_REF], the cell problems ( 13) and ( 14) admit at least one, and at most a countable number of eigenvalues with associated eigenvectors in H 1 # (Y ) K . Furthermore, they have a common rst eigenvalue 1 which is real and simple, and its corresponding eigenvectors and can be chosen to be positive in Y . We recall that H 1 # (Y ) is the subspace of H 1 loc (IR N ) made of Y -periodic functions. We now turn to the regularity of the eigenfunctions. Since this extra smoothness is required in the sequel only for the rst eigenfunctions of ( 13) and ( 14), we state this result only for these cell problems.

Proposition 2.6 The eigenfunctions of the cell problems ( 13) and ( 14) are

H older continuous, i.e. belong to h H 1 # (Y ) \ C 0;s # (Y ) i K for some s > 0.
The proof of Proposition 2.6 is based on regularity results due to Stampacchia 30] and a boot-strap argument (starting from L 2 (Y ) the regularity of the right hand side is iteratively increased up to L q (Y ) with q > N=2 which implies that the solution is continuous). The argument is quite standard so we omit it. Of course, assumption [START_REF] Anselone | Collectively Compact Operator Approximation Theory and Applications to Integral Equations[END_REF] on the diagonal character of the di usion tensor is crucial here.

Main results

This section is devoted to a presentation of our main results of homogenization. We begin by recalling the homogenization theorem proved by Malige 4], 23] in the one-group case K = 1. It is simpler to state in this case, and its proof is both simple and enlighting (see below). Theorem 3.1 Assume that the number of energy group is K = 1. Let and 1 be the rst eigenvector and eigenvalue of the cell problem [START_REF] Bussac | Trait e de neutronique[END_REF]. For m 1, let ;m and ;m be the m th eigenvalue and normalized eigenvector of (8).

Then, ;m (x) = u ;m (x) x and ;m = 1 + 2 m + o 2 ;

where, up to a subsequence, the sequence u ;m converges weakly in H 1 0 ( ) to u m , and ( m ; u m ) is the m th eigenvalue and eigenvector for the homogenized problem div Dru = u in ; u = 0 on @ : (

The homogenized coe cients are given by

D ij = 1 jY j Z Y A(y) 2 (y) ij @ j @y i (y) dy and = 1 jY j Z Y (y) 2 (y)dy; ( 16 
)
where the functions j 1 j N are de ned by div A(y) 2 (y) r j + e j = 0 in Y; y ! j (y) Y periodic. [START_REF] Dorning | Systematic homogenization and self-consistent ux and pin power reconstruction for nodal di usion -i : Di usion equation-based theory[END_REF] In Theorem 3.1 the convergence of the eigenvectors hold up to the extraction of a subsequence because of a possible multiplicity of the limit eigenvalue. However, if the limit eigenvalue is simple (which is the case for the rst one), then there is no need to extract a subsequence. The simplicity of the one-group case K = 1 comes from the fact that it is a scalar self-adjoint problem.

In the multi-group case K 2, system ( 8) is not self-adjoint. A simple generalization of Theorem 3.1 would be that the rst direct and adjoint eigenvectors of the periodic cell problem control the oscillatory behavior of the eigenvector ux . It turns out that this intuition is valid if the following symmetry condition is satis ed

K X =1 Z Y A (y) ( r r ) dy = 0; (18) 
where ( ) 1 K (resp. ( ) 1 K ) are the components of the rst eigenvector of (13) (resp. of ( 14)). Condition ( 18) is obviously ful lled if system (8) were self-adjoint. As observed by Malige in 23], it is also veri ed if all cross sections and di usion coe cients are symmetric functions in the unit cell Y = 0; 1] N (more precisely, every coe cient should have a cubic symmetry, i.e. be symmetric with respect to all hyperplanes parallel to the axes and passing through the middle of the cell). Indeed, in such a case and have also cubic symmetry and each integral in [START_REF] Gilbarg | Elliptic Partial Di erential Equations of Second Order[END_REF] vanishes. However, it is not di cult to build, at least numerically, examples for which [START_REF] Gilbarg | Elliptic Partial Di erential Equations of Second Order[END_REF] does not hold (and Theorem 3.2 is clearly wrong). Theorem 3.2 Assume that the symmetry condition ( 18) is satis ed. Let ( ) 1 K (resp. ( ) 1 K ) be the components of the eigenvector of (13) (resp. of ( 14)) associated to the rst eigenvalue 1 . Let ( ;m ; ;m ) be the m th eigenpair of system [START_REF] Bal | Couplage d' equations et homog en eisation en transport neutronique[END_REF]. Then, ;m = u ;m (x) x 8 2 f1; ::; Kg ;m = 1 + 2 m + o 2 where, up to a subsequence, each component u ;m converges weakly in H 1 0 ( ) to the same limit u m which is an eigenvector associated to the m th eigenvalue m of the scalar homogenized problem div Dru(x) = u(x) in ; u = 0 on @ : (

The homogenized coe cients are

= K X ; =1 Z Y ; (y) (y) (y)dy; ( 20 
)
and D is a N N positive de nite matrix de ned by its entries

D i;j = K X =1 Z Y A r (y i + i; ) r (y j + j; ) dy + K X ; =1 Z Y 1 2
( 1 ; ; ) ( i; i; ) ( j; j; ) dy ( 21) where, for each 1 i N, the components ( i; ) 1 K are de ned by i; = i; ;

and i = ( i; ) 1 K is the solution of 8 < : div (Ar(y)r i ) + (y) i = 1 (y) i + Z i in Y;
y ! i (y) Y-periodic : [START_REF] Krein | Linear operators leaving invariant a cone in a banach space[END_REF] where the right hand side Z i has components Z i; = 1 (y) div(A (y) 2 (y)ry i ) for 1 K.

Remark 3.3 The homogenized problem [START_REF] Habetler | The multigroup di usion equations of reactor physics[END_REF] has been formally found by Malige 23] using the heuristic method of two-scale asymptotic expansions. Theorem 3.2 justi es rigorously this result by furnishing a convergence proof.

It is interesting to notice that in the multigroup model, as long as a symmetry condition is ful lled, the macroscopic behaviour is described by a single di usion equation. This explain why one-energy-group models are still popular in reactor physics, where the symmetry condition is usually observed: the global trend of the power distribution in the reactor is indeed given by a homogenized one-energygroup model. The cost of such a simpli cation is merely a less accurate local description of the uxes. Remark 3.4 The convergence of the eigenvectors holds up to a subsequence because the corresponding homogenized eigenvalue may be multiple. However, for the rst eigenvalue which is simple, a suitable normalization of the eigenvector shows that the entire sequence of eigenvectors converge.

Observe also that it was not proved that the original system (8) has an in nite number of eigenvalues. However, since the homogenized di usion equation [START_REF] Habetler | The multigroup di usion equations of reactor physics[END_REF] does so, Theorem 3.2 proves that, as goes to 0, the number of eigenvalues for [START_REF] Bal | Couplage d' equations et homog en eisation en transport neutronique[END_REF], at least, converges to in nity.

The homogenized di usion matrix D, given in [START_REF] Kesavan | Homogenization of elliptic eigenvalue problems part 1 and 2[END_REF], may be de ned by several di erent formulae (see Propositions 5.6 and 5.7) which are all equivalent, at least for the symmetric part of D, which is the only relevant information in the di usion equation [START_REF] Habetler | The multigroup di usion equations of reactor physics[END_REF].

Remark also that equation ( 22) is of the same type as the cell eigenvalue problem [START_REF] Bussac | Trait e de neutronique[END_REF], but with a source term. Therefore, it admits a solution provided that the Fredholm alternative holds, i.e. the source term must be orthogonal to the adjoint rst eigenvector . This is precisely the symmetry condition [START_REF] Gilbarg | Elliptic Partial Di erential Equations of Second Order[END_REF].

Without the symmetry condition [START_REF] Gilbarg | Elliptic Partial Di erential Equations of Second Order[END_REF], we cannot hope to obtain a similar result as is shown by the next Proposition. However, a recent note 13] solves completely the case when [START_REF] Gilbarg | Elliptic Partial Di erential Equations of Second Order[END_REF] is not satis ed. Proposition 3.5 Assume that the symmetry condition [START_REF] Gilbarg | Elliptic Partial Di erential Equations of Second Order[END_REF] is not ful lled. Let ;1 be the rst eigenvalue of system (8), and 1 the rst one of the cell problem [START_REF] Bussac | Trait e de neutronique[END_REF]. Then, lim !0

;1 1 2 = +1:
We now turn to the proof of the above results. As already said, we begin with the one-group case which is much simpler.

Proof of Theorem 3.1. In the one-energy group case, equation ( 8) being self adjoint, its eigenvalues are characterized by the min-max formula

;m = min Wm H 1 0 ( ) dimWm=m max 2Wm 6 =0 2 Z A x jr j 2 dx + Z x 2 dx Z x 2 dx :
For any function 2 H 1 0 ( ), we may de ne u(x) = (x)

x ; [START_REF] Larsen | Homogenized di usion approximations to the neutron transport equation[END_REF] since the rst eigenvector of the cell problem ( 13) is bounded from below by a positive constant (by virtue of Proposition 2.6 it is a continuous function on Y and it is positive). A priori, u de ned by [START_REF] Larsen | Homogenized di usion approximations to the neutron transport equation[END_REF] belongs merely to L 2 ( ), but a simple computation shows that

2 Z A x jr j 2 dx + Z x 2 dx Z x 2 dx = 1 + 2 Z A x 2 x jruj 2 dx Z x 2 x u 2 dx ;
which proves that u is indeed a function of H 1 0 ( ). Furthermore, this change of variables yields that if ( ;m ; ;m ) is the m th eigenpair of (8), then ( ;m ; u ;m ), de ned by ;m = ;m 1 2 and u ;m (x) = ;m (x)

x ; is also the m th eigenpair of ( div D x ru (x) = s x u (x) in ; u = 0 on @ ; [START_REF] Malige | Etude math ematique et num erique de l'homog en eisation des assemblages combustibles d'un c ur de r eacteur nucl eaire[END_REF] where D x =2 x A x , and s x = x 2 x . Because is bounded and strictly positive, D and s satisfy the same hypothesis as A and . The homogenization of problem ( 24) is classical (see, for example 20]). Its eigenvalues ;m , labeled by increasing order, and the associated normalized eigenvectors u ;m satisfy ( ;m ; u ;m ) ! ( m ; u m ) in IR H 1 0 ( ) weak where ( m ; u m ) are the m th eigenpair of the homogenized problem [START_REF] Chatelin | Spectral Approximation of Linear Operators[END_REF]. The convergence of the eigenvectors hold up to a subsequence because of the possible multiplicity of the limit eigenvalue. 2.

We now focus on the proof of the homogenization process in the multi-group case K 1. Our strategy is the following : we reduce the homogenization of the spectral problem to that of an equivalent system with a xed source term. Then, upon admitting the homogenization results of Section 5 concerning the homogenization of this source problem, we prove all the above theorems. In order to simplify the notations, it is understood that we focus on a given (sub)sequence of eigenvalues with the same ordering m. Hence, indices m will be dropped in the sequel. Proposition 3.6 For 1 K, let T and T be the following linear opera-

tors T : H 1 0 ( ) ! H 1 0 ( ) and T : H 1 0 ( ) ! H 1 0 ( ) (x) ! (x) x (x) ! (x)
x Then, T and T are bounded, bicontinuous operators.

Proof. By virtue of Corollary 2.5 and Proposition 2.6, we know that there exist positive constants C > c > 0 such that C > (y) > c for all y 2 Y . Consequently, for all 2 H 1 0 ( ), de ning u = T ( ), we have

Ck k L 2 ( ) kuk L 2 ( ) ck k L 2 ( ) :
Hence T is an homeorphism in L 2 ( ). On the other hand,

Z A r r = Z A r (u ) r (u ) = Z A ( ) 2 ru ru + Z A r r(u 2 ): (25) 
Using equation ( 13), de ning , yields

Z A r r(u 2 ) = 1 2 K X =1 Z ( ; + 1 ; ) u 2 C
Hence, by coercivity and boundedness of A , we deduce from ( 25) and ( 26) that there exists a constant C > 0 such that 1

C k k 2 H 1 0 ( ) 1 2 kT ( ) k 2 L 2 ( ) kT ( ) k 2 H 1 0 ( ) kT ( ) k 2 H 1 0 ( ) C k k 2 H 1 0 ( ) + 1
2 kT ( ) k 2 L 2 ( ) ; which concludes the proof for T . The proof for T is similar. 2 Proposition 3.7 The multigroup eigenvalue problem ( 8) is equivalent to the following eigenvalue problem

( div D x ru + 1 2 Q (u ) = B x u in ;
u 2 H 1 0 ( ) K ; [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF] where the components (u ) 1 K of u are de ned by u (x) = (x)

x ; [START_REF] Planchard | The problem of the power distribution inside the fuel assemblies of pwr reactors[END_REF] the eigenvalue is de ned by = 1 2 ; D(y) is a Y -periodic fourth-order tensor which is block diagonal, i.e. D = diag(D 1 ; :::; D K ) with D (y) = (y) (y)A (y) 8 2 1; :::; K; and Q is a continuous linear operator from H 1 0 ( ) K into H 1 ( ) K , de ned by (36). Furthermore, there exist two positive constants C > c > 0 (independent of ) such that, for any u 2 H 1

0 ( ) K , C K X ; =1 ku u k 2 L 2 ( ) Z Q (u) u dx c K X ; =1
ku u k 2 L 2 ( ) : [START_REF] Santosa | First-order corrections to the homogenized eigenvalues of a periodic composite medium[END_REF] Remark 3.8 If we take into account Remark 2.1, and allow cross-sections to be positive merely on Y 0 Y , then Proposition 3.7 is true if [START_REF] Santosa | First-order corrections to the homogenized eigenvalues of a periodic composite medium[END_REF] Proof. Let us rst prove that u de ned by ( 28) is a solution of equation [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]. We write the variational formulation of ( 8), factorizing its solution in u (x) x and the test function

is replaced by C K X ; =1 ku u k 2 L 2 ( ) Z Q (u) u dx c K X ; =1 ku u k 2 L 2 ( ) ; (31)
in v (x) x , 2 K X =1 Z A x r(u ) r(v ) + K X ; =1 Z ; x u v = K X ; =1 Z ; x u v :
Remark that this factorization is licit by virtue of Proposition 3.6. Developing the above equation yields

Z D x ru rv + 1 2 q (u ; ru ; v; rv) = Z B x u v;
where v is a function in H 1 0 ( ) K of components (v ) 1 K , and q is de ned by q (u ; ru ; v; rv

) = 2 K X =1 Z A v r ru + K X ; =1 Z ; u v + 2 K X =1 Z A u v r rr + 2 K X =1 Z A u r rv K X ; =1 1 Z ; u v :
(33) The last four terms in (33) also arise in the variational formulation of the periodic eigenvalue problem (13), de ning , rescaled to size with the test function (v u ) . Using this variational formulation we obtain, after some algebra, a simpli ed formula for q q (u ; ru ;

v; rv) = K X =1 Z v J x ru + Z Q x u v; with J (y) = A (y) ( (y)r y (y) (y)r y (y)) ; ( 34 
)
and Q is the Y -periodic K K matrix de ned by its entries Q ; (y) = ( ; (y) 1 ; (y)) (y) (y) 0 if 6 = ;

Q ; (y) = K X =1 6 = Q ; (y) 0: (35) 
Therefore, q can be rewritten

q (u ; ru ; v; rv) = Z Q (u) vdx;
where, upon de ning a second order tensor J with lines J , the operator Q is de ned by

Q (u) = J x ru + Q x u: (36) 
The matrix Q is clearly bounded, but it is not clear whether J belongs or not to L 1 ( ). Thus, in order to prove that Q is continuous, we have to rely on Proposition 3.6. Introducing homeomorphisms P and P de ned by,

P : H 1 0 ( ) K ! H 1 0 ( ) K and P : H 1 0 ( ) K ! H 1 0 ( ) K u ! T 1 u u ! (T ) 1 u the above computation in reverse order shows that Z Q (u) v dx = 2 Z A x r(Pu) r(P v) 2 Z D x ru rv + Z x Pu P v 1 Z B x u v Ckuk H 1 ( ) K kvk H 1 ( ) K;
which proves that Q is bounded and continuous from H 1 0 ( ) K into H 1 ( ) K . Finally, to obtain inequalities [START_REF] Santosa | First-order corrections to the homogenized eigenvalues of a periodic composite medium[END_REF], we remark that the cell eigenvalue problems ( 13) and ( 14) implies, for any 1 K,

div y J (y) + K X =1 Q ; (y) = K X =1 Q ; (y): (37) 
Multiplying (37) by u 2 , we deduce

K X =1 Z u J ru = 1 2 K X ; =1 Z Q ; u 2 Q ; u 2
Therefore, using (36) and (35), we obtain

Z Q (u) udx = K X ; =1 Z Q ; x u u u u + 1 2 u 2 1 2 Q ; x u 2 = 1 2 K X ; =1 Z Q ; x (u u ) 2 : (38)
Remark that, in view of ( 10), for all 6 = , Q ; 0 and, since j j = 1

implies Q ; > q > 0, Z Q (u) udx q 2 K 1 X =1 ku u +1 k 2 + q 2 ku 1 u K k 2 q 2K 2 K X ; =1 ku u k 2 0;
which is the desired result. 2.

Unlike in the one-group case (see Theorem 3.1), the multi-group problem ( 27) is not self-adjoint. Therefore, we can not use the min-max principle to characterize the eigenvalues. Rather, we associate to this equation a linear operator S . Studying the convergence of S will allow us to deduce a convergence result for the spectrum of ( 27). Let us de ne a linear operator S by

S : L 2 ( ) K ! L 2 ( ) K f = (f ) 1 K ! u = (u ) 1 K unique solution of ( div D x ru + 1 2 Q (u) = f in ; u = 0 on @ : (39)
Remark that the eigenvalue problem [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF] can be rewritten (S ) 1 u = B x u : Lemma 3.9 For any xed > 0, S is a linear compact operator in L 2 ( ) K . Proof. We proved in Proposition 3.7 that Q is a continuous operator from H 1 0 ( ) K into H 1 ( ) K , such that R Q (u) udx 0. On the other hand, the di usion tensor D satis es the same type of assumptions than A. Hence the left hand side of (39) de nes a continuous and coercive bi-linear form in its variational formulation. Then, the Lax-Milgram lemma shows that (39) has a unique solution, i.e. S is well de ned. The compact embedding of H 1 0 ( ) in L 2 ( ) gives the compactness of S . 2

In section 5 we shall prove the following Proposition 3.10 Let f be a sequence which converges weakly in L 2 ( ) K to f = (f ) 1 K . Then, the sequence u = S (f ) converges weakly in H 1 0 ( ) K to (u 0 ; :::; u 0 ) which is de ned by u 0 = S( K X =1 f ).

If the symmetry condition ( 18) is not satis ed, then S = 0. If the symmetry condition ( 18) is satis ed, S is the following compact operator S : L 2 ( ) ! L 2 ( ) f ! u unique solution of div Dru(x) = f in ; u = 0 on @ ; where D is the constant positive de nite matrix de ned by [START_REF] Kesavan | Homogenization of elliptic eigenvalue problems part 1 and 2[END_REF] (see also Proposition 5.6).

Upon admitting, for the moment, Proposition 3.10, we are in a position to prove our main results.

Proof of Theorem 3.2 and Proposition 3.5. Remark that Proposition 3.10 implies that the sequence of operators S , de ned by (39), uniformly converges to the limit operator de ned in L 2 ( ) K by

f = (f ) 1 K ! S K X =1 f ! ; :::; S K X =1 f !! :
The asymptotic analysis of the eigenvalue problem ( 27) is truely controled by the convergence of the sequence of operators T de ned by

T : L 2 ( ) K ! L 2 ( ) K f = (f ) 1 K ! S (B x f)
Namely, the eigenvalues of T are inverse of those of [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]. Introducing the averages B ; = R Y B ; (y)dy which are the weak limits of the entries of the matrix B x , we de ne a limit operator T by T : L 2 ( ) K ! L 2 ( ) K f = (f ) 1 K ! S P K ; =1 B ; f ; :::; S P K ; =1 B ; f The sequence T converges ponctually to T, but usually not uniformly. However, Proposition 3.10 implies that the sequence of operators T is collectively compact (see e.g. 6], 14]) in the sense that

( 8f 2 L 2 ( ) K lim !0 kT (f) T(f)k L 2 ( ) K = 0
The set fT (f) : kfk L 2 ( ) K 1; 0g is sequentially compact Then, as a consequence of Theorem 3.11 below, the m th eigenvalue of T converges to the m th eigenvalue of T (counted with their multiplicity). This is precisely the content of Theorem 3.2. In the particular case when S = 0, T converges to 0, and so does all its eigenvalues, which yields Theorem 3.5. 2 Theorem 3.11 (see e.g. 6], 14]) Let T n be a sequence of compact operators that converges to T . Assume that (T n ) n 1 is collectively compact and T is compact. Let 2 C I be an eigenvalue of T, of multiplicity m. Let be a smooth curve enclosing in the complex plane and leaving outside the rest of the spectrum of T . Then, for su ciently large values of n , encloses also exactly m eigenvalues of T n and leaves outside the rest of the spectrum of T n .

A priori estimates

This section is devoted to establishing a priori estimates and recalling twoscale convergence results (see 1], 26]). In the sequel f = (f ) 1 K denotes a bounded sequence in L 2 ( ) K , and u = S (f ) is the unique solution in H 1 0 ( ) K of

( div D x ru + 1 2 Q (u ) = f in ; u = 0 on @ ; ( 40 
)
where Q is a bounded linear operator from H 1 0 ( ) K into H 1 ( ) K , de ned by (36), satisfying estimate [START_REF] Santosa | First-order corrections to the homogenized eigenvalues of a periodic composite medium[END_REF].

Lemma 4.1 The solution u of (40) satis es the following estimate

K X =1 ku k H 1 0 ( ) + 1 K X ; =1 ku u k L 2 ( ) C K X =1 kf k L 2 ( ) (41) 
where C > 0 is a positive constant independent of . 

( ) + 1 K X ; =1 ku u k L 2 ( ) C K X =1 kf k L 2 ( ) : (42) 
A classical inequality in the theory of porous media homogenization (see e.g. 19]) states that ku u k L 2 ( ) C ku u k L 2 ( ) + kr(u u )k L 2 ( ) N :

(43) where C is a positive constant independent of . Then, a combination of (42) and ( 43) is equivalent to (41).

Remark 4.3 If we allow a small perturbation of size 2 to the absorption section, that is, if x is replaced by x + 2 0 (x; x ), these a priori estimates are valid if and only if, for any u 2 L 2 ( ) K , K X ; =1 Z 0 ; (x; x ) x

x u (x)u (x) dx 0:

Obviously, this condition is ful lled if 0 a positive diagonal matrix. In the general case, one needs to compute the rst eigenvectors and of the cell eigenvalue problems ( 13) and ( 14) to know which perturbations are admissible.

Let us introduce some notations that we shall use in the de nition of the two-scale convergence. We denote by C # (Y ) the space of continuous functions in IR N that are periodic of period Y , and L 2 # (Y ) (respectively, H1 # (Y )) the subspace of L 2 (IR N ) (respectively, H 1 (IR N )) made of Y -periodic functions. We recall the main result of two-scale convergence (see 1], 26]). Proposition 4.4 1. Let u be a bounded sequence in L 2 ( ). There exist a subsequence, still denoted by , and a limit u 0 (x; y) 2 L 2 ( ; L 2 # (Y )) such that u two-scale converges to u 0 in the sense that lim !0 Z u (x) (x; x )dx = Z Z Y u 0 (x; y) (x; y)dxdy for all functions (x; y) 2 L 2 ( ; C # (Y )).

2. Let u be a bounded sequence in H 1 0 ( ). There exist a subsequence, still denoted by , and limits u(x) 2 H 1 0 ( ), u 1 (x; y) 2 L 2 ( ; H 1 # (Y )=IR) such that u converges weakly to u(x) in H 1 0 ( ), and ru two-scale converges to r x u(x) + r y u 1 (x; y).

We also need a new lemma on two-scale convergence. Lemma 4.5 Let u be a bounded sequence in H 1 0 ( ), which converges weakly to u(x) in H 1 0 ( ), and such that 1 (u u) is uniformly bounded in L 2 ( ). Then there exists u 1 (x; y) 2 L 2 ( ; H 1 # (Y )) such that, up to a subsequence, r (u u) * r y u 1 (x; y)

Proof. Since 1 (u u) is bounded in L 2 ( ), up to a subsequence, it twoscale converges to a limit u (x; y). On the other hand, up to a subsequence, ru two-scale converges to r x u(x) +r y u 1 (x; y) with u 1 (x; y) 2 L 2 ( ; H 1 # (Y )).

Therefore We deduce that r y (u 1 u ) = 0, which implies that u 1 and u di ers by a function of x only. Since the limit u 1 is de ned up to a function of x (only its gradient with respect to y plays a role in Proposition 4.4), we can choose it to be equal to u . 2

In what follows, we shall use the notation 1I = f1; :::; 1g 2 IR K . Then, if u is a scalar function, u1I denotes the vector-valued function with K components equal to u, and 1I ru denotes the K N matrix with entries (@u=@x i ) 1 K; 1 i N .

Similarly, if v is a vector in IR K , we denote by 1I (v) 2 IR K its projection on the vector 1I, i.e., 1I

v) = 1 K K X =1 v ! 1I: ( 
Finally, we de ne a Hilbert space H(Y ) by

H(Y ) = H 1 # (Y ) K = (IR 1I) (44) 
which is the quotient space of H 1 # (Y ) K by the subspace of constant vectors parallel to 1I. Proposition 4.6 Let u be a sequence satisfying the a priori estimates (41) of Lemma 4.1. There exist a subsequence and limits u 0 (x) 2 H 1 0 ( ), u 1 (x; y) 2 L 2 ( ; H(Y )) such that, for this subsequence, u (x) converges weakly to u 0 (x)1I in H 1 0 ( ) K and ru * 1I r x u 0 (x) + r y u 1 (x; y) 1 (u 1I (u )) * u 1 (x; y) 1I u 1 (x; y) (45)

in the sense of two-scale convergence.

Proof. Estimate (41) in Lemma 4.1 shows that u is bounded in H 1 0 ( ) K . Therefore, there exists a limit (u 0 ) 1 K such that, up to a subsequence, for all 2 f1; ::; Kg, u converges weakly to u 0 in H 1 0 ( ). From Proposition 4.4 we also know that there exists ũ1 (x; y) 2 L 2 ( ; H 1 # (Y )=IR) such that, up to a subsequence, ru two-scale converges to r x u 0 (x) + r y ũ1 (x; y). Since (41) implies that 1 ku u k L 2 ( ) is also bounded for any ; 2 f1; ::; Kg, we deduce that all limit components coincide, i.e. u 0 = u 0 for any 2 f1; ::; Kg, namely u converges weakly to u 0 (x)1I in H 1 0 ( ) K .

Furthermore, (41) implies that 1 ku K 1 P K =1 u k L 2 ( ) is also bounded.

Then, arguing as in Lemma 4.5, one can show that, for each 2 f1; ::; Kg, there exists a function c (x) in L 2 ( ) such that

1 (u 1 K K X =1 u ) * ũ1 (x; y) 1 K K X =1 ũ1 (x; y) + c (x) (46)
in the sense of two-scale convergence. Remark that, since the sum over of the left hand sides of ( 46) is zero, the functions c satisfy

K X =1 c (x) = 0:
Eventually, de ning u 1 (x; y) 2 L 2 ( ; H(Y )) by its components u 1 (x; y) = ũ1 (x; y) + c (x) 8 2 f1; ::; Kg; we easily check that (46) implies the desired convergences (45). 2

Homogenization

This section is devoted to the proof of the homogenization Theorem 3.10. As in the previous section, u = S (f ) denotes the unique solution of (40) with f a bounded sequence in L 2 ( ) K . We consider the subsequence for which Proposition 4.6 has established the existence of two-scale limits u 0 (x)1I and u 1 (x; y). Our goal is to characterize these limits as the solutions of some homogenized problems. If these solutions are unique, we shall conclude that the whole sequence u converges, and not merely a subsequence. Let us rst show that u 1 is uniquely determined by u 0 . Proposition 5.1 Let u be the unique solution of system (40), and let u 0 (x)1I and u 1 (x; y) be its two-scale limits for a converging subsequence (see Proposition 4.6). Then u 1 (x; y) is a solution in L 2 ( ; H(Y )) of the following system 8 > > > > < > > > > : div y D(y)r y u 1 (x; y) + Q(u 1 (x; y)) = div y D(y)1I r x u 0 (x) J(y)1I r x u 0 (x) in Y y ! u 1 (x; y) Y-periodic, a.e. x 2 : (47

)
where Q is de ned by Q(u) = J(y)r y u + Q(y)u, J and Q being introduced in (35), (34).
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Proof. For a smooth Y -periodic test function (x; y) (a vector with K components), multiplying (40) by (x; x= ) and integrating by parts yields Z D x ru r x x; x + r y x;

x dx + 1 Z Q (u ) x; x dx = Z f (x) x; x dx: (48) 
Since f and ru are uniformly bounded in L 2 ( ), the right hand side and the rst term of the left hand side in (48) vanishes as goes to zero. By application of Proposition 4.6 we can pass to the two-scale limit in the second term of the left hand side in (48) lim !0 Z D x ru r y x; x dx = Z Z Y D(y) 1I r x u 0 (x) + r y u 1 (x; y) r y (x; y) dxdy:

The last term in (48) involves Q (u ) = J(x= )ru + Q(x= )u . Clearly, by its de nition (34), J(y) is a Y -periodic function and we have lim !0 Z J x ru x; x dx = Z Z Y J(y) 1I r x u 0 (x) + r y u 1 (x; y) (x; y)dxdy:

On the other hand, by its de nition (35), the matrix Q satis es Q(y)1I = 0. Thus

1 Z Q x u x; x dx = Z Q x u 1I (u ) x; x dx:
By the Y -periodicity of Q and the convergence result (45) of Proposition 4.6, we obtain

lim !0 Z Q x u 1I (u ) x; x dx = Z Z Y Q(y) u 1 (x; y) 1I u 1 (x; y) (x; y) dxdy = Z Z Y Q(y)u 1 (x; y) (x; y) dxdy
because Q(y)1I = 0. Summing up the above limits, we obtain the weak form of (47). 2

From Proposition 5.1 we know that u 1 (x; y) is a solution of equation (47). However, at this point, it is not clear whether (47) admits a unique solution for any right hand side. In other words, depending on its solvability, equation (47) will either deliver the value of u 1 in terms of r x u 0 , or force r x u 0 to take some precise values. It is the purpose of the following Lemma to give a Fredholm alternative for (47). 

Q ; = 0, K X =1 Z Y 0 @ J rw + K X =1 Q ; w 1 A dy = K X =1 K X =1 Z Y Q ; w dy = 0: Therefore, P K =1 R
Y F = 0 is a necessary condition of existence of solution. Assuming it is now satis ed, we check the assumptions of the Lax-Milgram theorem for the variational formulation of (49) in H(Y ). The bilinear form is coercive since

Z Y D(y)rw rwdy + Z Y Q(w) wdy C 0 B B B B @ K X =1 Z Y jrw j 2 dy + K X ; =1 Z Y (w w ) 2 dy 1 C C C C A ;
where the right hand side de nes a norm on H(Y ) (its kernel in H 1 # (Y ) K is the one dimensional subspace span by 1I). On the other hand, the compatibility condition on F implies that F is orthogonal to 1I which clearly implies that the linear form ! R Y F dy is continuous on H(Y ). We now check the continuity of the bilinear form where the only di culty is to estimate the term R Y Q(w) vdy. Let us rst remark that the preceding computation has shown that Z Y Q(w) 1Idy = 0: Therefore, together with the fact that Q(w + 1I) = Q(w) for any 2 IR, it leads to the identity

Z Y Q(w) vdy = Z Y Q w 1I R Y w v 1I R Y v dy (50) 
for any w; v in H(Y ). Recall that in Proposition 3.7 we proved that the operator Q is continuous from H 1 0 ( ) K into H 1 ( ) K . Since Q and Q are identical, up to a scaling of order , a similar argument shows the existence of a constant C such that, for any w

; v 2 H(Y ), Z Y Q (w) vdy Ckwk H 1 # (Y ) K kvk H 1 # (Y ) K : Using (50) leads to Z Y Q (w) vdy Ckw 1I R Y w k H 1 # (Y ) K kv 1I R Y v k H 1 # (Y ) K ; where kw 1I R Y w k H 1 # (Y ) K is just the norm in H(Y ).
Finally, application of the the Lax-Milgram theorem in H(Y ) yields the existence and uniqueness of a solution for (49). 2 Proposition 5.3 Let u 0 (x) 2 H 1 0 ( ) and u 1 (x; y) 2 L 2 ( ; H(Y )) be the limits satisfying system (47). Then, if

K X =1 Z Y J (y)dy 6 = 0; necessarily u 0 (x) = 0 in . Conversely, if K X =1 Z Y J (y)dy = 0; (51) 
then u 1 (x; y) is explicitly given by its components u 1 (x; y) = N X i=1 i; (y) @u 0 @x i (x);

where, for 1 i N, i = ( i; ) 1 K is the unique solution in H(Y ) of 8 < :

div (D(y)r ( i (y) + y i 1I)) + Q( i (y) + y i 1I) = 0 y ! i (y) Y periodic.

(52) Remark 5.4 The condition (51) is nothing but our previous symmetry condition [START_REF] Gilbarg | Elliptic Partial Di erential Equations of Second Order[END_REF]. Here, it appears as a Fredholm alternative for the cell problem (49).

Proof. 

Q (u) = J(y) _ ru divJ(y) u + Q (y)u
Where Q is the transposed matrix of Q. Using identity (37) we rewrite Q under the following form:

Q (u) = J(y)ru + Qa (y)u

Where Qa has the same o -diagonal entries than Q , and has diagonal entries such that, for all 1 K, K X =1 Qa ; = 0:

Both operators Q and Q have the same kernel, span by 1I. Thus the existence and uniqueness result of Lemma 5.2 extends easily to the same equation with Q replaced by Q . We therefore introduce adjoint functions i (y), 1 i N, de ned as the unique solution in H(Y ) of 

where r( ) is a bounded quantity going to zero with . Using the de nition of Q , i.e. Q (u) = J(y)ru+ Qa (y)u and de nition (54) of 1 , the left-hand-side of (56) becomes

N X i=1 K X =1 Z D x ru @' @x i rx i + r y i; x dx 1 N X i=1 K X =1 Z u J x @' @x i rx i + r y i; x dx N X i=1 K X =1 Z u J x r @' @x i i; x dx + 1 2 Z Qa x 1I 'u dx + 1 N X i=1 Z Qa x i x @' @x i u dx: (57) 
Remark that Z Qa x 1I 'u dx = 0, since Qa 1I = 0. On the other hand, multiplying equation (55), satis ed by i , by @' @x i u , we obtain K X =1 Z D x rx i + r y i;

x @' @x i ru + u r @' @x i dx

1 K X =1 Z J x rx i + r y i; x @' @x i u dx + 1 Z Qa x i x @' @x i u dx = 0: (58) 
Thus, using (57) in ( 56) and subtracting to it equation (58) yields

N X i=1 K X =1 Z D x rx i + r y i; x u r @' @x i dx N X i=1 K X =1 Z J x r @' @x i i; x u dx = Z K X =1 f ! 'dx + r( ):
All terms in the left-hand-side of this last expression are products of u , which converges strongly in L 2 ( ) towards u 0 (x)1I, against periodically oscillating functions that converge weakly in L 2 ( ). Taking the limit as goes to zero, and after an integration by parts, it yields N X i;j=1 Z @u 0 @x j (x) @' @x i ( Z @u 0 @x j (x) @' @x i ( 

In Proposition 5.6 we shall assert that the constant matrix D has a positive de nite symmetrical part. Therefore, there exists a unique solution u 0 , which nishes the proof of Proposition 3.10. 2

The homogenized matrix D, introduced in the above proof, is not, at rst look, the one given in the statement of Theorem 3.2 and denoted by D. In particular, the matrix D is not symmetric as is D. This is not a problem since only the symmetric part of D plays a role in the homogenized di usion equation (61). The purpose of the next Proposition is to show that the symmetric part of D is positive de nite, which implies that the homogenized di usion equation ( 61 

X ; =1 N X i;j=1 Z Y Q ; i; i; j; j; i j dy C K X =1 Z Y r N X i=1 i (y i i; ) ! 2 dy 1 2 K X ; =1 Z Y Q ; N X i=1 i; i; i ! 2 dy;
where C > 0 is the coercivity constant of D , for all . Since Q ; 0 for all 6 = , the second term is also positive, which proves that Ds is positive de nite. 2 

Now, formula (64) for D, expressed in terms of i , can be compared with formula (60), and arguing as in the proof of Proposition 5.6 leads to the desired formula (63). 2

Remark 5.8 The functions ( i ) 1 i N have been de ned in two di erent ways.

In Theorem 3.2 they are de ned as the solutions of system [START_REF] Krein | Linear operators leaving invariant a cone in a banach space[END_REF], whereas in Proposition 5.3 they are solutions of system (52). Our notations are consistent in the sense that (52) is just [START_REF] Krein | Linear operators leaving invariant a cone in a banach space[END_REF], each line being multiplied by .

Remark 5.9 As shown above, the homogenized di usion matrix D can be dened, as in [START_REF] Kesavan | Homogenization of elliptic eigenvalue problems part 1 and 2[END_REF], in terms of corrector functions ( i ) 1 i N , or, as in (62), in terms of adjoint correctors ( i ) 1 i N . In fact, the introduction of adjoint correctors is not compulsory for obtaining the homogenized limit: the proof of Proposition 3.10 can also be done with test functions de ned through direct correctors i; , even though the limit formula appears in a more complicated form.

The fact that we can characterize the homogenized matrix D with either direct or adjoint correctors enlightens the meaning of the symmetry condition [START_REF] Gilbarg | Elliptic Partial Di erential Equations of Second Order[END_REF] we have assumed. Indeed, had we addressed the adjoint problem of (8), we would have obtained that, once factorized by the periodic eigenvector , it converged to the very same eigenvalue problem. Therefore, the macroscopic behaviour of the direct and adjoint eigenvectors of problem ( 8) are asymptotically equal. The symmetry condition [START_REF] Gilbarg | Elliptic Partial Di erential Equations of Second Order[END_REF] implies that -scale oscillations capture the non-adjointness of the problem.

A corrector result

In this section we show that, under the symmetry assumption [START_REF] Gilbarg | Elliptic Partial Di erential Equations of Second Order[END_REF], the so-called correctors u 1 (x; y) can actually improve the convergence result. In other words this justi es the order terms of the asymptotic expansion of u . To obtain this result we follow the approach in 1]. Theorem 6.1 Let f be a sequence which converges weakly in L 2 ( ) K to f with components (f ) 1 K . Let u be de ned as the unique solution in H 1 0 ( ) K of (40). Let u 0 (x) be the unique solution in H 0 1 ( ) of (61) and u 1 (x; y) be the unique solution in L 2 ( ; H(Y )) of (47). Suppose that the symmetry condition ( 18) is observed, and u 0 2 H 2 0 ( ). Then u u 0 (x)1I u 1 (x; x ) ! 0 strongly in H 1 0 ( ) Remark 6.2 This corrector result can be applied to the original eigenvalue problem [START_REF] Bal | Couplage d' equations et homog en eisation en transport neutronique[END_REF]. Indeed, Theorem 3.2 insures the convergence of 2 ( 1 ) in IR,and of u in L 2 ( ) strong. Thus the right-hand-side of ( 27) satis es the same hypothesis as f does. In that particular case, u 0 is smooth, as a solution of a constant coe cient elliptic eigenvalue problem.

Proof. Let us rst remark that ru 1 (x; x ) belongs to L 2 ( ) N for all 1 K, because of the regularity of u 0 . It is su cient to prove that lim !0 K X =1 Z D x r r dx = 0 Thus, taking the limit of all quantities in (65) as goes to zero,

lim !0 K X =1 Z D x r r dx 1 2 K X ; =1 Z Y Q ; (y) u 1 (x; y) u 1 (x; y) 2 dxdy K X =1 Z Z Y D ( 
y) ru 0 (x) r y u 1 (x; y) ru 0 (x) r y u 1 (x; y) dxdy

+ K X =1 Z f (x)u 0 (x)dx
We now replace u 1 (x; y) by its value N X i=1 i; (y) @u 0 @x i (x) and obtain that the right-hand-side of this inequality is equal to Z Dru 0 (x) ru 0 (x) + K X =1 Z f (x)u 0 (x)dx which is clearly zero because of the variational formulation of (61). 2

Numerical results

In this section we shall present some numerical results describing the asymptotical behaviour of the two-energy-group model (4) (K = 2). The goal is to test the accuracy of the homogenization procedure compared to a direct (expensive) approach. We have performed a simple one-dimensional simulation of an idealized reactor of length 1, composed of n identical cells. The periodicity cell, has a structure as sketched in gure 1. In a nuclear context, material A B A A Figure 1: periodicity cell structure would correspond to water, surrounding fuel rods B (typically, uranium). However such a choice of materials would not create large -scale oscillations, and the graphical output would simply display its smooth macroscopical trend (in real nuclear reactors large small-scale uctuations are observed but with a more complicated pattern than that of gure 1 ; for example with mixed uranium In the two-energy-group model ( 4) three quantities are of interest. The rst eigenvalue , and its corresponding normalized eigenvector ( 1 ; 2 ), where 1 is the fast neutrons ux and 2 is the slow (or thermal) neutrons ux. We rst computed directly these solutions (which, for small , is an expensive task), and then compared them with the reconstructed homogenized solutions.

All computations are done with piecewise linear nite elements. In practice, we discretize the coe cients on a cell with n cell = 50 degrees of freedom, and then construct the domain as a juxtaposition of N discretized cells. Using a power method, we compute the rst eigenvalue and eigenvector of the direct problem with Dirichlet boundary conditions for = N 1 (corresponding to N n cell 1 degrees of freedom). Alternatively, we compute the rst eigenvalue 1 and eigenvector ( 1 ; 2 ) on the discretized cell with periodic boundary conditions (the so-called in nite medium problem), and also the adjoint rst eigenvector ( 1 ; 2 ) and the correctors ( 1 ; 2 ) that allow to compute the homogenized coe cients. Since the the homogenized problem has constant coe cients, we know its exact rst eigenvalue and eigenvector (a sine function). Then we re-construct the uxes by the following homogenized approximation 8 > > > > < > > > > :

H; 1 = sin(x) 1 x + cos(x) 1 x H; 2 = sin(x) 2 x + cos(x) 2 x H; = 1 + 2 2 D

The constants D and are given by formulas [START_REF] Kesavan | Homogenization of elliptic eigenvalue problems part 1 and 2[END_REF] and [START_REF] Hornung | Homogenization and Porous Media[END_REF], whereas corrector is given by equation [START_REF] Krein | Linear operators leaving invariant a cone in a banach space[END_REF]. In table 2 are displayed the reference eigenvalue and its reconstructed counterpart H; for various number of cells. The last column shows the absolute error between the two, in p.c.m. unit (one p.c.m. is 10 3) is of course much better than the convergence rate of to its limit 1 . In the one-energy group case, Malige 23] (building upon results in 29]) proved that the third-order term of the asymptotic expansion of is indeed zero if the periodicity cell is symmetric. We do not know if such a result would hold in the two-energy-group case. Our numerical results suggest at least that, if it were the case, the next non-zero term in the asymptotic expansion is larger than 4 .

In gure 2 are plotted the exact fast neutron ux 1 and the reconstructed ux H; 1 with the same normalization. In gure 3 are plotted the corresponding thermal uxes 2 and H; 2 . In our example, the addition of correctors the correctors = = play a fundamental role in the computation of the homogenized di usion coe cient. Indirectly, their in uence on the homogenized eigenvalue is, here, about 1 percent, and grows rapidly if the contrast between the two media is increased.

( 29 )

 29 B is a K K Y -periodic matrix with entries B ; (y) = ; (y) (y) (y);

  ;::;N( ) the collection of homothetics of Y 0 , corresponding to a cubic mesh of size covering , where cross-sections are positive.

  Proof. Multiplying equation (40) by u , integrating by parts and using Poincar e ) satis ed by Q show that there exists a positive constant c > of the matrices (D ) 1 K allow us to conclude. 2 Remark 4.2 The a priori estimates (41) are still valid when the cross-sections are not assumed positive everywhere in Y , but only on a sub-domain Y 0 . Introducing the periodic domain , de ned by(32)

  , for any test function (x; y) 2 D( Y ) N , an integration by parts ; y) div y (x; y)dxdy:

Lemma 5 .Furthermore

 5 2 Let F 2 L 2 # (Y ) K with components (F ) 1 K . Let H(Y ) be the Hilbert space de ned by (44), i.e. H(Y ) = H 1 # (Y ) K =(IR 1I). There exists a unique solution in H(Y ) of div (D(y)rw) + Q(w) )dy = 0.Proof. Let us rst check that, if P K =1 R Y F 6 = 0, there exists no solution of (49) in H 1 # (Y ) K . Integrating the left hand side of (49), by periodicity we obtain that Z Y div (D(y)rw) dy = 0: Q ; w ; and hence, taking into account P K =1

  y)r ( i (y) + y i 1I)) + Q ( i (y) + y i 1I) = 0 y ! i (y) Y-periodic.(53) Proof of proposition 3.10. The principle of this proof is in the spirit of the so-called energy method, introduced by Tartar (see e.g. 11], 25]). We use an oscillating test function that has the same structure than the two-scale limit of u . Let '(x) be a smooth scalar function with compact support in . De ne the vector-valued function (x) = '(x)1I and 1 (x; y) by its K components 1 40), satis ed by u , by (x) + 1 (x; x ) and integrating by parts leads to Z D x ru (x) r (x) + 1 x; x dx + 1 2 Z Q (u )(x) (x) + 1 x; x dx= Z f (x) (x) + 1 x; x dx: (x) r x 1 (x; x )dx = 0: Therefore the above equation writes Z D x ru (x) r (x) + r y 1 x; ) Q (x) + 1 x; x dx = Z f(x) (x)dx + r( );

  )r y i + i; (y) ry j + i; (y)J (y) ry j dy; (60) equation (59) is just a variational formulation of

  ) is well-posed. Then, Proposition 5.7 shows that this symmetric part of D coincides with D. Proposition 5.6 Let Ds denote the symmetric part of D, de ned by (60). An equivalent formula for Ds is Ds i)r y i + i; (y) r y j + j; (yy) i; (y) i; (y) j; (y) j; (y) dy: (62) In particular, Ds is positive de nite.Proof. Multiplying de nition (53) of i by j and integrating by parts leads to 62) follows. Regarding the coercivity of Ds , we have, for all 2 i + i; r(y j + j; ) i j dy 1 2 K

Proposition 5 . 7

 57 The symmetrical part of D coincide with D, i.e. Ds i;j = D i;)r (y i + i; (y)) r (y j + j; (y)y) ( i; (y) i; (y)) ( j; (y) j; (y)) dy:(63)Proof. From (60) we get Di;j = P K =1 R Y D ry i r ( j; + y j ) dy + P ; + y i r j; dy:The de nitions (53) of j and (52) of i gives that

Figure 2 :

 2 Figure 2: Fast neutrons ux, directly computed and reconstructed for 20 periodicity cells cos(x) x does not improve signi cantly the reconstructed ux. However,

Figure 3 :

 3 Figure 3: Thermal neutrons ux, directly computed and reconstructed for 20 periodicity cells

  According to Lemma 5.2, the Fredholm alternative for equation (47) is

	K X =1	Z Y	J (y)dy	!	ru 0 (x) = 0 a.e. x 2 :
	If (51) is not satis ed, it implies that, at least, one component of ru 0 vanishes throughout . Because of the homogeneous Dirichlet boundary condition, it yields that u 0 (x) = 0 in . If (51) is satis ed, then Lemma 5.2 states that (47) admits a unique solution u 1 . By linearity it is easily seen to coincide with the prescribed combination of the functions i . 2
	Remark 5.5 The adjoint of Q, noted Q is given by

Table 1 :

 1 Numerical values used for the simulation oxydes assemblies). Therefore, we chose to present a numerical simulation with fancy materials such that the two regions A and B correspond to high contrast materials. The numerical values of the di erent coe cients are presented in table 1.

	Medium A 1 A 1.200 0.100 2.500 1.500 0.001 0.000 0.001 A 2 11 22 21 11 12 B 1.370 0.400 0.100 0.070 1.060 2.070 0.160

Table 2 :

 2 5 ). The numerical estimate of the rate of convergence is Reference and reconstructed rst eigenvalue for a high contrast cell as expected from Theorem 3.2. This numerical estimate

	v =	ln e 30 e 10 30 ln 10	' 3:20;
		34	

H; = O(

kuk 2 L 2 ( ) :[START_REF] Murat | S eminaire d'Analyse Fonctionnelle et Num erique de l'Universit e d'Alger[END_REF] 

(u u) * u 1 (x; y) in the sense of two-scale convergence.

with = u u 0 (x) u 1 x; x . Multiplying equation (40) by u , integrating by parts and using identity (38) yields

Using the above identity in the expansion of D x r r we obtain

The last three terms of the right-hand-side converges as goes to zero to their two-scale limits. The only di culty lies in the rst term of the right-handside, which is a product of two-scale weakly converging terms. We know from Proposition 1.6 of 1], that if v 0 (x; y) is the two scale limit of a sequence v in L 2 ( ) we have lim !0 kv k L 2 ( ) kv 0 k L 2 ( Y ) :

In Proposition 4.6 we established that the two-scale limit of 1 (u 1I (u )) was u 1 (x; y) 1I u 1 . It implies that Q ; (y)(u 1 (x; y) u 1 (x; y)) is the two scale limit of 1 Q ; x (u u ), for all 1 ; K. Keeping in mind that Q ; 0 if 6 = , the above inequality implies that lim !0 1 2 Z Q ;

x u u 2 dx Z Z Y Q ; (y) u 1 (x; y) u 1 (x; y) 2 dydx: