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Abstract

We report on equiaxed dendritic growth in solidifying Al-Cu alloys, partic-
ularly the interactions between the dendrites that ultimately form the grain
structure in the solid. A three-dimensional phase-field code is designed to
reproduce the same conditions as the ones imposed in the experiments. Our
numerical results allow us to propose scaling laws that govern the dynamics
of dendritic primary arms, with the elemental composition and the average
distance between two nuclei as physical parameters. These laws are used to
extrapolate our numerical results to the experimental situation where phase-
field simulations are beyond reach. Good quantitative agreement is found
between the predicted behavior and the experimental observations, which
validates the scaling laws obtained.

1. Introduction

Aluminum-copper alloys provide the common basis of aluminum bronzes
that are used in many industrial areas, such as aeronautics, automotive indus-
try, or water supply. They are valued for their lightness, strength, hardness,
and high resistance to corrosion [1, 2].

The fabrication of aluminum bronzes usually starts from the molten alloy
that is solidified by cooling down the system. For most structural materials,
homogeneous and isotropic properties are seeked. To obtain such properties,
equiaxed growth under isothermal cooling conditions is usually prefered [3].
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This solidification process occurs in two successive stages. During the nucle-
ation stage, solid nuclei appear throughout the system, often but not always
promoted by the addition of refiners [4]. In the second stage, equiaxed den-
drites grow from these nuclei. At the very beginning of their growth, the
solid grains can be considered isolated but, since solute is constantly rejected
in the liquid, a diffusion layer progressively builds up around the grains and
they soon start to interact. Equiaxed growth stops when the interactions
between the arms of neighboring dendrites become strong enough [5]. This
process is at the origin of the polycrystalline structure that largely conditions
the physical properties of the material.

In the last decades, a number of numerical approaches were developed to
describe the simultaneous growth of equiaxed dendrites from a liquid bath.
Currently, the gap between small-scale and large-scale simulations in three di-
mensions (3D) is not yet bridged [6, 7], mainly because small-scale phase-field
methods have remained limited to 2D so far [8]. This situation is unfavorable
because in large-scale methods the kinetic of the dendrite tip is a necessary
input that could be obtained from 3D small-scale simulations. The purpose
of this paper is to improve the current situation by combining 3D phase-field
numerical simulations with experiments to establish simple laws that govern
the dynamics of two interacting equiaxed dendrites.

We consider thin samples of an initially liquid aluminum alloy contain-
ing copper at a nominal concentration c0. Equiaxed dendrites are grown by
imposing a uniform and constant cooling rate R. Our numerical simulations
are performed in three dimensions. They are based on a phase-field model
adapted to the present case of isothermal cooling. The accuracy and versa-
tility of 3D phase-field models were recently demonstrated by quantitative
comparisons with a wide variety of experimental situations [9–14].

In the present phase-field simulations, the limiting length is the capillary
length that is inversely proportional to c0. Phase-field simulations at ex-
perimental concentrations (typically 10 wt% Cu) are currently out of reach
because of the huge number of domain points (several billions) necessary to
resolve the capillary length with sufficient accuracy. This leads us to per-
form numerical simulations at lower concentrations and to establish scaling
laws depending both on c0 and on the average distance between two den-
drites. Extrapolation to higher values of c0 allows direct comparison with
the experiments.

We remark that three-dimensional numerical simulations for high cop-
per concentrations are in fact feasible within the dendritic needle network
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(DNN) model [15]. This approach has proved very successful to simulate
large systems consisting of several columnar dendrites that grow and com-
pete in directional solidification [15, 16]. One requirement of the model is
that dendrite tips obey the solvability condition ρ2V =cst, where ρ is the
radius of curvature and V the growth velocity. However, as discussed in the
following, this condition is never verified in our case, so that DNN would be
less suited for the present situation of equiaxed dendrites.

Previous experimental results [5] show that collisions between adjacent
dendrites occur within a minute or so, while diffusion times are much longer.
The growing dendrites are thus always very far from steady-state conditions.
This point was confirmed by the copper concentration measured at the solid-
liquid interface: values lower than 1.08c0 were found [5], very far from the
value c0/k ' 7.1c0 that would be reached in a stationary state. Phase-
field simulations are expected to follow the system evolution quantitatively,
which makes them especially well suited to study the present solidification
process despite its intrinsically transient nature. For instance, the ability
of the phase-field approach to describe the initial transient for directional
solidification of similar alloys was recently demonstrated [17].

Altogether, the numerical results provided by our phase-field model should
give new insight into the laws governing interactions between growing equiaxed
dendrite. A brief numerical study of these interactions has already been re-
ported [18]. However, as noted by the authors, the mesoscopic model they
used for this study did not allow consideration of fully transient conditions.

This paper is organized as follows. Section 2 gives a brief description
of the experimental setup and presents two sets of results that provide the
experimental basis of our work. Section 3 gives the main ingredients of the
phase-field code used in the simulations, and in section 4 numerical results
obtained for the generic features of equiaxed dendrites are discussed. Based
on systematic simulations of equiaxed growth, the scaling of the tip veloc-
ity with time, copper concentration and distance between two dendrites is
established and the corresponding scaling laws are presented in section 5.
Direct comparisons between the experimental data and the obtained scal-
ing laws are made in section 6. Finally, a short summary completed by our
conclusion is provided in section 7.
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2. Experiments

Synchrotron X-ray radiography was used to analyze in situ the develop-
ment of equiaxed grains in two samples of composition Al-4 wt% Cu and
Al-10 wt% Cu respectively. The experiments were carried out at the ID19
beamline of ESRF (European Synchrotron Radiation Facility). The sheet-
like thin samples were 40mm in length, 6mm in width, and about 200µm in
thickness. The main surface of the sample was set perpendicular to the in-
cident monochromatic X-ray beam with an energy E = 14keV. Sequences of
radiographs were recorded during solidification experiments with a FReLoN
CCD camera providing a pixel size of 7.46µm, an exposure time of 1s, and
a field of view of 15mm×6mm, which is sufficient to distinguish the main
dendrite features during their development. Equiaxed growth is achieved in
a furnace, which is described in detail elsewhere [19]. The two heating el-
ements of the furnace are precisely adjusted to melt the samples in nearly
isothermal conditions. The same cooling rate was applied on both heaters.
Heterogeneous nucleation occured at the crucible wall/oxide skin, leading to
the development of equiaxed grains. Most of the grains remained attached to
the wall during their development as previously reported by Bogno et al. [5].
Several melting/solidification cycles with different cooling rates were applied
to the samples. In this paper, we will only consider experiments carried out
with a cooling rate R = 0.5K/min.

Dendrite arms of two grains were selected to investigate the impact of
solutal interactions during solidification. A radiograph recorded during their
growth, along with measurements of the evolution of their growth velocity as
a function of time, is shown in Figure 1.a for the Al-4 wt% Cu sample and in
Figure 1.b for the Al-10 wt% Cu sample. These dendrite arms were chosen
because their growth velocity profile clearly exhibits an initial acceleration
that corresponds to a free growth regime as previously reported by Bogno
et al. [5]. They also grow almost horizontally so that they are less exposed
to gravity-driven fluid flow [20]. Only a limited number of dendrites develop
such horizontal arms since grains nucleate with a random crystallographic
orientation. The dendrite arm of the Al-4 wt% Cu sample is facing a side
of the sample and the dendrite arm of the Al-10 wt% Cu sample is facing
another dendrite arm. Both configurations lead to solutal interactions that
induce a significant decrease of the growth velocity after a maximum velocity
value is reached. It is worth noting that a plateau in the growth velocity is
measured at the early stage of growth for the dendrite arm of the Al-4 wt%

4



Cu sample. This feature does not appear in the measured velocity for the
dendrite arm of the Al-10 wt% Cu sample, although it might have occurred,
but then would not have been captured due to the rather large time length
between two successive recorded images (14s).

3. Phase-field model

We make use of the thin interface phase-field model introduced by Alain
Karma and co-workers [21, 22]. This model is adapted here to the experi-
mental condition of a constant cooling rate.

Rather than the usual phase-field ϕ ∈ [−1, 1], we use the pre-conditioned
phase-field

ψ =
√

2 tanh−1(ϕ), (1)

as in [10–13, 23, 24]. This change of variable was introduced by Glasner [25]
with the purpose of increasing the code efficiency by using coarser numerical
grids without loss of accuracy. We also make use of Graphics Processing Unit
(GPU) parallel programming [11–13, 26] to further increase the efficiency of
our code.

We only give the main lines of the model here. For more details, we refer
the reader elsewhere [10]. Numerical simulations are performed in a thin
parallelepipedic domain, x lying along the sample width, y along the sample
thickness and z along the sample height.

3.1. Evolution equations

The solid-liquid interface width W0 is used as the unit length [27, 28].
Al-Cu being a rough material, a unit time τ0 = a0W

3
0 /(Dd0) is imposed

to cancel the kinetic coefficient [27, 28]. Here, d0 is the chemical capillary
length, D the solute diffusion constant in the liquid phase (the one-sided
model is considered here), and a0 ' 0.5539. As equiaxed growth with a
constant cooling rate R is considered, the imposed temperature appears in
the phase field equations through a factor

Θ(t) =
( 1

1− k

)( Rt

TL − TM

)
=

Rt

βkmc0
, (2)

where TL is the alloy Liquidus temperature and TM the melting temperature
of pure aluminium, βk = (1−k), k being the partition coefficient, and m < 0
is the Liquidus slope. The Θ factor represents the slow temperature decrease
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that is imposed in the experiments [5]. Solidification begins at the Liquidus
temperature, and the sample temperature typically decreases by only a few
degrees during the whole process. In order to obtain a non-dimensional
version of the evolution equation for ψ, we follow the usual convention where
lengths and times are respectively divided by W0 and τ0. The resulting
equation is

(1− βkΘ)a2s
∂ψ

∂t
= a2s

[
∇2ψ −

√
2ϕ(~∇ψ)2

]
+
√

2
[
ϕ− λ(1− ϕ2)(U + Θ)

]
+ 2as~∇as~∇ψ

+

√
2

(1− ϕ2)
~∇ ~A, (3)

As in the case of directional solidification, the temperature factor Θ(t) is also
introduced on the left hand side of this equation to minimize higher-order
spurious terms [22].

The nondimensional concentration field U is related to the physical con-
centration field c through

c = c0

(
1 + βkU

)(αk − βkϕ
2

)
, (4)

where αk = (1 + k). For our rough material, the constant that couples the
non-dimensional concentration field U to the phase-field is λ = 75D∗/47,
with D∗ = Dτ0/W

2
0 [28].

Both as and ~A depend on the crystal anisotropy. In the present case,
the anisotropy is cubic and the crystal axes [1 0 0], [0 1 0] and [0 0 1] are
aligned with the x, y, and z axes of the numerical mesh. The corresponding
anisotropy function reads then [29]

as = (1− 3ε4) + 4ε4(n
4
x + n4

y + n4
z), (5)

where nx, ny, nz are the components of the unit vector ~n along the normal
to the solid-liquid interface and ε4 is the anisotropy strength. The three
components of the anisotropy vector ~A are given by

Ax,y,z = 16ε4
(1− ϕ2)√

2
|~∇ψ|as nx,y,z

[
(n4

x + n4
y + n4

z)− n2
x,y,z

]
. (6)
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As we neglect solute diffusion in the solid (one-sided model), we must
introduce a corrective solute current

~jat =
W0

2
√

2
c0βkG~n, (7)

where

G =
1− ϕ2

√
2

(1 + βkU)
∂ψ

∂t
, (8)

in order to counterbalance the excess of solute trapping and other spurious
corrections due to the finite interface thickness W0 [21, 22].

The evolution equation for the nondimensional concentration field U is
then [21, 22] (

αk − βkϕ
)∂U
∂t

= (1− ϕ)D∗ ∇2U

−(1− ϕ2)√
2

D∗ ~∇ψ ~∇U

− 1√
2
~n ~∇G+G

(
1−

~∇~n√
2

)
, (9)

independent of the solidification type (equiaxed or directional). This scheme
is equivalent to the one used in [8] to perform 2D simulations in similar
conditions.

3.2. Parameters and conditions imposed

The main physical parameters used in the simulations for the aluminum-
copper alloys are listed in table 1. Let us note that the present estimate of the
partition coefficient, k = 0.14, is an average value over an extended range of
concentrations (c0 < 33 wt% Cu) [30]. In order to obtain more precise results
one should extract the small variations of k with the copper concentration
from a more detailed phase diagram and include them in the numerical code.
We expect that the simulation results would be more accurate but the main
conclusions of the present work should remain very similar. The first step
consists in defining a suitable initial condition. The present choice is an equi-
librium shape that is prepared by bringing an initially spherical solid nucleus
(50µm in radius) to equilibrium. The pre-conditioned phase-field ψ and the
dimensionless concentration field U are calculated for a given temperature
T close to the Liquidus temperature. Then T is varied up and down with a

7



Table 1: Physical parameters used in the simulations.

Parameter physical meaning Value unit

D copper diffusion coefficient 3000.0 µm2/s
in the liquid

k partition coefficient 0.14 −
m Liquidus slope −2.6 K/wt% Cu
T0 aluminum melting 933 K

temperature
c0 copper concentration 1.0, 1.5, 2.0 wt% Cu
ε4 crystal cubic anisotropy 0.01 −
Γ Gibbs-Thomson coefficient 0.236 Kµm

progressively decreasing amplitude, until the interface velocity is arbitrarily
close to zero. Once the seed in equilibrium, the growth simulation is started
from there. Mirror (no-flux) conditions are constantly imposed at all the do-
main boundaries. These boundary conditions allow us to simulate only one
half of the experimental thickness. Also, a mirror dendrite is automatically
progressing toward the reference dendrite from the right and another mirror
dendrite from above, causing the two primary arms of the reference dendrite
to collide with their mirrors. The interface width is taken sufficiently small,
W0 = 24.0d0, that no spurious side-branching occurs unless a spatiotemporal
noise is introduced. Figure 2 shows how the simulation results for the time
evolution of the dendrite tip velocity are affected by the imposed interface
thickness W0 = ξd0. A good convergence is observed when the parameter
ξ is decreased: as expected, the precision of the code is improved when the
interface thickness is reduced. On the other hand, since the CPU/GPU time
is proportional to ξ−5, we need to increase ξ to reach accessible computation
times. A reasonable compromise between precision and calculation time is
obtained here for the choice ξ = 24.0.

As the numerical unit length W0 is inversely proportional the copper con-
centration, the mesh grid δs varies the same way. We take here δs/W0 = 1.0.
As shown in [25], this choice gives very accurate results for a pre-conditioned
phase-field. The dimensions of the physical and numerical domains are gath-
ered in table 2. This table implies that simulations at high concentrations
are practically impossible with our code. For instance, our smallest system
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would contain 4.0 × 109 grid points for the concentration c0 =10 wt% Cu
used in most experiments. Our strategy then consists in performing simula-
tions at lower concentrations and in finding reliable laws to extrapolate the
obtained results to higher concentrations.

Table 2: Physical dimensions of the system (Lx = Lz = L) for different copper concentra-
tions and corresponding numbers of mesh points in the numerical domain.

Lx × Ly × Lz (µm3) c0 (wt% Cu) Nx ×Ny ×Nz

800× 100× 800 1 316× 40× 316
1.5 474× 60× 474
2 632× 80× 632

1000× 100× 1000 1 394× 40× 394
1.5 594× 60× 594
2 792× 80× 792

1200× 100× 1200 1 474× 40× 474
1.5 712× 60× 712
2 952× 80× 952

4. Numerical results for generic features of equiaxed growth

4.1. Successive phases in the dendrite evolution

In the present simulations, an eighth of the whole equilibrium solid ob-
tained previously is taken as the initial nucleus and its center is placed at
the corner of the numerical domain. Thus, only an eighth of a dendrite is
simulated as shown in figure 3. Temperature is then lowered at a constant
cooling rate R = 0.5K/min, which provokes growth of two primary arms
along x and z (〈100〉 crystallographic directions). The dendrite arms grow
freely at first but, due to the limited available distance L, they start colliding
with their mirror images after some time. Three main growth phases can be
distinguished (see the next subsection for a detailed description and see the
movie provided as supplementary material for a visual support).

1. The initial slow growth (about 60s in figure 3) is the consequence of
the initially low and slowly increasing undercooling.

2. After that, the copper diffusion fields ahead of the two impinging
dendrites start to overlap, the resulting interactions progressively slow down
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the dendrites that ultimately stops when they reach the domain boundary
(at about 100s in figure 3).

3. From now on, slow ripening occurs during which the tip velocity
decreases sharply, the primary arms broaden, secondary arms develop and
progressively occupy the whole available space, leaving highly concentrated
narrow liquid channels.

Let us mention that, since we are not concerned with secondary instabil-
ities like side-branching here, no numerical noise is imposed in the simula-
tions discussed in the paper. We nevertheless performed a few simulations
including a weak spatiotemporal noise as in [10] to test the effect of ther-
mal fluctuations. As a result, the growth of the dendrite primary arms was
basically unaffected by the noise.

4.2. Time evolution of the dendrite physical properties

To start with, the time evolution of a number of characteristic properties
is presented and analyzed. Let us define the dendrite tip as the solid point
that is most distant from the center of the initial nucleus along the horizontal
axis x (the z tip may be alternatively chosen). We denote by xtip, V , and ρ1
the tip location, tip velocity, and tip radius of curvature measured in the xz
plane.

Figure 4 shows the time evolution of V and ρ1. After about 30s, V and ρ1
systematically vary in opposite directions but from figure 4c, it is clear that
during the growth regime (phases 1 and 2, t < 90s) the dendrite tip never
reaches a stationary state where the selection parameter ρ21V remains con-
stant. We found very similar results for the radius of curvature ρ2 measured
in the xy plane. The fact that both radii are comparable in magnitude and
in time evolution shows that confinement effects due to the crucible thickness
are weak. As a consequence, the dendrite tip must be fully 3D and not 2D.
This is confirmed in figure 2 that includes the results of a 2D simulation.

The interactions of the dendrite with the mirror dendrite that grows to-
wards it progressively increase in time. These interactions result from an
overlap between the copper diffusion fields ahead of the dendrite tips. Strong
interactions can be expected at a given time t if two conditions are simulta-
neously fulfilled:

i) the remaining distance L − xtip is not too large as compared to the
instantaneous diffusion length `s = D/V ,

ii) the time remaining before the tip becomes blocked, tf − t is not too
small as compared to the instantaneous diffusion time td = D/(kV 2).
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The factor 1/k is introduced in the expression of td is appropriate for the
transient starting from a uniform concentration profile c = c0 and leading to
a steady state [31].

Figure 5a shows the time evolution of the remaining distance divided by
`s. One sees that the curve reaches a maximum of about 2.5 at time t ' 70s
and that the remaining time divided by td almost simultaneously reaches a
maximum of about 0.5 (figure 5b). In the neighborhood of these maxima,
substantial tip-tip interactions are expected because it was actually shown
that dendrite tips growing in opposite directions weakly (but definitely) in-
teract when they are closer than three diffusion lengths [32]. In the present
case of head-on collisions, one expects the diffusion fields to overlap much
more effectively. This is confirmed by our results showing that the interac-
tion becomes significant at the beginning of phase 2 for a tip to tip distance
of about 4`s.

During phase 1, the overlap between the diffusion fields remains weak,
as shown by the concentration profiles in figure 5c. This is so because the
buildup of copper ahead of the tip takes much longer than the experience du-
ration. Altogether, it takes about 60s for the diffusion fields to start overlap-
ping. The ensuing collision stops the dendrite progression at time tf ' 100s.
At later times, the dendrite tip is almost immobile and the copper concen-
tration ahead of it continues to increases in time, as shown in figure 5c: this
corresponds to the third growth phase (ripening).

5. Scaling laws for the intermediate growth regime (phase 2)

5.1. Influence of two physical parameters : concentration and available dis-
tance

Figure 6 shows the dendrite tip velocity as a function of time for different
copper concentrations c0 and different values of L that is half of the initial
distance between two identical nuclei (or the available distance for each nu-
cleus). Most features are common to all the chosen parameter sets (L, c0),
like the existence of a maximum tip velocity, Vm, at a time tm. The similar-
ities between the different curves strongly suggest that scaling laws can be
derived.

With this in mind, we focus on a velocity interval [V ′m, Vm] corresponding
to a time interval [t′m, tm]. This interval must be sufficiently far from the
influence of the initial condition and still cover most of the second growth
phase described in the previous subsection. For this reason, we choose V ′m =
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Vm/2, so that we consider the fast growth regime that is abruptly stopped by
dendrite-dendrite collision when the diffusion fields start to overlap (growth
phase 2). All the V (t) data obtained for the different parameter sets (L, c0)
are gathered in figure 7, where the scaled velocity

Y = (2V − Vm)/Vm (10)

is plotted as a function of the scaled time

X = (t− t′m)/∆tm, (11)

with ∆tm = tm − t′m. For these scaled coordinates one sees that all the data
collapse on a master curve that represents the dynamical scaling law for the
velocity evolution in the chosen time interval. It is to be noted that this law
remains qualitative so far because the physical values of Vm and ∆tm that
are of practical importance are hidden by the scaling.

5.2. Scaling with the physical parameters

In order to predict the values of Vm and ∆tm for a given parameter set
(L, c0), one needs to extract additional scaling laws from the data (provided
such laws exist). The growth velocity V should vary as the applied under-
cooling −Θ(t) that is expressed in equation (2) as a function of time and
concentration. On one hand, for a given concentration c0, the maximum
velocity Vm must increase with the available distance L because the under-
cooling is proportional to time. On the other hand, for L fixed, Vm must
decrease with c0 because the undercooling is inversely proportional to c0. As
seen in figure 6, our numerical results do comply with these requirements.

One can then expect that Vm varies as (L/c0
a)α with a and α two positive

exponents. As seen in figure 8, a satisfactory scaling can be obtained for
simple values of the scaling exponents, a = 1/3 and α = 2, thus giving the
velocity law

Vm ' 2.6× 10−5
( L2

c02/3

)
(12)

with Vm in micrometers per second for L in micrometers and c0 in wt% Cu.
These values of a and α are obtained by numerical fits of our Vm data, the
resulting estimates being slightly rounded to give simple integer ratios.

Moreover, a scaling law for the time interval ∆tm is also needed. Our
numerical data indicate that, for all the concentrations considered, one has

Vm∆tm/L = Lm/L ' 0.546 (13)
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within a few percent (figure 9). The scaling law that is compatible both with
this result and with equation (12) is

∆tm ' 2.1× 104
(c02/3

L

)
. (14)

It gives ∆tm in seconds for L in micrometers and c0 in wt% Cu. Here again,
a good agreement is found between this law and our numerical data for ∆tm
(figure 8).

6. Comparison between numerics and experiments

The experimental velocity curve obtained for c0 = 4 wt% Cu gives Vm '
22.8µm/s and ∆tm ' 25.2s (figure 1a). Thus Lm = Vm∆tm ' 575µm, so
that the available growth distance predicted by equation (13) is L ' 1053µm.
Measuring directly the nucleus-wall distance in figure 1a, one obtains L '
1050µm, in perfect agreement with the scaling prediction. This result is espe-
cially significant because the observed occurence of a dendrite colliding with
the crucible wall is very comparable to the situation that is simulated nu-
merically. Alternatively, for c0 = 10 wt% Cu, figure 1b gives Vm ' 11.1µm/s
and ∆tm ' 68.6s, thus Lm ' 760µm. The available growth distance pre-
dicted by equation (13) is now L ' 1390µm but measuring half the nucleus
to nucleus distance in figure 1b gives L ' 1200µm, a value about 15% lower
than the scaling prediction. However, one sees that the two dendrites on
the right side of figure 1b are obviously at an earlier growth stage than the
leftmost one. One may thus reasonably assume that the available distance
L for the leftmost dendrite is significantly larger than half the nucleus to
nucleus distance (possibly by about 15%). Altogether, the reasonable agree-
ment found in both cases with the experiments gives strong support to our
scaling approach.

Obviously, numerous physical effects exist in the experiments that are not
included in our simple model. Two such effects are for instance :

1. In the simulations, two mirror nuclei appear simultaneously and they
grow in opposite directions. In the experiments dendrites start to grow at dif-
ferent times, with different crystallographic orientations and different growth
directions (as just discussed for figure 1b).

2. In the experiments, gravity effects provoke globally vertical solute
currents that modify the copper concentration in front of the primary arms
of the dendrite according to their growth direction.
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Both effects induce local perturbations in the copper concentration field
that propagate on large distances and affect the shape of the dendrite tip as a
consequence. One can thus expect that the prefactors and/or the exponents
that enters the scaling laws (12) and (14) are modified by the two effects
just mentioned. As just discussed for the experimental image in figure 1b,
including these effects in the numerics is expected to improve the agreement
with the experiments.

7. Summary and conclusion

We have obtained both experimental and numerical data for the time
evolution of aluminum-copper equiaxed dendrites. Numerical estimates of
the dendrite tip velocity V and radius of curvature ρ have shown that ρ2V is
never constant, thus that equiaxed dendritic growth is an intrinsically tran-
sient phenomenon. Three growth phases have been identified: an initial slow
growth phase, followed by a fast growth phase abruptly stopped by collisions
with other dendrites, and finally a ripening phase. Our numerical data for
the second growth phase have allowed us to establish the scaling laws that
govern the dendrite tip maximum velocity Vm and the time ∆tm needed for
the tip velocity to increase from Vm/2 to Vm as functions of copper concen-
tration c0 and available growth distance L. From these scaling laws, we have
obtained the very simple result that Lm = Vm∆tm = 0.546L, independent
of c0. This result is remarkable because it does not require any extrapola-
tion with the concentration. This means that the present results are readily
valid for the high experimental concentrations. Obviously, the scaling equa-
tions for Vm and ∆tm taken separately do involve the copper concentration
c0. Moreover, their validity range is limited as L increases. However, based
on the present results one expects the upper L limit to be rather high for
the experimental concentrations. Finally, a good agreement of the scaling
equations with the corresponding experimental results has been found and
possible physical causes of discrepancy have been identified.

In conclusion, this work suggests that the growth of competing equiaxed
dendrites appears as a rather complicated process because it is entirely tran-
sient. For this reason, predicting the time evolution of equiaxed dendrite
may seem out of reach. However, since our phase-field simulations give scal-
ing laws in the very simplified situation considered here, we can hope to find
more general evolution laws corresponding to situations that are closer to

14



the experiments. Such scaling evolution laws obviously could be used for
higher-scale simulations like mesoscopic envelope models [6].
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Figure 1: Experimental results for the velocity V of two dendrite arms as a function of
time during solidification by isothermal cooling at R = 0.5K/min. (a) Al-4 wt% Cu with
a dendrite arm facing a wall. The dashed line on the left indicates the side of the sample.
(b) Al-10 wt% Cu with a dendrite arm facing another dendrite arm.
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Figure 2: Time evolution of the dendrite tip velocity (L = 1000µm, c0 = 1.0 wt% Cu). In
3D, the convergence of the curve with the interface thickness W0 = ξd0 is shown for four
values of the convergence parameter ξ. The difference between the two highest maxima is
about 7 percent and almost no evolution is found for ξ ≤ 18.0. The 2D results are obtained
for ξ = 24.0: note the large quantitative differences with the corresponding curve in 3D.
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Figure 3: Six snapshots showing the growth of a dendrite simulated in a thin domain of
size 1000× 100× 1000µm3 for a copper concentration c0 = 1.0 wt% Cu (ψ = 0 isosurfaces
are represented). Perspective views are shown to give a better 3D impression: (a) initial
condition, (b) slow growth, (c) beginning of the fast growth, (d) end of the fast growth
(V = Vm), (e) early ripening, (f) late ripening.

0 15 30 45 60 75 90
t (s)

0

5

10

15

20

25

30
(a)  V (µm/s)

0 15 30 45 60 75 90
t (s)

0

2 

4 

6 

8 

10 
(b)  ρ (10 µm)

ρ1
ρ2
ρav 

0 15 30 45 60 75 90
t (s)

0

1 

2 

3 

4 
(c)   ρ2V (104

µm3/s)

Figure 4: Time evolution of the horizontal tip for the dendrite shown in figure 3: ρ1 (ρ2)
is the radius of curvature calculated in the xz (xy) plane and ρav = 2(ρ1ρ2)/(ρ1 + ρ2).
Plot of (a) tip velocity V , (b) tip radius of curvature ρ, (c) selection parameter ρ2V .
L = 1000µm, c0 = 1.0 wt% Cu.
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Figure 5: Time evolution of solutal interactions between two colliding dendrite arms.
Vertical lines delimit the three growth phases 1, 2 and 3 discussed in the text. (a) (L −
xtip)/`s, the remaining distance ahead of a dendrite tip divided by the instantaneous
diffusion length, as a function of time. (b) (tf − t)/td, the remaining time divided by the
diffusion instantaneous time, as a function of time. (c) Copper concentration profiles along
the growth direction x obtained at different times starting from t = 0.6s and increasing
by steps of 6.0s (from the left to the right). L = 1000µm, c0 = 1.0 wt% Cu.
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Figure 6: Numerical results for the velocity V of the dendrite tip as a function of time.
Three copper concentrations are considered and for each concentration, the simulations
are performed for three values of the available distance, L = 1200, 1000, 800µm from top
to bottom.
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Figure 7: Numerical results for the scaled tip velocity as a function of the scaled time.
The data are extracted from the curves of figure 6. The continuous line is obtained
by fitting the data points to a fourth-order polynomial: the result of the fit is Y =
0.90X − 0.43X2 + 1.82X3 − 1.28X4.

24



500 1000 15000

10

20

30

40

50
 Vm (µm/s)   vs   L/c0

1/3 (µm) 

∆tm (s)   vs   L/c0
2/3  (µm)

Figure 8: Two scaling equations given in (12) and (14) (lines) that are obtained by fitting
the numerical data for the maximum velocity Vm (circles) and the time interval ∆tm
(squares).
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Figure 9: Scaling of the product Lm = Vm∆tm with the available distance L. The
numerical data (circles) suggest that Lm ' 0.546L. The parameter sets (L, c0) imposed
in the simulations are numbered from 1 to 9. They respectively correspond to (L, c0) =
(800, 1), (800, 1.5), (800, 2), (1000, 1), (1000, 1.5), (1000, 2), (1200, 1), (1200, 1.5), (1200, 2),
with L in micrometers and c0 in wt% Cu.
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