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Encapsulation of flavor and aroma compounds has been largely explored in order to 
meet appraisal demands from consumers by improving the impact of flavor during the 
consumption of food products. Even though several techniques have been used for 
encapsulating volatile compounds, i.e., spray drying, fluidized bed coating, 
coacervation, and melt extrusion, those most frequently used in the food industry are 
spray drying and melt extrusion. In this article, the different techniques of 
encapsulation of flavors and fragrances in polymer-based matrices by extrusion are 
reviewed and partly re-defined, emphasizing the differences between the various 
techniques reported so far and the role of matrix types, additives, and operative 
conditions. Also, the role of water as a key parameter for controlled release and shelf 
stability of the delivery system will be discussed. 

Keywords microencapsulation, melt extrusion, ram extrusion, melt injection, fragran­
ces, flavors 

1. Introduction

Flavors, fragrances, and bioactive food compounds (employed in the nutraceutical and the 

pharmaceutical domains) are often supplied in powder or granulated form for better han­

dling and more accurate dosing in final product. Over the last decades, encapsulation 

technologies have added new functionalities to these forms, such as protection against 

evaporation, oxidation, moisture, and other aggressive environmental agents to provide 

extended shelf life, or controlled release under pre-determined conditions. 1-6

The most common encapsulation technologies used in the flavor industry comprise of 

spray drying, spray coating, and extrusion,6-12 and earlier variants of extrusion also 

known as melt injection, have been known since the late 1950s. A common feature to ail 

these technologies is the dispersion of the active substance (or encapsulated material) in a 

matrix that is impervious to both active substance and extemal deleterious agents. 

Extrusion cooking is widely used in the food industry since the seventies. This highly 

versatile processing technology allows the combination of many unit operations (i.e., 
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mixing, grinding, cooking, extraction, etc.), among which encapsulation has recently been 

investigated. As encapsulation technique, melt extrusion is promising from the economic 

and environmental points of view, as it is a one pot process (formation of the wall mate­

rial, dispersion of the active principle, and forming of the encapsulated material), without 

any use of organic solvent and a reduced energy and water consumption (especially when 

compared to spray-drying). 

This review focuses on the state of the art on melt extrusion encapsulation of flavors 

and fragrances. This technology was first reported in industrial patents, and is now 

becoming an academic research topic. 

Section 2 covers the basics of flavor encapsulation, emphasizing the influence of 

matrix materials, compatibilizers, and morphology on encapsulation efficiency and 

release behavior. Section 3 focuses on the matrix itself, emphasizing the influence of 

humidity on its encapsulating properties. Usually, this matrix is built up of carbohydrates 

and is in the glassy state, although other matrices have also been used. The way this 

matrix is formulated and processed and how the core material is incorporated into this 

matrix during extrusion are key parameters that are discussed in detail. 

Finally, Section 4 deals with extrusion itself, emphasizing the importance of process 

parameters on the overall quality of the product. 

2. Microencapsulation of Fragrances and Odor Active Compounds in Solid
Forms

Flavors and fragrances are highly complex chemical compositions of sensitive volatile 

organic compounds with different physicochemical properties (i.e., volatility, water solu­

bility) and an average molecular weight from about 50 to 300 Da. The capture, the reten­

tion, and the rendition of such complex compositions in their integrity, combining with 

low losses during encapsulation, are the key objectives of encapsulation.5'6'13-15 In the

last two decades, the volume of encapsulated oils has grown significantly. In 2001 it was 

estimated that 20% to 25% of all flavors commercialized in the world were in an encapsu­

lated form, and between 10% and 20% of these could not be encapsulated by spray-dry­

ing.16 In order to satisfy this important demand, melt extrusion appeared as a suitable and 

flexible technology to produce such encapsulates in large volumes. Furthermore, extru­

sion had a number of advantages over spray drying, such as lower energy consumption 

during operation and minimal emission of odor-contaminated exhaust air. Finally, the 

conditions of extrusion allow a better control of the state of the matrix, especially if car­

bohydrates glasses are considered.17 Benczedi and Bouquerand 18 have demonstrated that

lemon, lime, and tangerine flavors had better stability (no oxidation was observed) and 

longer shelf life when encapsulated by melt extrusion compared to spray-drying ( 4 years 

at 2O°C compared to 2 years at 2O°C). The drawbacks of extrusion are the limited loading, 

usually not exceeding 15% to 20% and the coalescence of the droplets of active 

compounds.19'20 

The two first studies of flavor encapsulation by "extrusion" used a carbohydrate 

matrix comprising sucrose and corn syrup to entrap the essential oil.21'22 Following these

pioneering works, the development and research of new materials and procedures for the 

encapsulation of flavors increased significantly in the food industry. Encapsulation of 

aroma compounds in a carbohydrate polymer in a glassy state, also known as "glass 

encapsulation"16 became very popular, and numerous patents were submitted by compa­

nies like Griffith Laboratories, Sunkist Growers, N abisco Brands, and McCormick & 

Company.23-27 AU processes described herein involve the entrapment of the flavor in a



carbohydrate matrix (starch, modified starch, corn syrup, sucrose, gums, maltodextrins, 

etc.). Patents disclosing the use of biopolymers-based matrix by melt-extrusion instead of 

low molecular weight sugars, dextrins, and maltodextrins were mainly published in the 

1990s (Fig. 1),28-30 by industrial companies. Details about the encapsulation process and

the key process parameters are usually scarce in such documents. 

AU of these methods are, however, based on the same process steps: 

(i) incorporating a volatile compound (flavor, fragrance, or other sensitive mole­

cules) in a thermoplastic matrix and

(ii) forcing this mass through an orifice or die to shape the encapsulated material.

The release mechanism involved in these technologies is essentially dissolution in 

water, which may be immediate or delayed in time. Temperature may also be used as a 

trigger, but more occasionally. Alternative mechanisms, such as diffusion or mechanical 

breakage of core-shell capsules6 are not discussed in this review. 

The efficiency and quality of the overall encapsulation process is the result of the 

combination of system morphology, i.e., the way the encapsulated material is dispersed 

in the matrix, and the physical state of this matrix. 

Classically, the system is viewed as a dispersion of the oil phase in the form of small 

inclusions in the matrix. Different morphologies have been postulated for different 

release profiles (Fig. 2): 

(i) coarse dispersion in the matrix;23,30--33

(ii) fine dispersion using emulsifying and/or compatibilizing agents; 34•35

(iii) film coating of the core material;36---43 

(iv) fine dispersion and external film coating;

(v) fine dispersion and coating of the core and the matrix.32

The most appropriate matrix physical state for encapsulation is the glassy state, 

where both free volume and molecular mobility are minimized. 30.44--47 Hence, the glass

transition temperature of the matrix is a key parameter for encapsulation in solid matrices. 
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Figure 1. Trends in extrusion encapsulation technologies in the last decades. 
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Figure 2. Schematic view of possible encapsulation morphologies obtained using extrusion 

microencapsulation. 

This will be discussed more thoroughly in the next sections. The polarity of the matrix is 

another key factor that controls both encapsulation and retention of the volatiles. Hence, 

for hydrophobie ingredients, such as flavor and especially fragrances, the highest reten­

tion is obtained in hydrophilic matrices, which can be easily explained in terms of solubil­

ity. Besides, hydrophilic matrices have low permeability with respect to oxygen (Section 

3.2). Hence, carbohydrates in the glassy state show better retention of volatile compounds 

and extended shelf life stability. 13
•

16
•
46

•
48

-
50 The encapsulation in glassy carbohydrates is

also referred to glassy microencapsulation. 

However, the situation is rendered more complex by the fact that individual mole­

cules may internet with the matrix itself, which in turn affects the properties of this matrix 

and the release profile of the flavor. The chemical diversity of encapsulated ingredients is 

therefore another key feature, which must retain attention. The most recurrent flavors 

used in the food industry and reported in the literature are diacetyl, terpenes, such as d­

limonene, terpene alcohols, such as geraniol, menthol, and thymol, terpene ketones, such 

as camphor and menthone, short chain esters, such as ethyl propionate and isoamyl buty­

rate, aldehydes, such as acetaldehyde and hexanal, lactones, such as heptalactone and 

nonalactone, sulfur-containing ingredients, such as 3-methylthiohexanol, thiolactones 

and the like, and nitrogene- and nitrogene-sulfur heterocycles, such as pyrazines and thia­

zoles. Flavor (and perfume) ingredients are, therefore, characterized for a broad range of 

physico-chemical properties, whereas the most relevant of these properties as far as 

encapsulation is concerned is the presence of chemical fonctions, molecular weight, and 

steric hindrance, vapor pressure, and relative solubility in both oil and matrix phase. AU 



of these parameters control the interactions between the ingredients and the matrix, their 

diffusion through this matrix, the encapsulation yield, the storage stability of the dry prod­

uct, and the release profile.7•
10 

The interactions of flavor ingredients and the matrix and their eff ects on flavor encap­

sulation and release have been extensively investigated in the literature. In particular, the 

formation of flavor complex with starch has attracted much interest.5 1
-

54 Most of these

studies have, however, been performed in solution, i.e., under conditions where starch is 

fully plasticized and amylose has a sufficient conformational flexibility to accommodate 

guest molecules and form the inclusion complexes. It has been proven by DCS and X-ray 

diffraction measurements, that complexation proceeds through amylose helix formation 

to form reversible inclusion complexes. Such conditions are not met in extrusion, due to 

the low water content of the extrudate, unless higher processing temperatures are applied. 

The formation of flavor-cyclodextrin complex is also well documented.7•
38

,
42

,
55 In all

cases, the inclusion complexation constant has been found to depend strongly on the 

molecular shape and polarity of the guest molecule. The encapsulation and release of fla­

vors in and from low molecular weight carbohydrates and carbohydrate oligomers, such 

as corn syrup solids and maltodextrins, has been extensively reviewed in the case of spray 

drying Goubet et al.7 as well as in the case extrusion-mediated glass encapsulation.17
•
48

•
56 

It appears from the above studies, that the entrapment of flavor ingredients at the molecu­

lar level in the matrix can occur, providing suitable interactions that can lead to flavor­

carbohydrate complex with reduced diffusion. Such interactions have been investigated 

by inverse gas chromatography, providing a better understanding on how retention and 

release work in these systems. Owing to the complexity and diversity of these oils, the 

study and quantification of retention or release of volatile compounds remain difficult, 

and few standardized methods are known. In some studies, polymer-flavor complexes in 

solution have been analyzed in order to determine the type of interactions involved and 

how flavors are released.7
•
57

-
59 Other studies focused their attention on determining the

type of interactions existing between the solid matrix and two or three specific flavor 

compounds, thanks to inverse gas chromatography.60
-

62 Hence contradictory results are

frequent. For example, Gunning et al.63 observed that the percentage of flavor release

from a low water content sucrose/maltodextrin matrix into the headspace increased when 

temperature raised above 60°C, while the contrary was found in other maltodextrin

matrix. 64 In the latter case, thermally enhanced retenti on was attributed to a change in the

polarity of the matrix with increasing temperature.64 As documented later in this review,

such discrepancies are certainly linked to different level of moisture in the matrix. 

Direct entrapment or solubilization of the flavor ingredients in the matrix has been 

considered as a convenient way to encapsulate volatile substances. The quality of such 

encapsulation process depends, however, on the flavor-matrix interactions mentioned 

above. For example, lactones are better retained in starch-based matrices, while alcohols 

are better encapsulated by carbohydrates, whereas flavors ingredients having similar 

chemical fonctions but diff erent molecular weights or topologies may show diff erent 

entrapment behavior.7 This selectivity may lead to strong distortion of the flavor release

profile. Furthermore, the flavor loading that can be reached by this method is limited to 3 

to 6 (%w/w) of the extrudate. Above this limit, a flavor exudation occurs during the extru­

sion process, leading to the formation of separated liquid phase, which may flow out of 

the extrudate or disperse in the matrix in the form of irregularly shaped liquid inclusion 

(Fig. 2, case (i)). Such a coarse dispersion leads to the formation of large amounts of sur­

face oil, which is deleterious to the quality of the product. The presence of surface oil is 

indeed highly undesirable, because 



(i) surface oil is not encapsulated and therefore its release is not controlled, and

(ii) such oil is readily oxidized, which leads to loss of product organoleptic quality,

and contributes to powder caking. High quality encapsulates must have low sur­

face oil levels.

An intensive development work has been done in the last decades to increase the fla­

vor load in encapsulates, while keeping the surface oil at the lowest possible level and 

extending the storage stability of the product. This is usually achieved by providing a fine 

dispersion of the encapsulated oil in the matrix by using suitable combinations of mixing 

powder and solubilizing or compatibilizing agents18 (Section 3). The resulting product 

morphology after drying is that of a "dry emulsion" (Fig 2, case (ii)). Figure 3 shows 

such morphology in the case of a spray-dried powder with oil inclusions having a diame­

ter of less than one micron. The matrix was obtained by spray drying a high internal phase 

fragrance emulsion comprising maltodextrins and modified starch. This method allows 

increasing the payload more than 40%. 8 Another way to reduce surface oil of the extru­

date involves preparing an emulsion of the active compound, comprising a film-forming 

agent, and injecting this emulsion directly into the extruder (Fig. 2, case (iii)). This pre­

treatment effectively decreases flavor losses during the process and allows co-encapsula­

tion of diff erent flavors in the same encapsulate. 40

The release of the encapsulated actives from systems based on carbohydrates is 

triggered by exposure to moisture. Critical water-induced plasticization of the 

matrix, which is marked by a decrease of the carbohydrate glass transition to sub­

ambient temperatures, starts at 50% to 70% relative humidity.56 Ultimately, the 

matrix dissolves and the full flavor is released. Figure 4 schematizes the expected 

influence of the product morphology on the release rate of the active compound 

over time if the encapsulate is exposed to moisture. Note that, in the present case, 

increasing time ( at constant moisture) is equivalent to increasing the moisture con­

tent or the water activity in the system. This is, however, an idealized view, which 

Figure 3. Spray dried particles with "dry emulsion" morphology. © Givaudan Schweiz AG. Repro­

duced by permission of Christian Quellet. Permission to reuse must be obtained from the 

rightsholder. 



Time or moisture 

Figure 4. Scheme of release profile depending on the morphology of the delivery system obtained 

by extrusion. 

is shown here for guiding the reader through this review. The fast and early release 

corresponds to encapsulation of the active compound without any pre-encapsulation 

or coating treatment prior to extrusion (curves (i) and (ii)). Release of these kinds 

of structure is more known as a burst-like release, all the compounds are liberated 

at the same time. Incorporating a film-forming agent at the oil/matrix interface 

increases the resistance to moisture and may result in a more graduai flavor release 

(curve (iii)). Finally, combining the above morphologies with an external coating 

leads to similar release profiles, but delayed in time ( or occurring at a higher mois­

ture level)(curves (iv) and (v)). For example, Menzi et al.65 have proposed to apply

a vegetable fat coating on granulated materials obtained by spray coating of a fla­

vor/water emulsion on a sugar carrier material, which was shown to improve the 

storage stability of encapsulated flavors and to delay their release in chewing 

gums. Alternatively, Leusner et al.,66 Bouquerand,36 and Chang et al.35 have

employed Miglyol as an additive to their formulation, in order to provide extra 

protection to their active principle, as well as to reduce the release rate. Others 

techniques and other wall materials have also been explored in order to lower the 

production cost and to target other application areas.28
,

67
,

68 

lt must be stressed, however, that the loss of volatiles from encapsulates during han­

dling and storage starts at water levels much below than the plasticization limit. This leak­

age involves at least three mechanisms: 

(i) evaporation of the surface

(ii) diffusion of the subsurface flavor oil droplets to the surface of the matrix, and

(iii) exudation of the flavor compounds through the matrix fractures or cracking.63

Controlling the hygroscopicity and the physical integrity (absence of capillary 

cracks and other defects) of the matrix is therefore a crucial aspect of flavor and 

fragrance encapsulation. For example, high molecular weight carbohydrates offer 

longer shelf live and high stability to active compounds compared to short molecu­

lar weight sugars and maltodextrins. 14
'
69 On the other hand, starch, modified

starches, proteins, or gums give delivery systems with thermoplastic behaviors, 



which gradually swell in the presence of moist environments and slow down the 
release of the active principle.16

If the aim of the final product is to enhance the release rate, low molecular 
weight polymers such as maltodextrins having a high dextrose equivalent (DE) must 
be used. For example, Swisher22 and Schultz and Calif21 have used in their formula­
tions low molecular weight carbohydrates (e.g., sucrose, corn syrup). The same 
effect can be obtained by using plasticizer, such as glycerin and other polyols (Sec­
tion 3.4.4), which are less volatile than water, and therefore are better retained in 
the matrix. 

The next section provides an overview of the carriers and additives used in extrusion 
encapsulation. 

3. Matrix Materials

3.1. Introduction 

Matrix materials used in extrusion encapsulation must combine good processability and 
good barrier properties. This is achieved by using certain biopolymers or mixtures of bio­
polymers and low molecular weight molecules, such as sugars and sugar alcohols 
(Table 1). The most frequently used matrix materials, or carriers, are carbohydrates. The 
choice of encapsulating materials is based on five criteria: natural origin, barrier proper­
ties with respect to gas and small volatile molecules, large scale, and low cost availabil­
ity.12·70·71 The advantage of using such biomaterials for microencapsulation is on one 
hand the simplicity of the release mechanism, mainly triggered by moisture or heat, and 
on the other hand, their biodegradability. Flavor encapsulation additionally requires food 
industry authorized materials. However, the major drawback of these natural carriers, 
when used without additives, is the low flavor load of about 5 to 6% (w/w).72 The use of 
lipids and proteins has also been reported (Table 1). 

Many researchers have focused their attention on two aspects of biomaterial-medi­
ated encapsulation: 

(i) the physicochemical properties of the matrix, such as molecular weight, viscos­
ity, solubility, film forming properties, degree of polymerization, and chemical
functional groups, which can significantly affect the retention and release of
aroma compounds, 7 and

(ii) the physical state of the carrier, which, as mentioned above, is a key parameter
to successful encapsulation.

Carbohydrate oligomers, starch and proteins, like most non cross-linked, thermoplas­
tic polymers, can be found in two physical states: a viscoelastic or "plastic" -state, where 
the polymers are characterized by a high chain mobility, and where the active materials 
can be dispersed in the matrix; and a glassy, brittle state, where active materials have a 
very low mobility and are therefore entrapped in the carrier (or matrix).7·12·29·69

A major prerequisite for stable encapsulation of volatile materials is that the matrix is 
below its glass transition temperature T

g
· Indeed, below T

g
, diffusion processes slow 

down dramatically, due to the abrupt decrease of the mobility of the polymer chains and 
the concomitant decrease of the matrix free volume in the matrix.56·63 However, it has
been demonstrated that diffusion is more important in the vicinity of the polymer matrix 
glass transition temperature, than above this temperature, because the free volume below 



Table 1 

Review of ail the different wall materials and additives used in extrusion microencapsulation (melt injection and melt extrusion) in 

chronological order. 

Reference 

(Swisher, 1957) 

(Schultz and Calif, 1958) 

(Sair and Sair, 1980) 

(Miller and Mutka, 1987) 

(Saleeb and Pickup, 1989) 

(Carret al., 1991) 

(Kollengode and Hanna, 

1997a) 

(Kollengode and Hanna, 

1997b) 

(Black et al., 1998) 

(Hau et al., 1998) 

(Porzio and Popplewell, 

1999) 

(Saleeb and Arora, 1999) 

(Reifsteck and Jeon, 2000) 

(Ubbink et al., 2001) 

Wall material 

Corn syrup 

Corn syrup, sucrose, dextrose, maltose, mannose, galactose 

Casein, sodium hydroxide 

Carbohydrates, i.e starch, modified starch, sucrose, maltose, corn syrup, fructose, 

dextrose, glycerol, maltodextrins (DE2-DE20) 

Maltose monohydrate, maltodextrins, mannose, 

Native corn starch 

Corn starch+ ,B-cyclodextrins 

Corn starch 

Whey protein, lipids, modified starch, maltodextrins, dextrose, sucrose, lactose, 

Wheat starch 

Maltodextrins (DE5-DE15), corn syrup (DE24-DE42), starch, modified starch, gum, 

gelatine 

Maltose, glucose, maltotriose, mannose, sucrose, dextrose, xylitol, arabinol, sorbitol, 

mannitol, corn syrup, 

Corn syrup, flour, starch 

Potato, corn starch, modified starch, proteins, glycerol 

( Continued on next page) 



Table 1 

Review of ail the different wall materials and additives used in extrusion microencapsulation (melt injection and melt extrusion) in 

chronological order. (Continued) 

Reference 

(Benczedi and Bouquerand, 

2001) 

(Porzio and Popplewell, 

2001) 

(Porzio and Zasypkin, 2010) 

(Bhandari et al., 2001) 

(Benczedi and Bouquerand, 

2001) 

(Lengerich, 2002) 

(Benczedi and Bouquerand, 

2003) 

(Leusner et al., 2002) 

(Kohl us and Pacha, 2004) 

Wail material 

Sucrase, glucose, lactose, maltose, fructose, ribose, dextrose, sorbitol, mannitol, 

xylitol, lactitol, pentatol, arabinose, pentose, xylose, galactose, maize syrup, 

maltodextrins (DE8-DE10), gums 

Maltodextrins (DE10-DE15), corn syrup (DE24-DE42), gums, starch, modified starch, 

methoxypectin, ribose, glucose, fructose, galactose, xylose, sucrase, maltose, 

proteins ( casein) 

Modified starches, maltodextrins (DE10-DE20), sucrase, maltose, glucose, xylose, 

fructose, trehalose corn syrup (DE24-DE42), fatty acids, gums, proteins (casein) 

Soy flour, corn flour, corn starch, ,B-cyclodextrins 

Sucrase, maltose, fructose, mannitol, glucose, ribose, dextrose, arabinose, sorbitol, 

xylose, galactose, starch, maltodextrins, gums, modified starch, proteins 

Starch, modified corn starches, cyclodextrins, cellulose, polyvinyl alcohol, dextrins, 

corn syrup, gelatin, sorbitol, casein, carrageenan, alginates, pectins, xanthan, gum 

arabic, guar gum, fat, chitosan 

Sucrase, maltose, fructose, mannitol, glucose, ribose, dextrose, arabinose, sorbitol, 

xylose, galactose, starch, maltodextrins, gums, modified starch, protein 

Oligosaccharides ( oligofructose ), inulin, fructose, sucrase, dextrose, maltose, lactose, 

medium chain triglycerides 



Table 1 

Review of all the different wall materials and additives used in extrusion microencapsulation (melt injection and melt extrusion) in 

chronological order. (Continued) 

Reference 

(Yuliani et al., 2004) 

(Yuliani et al., 2006) 

(Gouin, 2004) 

(Porzio and Zasypkin, 201 0; 

Zasypkin and Porzio, 

2004; Zasypkin, 2011; 

Zasypkin et al., 2013) 

(Bohn et al., 2005) 

(Valentinotti et al., 2006) 

(Bouquerand, 2007) 

(Chang et al., 2010) 

(Lengerich et al., 2010) 

(Benczedi et al., 2011) 

Wall material 

Sucrose, fructose, maltose, ribose, mannitol, maltodextrins, Xylitol, polybutyl-

methacrylate 

Sucrose, maltose, glucose syrup, glycerine, glucose, fJ cyclodextrin 

Corn starch, fJ cyclodextrin 

Maltodextrins, starches, fat 

Modified starch, lactose, dextrose, maltodextrins 

Sucrose, maltodextrins 

Sucrose, maltose, glucose, lactose, levulose, ribose, dextrose, isomalt, sorbitol, 

mannitol, xylitol, lactitol, pentatol, arabinose, maltodextrins, gums, hydrogenated 

starch, cyclodextrins, cellulose 

Maltodextrins (DE8-DE10), lactose, dextrins, pre-gelatinized starch, medium chain 

triglycerides 

Maltodextrins (DE8-DE10), medium chain triglycerides 

Caseinates, wheat proteins isolates, pre-gelatinized starch, low molecular weight 

carbohydrates, durum flour 

( Continued on next page) 



Table 1 

Review of ail the different wall materials and additives used in extrusion microencapsulation (melt injection and melt extrusion) in 

chronological order. (Continued) 

Reference 

(Gregson and Sillick, 2012a) 

(Gregson and Sillick, 2012b) 

(M. A. Emin and H. P. 

Schuchmann,2013) 

(T. M. Goss Milani et al., 

2014) 

(Chang et al., 2014) 

(Tackenberg et al., 2015) 

Wall material 

Mono and di-saccharides, citric acid, hydrogenated corn syrup, polysaccharides, gums, 

maltodextrins, modified starch 

Erythritol mannitol, sorbitol, maltodextrins (DE10-DE20), gum acacia, alginates, 

pectins, proteins, hydrogenated starch hydrolysates 

Maltodextrins (DE10-DE20), modified starch, sucrose, maltose, trehalose, soy lecithin, 

antioxidants 

Native maize starch 

Soy protein isolate 

Modified starch/matodextrin/lecithin 

Maltodextrins (DE-12 and DE-17)/sucrose 



glass transition is higher, so diffusion of solutes is enhanced. A key feature of most bio­

materials and especially of carbohydrates is the fact that the level of water included in the 

matrix controls Tg · The relationship between water activity and Tg in carbohydrate has 

been extensively discussed by Slade and Levine 73 and is still the most important factor 

influencing processability and volatile retention.14 Water molecules inserted between the

polymeric chains, opening the three-dimensional structure of the polymer and breaking 

interactions between chains. Low energy interactions between water molecules and poly­

meric chains are thus established, and so the polymeric structure becomes soft and flexi­

ble, i.e., the polymer goes from a brittle, glassy state to a plastic, rubbery state (Section 

3.4.4). Product stability is govemed by the amount of water, both added and already exist­

ing inside the system; water is the key factor controlling the stability of biopolymers.74-77

Kollengode and Hanna38 ·55 have demonstrated that a delivery system with low moisture 

content (9%) showed higher retention of volatiles like cinnamic aldehyde, eugenol, nona­

noic acid, and 3-octanone, than delivery system with high moisture content (17% ). Gun­

ning et al.63 have demonstrated in their studies that retention of volatiles is correlated to 

the glass transition temperature of the system. For instance, in a low water content matrix 

composed of maltodextrin and sucrose, the highest amounts of volatiles were released 

when the matrix was above its glass transition temperature. However, water may be a 

handicap because all the volatile compounds are flashed off when water evaporates during 

processing. High temperature and pressure inside the extruder barrel make the steam rap­

idly blow off out to the surface of the matrix dragging the volatiles with it.78 This is one 

of the major causes of flavor and fragrance loss during processing. For all of these rea­

sons, controlling the exact formulation prior to extrusion process can be crucial for the 

final product.16·69 

3.2. Carbohydrates and Polysaccharides 

Carbohydrates were the first polymers used for flavor encapsulation, and are still being 

used because of their good physicochemical properties (low viscosity, good solubility in 

water, and excellent barrier properties with respect to volatile organic compounds, at least 

under dry conditions).7·79 Presently, starches, modified starches and sugars, either in a 

glassy or crystalline state, are considered to be the best hydrophilic matrices for entrap­

ment and protection of volatiles. This can be explained by the low solubility of oxygen 

and volatiles in the matrix and, by the low free volume available for molecular trans­

port.13 The advantages of amorphous carbohydrate matrices in a glassy state are illus­

trated in the review by Ubbink and Krüger.69 Amorphous food powders present great 

barrier properties against flavor losses and oxidation and are therefore often used for 

encapsulation and stabilization of complex flavor mixtures. 

However, as already mentioned above, the quality of the protection against oxidation 

and leakage depends strongly on the glass transition temperature, which in tum depends 

on the water activity in the carbohydrate matrix, and on the surface to volume ratio of the 

extruded materials, since changing the granule morphology can impact the rate of water 

uptake and volatile losses.69 

3.2.1. Maltodextrins. Maltodextrins are obtained by acid or enzymatic hydrolysis of 

starch and, depending on how they are produced, may differ in their dextrose equivalent 

(DE) (relative to the degree of hydrolysis, a higher DE means greater hydrolysis), which 

ranges from O (corresponding to long-chain glucose polymers) to 100 (corresponding to 

pure glucose). The DE is inversely proportional to the average molecular weight of the 



Table 2 

Composition of delivery systems using only maltodextrins as the main ingredient (nd = not determined). 

Initial formulation Extrudate Encapsulation Encapsulation 

composition Active core moisture efficiency Rate 

Reference (%w/w) (%w/w) content (%w/w) (%w/w) (%w/w) Technology 

(Porzio and Maltodextrin DE- Diacetyl (9.1) 8.3 nd 4.9 Melt Extrusion 

Popplewell, 10/water (85.6/ 

1999) 5.3) 

(Porzio and Maltodextrin DE- Diacetyl (8.6) 7.6 nd 4.4 Melt Extrusion 

Popplewell, 10/water(81.4/10) 

2001) 

(Benczedi and Maltodextrin DE- Strawberry flavor nd nd nd Melt Extrusion 

Bouquerand, 19/water/lecithin (3) 

2001) (90/6/1) 

(Benczedi and Maldotextrin DE- Fragrance (3) nd nd nd Melt Extrusion 

Bouquerand, 19/water/silicon 

2003) dioxide/lecithin 

(87/7/2/1) 

(Bouquerand, Maltodextrin DE- Ascorbic acid nd nd 18.9 Melt Extrusion 

2007) 10/miglyol/ (20.8) 

lecithin (77 .6/1/ 

0.5) 

(Chang et al., Maltodextrin/ Ascorbic acid (9.2); (7.9) (97.2); (97.9) (18.6); (15.3) Melt Extrusion 

2010) lecithin/miglyol (18.9); (16.1) 

(75.6/1/0.5) ; 

(88.4/1/0.4) 

(Benczedi et al., Maltodextrin DE- Orange oil (nd) nd nd (8.3); (8.1); (7.9) Melt Extrusion 

2011) 19 ;DE-12 ;DE-6 

(83)



Table 3 

Composition of the delivery systems using only starch as the main ingredient (nd = not determined). 

Initial formulation Extruda te Encapsulation Encapsulation 

composition Active core moisture efficiency Rate 

Reference (% w/w) (%w/w) content (%w/w) (% w/w) (% w/w) Technology 

(Carret al., 1991) Corn starch/water Atrazine (5-20) 8-25 73 - 96 nd Melt Extrusion 

(80-95/10) 

(Kollengode and Corn starch/water (95/nd) Cinnamaldehyde (5) nd 24.1 nd Melt Extrusion 

Hanna, 1997b) (direct injection) 

Eugenol (5) 20.5 

nonanoic acid (5) 15.1 

3-octanone (5) 25.8 

(Hau et al., 1998) Wheat starch/water Diacetyl, 19-43 nd nd Melt Extrusion 

(67.3-84.1/15.90-32.7) 3-methylbutanal,

heptane (nd)

(Ubbink et al., 2001) Potato starch/capsule/ Orange oil nd nd nd Melt Extrusion 

glycerol/water (5.8) 

( 64.1/2.4/2. 7 /25) 

(Lengerich, 2002) Semolina/wheat gluten/ V arious materials nd nd nd Melt Extrusion 

wheat starch/vegetable oil/ (22.3) 

water (25.1/18/25.1/7.9/1.3) 

(M. A. Emin and Native Maize starch (nd) Medium chain 18 nd nd Melt extrusion 

H.P. Schuchmann, 2013) triglyceride ( 4) 



polysaccharide, and the maltodextrins normally found in microencapsulation have a DE 

varying from 3 to 20. 80 Maltodextrins are the reference wall material in extrusion entrap­

ment of food ingredients due to their film-forming properties, high water solubility, low 

oxygen solubility, binding characteristics, good protection against oxidation, and low 

cost.12 

The influence of the molecular weight and DE of maltodextrins on the behavior of the 

carriers has been extensively discussed in the so-called "food polymer science" 

approach.14
•
71

•
73 In fact, molecular weight is the one parameter that is directly linked to

physicochemical properties (viscosity, glass transition temperature, solubility, etc.) even 

though DE can also be correlated to some physicochemical properties, e.g., solubility of 

the polysaccharide increases when DE increases. Sorne authors have reported that the 

retention of flavors decreases with increasing DE3
•
7

•
67

•
81 and this has been attributed to 

the fact that, when DE increases, the maltodextrins become more hygroscopie and their 

solubility in water increases, which does not favor the retention of volatiles. Conversely, 

when DE decreases, hygroscopicity also decreases, while the molecular weight, the 

apparent viscosity, the cohesiveness, the glass transition temperature, and the film-form­

ing properties increase, with all of these properties favoring of a good encapsulation. 

However, maltodextrins have low emulsifying properties and for this reason some 

emulsifiers are needed in order to improve the incorporation of the active material, as 

well as to lower the viscosity and to enhance the flow of the melt inside the extruder. 

Moreover, by lowering the surface tension of the extrudate, the emulsifiers help to give 

products with a less sticky and less porous surface36 which is beneficial to a better encap­

sulation of volatiles. 

Examples of different formulations, as well as some encapsulation rates and effi­

ciency are given in Table 2. In general, compositions of the delivery system are almost 

the same, and the moisture content of the extrudate is similar for all studies covered, no 

matter whether the active compounds are flavors, fragrances, or bioactive food 

compounds. 

3.2.2. Starch. Starch is a polysaccharide, consisting of D-glucose chains. It is a mixture 

of two homopolymers, amylopectin, which is a linear polymer (10--20%) and amylose, 

which is a crosslinked polymer (80-90% ). Amylose and amylopectin are interconnected 

by 1,4-a and 1,6-a glycosidic bonds, which are part of the ramifications in the molecule' s 

structure. For this reason, the supra-molecular structure of starch is in a semi-crystalline 

form. Amylopectin is organized in the form of sheets giving the crystalline portion and 

amylose is in an amorphous form. Under normal conditions of temperature and pressure, 

starch is insoluble in aqueous solvents.12
•
71

•
82

Several studies have been conducted to better understand the thermal transitions, and 

the changes of physical state of starch. The theory mentioned by Donovan83 allowed a 

better understanding of what is happening during the changes in the physical state of this 

material, and particularly for determining in which states the polymeric matrix is when 

water and temperature are in excess. 84
•
85 Swelling of the amorphous regions is observed

when water is in excess (the hydrogen bonds between the polysaccharide chains are eut, 

and the starch granules absorb water and swell). This phenomenon is associated with the 

initiation of the gelatinization temperature (60°C-85°C, depending on the type of starch). 

The crystalline regions are degraded (dissociation and opening of the amylopectin 

"propellers") and starch is converted into a gel. 

When starch is in a gelatinized state, the phenomenon of retrogradation (reorganiza­

tion of its crystalline structure) is observed. In this case, the gel is more rigid and tends to 



expel water included between the polysaccharides chains (a phenomenon known as syner­

esis). Starch rearranges itself into a more crystalline and stiff structure. The glass transi­

tion of the sample depends on the rate of hydration. Actually pre-gelatinized starch is 

used for the entrapment of volatiles, due to enhanced diffusion of the latter, and in fact, 

pre-gelatinized starch is soluble in cold water, which facilitates processing conditions for 

encapsulation. 

Since starch is a more complex molecule than maltodextrins (greater physicochemi­

cal properties) more interactions can be established with active compounds. Starch has 

often been used in extrusion encapsulation (Table 3) due to the stable inclusion com­

plexes of starch forms with flavor.51 Indeed these inclusion complexes proved to be stable 

at high temperatures and showed great stability when stored for longer periods of time. 

Forming these complexes, however, requires conformational changes of the amylose moi­

eties, which require in turn high processing temperatures to counterbalance the relatively 

low level of water in the extrudate. 

Regarding the physicochemical properties of starch, it has been demonstrated that 

amylose content can affect expansion and in fact, it increases with the amylose content 

(this is without taking into account temperature and moisture content). It has been found 

that the expansion ratio increases from 8.3 to 16.4 as the amylose content of native starch 

increases from O to 50%. Above 50% of amylose content, the expansion ratio decreases.86

As expansion is related to volatile losses, it is assumed that for better retention, starch with 

low amylose content should be chosen. In addition, Hau et al.31 have shown that for starch 

with an amylose/amylopectin ratio of 27 /73, water content influences the binding of vola­

tiles. In fact, volatile uptake increases as the water content of the delivery system increases 

from 19% to 43%, and this could be due to the decrease of viscosity of the melt allowing 

the volatile compound to be better dispersed inside the carrier. However, when the moisture 

content increases, the expansion ratio decreases and this tendency is the same for starches 

with different amylose contents (amylose content varied from O to 70%). The maximal 

expansion ratio of various starches was obtained with a moisture content of 14%.86

The extrusion of starch involves its gelatinization, at least partially, with water or a 

water/plasticizer mixture before or during the initial steps of the extrusion, and the water 

content ranges typically from 10 to 45%. In some cases part of the water is added together 

with the encapsulated oil in the form of an emulsion.40

3.2.3. Modified Starch. In the context of encapsulation, the term "modified starch" 

actually includes dextrins, on which octenyl succinate groups have been grafted by esteri­

fication of the hydroxyl groups with mono octenyl succinic acid. These products are 

obtained by acidic or enzymatic degradation of starch and subsequent chemical treatment 

with the succinic derivate. The modifications are made in order to improve the chemical 

and physical properties of the dextrin to meet specific needs. The advantage of the so­

called starch octenylsuccinate, also known as OSAN ( octenyl succinic anhydride), lies in 

its remarkable emulsifying properties, which are related to the presence of the hydropho­

bie octenyl moieties that allow better interactions with aroma compounds. 12
•
82 The roles

of these materials on the retention of volatiles in carbohydrate matrices have been dis­

cussed in the study made by Zasypkin and Porzio.3° Clear benefits were found in terms of 

oil droplet dispersion, viscoelastic properties and surface oil. 

It should be noted that there are other ways to modified starches, for example, by oxi­

dation in the presence of sodium hypochloride in order to decrease its viscosity. Or, on the 

other hand, to improve its viscosity, starch can be modified with propylene oxide. In 



Table 4 

Composition of delivery systems of oligosaccharides as the main ingredient (nd = not determined), for melt extrusion, exarnples listed are 

calculated for one hour of production. 

Initial Extrudate 

formulation moisture Encapsulation Encapsulation 

composition Active core content efficiency Rate 

Reference (%w/w) (%w/w) (%w/w) (%w/w) (%w/w) Technology 

(Schultz and Calif, Sucrase/corn syrup/ Orange oil (5.4) nd nd nd Melt Injection 

1958) water (53.8/26.9/ 

14) 

(Miller and Mutka, Corn syrup/sugar/ Orange oil (17 .5) 5 nd 16.7 Melt Injection 

1987) water ( 48/33/nd) 

(Saleeb and Pickup, Maltose Ethyl butyrate (3.4); 3-6 nd (3.4); (3.3) Melt Extrusion 

1989) monohydrate/ lemon oil (3.8) (single screw) 

maltodextrin 

(24.1/72.5); 

mannose/ 

maltodextrin (24/ 

72.2) 

(Kollengode and Corn starch/ Cinnamaldehyde, nd (42); (46) ; nd Melt Extrusion 

Hanna, 1997a) ,8-cyclodextrin eugenol, nonanoic (26); (36) (direct 

(nd) acid, 3-octanone (nd) injection) 

(Black et al., 1998) Whey protein/ Cinnamic aldehyde nd nd nd Melt Extrusion 

sucrase/ (nd) 

mal todextrin/ 

( Continued on next page) 



(Porzio and 

Popplewell, 1999) 

(Gunning et al., 1999) 

(Reifsteck and Jeon, 

2000) 

(Zasypkin and Porzio, 

2004) 

water (50/25/25/ 

excess) 

Maltodextrin/corn 

syrup/methyl 

cellulose (72.5/ 

20/7.5) 

Sucrose/ 

maltodextrins 

(52.8/47.2) 

Corn syrup/sugar/ 

flour/starch (nd) 

Hi-Capl00/ 

EmCap12639/ 

lactose ( 40/30/ 

30); 

EmCap12634/Hi-

Cap 100/lactose 

(40/20/40) 

Orange oil (nd) nd nd 8.3 Melt Extrusion 

Cherry, pepper mint (3.5); (5.2) nd (10); (7.4) Melt Injection 

flavors (nd) 

Flavors (nd) nd nd nd Melt Extrusion 

Lemon flavor (10-20) (7.7); (7.6) nd nd Melt Extrusion 

( Continued on next page) 



Table 4 

Composition of delivery systems of oligosaccharides as the main ingredient (nd = not determined), for melt extrusion, exarnples listed are 

calculated for one hour of production. ( Continued) 

Initial Extrudate 

formulation moisture Encapsulation Encapsulation 

composition Active core content efficiency Rate 

Reference (%w/w) (%w/w) (%w/w) (%w/w) (%w/w) Technology 

(Bohn et al., 2005) Sucrase/ Benzaldehyde (nd) (4-5.4) nd nd Melt Injection 

maltodextrin (nd) 

(Yuliani et al., 2006) Native corn starch/ d-Limonene (nd) nd nd nd Melt Extrusion 

,B-cyclodextrin (pre-

(nd) encapsulation 

by spray 

drying) 

(Gregson and Sillick, Maltodextrin/ Orange oil (8.3) 5.8 nd nd Melt Injection 

2012b) trehalose/leci-

thin/water (35.8/ 

35.8/0.8/19.3) 

(Chang et al., 2014) Modified starch/ Vitamine E (5-8) nd nd 93 Melt Extrusion 

mal todextrin/ 

lecithin 

(Tackenberg et al., Maltodextrine DE12 Orange terpenes and nd nd 67 Melt Extrusion 

2015) and Maltodextrine tocopherol (nd) 

DE-17 /sucrase 

(nd) 



general, starch properties can be modified according to the final application (i.e., thicken­

ing agent, emulsifier, texturizing agent). 

3.2.4. Carbohydrate Mixtures. Mixtures of oligosaccharides are often used either in 

spray-drying or extrusion encapsulation of flavors because they offer wall material with 

better barrier properties. 14·15·50 As mentioned above, the physicochemical properties of 

carbohydrates are a key parameter that needs to be taken into account during formulation 

and processing of delivery systems. In particular, high molecular weight polysaccharide 

matrices have higher residual porosity, which enhances oxygen uptake and is detrimental 

to final product shelf life. However, high molecular weight polysaccharides may be easier 

to process owing to their higher viscosity. As is usual in formulation, a trade-off between 

both performance indicators can be reached by mixing different molecular weight poly­

saccharides. And in fact, most of the formulations used for encapsulation of volatiles or 

other sensitive active materials found in the literature used a mixture of different molecu­

lar weight carbohydrates, (see Table 4 below) (starch, maltodextrins, and mono- or di­

saccharides, e.g., sucrose, mannose, lactose, etc.). 

The most recurrent formulations found in the literature are those employing a mix­

ture of high molecular weight polysaccharides (molecular weight greater than 2000 Da) 

and low molecular weight polysaccharides (molecular weight less than 1000 Da), for 

example, a mixture of maltodextrin and glucose syrup or maltodextrin and gums, or starch 

and maltodextrins or disaccharides.14 Such mixtures (Table 4) allow adjustment of the 

glass transition temperature, the hygroscopicity, and porosity of the matrix. 

Cyclodextrins, and more particularly ,B-cyclodextrins, are cyclic oligosaccharides 

which have also been considered as wall material in combination with other oligosacchar­

ides. These materials are obtained from starch by enzymatic conversion and are very 

resistant to high temperatures (100 to 3OO°C). Cyclodextrins have a toroid structure, with 

the inner core less hydrophilic than the surface of the molecule. The advantage of this 

arrangement is that the inner core can establish inclusion complexes with various hydro­

phobie substances, while remaining water-soluble. ,B-cyclodextrins have been used in 

melt extrusion microencapsulation to pre-encapsulate flavors prior to extrusion; either by 

forming a flavors/ ,B-cyclodextrins emulsion or by spray-drying the flavors with 

,B-cyclodextrin.12,38,41 ,42,78 

3.3. Proteins 

Due to their amphiphilic, emulsifying, film forming, and solubility properties, proteins are 

now used as an innovative raw material for microencapsulation, and those most often 

employed are sodium caseinate, soy and pea protein isolates. Whey proteins and soy pro­

teins make good wall materials for flavor and essential oil encapsulation due to their good 

gel-forming, emulsifying, and surfactant properties. Indeed, these protein isolates have 

been widely used, mainly by spray-drying, 87 in microencapsulation of different types of 

active materials (i.e., essential oils, flavors, tocopherols, oils rich in polyunsaturated fatty 

acids, etc.).71'88

The major problem related to proteins is that they are not as chemically inert as poly­

saccharides, and side reactions can take place (Schiff base formation and Maillard reac­

tions ). This may result in browning (oxidation reaction between amino-acid groups of 

proteins and aldehyde groups of the flavor molecule) of the final product.87·89·90 As a 

result, interactions between proteins and flavors may cause a loss of flavor perception in 

the final product or the production of off-flavors. The latter are the result of the reaction 



Table 5 

Composition of delivery systems using proteins or mixture of proteins and oligosaccharides as the main ingredient (nd = not determined). 

Reference 

(Sair and Sair, 

1980) 

(Black et al., 

1998) 

(Lengerich et al., 

2010) 

Initial formulation 

composition 

(%w/w) 

Casein/water (43.2/ 

45.8) 

Whey protein/ 

maltodextrins 

(lodex-10)/ 

sucrase/water (nd/ 

nd/nd/excess) 

Durum flour/wheat 

protein/sodium 

caseinate/ 

glycerol/ 

erythrobic/water 

(35.3/8.8/2.3/12/ 

2.4/27) 

Active core 

(%w/w) 

Orange oil (7 .6) 

Cinnamic aldehyde 

(nd) 

Oil rich in 

polyunsaturated fatty 

acids/vanilla (11.9/ 

0.3) 

Extrudate moisture 

content 

(%w/w) 

6 

nd 

nd 

Encapsulation Encapsulation 

efficiency Rate 

(%w/w) (%w/w) Technology 

92 nd Silent cutter Autoclave 

nd nd Extrusion (not specified 

if melt injection or 

melt extrusion) 

nd nd Melt extrusion 



of aldehydes with the amino, disulfide, sulphydryl, or thiol groups of the proteins through 

Van der Waal interactions or hydrogen bonds.78

In fact, the determination and understanding of the type of interactions between fla­

vors or fragrances and proteins have raised considerable interest among academic 

researchers. Landy et al.,59 have investigated the interactions between aroma compounds 

and proteins (sodium caseinate) by measuring the vapor-liquid partition equilibrium (by 

headspace analysis or exponential dilution) in order to understand how these volatiles are 

retained. They were able to establish that, depending on the concentration of protein and 

the type of chemical group of volatile compounds, retention can be affected. In some 

cases, the liberation of active compounds is slowed down or inhibited due to irreversible 

interactions between some flavor compounds and the protein support (i.e., aldehydes and 

ketones internet with the amino acids).91 These interactions result in flavor loss or modifi­

cation. There are two major problems related to proteins as encapsulating agent; 

(i) proteins are highly reactive compounds that can bind irreversibly to flavor mol­

ecules inducing loss or modification of the flavor,

(ii) proteins are molecules with different types of chemical groups and structure,

thus they can have different interaction sites (i.e., hydrophobie and/or hydro­

philic binding sites).

For example, soy proteins do not retain some volatile compounds such as alcohols 

but they do retain aldehydes and ketones through irreversible interactions and conse­

quently the release rate of these volatiles is very low. 

Furthermore, hydrophobie core materials may be more soluble in proteins, because of 

the presence of hydrophobie moieties in this material, which may lead to enhanced diffu­

sion and leakage of the encapsulated active, especially if the latter is volatile. 

Mixtures of proteins and fats, or proteins and oligosaccharides have also been pro­

posed. 23
•
9° For example, Lengerich et al. 39 used a mixture of protein and flour ( durum

flour and whey protein) as matrix (Table 5). Altematively, the pre-encapsulation of the 

active compound in a water-in-oil emulsion has been proposed in order to improve the 

barrier properties of the delivery system.40
•
92 In this case, the aqueous phase was com­

posed of a solution of sodium caseinate, and the emulsion was injected directly into the 

second barrel of a seven-section barrel extruder. This latter preparation gave higher 

encapsulation efficiency than the encapsulation efficiency found in Black's work.23

In addition, Black et al. 23 have also determined the release rate behavior of different

proteins (gluten, soy protein, egg albumin, acid casein, whey protein concentrate) mixed 

with a mixture of polysaccharides (e.g., sucrose and maltodextrins) and glycerin as plasti­

cizer. They determined that for cinnamic aldehyde (principal component of cinnamon fla­

vor) gluten had the highest release rate compared to the other proteins, and indeed gluten 

has better viscoelastic properties than the other proteins cited above. 

These results confirm that proteins admixed with polysaccharides or fat are better car­

riers than a matrix composed only of proteins. As mentioned in Guichard' s paper,90 a solu­

tion of sodium caseinate (0,1 % in water) and egg albumin decreases the activity coefficient 

of flavor compounds and ensures better retention. In these types of mixtures, proteins act 

more as a compatibilizing rather than encapsulating agent; they help to decrease the surf ace 

tension of the flavors and the polymer matrix in order to obtain homogeneous blends. 



3.4. Additives 

3.4.1. Introduction. Additives can be considered as components, which impart specific 

properties to the final product. For instance hydrophobie coating compounds like waxes 

or oils are normally employed to enhance oxidative stability and lower releasing rates. 

Plasticizers are employed to decrease the processing temperature and thus avoiding ther­

mal degradation.68 Carboxylic acids like ascorbic acid, citric acid, erythorbic acid, and

other components such as lecithin, caseinate, and gelatin are used as food preservatives 

and/or antioxidants. 50
•
93 However, the most important additives in terms of encapsulation 

performances are certainly emulsifiers which can be added either to the feed emulsion or 

to the carrier itself in order to ensure small oil droplets of aroma or fragrance compounds 

inside the matrix, thereby providing better dispersion in the carrier and higher protection 

of the core material. 16 Table 1 gives a perfect overview of all the "raw materials" used.

3.4.2. Emulsifiers and Other Compatibilizing Agents. Emulsifiers are used in encapsu­

lation principally to increase the compatibility between the matrix and the active materi­

als. Besides the OSAN modified starch mentioned above, a number of emulsifiers could 

be used. 

Gums, such as gum Arabie, have been proposed and used either alone or in combina­

tion with maltodextrins. For example, Jacquot et al.79 found efficient flavor encapsulation

by spray drying a flavor/gum Acacia/maltodextrin (DE18) emulsions, although gums are 

also claimed to delay water uptake and thereby enhancing the controlled release of the 

encapsulate.32 However, these high molecular weight compounds are detrimental to the 

matrix barrier properties against oxygen and to the protection against oxidation.94 There­

fore, due to these two limitations and also to the fact that gums are rather expensive and 

suffer from irregular market availability and variable quality, they are preferred as addi­

tives and not as a polymer matrix. 

Another solubilizer widely employed in microencapsulation is lecithin, soy lecithin 

being the most used of the range. Lecithin has the additional advantage of acting as a 

lubricant, thereby improving the flowability of the melt. It helps to decrease the stickiness 

(especially for maltodextrins and starches) and the structural surface defaults on the sur­

face of the delivery system.35
•
36

•
50

•
92

•
93 An additional benefit is the lowering of the extru­

date surface tension, which in tum decreases the porosity of the product and provides a 

better protection against oxygen permeability. 

Medium chain triglycerides (MCT) are less well known than gums or lecithin and are 

synthesized from glycerol and fatty carboxylic acids (i.e., caproic, caprylic, capric, and 

lauric acids). There are different types of MCT depending on the length of the major fatty 

acid chain (from C6 to Cl2) and all are colorless, tasteless, and odorless, hence their use 

in the food and cosmetics industry. In microencapsulation, they are used as lubricants pro­

viding better flowing materials and easier shaping of the molten mixture at the die exit. In 

addition, they offer protection to the active ingredient by acting as a coating material, 

thus slowing down release of the active compound.35
•
36 Moreover, in some studies, MCT 

have been used as "solvent vector" in which the flavors or fragrances are dissolved in 

order to facilitate their handling or to offer an extra protection (formation of an oil/flavor 

droplets) prior to processing. 16 In recent studies, MCT is employed as a model active-oil

compound allowing to determine the dispersion and the mixing efficiency of twin-screw 

extrusion processing. 1 9
•
20 Additionally, they can also act as antioxidant because they are

able to reduce the vapor pressure of the active material.40 According to the references

cited before, MCT can be used with any type of carriers, but here they are specially 



Table 6 

Composition of delivery system and its initial and final moisture content in relation with the glass transition temperature (nd = not determined). 

Initial moisture Extrudate 

Initial formulation Core material content moisture content 

Reference composition (%w/w) (%w/w) (%w/w) (%w/w) Tg (OC) Technology 

(Swisher, 1957) Corn syrup/brominated Orange oil (7 .1) 3-8.5 nd nd Melt Injection 

vegetable oil/ 

emargol (88/4.1/0.8) 

(Schultz and Calif, Sucrose/corn syrup Orange oil ( 5 .4) 14 nd nd Melt Injection 

1958) (53.8/26.9) 

(Sair and Sair, 1980) Casein (43.2) Orange oil (7 .6) 45.8 6 nd Silent cutter Autoclave 

(Miller and Mutka, Corn syrup/sugar ( 48/ Orange oil ( 17 .5) nd 5 nd Melt Injection 

1987) 33) 

(Saleeb and Pickup, Maltose monohydrate/ Ethyl butyrate (3.4); nd 3-6 50--80 Melt Extrusion (single 

1989) maltodextrin (24.1/ lemon oil (3.8) screw) 

72.5); mannose/ 

maltodextrin (24/ 

72.2) 

(Kollengode and Starch (95,2) Cinnamaldehyde, 15 nd nd Melt Extrusion ( direct 

Hanna, 1997b) eugenol, nonanoic injection) 

acid, 3-octanone: 

(nd) 

(Black M., Popplewell Whey protein/ Cinnamic aldehyde Excess nd nd Extrusion (not specified 

L., and Porzio M. maltodextrins (nd) if melt extrusion or 

1998) (DElO)/sucrose (50/ melt injection) 

25/25) 

( Continued on next page) 



Table 6 

Composition of delivery system and its initial and final moisture content in relation with the glass transition temperature (nd = not determined). 

(Continued) 

Reference 

(Porzio M. and 

Popplewell L. 1999) 

(Hau M., Gray D., and 

Taylor A. 1998) 

(Gunning et al., 1999) 

(Reifsteck and Jeon 

2000) 

(Porzio and 

Popplewell, 2001) 

(Benczedi and 

Bouquerand, 2001) 

(Ubbink et al., 2001) 

(Leusner et al., 2002) 

Initial formulation Core material 

composition (%w/w) (%w/w) 

Maltodextrin (85.6) Diacetyl (9.1) 

Wheat starch (67.3- Diacetyl, 3-

84.1) methylbutanal, 

heptane (nd) 

Sucrose/maltodextrins Cherry, pepper mint 

(52,8/47,2) flavors (nd) 

Corn syrup/sugar/flour/ Flavors (nd) 

starch (nd) 

Maltodextrin DElO Diacetyl (8.6) 

(81.4) 

Maltodextrin DE19/ Strawberry flavor (3) 

lecithin (90/1) 

Potato starch/capsule Orange oil (5.8) 

E/glycerol (64.1/2.4/ 

2.7) 

Fructooligosaccharide/ Calcium (28) 

Miglyol (65.8/4.9) 

Initial moisture Extrudate 

content moisture content 

(%w/w) (%w/w) Tg (OC) Technology 

5.3 8.3 35-50 Melt Extrusion 

15.9-32.7 19-43 nd Melt Extrusion 

nd (3.5); (5.2) nd Melt Injection 

nd nd nd Melt Extrusion 

10 7.6 51 Melt Extrusion 

6 nd <40 Melt Extrusion 

25 nd nd Melt Extrusion 

1.3 nd nd Melt Extrusion 

( Continued on next page) 



(Benczedi and Maldotextrin DE19/ Fragrance (3) 7 nd 40 Melt Extrusion 

Bouquerand, 2003) silicon dioxide/ 

lecithin (87 /2/1) 

(Zasypkin and Porzio, Hi-Capl00/ Lemon flavor (10-20) nd (7.7);(7.6) (13); (15) Melt Extrusion 

2004) EmCap 12639/lactose 

(40/30/30); 

EmCap12634/Hi-

Cap 100/lactose ( 40/ 

20/40) 

(Bohn et al., 2005) Sucrose/maltodextrin Benzaldehyde (nd) nd 4-5.4 38-54 Melt Injection

(nd) 

(Yuliani et al., 2006) Native corn starch/ d-Limonene (nd) nd nd nd Melt Extrusion (pre-

f:kyclodextrin (nd) encpasulation by 

spray srying) 

(Bouquerand, 2007) Maltodextrin DElO/ Ascorbic acid (20.8) nd nd 35.8 Melt Extrusion 

miglyol/lecithin 

(77 .6/1/0.5) 

(Chang et al., 2010) Maltodextrin/lecithin/ Ascorbic acid (18.9); (4); (2) (9.2); (7.9) <35 Melt Extrusion 

miglyol (75.6/1/0,5); (16.1) 

maltodextrin/ 

( Continued on next page) 



Table 6 

Composition of delivery system and its initial and final moisture content in relation with the glass transition temperature (nd = not determined). 

(Continued) 

Initial moisture Extrudate 

Initial formulation Core material content moisture content 

Reference composition (%w/w) (%w/w) (%w/w) (%w/w) Tg (OC) Technology 

lecithin/miglyol 

(88.4/1/0,5) 

(Zasypkin, 2011) OSAN starch/goumd Flavor (6.6) 2.4 7.6 44.9 Melt Extrusion 

oregano/lactose/ 

dextrose 

monohydrate (43.88/ 

18.62/25.27 /2.65) 

(Benczedi et al., 2011) Maltodextrin DE19, Orange oil (nd) 25 7.5-15.1 49-54 Melt Extrusion 

DE12, DE6 (83) 

(Gregson and Sillick, Maltodextrin/trehalose/ Orange oil (8,3) 19.3 5.8 51 Melt Injection 

2012a,b) lecithin (35.8/35.8/ 

0.8) 

(M.A. Emin and H.P. Native maize starch Medium chain 18 nd nd Melt Extrusion 

Schuchmann, 2013) triglycerides ( 4) 

(Chang et al., 2014) Modified starch/ Vitamin E (5-8) nd nd 30 Melt Extrusion 

maltodextrin/lecithin 

(Tackenberg et al., Maltodextrin DE12 or Orange terpenes and 4-5.7 2-12 54-58 Melt Extrusion 

2015) Maltodextrin DEI 7 / tocopherols (nd) 

sucrose 



employed with maltodextrins, starch and oligosaccharides ( oligofructose ), as emulsifiers 

and vectors to enhance the adsorption of the active compound. 

Hydroxypropyl methylcellulose (HPMC) is a semi-synthetic polymer employed in 

some formulations to control the release of flavors when the delivery systems have to be 

solubilized in water. Porzio and Popplewell95 have suggested that, when dissolved in 

water, HPMC rehydrates, thereby increasing the viscosity of the medium and slowing 

down the diffusion of the flavor in the medium. HPMC is less commonly used than 

OSAN-modified starch, lecithin, or gums. 

Finally, ethyl cellulose is commonly found in the food industry as a colloïdal stabiliz­

ing agent (E462). In microencapsulation it is also used as a viscosity modifier because it 

allows decreasing the interfacial tension between the core material and the encapsulating 

carrier to be lowered, along with the energy required. 

3.4.3. Antioxidants. The second group of additives is antioxidants. These are usually 

employed in the case of microencapsulation of sensitive and readily oxidizable active 

compounds, e.g., oils rich in polyunsaturated fatty acids, bioactive food compounds like 

polyunsaturated fatty acids (omega-3 oils), fragrances, and flavor compounds.25
,

4 1
•
66

•
96

-
99 

For example, the antioxidants most commonly employed for protection of volatiles or 

high sensitive core compounds are ascorbic acid, citric acid, erythorbic acid, and mixed 

tocopherols.99 

3.4.4. Plasticizers. In the polymer industry, plasticizers are an important class of low 

molecular weight compounds, whose role is to modify the mechanical properties of poly­

mers, by lowering down the glass transition temperature. Plasticizers reduce the density, 

the viscosity, the hardness, and the tensile of deformation force of a polymer. And at the 

same time the y render the system more flexible and resistant to fractures 100 and improve

the processability of the polymer. 

In the case of melt extrusion microencapsulation, plasticizers are required to ensure 

formation of the melt inside the extruder' s barrel. If the carrier employed is in a solid­

state, a plasticizer may be necessary; however, for some carrier, depending on the physi­

cal state of the core material, the use of a plasticizer may be optional. 23 In general two

groups of plasticizers are distinguished in this area, water and polyols (also known as low 

molecular weight alcohols). 

As already mentioned in the preceding sections, water is the most frequently used plasti­

cizer for carbohydrates and is also a key process parameter (Table 6). However, other plasti­

cizers, such as sugar alcohols, polyols, glycols, polyglycols, linear alcohols, glycerin, etc., 

have been proposed to avoid early los ses of volatile by water ( or flash) distillation during the 

process. The sugar alcohols are synthesized from carbohydrates whose carbonyl groups have 

been reduced to a primary or secondary hydroxyl group. Polyols are low molecular weight 

plasticizers, characterized by their significant impact on the mechanical properties. They are 

often employed in the fabrication of biopolymeric films because they improved the mechani­

cal properties of the se films in terms of flexibility and elasticity .1 01
•

1 02 For example, sorbitol,

glycerol, erythritol, xylitol, and aqueous-based compositions such as alcoholic solutions of 

polypropylene glycol, polyethylene glycol, pentanol, and hexanol are used for plasticization 

of the biopolymer matrix in extrusion microencapsulation.23
•
40

•
99

•
103 AU of these alternative

plasticizers are bulkier than water and are supposed to provide matrix materials more ductile 

and homogeneous in the extruder barrel. One drawback is that such matrices are also more 

permeable to volatiles, and another is that such alternative plasticizers are not easily removed 

from the final product. Both drawbacks are detrimental to encapsulation. 



Black et al. 23 evaluated the release rate of cinnamic aldehyde using the same type of

carrier but changing the nature of the plasticizer: glycerin or water. Modified starch, 

whey protein, soy protein, and egg albumin were tested for the same amounts of plasticiz­

ers. Results showed that flavor release was more important for extrudates plasticized with 

water than extrudates plasticized with glycerin (and this is true for all the matrices except 

for the modified starch matrix). Besides, Porzio and Popplewell95 have used water as a 

plasticizer, setting very low initial water content around 3 to 5% (w/w), in order to obtain 

an extrudate glass transition temperature of equal or higher than 40°C. 

4. Extrusion Microencapsulation Technologies

4.1. Introduction 

A categorization of the extrusion technologies for microencapsulation has been made in 

recent works,29
'
67

'
68

'
104 leading to a clear distinction between ram extrusion (also called

melt injection) and screw extrusion (also called melt extrusion). 

Swisher,22 and Schultz and Calif 21 defined ram extrusion as a process consisting of a

rotating screw inside a heated cylindrical barrel, where the raw materials are introduced 

in order to be melted. Next, a piston (here called a ram) pressurizes the molten mixtures 

through a die and transforms them into the desired shape. The main advantage of ram 

extrusion is the simplicity of the set-up. The major inconvenience is the limited melting 

capacity of the apparatus, producing poor temperature and composition uniformity in the 

extrudate.68 The resulting material has the consistence of a hard candy entrapping the 

active. 

In screw extrusion, the apparatus is composed of a single screw or two co-rotating 

screws inside a multiple heated barrel section, with inlets in each barrel where the raw 

material or additives can be introduced. The design of the apparatus allows controlled 

shear stress and controlled temperature depending on the conditions desired. In addition, 

according to the screw profile, different conveying, mixing, and shearing zones can be 

established to treat the materials. The raw materials are then mixed, melted, and trans­

ported to a die system where the molten mass is shaped. The advantage of screw extrusion 

is its versatility in terms of operating conditions. The major disadvantage is the difficulty 

of accurately controlling the parameters of this complex set-up to ensure the good and 

constant quality of the final product. On the other hand, to achieve a high quality material 

trough using an extrusion process, it is important to have a solid background knowledge 

in the materials science, so that the adequate formulation and the process variables can 

accurately be chosen. 16
'
30

•
67

-
69

Co-extrusion consists of a dual fluid stream of immiscible liquid core and shell mate­

rials. Coating and core materials are pumped separately through concentric feed tubes 

and exit through the concentric orifices of the nozzles as a fluid rod or drop under the 

action of mechanical or sonic vibrations. Thanks to the action of surface tension, the wall 

material entraps the core material. The wall material is further solidified by a temperature 

drop or cross-linked in a bath containing suitable cross-linking agents. This technology 

does not need a pre-treatment of the carriers nor the active compounds.2,s ,105
,
106 This

type of process will not be further addressed in this review. 

The process steps of the three technologies used for microencapsulation of volatile 

organic compounds referred as extrusion encapsulation are described in Table 7. The 

term extrusion is used here to designate the exiting of a molten mass through an orifice 

under pressure (either by a mechanical piston, as for melt injection, or forced by an 



Table 7 

Overview of extrusion microencapsulation processes: melt injection, co-extrusion and melt extrusion (adapted from Zuidam and Shimoni106
). 

Technology 

Process steps 

Morphology 

Load rate ( % ) 

Particle size (µ,m) 

Melt Injection or Durarome 

1. Melting of the coating

material 

2. Dispersion or dissolution

of the active compound in

the coating material

3. Extrusion of the molten

mixture through filter

4. Coating and dehydration of

the extrudate ( cooling

solvent)

Matrix 

5-20

200--2000

Co-Extrusion 

1. Dissolution or dispersion

of the active compound in

oil (emulsion)

2. Preparation of the aqueous

or fat coating material

3. Using of a concentric

nozzle, and simultaneously

pressing the oil phase

through the outer one

4. Dehydration of the

extrudate by dropping it

into a gelling or cooling

bath (cooling solvent)

Reservoir 

70--90 

150--8000 

Melt Extrusion 

1. Melting of the coating

material inside a twin­

screw extruder

2. Direct introduction of the

active compound (pure or

in a pre-encapsulated

form)

3. Dispersion of the active

compound into the coating

material

4. Cooling and shaping of the

extrudate ( ambient

temperature)

Matrix 

5-40

300--5000



endless screw as in melt extrusion). The three technologies employ similar carrier materi­
als and almost the same operational conditions. However, melt extrusion differs from the 
two others because it does not involve the cooling step using a dehydrating solvent and in 
general the melting of the coating material and the injection of the core are made in situ.

The product delivered by the three methods is a matrix where the active compounds are 
dispersed inside, usually in the form of droplets. 

Melt extrusion is considered nowadays as one of the most promising techniques for 
microencapsulation of flavors and bioactive compounds because it is a highly flexible 
process, economical and environmentally friendly. The versatility of the twin-screw 
extruder allows adapting the conditions and parameters depending on the carrier, core 
material and the product desired. 

4.2. Melt Injection or Durarome® or Ram Extrusion 

The first technologies that were developed to encapsulate sensitive and volatile organic 
compounds relied on the preparation of an emulsion where flavors were finely dispersed 
in the coating material. Next, the dough was forced to exit through an orifice, and the 
high mechanical stress and shear allowed a homogeneous, finely dispersed emulsion and 
a semi-solid matrix to be produced. Finally a cooling step was required to obtain a solid 
glass y extrudate, and thus the mixture was cooled down in an isopropanol bath ( also 
called a bath of dehydrating liquid) and then shaped into granulates. 10

•
107

•
108 These steps 

are shown in Fig. 5. The aim was only to protect the sensitive active ingredient. These 

Corn syrup or Il 
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.........j AnUoxidant 1 
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Figure 5. Scheme of extrusion encapsulation method (adapted from Swisher22
).



Table 8 

Extrusion microencapsulation by melt injection or ram extrusion technology: description of all the processing conditions. 

Type of 

apparatus 

Steam Jacketed Lenhart 

mixer 

Mixer and heater reactor, 

with an orifice 

Steam Jacketed stainless 

vessel with an agitator 

equipped with a plate with 

multiple orifices of 

0,762 mm of diameter 

nd 

Emulsification 

conditions 

1. Emulsification of the

carrier material

2. Emulsification of the core

material and additives

3. Melting and mixing

between 85 and 125°C

1. Emulsification of the

carrier material

2. Emulsification of the core

material and additives,

3. Melting and mixing

between 130 and 150°C

1. Emulsification of the

carrier material

2. Emulsification of the core

material and additives

3. Melting and mixing

between 125 and 130°C

1. Melting of the carriers

2. Melting of the core

material and additives

3. Emulsification step

Cooling 

conditions 

Isopropanol bath (-20°C) 

and vacuum dried 

Cold air tunnel 

Isopropanol bath (-20°C) 

and vacuum dried 

Isopropanol bath (-20°C) 

Reference 

(Swisher, 1957) 

(Schultz and Calif, 1958) 

(Miller and Mutka, 1987) 

(Bohn et al., 2005) 

( Continued on next page) 



Table 8 

Extrusion microencapsulation by melt injection or ram extrusion technology: description of all the processing conditions. (Continued) 

Type of 

apparatus 

Tank reactor with a stirrer 

and outlet valve with die 

holes 

Emulsification 

conditions 

l .Melting and emulsification

of the carriers and

additives 

2. Emulsification of core

material and additives

3. Emulsification of carriers

and core material at 70°C

Cooling 

conditions 

Dehydrating solvent 

isopropanol or hexane 

(-4°C) 

Reference 

(Valentinotti et al., 2006) 



methods were called "extrusion encapsulation" since they involved in their process the 

use of a screw (as a stirrer or as a shear stress tool) in order to force a molten carbohydrate 

mixture to exit through a die or a series of dies.14,16,21,22,25,41,56,106,107,109 

The process of encapsulation is divided here into three steps; the first step consists of 

melting the carbohydrate matrix in the presence of a plasticizer (generally water or glyc­

erol), if required. Usually, the melting temperatures do not exceed 140°C in order to avoid 

thermal degradation of the active compound. Typical melting temperatures lie between 

110 and 140°C. The second step corresponds to the addition of the active ingredient into 

the melt. In cases where the core ingredient is sensitive to oxidation, this step is carried 

out under an inert atmosphere. From the literature, the active compound is added to the 

carrier mixture, directly or as an oil-in-water emulsion, and the mixture is strongly stirred 

so as to disperse the flavor into the melting carbohydrate matrix. The third step is exiting 

and cooling of the dough. The mixture is forced to exit through a die, which results in the 

formation of a homogeneous product where the flavor is finely dispersed. The matrix is 

still in the rubbery state, but it is directly cooled down and dehydrated in isopropanol to 

induce transition to the glassy state. As shown in Table 8, microencapsulation by melt 

injection can be carried out in various types of apparatus (steam jacket mixer, tank reactor 

with an orifice or multiple nozzles). Depending on the type of device, different forms can 

be obtained (rods, droplets). 

The drying step is mandatory every time the extrudate contains high levels of plasti­

cizers and cold isopropanol is often used as a drying agent at this stage. Concomitantly, 

the extrudate is transformed into a glassy matrix by the dual effect of desiccation and 

cooling. This drastic shift from a paste to a glassy state fosters the entrapment of the 

active compound. 

The Durarome® process named after the trade name of the first commercially avail­

able line of encapsulated flavors made by Firmenich S.A.,17
'
48

'
56 is based on this method

and involves the dispersion of the flavor into a sucrose and maltodextrin candy matrix. 

However, the cooling step is more considered as a counterproductive stage rather 

than being an advantage, because it is an extra step in the whole process and increases 

both the time and the cost of production. This is not to mention the costs due to sol vents 

like isopropanol and the fact that such a process is not compliant with today' s food regu­

lations, which tend to limit the use of organic sol vent in food production processes. 

Nonetheless, it is important to stress that the aim of encapsulation in these early days, 

was to protect the flavor compounds against oxidation and evaporation, in order to extend 

the flavored product's shelf life.21
'
22

'
25

'
26 The controlled release of the active compound 

is a more recent property that can be adjusted by modifying either the formulation of the 

microcapsules or the processing conditions. 69 

Different apparatus have been developed since the pioneering work of Swisher to 

perform ram extrusion. These go from vertical screw-less extruders to multiple needle 

droplet-generators (also known as a nozzle encapsulation technology), and those men­

tioned in Uhlemann and Reiss' review.14 Actually there are six other methods 

(i) simple dripping

(ii) electrostatic extrusion

(iii) coaxial airflow

(iv) vibrating jet/nozzle

(v) jet cutting

(vi) spinning disk atomization), which have been recently described in the literature

as extrusion encapsulation technologies.



Table 9 

Processing parameters for melt twin-screw extrusion microencapsulation:*extruder has 4 temperatures zones, the numbers in brackets correspond 

to a range of values. SME ( = specific mechanical energy). 

Type of 

extruder 

(ratio L/D) 

(Coperion) ZSK30 

&ZSK57 - 16:1& 

34:1 

(Plasticorder) 2803 -

20:1 

(Clextral) BC 21-16:1 

nd 

(Clextral) BC 21& 

BC45- 16:1& 20:1 

Feeder Feeder 

rate rate 

solid liquid (kg/ 

(kg/h) h) 

5.4 nd 

nd nd 

3.7 [0.7 - 1.81] 

6.8 [0.18-0.42] 

[5-50] nd 

Screw 

speed 

(rpm) 

[50-500] 

100 

nd 

nd 

nd 

Temperature 

profile Die 

(OC) diameter 

(mm) 

nd nd 

*60,120,110, 7 

100 

*50, 100, 120, 10 

80 

[93-121] nd 

[90---130] [0.7-2] 

Pressure 

die 

(Pa) 

nd 

nd 

nd 

nd 

[l X 105 

-50xl05
]

SME 

(kJ/kg) 

nd 

[360---540] 

nd 

nd 

< 10 

Reference 

(Carret al., 1991) 

(Kollengode and 

Hanna, 1997 a, 

1997b) 

(Hau et al., 1998) 

(Porzio and 

Popplewell, 2001) 

(Benczedi and 

Bouquerand, 

2001 )(Benczedi 

and Bouquerand, 

2001 )(Benczedi 

and Bouquerand, 

2003 )(Benczedi 

et al., 2011) 

( Continued on next page) 



Table 9 

Processing parameters for melt twin-screw extrusion microencapsulation:*extruder has 4 temperatures zones, the numbers in brackets correspond 
to a range of values. SME ( = specific mechanical energy). (Continued) 

Feeder Feeder Temperature 
Type of rate rate Screw profile Die Pressure 
extruder solid liquid (kg/ speed (OC) diameter die SME 
(ratio L/D) (kg/h) h) (rpm) (mm) (Pa) (kJ/kg) Reference 

(Berstorff) ZE25- 40: 1 3.5 nd nd [70---120] a(die 7 2.1 X 106 nd (Ubbink et al., 
50---70) 2001) 

(Clextral) BC45- 20: 1 [25-35] [0.10--- 175 [140-160] 4 nd nd (Bouthoul et al., 
0.481] a(die 185- 2002a) 

195) 
(Coperion) 4 [0.4-1.1] [150-200] [15-120] [0.5-1] nd < 180 (B. H. Van 

ZSK25&Buhler44- Lengerich, 2002) 
40:1 (Lengerich et al., 

2010) 
9.6 [3.2-6.8] 80 0.5 

(Buhler) DNDL44- 9 0.18 nd [30-160] [0.25- 1] nd < 180 (Leusner et al., 
40:1 2002) 

40:1 & 50:1 [2.16-115] nd [50-700] nd [0.8-1] nd < 180 (Kohlus and Pacha, 
2004) 

nd [6-15] [0.12-0.72] 100 <121 0.79 6.86x106 nd (Zasypkin and 
Porzio, 2004; 
Zasypkin, 2011; 
Zasypkin et al., 
2013) 

( Continued on next page) 



Table 9 

Processing parameters for melt twin-screw extrusion microencapsulation:*extruder has 4 temperatures zones, the numbers in brackets correspond 

to a range of values. SME ( = specific mechanical energy). (Continued) 

Feeder Feeder Temperature 

Type of rate rate Screw profile Die Pressure 

extruder solid liquid (kg/ speed (OC) diameter die SME 

(ratio L/D) (kg/h) h) (rpm) (mm) (Pa) (kJ/kg) Reference 

(Prism Eurolab) KXl 6- 0.96 0.4 [158- 242] [50-167] 2 nd nd (Yuliani et al., 

40:1 2006) 

(Clextral) BC 21- 16:1 nd nd nd nd [1-3] [lx105 
- nd (Bouquerand, 2007) 

10xl05
] 

(Haake Polylab 3 nd 80 *80, 105, 115, 3 [1 x106 
- nd (Chang et al., 2010) 

System)- 24: 1 95 3.5x106
] 

ZSK 26 Mc Coperion 10-30 1-3 300-800 140 3 nd nd (M. A. Emin and H. 

29 P. Schuchmann,

2013)

LTW26 HB- 1.50-3.00 nd [248-748] 105-145 1.25 nd [920-2115] (Tackenberg et al., 

Feinmechanik 2015) 

GmbH&Co (25: 1)) 



However, they correspond more to a co-extrusion encapsulation technology because 

they are based on the same principles as melt injection.4•
5

•
11 

4.3. Melt Extrusion or Extrusion Microencapsulation 

Melt extrusion encapsulation differs from melt injection encapsulation, not only because 

the apparatus employed is different but also because no pre- and/or post-treatment is 

applied to the materials (carriers, active compounds, and extrudate). The major difference 

between these two processes is the moisture content: in melt injection high levels of water 

are required so that the slurry can be extruded; while in melt extrusion the melt can take 

place at low water content levels. The advantage of working at low moisture content is 

that no post-extrusion drying process after is required, thus the material obtained is more 

homogenous (has less fractures on the surface). Therefore, melt extrusion encapsulation 

corresponds to a process allowing a glassy delivery system to be obtained, by melting 

matrix components and mixing them with the active compounds under specific 

conditions. 

The technology applied is generally a twin-screw extruder, whose flexible configura­

tion allows the melting, addition, mixing, and cooling of the carbohydrate mixture in a 

continuous system. According to the configuration of the extruder, different barrel tem­

peratures, various inlet ports for liquid injection or solid feed, and screw profiles ( convey­

ance, mixing and nest against) can be set up depending on the active ingredient and the 

biopolymer matrix. 15
•

19
•
20

•
49 The process is usually divided into three steps (Fig. 6): first

of all, the introduction of powder mixture of the carbohydrate into the extruder' s first bar­

rel section, plus a plasticizer or additives can be added if required into the barrel next to 

the solid feed section. Then the heating and mixing zone are established upstream in order 

to form a rubbery, viscous, and homogeneous mass before the introduction of flavors. 

Finally, these flavors can be finely dispersed into the molten mass in the last sections of 

the extruder, via a pump.16

The liquid aroma compounds are generally introduced into the extruder' s first barrel 

sections or right at the end. Also, depending on the product' s final application, a pre­

encapsulation step and/or post-coating of the delivery system can be made in order to 

increase final product performance. 

Single-screw extrusion can also be used here, but the mechanical shear exerted on the 

molten mass is lower than in twin-screw extrusion, due to the fact that only a conveying 

screw is used, and this is filled-up all along the extruder barrel. Saleeb and Pickup27 have 

employed a single-screw extruder for the encapsulation of orange oil flavor in a maltodex­

trin matrix. Extrusion temperature was ranged between 98 and 105°C and screw speed 

was set around 60 rpm. The flavor load obtained in this example was similar to the values 

found in twin-extrusion encapsulation that are around 5 and 40% (Table 9). 

4.4. Key Process Parameters 

The processing conditions in extruders are strongly determined by the chemical stability 

and physical properties of the coating and matrix material (molecular weight, desired 

glass transition of the final product, melt viscosity, and melting point). All these proper­

ties should be taken into account to establish adequate processing conditions. 68 However,

depending on the technology applied (ram extrusion, Durarome® , or melt extrusion) pro­

cess variables are also very important and can directly affect the macroscopic characteris­

tics of the final product, e.g., the texture, aspect, and release properties. Figure 6 shows 
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Figure 6. Scheme of flavor encapsulation by melt extrusion using a Twin-screw extruder (adapted 

from Ubbink and Schoonman16
).

the different independent processing variables, for melt extrusion, influencing the proper­

ties of the final material.110 

As already mentioned, carbohydrates constitute the mostly used matrix materials in 

melt extrusion and extrusion encapsulation,69 and since these materials are essentially 

glassy and brittle, polar plasticizers are necessary to insure homogeneous melting of the 

carrier under appropriate thermo-mechanical stress and shear conditions. The preferred 

plasticizer is water. 

The glass transition temperature of the delivery system depends on two important 

process parameters: extrusion temperature and moisture content. In addition, extrusion 

temperature and moisture content are directly related to viscosity and in the same way the 

volatile retention relies on viscosity. For this reason, temperature and moisture content 

are considered the most important factors affecting volatile retention. Therefore control­

ling viscosity is critical and thus, measurements of exit die pressure are always made.94 

The examples given in Table 9 show that, in general, pressure at the die exit is in of the 

same range for the studies presented ( 1x105 and 7 x 106 Pa) and glass transition tempera­

tures for these delivery systems are around 30°C and 50°C. This implies that the moisture 

contents employed for these formulations are of the same order. And in fact, moisture 

content of the examples shown in Table 6, are in agreement with the pressure values 

given in Table 9. Zasypkin and Porzio,3
° Chang et al.,35 and Benczedi et al.34 measured 

pressures at the die' s exit of 6.86 x 106 Pa, 3 .5 x 106 Pa and 1 x 105 to 50 x 105 Pa and a 

moisture content of 7.5% (w/w), 9.3% (w/w) and 12.3% (w/w), respectively. 

As mentioned earlier, water is the key parameter goveming the stability of biopoly­

mers. lt influences the crystalline and amorphous structures, the glass transition 
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Figure 7. State diagram showing transformations of proteins during the wetting, heating, cooling, 

and drying stages of extrusion cooking (adapted from Kokini et al. 111).

temperature and consequently the thermoplastic properties of biopolymers. Increasing the 

moisture content of a biopolymer increases the chain mobility and the heat capacity, but 

it decreases the viscosity and the system glass transition temperature. All these physico­

chemical properties can be explained by how water interacts with the biopolymer.74 

Understanding water-biopolymer interactions gives a better insight thermo-mechanical 

processing. Similarly, knowing water-biopolymer interactions allows the processing con­

ditions to be determined in order to better target the final properties of the material. 

Glass transition temperature of the biopolymer is correlated to water-biopolymer 

interactions. Thanks to a combination of mechanical spectrometry and differential 

scanning calorimetry data, the glass transition temperature of a protein-based matrix 

can be determined. The results provide a better understanding of the phase transition 

behavior of amorphous biopolymers at different moisture contents. For instance, 

Kokini and co-workers111 determined protein state diagrams, in order to predict 

physical states and phase transitions of the material during processing conditions 

(e.g., extrusion or baking). Figure 7 shows the state diagram of proteins under differ­

ent physical conditions (i.e., cooling, heating, drying, wetting) during extrusion 

cooking processing. As mentioned above, this diagram demonstrates the importance 

of moisture content and the temperature conditions that are required to obtain the 

desired polymeric matrix during a thermo-mechanical process (melt extrusion, melt 

injection, thermo-molding, etc.). 
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The other main process variables in melt extrusion are the temperature profile, screw 
profile and geometry, screw speed, feed flow rate, moisture content and feed composi­
tion.19·20·49 The influence of these variables can be evaluated by measuring the mechani­
cal or the thermal energy, the residence time, or other properties of the extrudate like 
product expansion (axial and radial expansion), breaking strength, encapsulation effi­
ciency and release rate. 35·112·113 The process of melt extrusion encapsulation has different
independent variables and measurable responses that must be taken into account (Fig. 8). 
The most frequently measured responses are encapsulation rate or encapsulation effi­
ciency, and both can be used for discussion. 

The processing conditions described in both patents and academic work (Table 9) are 
quite similar. The temperature profile is more or less the same, but the choice of extrusion 
temperature depends on the type of matrix and active material. In the case of active mate­
rials like sensitive oils rich in polyunsaturated fatty acid, extrusion temperature does not 
exceed 120°C 39·98. In fact, the temperature profile retained for melt extrusion does not
exceed l 60°C in order to avoid thermal degradation of the compounds to be encapsulated 
(fragrances, flavors, bioactive food compounds, etc.). However, not only the core mate­
rial, but also the carrier material may be aff ected by the temperature profile. For example, 
mixtures of oligosaccharides are more resistant to temperature than maltodextrins, which 
begin to break down at around 180°C. Hence, Leusner et al.66 have applied an extrusion 
temperature of about 160°C to entrap ascorbic acid and calcium in a mixture of oligosac­
charides, while Chang et al.35 applied a temperature no higher than 115° to entrap ascor­
bic acid, just in maltodextrins. 

Although the temperature profile has a great impact on flavors' stability during proc­
essing, screw speed is also important to control in order to avoid degradation of the fla­
vors by mechanical shear stress. Indeed, screw speed is crucial because it exerts shear 
stress into the polymer/active core mixture, modifying its viscosity by involving self­
heating through viscous friction, and also determining the residence time of the mixture 
inside the extruder. Usually a long residence time and high shear stress can cause thermal 
degradation not only of the active core (flavors, fragrances, bioactive food compounds) 
but also of the carriers (degradation, polymerization, or offside reactions). Similarly, vis­
cosity decreases when the shear stress exerted increases. For this reason, when the com­
pound to be entrapped is very sensitive to temperature or shear stress, mild extrusion 



conditions are required. In the example quoted above, Chang et al.,35
•
50 have employed 

gentle temperatures not above 1 l5°C and a screw speed of 80 rpm for the encapsulation 

of ascorbic acid in maltodextrin. In the case of proteins used as carriers, screw speed is 

around 150 rpm, in order to avoid their degradation by mechanical shear. 

The screw profile, along with the temperature profile or screw speed, is the major 

parameter goveming the structural transformation of the polymeric matrix (viscosity, 

expansion, physical changes). Hence, the screw profile can play a central role influencing 

the residence time inside the extruder. Nonetheless, in some papers, this parameter is not 

described or studied. In general the screw profile chosen for most of the examples found 

in the literature consisted of conveying and mixing elements. Reverse pitch screw ele­

ments are avoided in order to reduce both shear stress and residence time. Recent works 

have focused on the influence of screw profile on the polymer-based matrix, but not on 

the effect that it could have on volatile' s retention.19
•
20 

The parameter that has been given the most of attention in the literature is the loca­

tion of the flavor injection port. In fact, depending on the position where the flavor is 

introduced in the extruder barrel, the retention of volatiles can change, possibly leading 

to significant losses during the process.15
•
55

•
78

•
94 Indeed, the location of the injection port 

directly influences four key factors in the extrusion process, which in tum may impact the 

retention of volatiles. These factors are: (i) the pressure drop when the extrudate exits the 

die, (ii) the relative volatility and diffusion (thermodynamic parameters) of the active 

compounds in the system, (iii) the interactions between the active compounds and the 

matrix, and (iv) the degradation reactions (oxidation, thermal degradation, polymeriza­

tion). For example, Lengerich 98 has demonstrated that changing the point of introduction 

can reduce the losses of active compounds. The highest loss (72,3%) was obtained when 

active compound was introduced in the first barrel section, whereas when it was intro­

duced into the seventh barrel section of the extruder, losses were about 12,2%. This is 

because when the active compound is injected into the first barrel, it is exposed to temper­

atures around 120°C and 140°C for a longer period oftime. Conversely, if the active com­

pound is introduced in barrel seven, it is only exposed briefly to high temperatures. 

There are three methods to introduce flavors into an extruder. The first consists of 

pre-incorporation of the flavors into the feed material prior to extrusion, either by prepar­

ing an emulsion of carrier/active core, or by spray-drying the flavors with a part of solid 

carrier and then mixing this with all carrier material. The disadvantage of this method is 

that since the active compound is added at the beginning of the extrusion process, volatile 

molecules are more likely to be degraded because of the harsh conditions at the beginning 

of the extrusion process. The second method is the direct injection of flavors into the 

extruder, into the last or the middle barrel section. The problem with this procedure is 

that, even though it leads to better retention rates, flavors are lost due to expansion at the 

extruder' s exit die, due to the pressure increase linked to the reduction in size of the exit 

die. As a consequence the volatiles are flashed-off at the die level. Finally, the last method 

is a combination of pre-incorporation and post-coating of the delivery system, this 

method is highly cost-intensive but it improves the quantity of flavor retained in the 

matrix and allows the release of the active compounds to be slowed down. 

A principal difficulty encountered when encapsulating liquids by extrusion processes 

is solid-liquid separation, which leads to oil exudation from the extrudate mass and is due 

to filtration of the phase having the highest mobility through the less mobile phase (for a 

comprehensive overview of solid-liquid separation in extruder, see Bouvier and 

Campanella 114
). 



Hence, rare are the papers where flavors are introduced directly into the extruder 

without any pre-encapsulation treatment. Kollengode and Hanna38'55 were the first to

inject pre-encapsulated the flavors directly into the end barrel section of an extruder. In 

their case, the flavors were pre-encapsulated with ,8-cyclodextrin and then injected into 

the extruder. Even though this technique of pre-encapsulation of the core material before 

extrusion allows having a better protection of flavors against losses, the pre-encapsulation 

step mises the cost, and even more so if ,8-cyclodextrin is employed. U sing ,8-cyclodextrin 

and spray drying are very highly expensive pre-encapsulation techniques. 

In more recent industrial patents, direct injection of flavors in the form of an emul­

sion (i.e. direct injection of flavors in a pre-encapsulated form) has become more and 

more common in order to minimize losses of volatiles during the extrusion process, vary 

the release rate and reduce production costs. Core materials are introduced into the 

extruder as an emulsion of active and additive (plasticizers, compatibilizing agents and 

antioxidants compounds). Or in other cases, core materials are mixed with a part of the 

matrix compounds that are in a liquid state (i.e., corn syrup).35,4o,55,66 ,115 

The use of extrusion as a microencapsulation technology is relatively new and com­

prehensive engineering models adapted to the behavior of paste-like oil-in-matrix 

"emulsions" are missing. In this context, the comprehensive exposition of the engineering 

principles of extrusion technology in food and non-food materials, recently published by 

Bouvier and Capanella, 114 can be considered as an inspiring source for further work in

this area. 

5. Conclusions and Future Prospects

Encapsulation of flavors and fragrances, as well as other active compounds (nutraceutics 

and bioactive food components, pesticides, dyes, enzymes) is a domain that is still in 

expansion due to the increasing consumer' s demands for better quality from the raw 

materials to the final products. 

It is a must to reduce energy consumption, waste production and pollution. There­

fore, global policies are focused on leading research and industrial development, into a 

more environmentally friendly and sustainable domains.116 

Twin-screw extrusion can be seen as versatile technology that can be employed in 

different industrial domains, and can contribute with great benefits to sustainable devel­

opment, i.e., for green extraction of raw materials.1 17-119 

As an encapsulation process, twin-screw extrusion technology can be categorized as 

a green process (if compared with other encapsulation technologies: interfacial polycon­

desation, suspension and emulsion polymerization, and fluidized bed coating among 

others). Twin-screw extrusion encapsulation, as it was mentioned before, is a one-pot 

encapsulation technique, which combines: the formation of the wall material, the disper­

sion of the active principle, and at the exit of the die the forming of the encapsulated 

material. All these three diff erent stages take place inside the barrel or the die of the 

extruder 30. To compare, spray-drying encapsulation technology needs the prior prepara­

tion of the liquid formulation 8'105'107'120'121 . The reducing number of steps in an indus­

trial process contributes to reduce energy consumption. Moreover, encapsulation by twin­

screw extrusion does not require a pre- or post-treatment after extrusion unlike most of 

the other encapsulation methods. 

Two other remarkable assets of twin-screw extrusion are the absence use of organic 

solvents (contrary to the polymerization techniques122 and fluidized bed coating123) and

the low amount of water (20% water content) as compared with spray-drying technology 



(that requires more than 80% of water). Both of these points involve the reduction of pol­

lution and production costs during the manufacturing process. 

To counteract the strong dominance of spray drying in the microencapsulation area, 

apart from reducing production costs, extrusion encapsulation appears as a versatile and 

sustainable technique for glassy microencapsulation. Extrusion microencapsulation is 

presented as a pioneering technology allowing the creation of new delivery systems, pro­

viding not only protection of the active compound but also, in some extent, its controlled 

release. 

There remain, however, clear areas of improvement that would help extrusion encap­

sulation to become a more universal tool. In first rank, increasing the intemal, encapsu­

lated liquid phase (payload) in the extrudate would help reducing the material cost and 

make the technology more affordable for other applications, such as laundry products or 

agro-formulations. Secondly, there is a strong need for matrices having simultaneously a 

high encapsulation power and a low hygroscopicity, e.g. for better stability under moist 

environment. Finally, much remains to be done in the area of triggered release of volatile 

materials under pre-defined conditions. 

Among the different technologies employed in extrusion encapsulation, with all the 

processing parameters that have to be controlled in order to obtain "the perfect delivery 

system" with the specific characteristics (T
g
, moisture content, encapsulation 

efficiency ... ), a lack of understanding of the phenomena occurring during microencapsu­

lation seems to be the major limitation in this domain. For this reason a concerted 

approach to food material science, materials science, flavor and fragrances chemistry and 

physical chemistry are required for further progress in this area. Emphasis must be given 

to determine the type of interactions between the matrix and the encapsulated materials, 

the state of this matrix, and the extrudate morphology, so as to establish the mechanisms, 

which control the release of volatile active compounds when and where they are desired. 
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