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Abstract

We report experimental evidence of ballistic hole transport in one-dimensional quan-

tum wires gate-defined in a strained SiGe/Ge/SiGe quantum well. At zero magnetic

field, we observe conductance plateaus at integer multiples of 2e2/h . At finite mag-

netic field, the splitting of these plateaus by Zeeman effect reveals largely anisotropic

g-factors, with absolute values below 1 in the quantum-well plane, and exceeding 10

out of plane. This g-factor anisotropy is consistent with a heavy-hole character of the

propagating valence-band states, in line with a predominant confinement in the growth

direction. Remarkably, we observe quantized ballistic conductance in device channels

up to 600 nm long. These findings mark an important step towards the realization of

novel devices for applications in quantum spintronics.

Quantum spintronics is an active research field aiming at the development of semicon-

ductor quantum devices with spin-based functionality.1 This field is witnessing an increasing

interest in exploiting the spin degree of freedom of hole spin states, which can present a

strong spin-orbit (SO) coupling, enabling electric-field driven spin manipulation,2,3 and a

reduced hyperfine interaction, favoring spin coherence.4–6
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Efficient electric-dipole spin resonance was recently demonstrated for hole spins con-

fined in silicon quantum dots.7,8 Even faster manipulation should be possible in germanium,

where holes have stronger SO coupling.9 Germanium is also known to form low-resistive

contacts to metals, owing to a Fermi-level pinning close to the germanium valence band.

This property can lead to interesting additional opportunities, such as the realization of

hybrid superconductor-semiconductor devices10 (e.g. Josephson field-effect transistors,11

gatemons,12,13 and topological superconducting qubits based on Majorana fermions,14,15 for

which the concomitant presence of strong SO coupling would play a key role).

Experimental realizations of Ge-based nanoelectronic devices have so-far relied primarily

on bottom-up nanostructures: Ge/Si core/shell nanowires (NWs),16–19 SiGe self-assembled

quantum dots,20,21 and Ge hut NWs.22 Following recent progress in SiGe epitaxy, SiGe/Ge/SiGe

quantum-well heterostructures embedding a high-mobility two-dimensional hole gas have

become available,23–25 providing a new attractive option for the realization of quantum na-

noelectronic devices.26–28

Here we report the fabrication and low-temperature study of devices comprising a gate-

tunable, one-dimensional (1D) hole channel with a gate-defined length varying between 100

and 900 nm. We reveal the ballistic 1D nature of hole transport through measurements of

conductance quantization. By measuring the Zeeman splitting of the conductance plateaus

in a magnetic field, ~B, applied along different directions, we find a strong g-factor anisotropy

consistent with a dominant heavy-hole (HH) character of the 1D subbands.

The devices were fabricated from a nominally undoped heterostructure consisting of

a pseudomorphically strained, 22-nm thick Ge quantum well (QW) confined by Si0.2Ge0.8

barriers, i.e. a relaxed Si0.2Ge0.8 buffer layer below, and a 72-nm-thick Si0.2Ge0.8 layer above,

capped by 2 nm of low-temperature-grown Si. The heterostructure was grown by reduced

pressure chemical vapor deposition on a Si(001) wafer (See Ref.29 and details therein).

At low temperature, the Ge QW is carrier free, and hence insulating, due to the inten-

tional absence of doping. A two-dimensional hole gas with a mobility of 1.7 × 105 cm2/V s
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and a hole density of ∼ 1011 cm−2 can be electrostatically induced by means of a negatively

biased top gate electrode (for more details see Supplementary Information).

The device layout consists of a mesa structure defined by optical lithography and reactive

ion etching with Cl2 gas. Two platinum contact pads, to be used as source and drain

electrodes, are fabricated on opposite sides of the mesa. Platinum deposition is carried out

after dry-etch removal of the SiGe overlayer followed by a two-step surface cleaning process

to eliminate the native oxide (wet HF etching followed by Ar plasma bombardment in the

e-beam evaporator). We obtain contact resistances of the order of few kΩ. An Al2O3 30-nm

thick gate oxide layer is deposited by atomic layer deposition at 250 C◦. Ti/Au top-gate

electrodes are finally defined using e-beam lithography and e-beam metal deposition: a

central gate extending over the mesa is designed to induce the accumulation of a conducting

hole channel between the source to the drain contact; two side gates, to be operated in

depletion mode, create a tunable 1D constriction in the channel oriented along the [100]

direction. We have varied the geometry of the side gates in order to explore gate-defined 1D

hole wires with different lengths. Here we present experimental data for two devices, one

with a short (∼ 100 nm) and one with a long (∼ 600 nm) constriction (see Figs. 1 (a) and

(b), respectively).

All magnetotransport measurements were done at 270mK in a 3He cryostat equipped

with a superconducting magnet. Figure 1 (c) shows a data set for a device, labelled D1,

nominally identical to the one shown in Fig. 1 (a). The differential conductance, G, measured

at dc source-drain bias voltage Vds = 0, is plotted as a function of Vsg for magnetic fields, ~B,

perpendicular to the QW plane and varying from 0 to 0.5 T. In our experiment, G was directly

measured using standard lock-in detection with a bias-voltage modulation δVsd = 10µV at

36.666Hz. In addition, G was numerically corrected to remove the contribution from all

series resistances (∼ 20 kΩ), i.e. the resistances of the measurement circuit, the source and

drain contacts, and the two-dimensional hole gas.

G exhibits clear quantized plateaus in steps of 2e2/h, where e is the electron charge and
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h is the Plank constant. This finding is consistent with the results of a recently published

independent work carried out on a similar SiGe heterostructure.26 Applying an out-of-plane

magnetic field lifts the spin degeneracy of the 1D subbands, resulting in plateaus at multiples

of e2/h. These plateaus underpin the formation of spin-polarized subbands. They emerge

at relatively small magnetic fields, of the order of a few hundred mT, denoting a large

out-of-plane g-factor as expected in the case of a predominant HH character.

We measured several devices with side-gate lengths, Lg, ranging from 100 nm (as in Fig.

1 (a)) to 900 nm. The G(Vsg) measurements shown in Fig. 1(d) were taken on a device

with Lg ≈ 600 nm, labelled as D2 and nominally identical to the one shown in Fig. 1(b).

Remarkably, these measurements demonstrate that clear conductance quantization can be

observed also in relatively long channels largely exceeding 100 nm.

We note that a shoulder at G ∼ 0.7 × 2e2/h is visible in the B = 0 traces of both Fig.

1 (c) and (d). This feature, which is highlighted in the respective insets, corresponds to

the so-called 0.7 anomaly. Discovered and widely studied in quantum point contacts defined

in high-mobility two-dimensional electron systems,30–35 and more recently observed also in

semiconductor nanowires,36,37 the interpretation of this phenomenon remains somewhat de-

bated.38–42

To further confirm the 1D nature of the observed conductance quantization, we present

in Figs. 2 (a)-(c) waterfall plots of the non-linear G(Vds) at three different perpendicular

magnetic fields (B = 0, 0.3, and 0.5 T, respectively) for device D1. Clear bunching of

the G(Vds) is observed around Vds = 0 for gate voltages corresponding to the quantized

conductance plateaus of Fig. 1(c). With magnetic field applied, the first plateau at G = e2/h

begins to appear at B = 0.3 T and is fully formed at B = 0.5 T. At B = 0, a zero-bias dI/dV

peak can seen in correspondence of the 0.7 structure, in line with previous observations.33

The well-resolved spin splitting of the 1D subbands enables a quantitative study of the

hole g-factors. To investigate the g-factor anisotropy, we applied ~B not only along the z

axis, perpendicular to the substrate plane, but also along the in-plane directions x and y,
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indicated in Figure 1 (a). To change the ~B direction, the sample had to be warmed up,

rotated, and cooled down multiple times. Thermal cycling did not modify significantly

the device behavior, except for the value of threshold voltage on the channel gate for the

activation of hole conduction in the Ge QW (this voltage is sensitive to variations in the

static charges on the sample surface).

Figures 3 (a), (b) and (c) show the B-evolution of the trans-conductance dG/dVsg as

a function of Vsg, with ~B applied along x, y and z, respectively. The data refer to device

D1. In these color maps, the blue regions, where dG/dVsg is largely suppressed, correspond

to the plateaus of quantized conductance. On the other hand, the red ridges of enhanced

dG/dVsg correspond to the conductance steps between consecutive plateaus, which occur

every time the edge of a 1D subband crosses the Fermi energy of the leads. At finite B,

the red ridges split, following the emergence of new conductance plateaus at odd-integer

multiples of e2/h. Upon increasing B, the splitting in Vsg increases proportionally to the

Zeeman energy EZ,n = |En,↑ − En,↓|, where En,σ is the energy of the 1D subband with spin

polarization σ and orbital index n.

For an in-plane B, either along x or y, the splitting becomes clearly visible only above

approximately 2 T. As a result, the explored B range extends up to 6 T. For a perpendicular

field, the Zeeman splitting is clearly more pronounced being visible already around 0.2 T.

This apparent discrepancy reveals a pronounced g-factor anisotropy, with a g-factor along

the z-axis, gz, much larger than the in-plane g-factors, gx and gy. Such a strong anisotropy

is expected in the case of two-dimensional hole states with dominant HH character, corrob-

orating the hypothesis of a dominant confinement in the z direction, which is imposed by

the QW heterostructure.

Besides causing the Zeeman splitting of the 1D subbands, the applied ~B has an effect

on the orbital degree freedom of the hole states. The effect is relatively weak in the case of

an in-plane B because the magnetic length, inversely proportional to
√
B, gets as small as

the QW thickness only for the highest B values spanned in Figs. 3(a) and 3(b). On the
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contrary, the relatively weak lateral confinement imposed by the side gates leaves room for

a pronounced B-induced orbital shift. This manifests in Fig. 3 (c) as an apparent bending

of the dG/dVsg ridges towards more negative gate voltages.

In order to quantitatively estimate the observed Zeeman splittings, and the correspond-

ing g-factors, we performed bias-spectroscopy measurements of dG/dVsg as a function of

Vds and Vsg at different magnetic fields. In these measurements, the dG/dVsg ridges form

diamond-shape structures from which we extract the Zeeman energies, as well as the lever-

arm parameters relating Vsg variations to energy variations. Representative dG/dVsg(Vds,Vsg)

measurements, and a description of the well-known procedure for the data analysis are given

in Supplementary Information. Interestingly, for a given B, both the Zeeman energy and

the lever-arm parameter can vary appreciably from subband to subband.

Figures 3 (d), (e), and (f) present the estimated EZ,n values as a function of B, for the

first few subbands, and for the three B directions. Linear fitting to EZ,n = gnµBB yields

the Landé g-factors, gx,n, gy,n, and gz,n for the three perpendicular directions. The extracted

g-factors for the device D1 are listed in Table 1. We have included also the gz,n values

obtained from another device (D3) with Lg = 100 nm.

For device D1 (D3), the perpendicular g-factor ranges between 12.0 (10.4) and 15.0 (12.7),

while the in-plane one is much smaller, varying between 0.76 and 1.00, with no significant

difference between x and y directions. A large in-plane/out-of-plane anisotropy in the g-

factors is consistent with the hypothesis of a dominant HH character. In fact, in the limit

of vanishing thickness, the lowest subbands of a Ge QW should approach pure HHs with

gx ≈ gy ≈ 0 and gz = 6κ + 27q/2 = 21.27, where κ and q are the Luttinger parameters

(κ = 3.41 and q = 0.06 for Ge).

In the investigated SiGe QW heterostructure, the HH nature of the first 2D subbands

is enhanced by the presence of a biaxial compressive strain in the Ge QW, increasing by

∼ 40 meV the energy splitting with the first light-hole (LH) subbands.43 The creation of a

1D constriction does not introduce a significant HH-LH mixing because confinement remains
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dominated by the QW along the growth axis (z). From a measured energy spacing of around

0.65 meV between the first and the second 1D subband (see Supplementary Information),

we estimate that the hole wavefunctions of the first subband have a lateral width (along

y) of approximately 80 nm, which is an order of magnitude larger than the wavefunction

extension along z.

The results summarized in Table 1 suggest a slight tendency of the g-factors to decrease

with the subband index. This trend is consistent with the results of earlier experiments with

both electron36,44 and hole45–47 quantum point contacts. A possible explanation is that the

exchange interaction increases the g-factor in the low-density limit.31,48 Yet hole g-factors in

quantum point contacts depend also on a complex interplay of spin-orbit coupling, applied

magnetic field, and electrostatic potential landscape.49,50 Acquiring a deep understanding

of the g-factors reported here would require more extensive and sophisticated experiments

together with a nontrivial theoretical analysis, which goes well beyond the scope of the

present work.

In conclusion, we have demonstrated ballistic hole transports in 1D quantum wires gate-

defined in a Ge/Si0.2Ge0.8 heterostructure. The ballistic regime is observed for wires up to

600 nm long. By investigating the Zeeman splitting of the quantized conductance steps we

find that out-of-plane g-factors are an order of magnitude larger than the in-plane ones,

denoting a pronounced HH character. This can be ascribed to the dominant confinement

along the growth axis and to the compressive biaxial strain in the Ge QW. The observation of

ballistic 1D hole transport in remarkably long channels and large out-of-plane g-factors holds

special promise for the development of devices with spin-related functionality. In principle,

the fabrication of these devices could be implemented in an industry-standard fab line with

the possibility of monolithic integration with conventional silicon electronics.
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Supplementary Information

Additional experimental data from a gated Hall-bar device, providing information of the

transport properties of the two-dimensional hole gas. Additional data from another 1D-wire

device (D3). Description of the procedure to extract energy spacings in a 1D channel.
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Figure 1: (a) and (b) False color scanning electron micro-graphs of representative devices.
Scale bars: 100 nm (a) and 200 nm (b). Gate voltages Vtg < 0 and Vsg > 0 are applied to
the channel gate (colorized in red) and the two side gates (colorized in green), respectively.
Current Ids flows in Ge QW under the channel gate along the x direction. To enable that,
the channel gate extends of all the way to the source/drain contact pads, which are located
about 15 µm away from nanowire constriction, i.e. outside of the view field in (a) and
(b). (c) and (d) Measurements of zero-bias conductance G as a function of Vsg at different
perpendicular magnetic fields, Bz, from 0 to 0.5 T (step: 0.1 T). Data in (c) ((d)) refer to
device D1 (D2), which is nominally identical to the one shown in (a) ((b)). In both cases
we observe clear conductance quantization and the lifting of spin degeneracy at finite field.
Conductance has been rescaled to remove the contribution of a series resistance RS slightly
varying with Bz between 22 and 24 kΩ. The different traces are laterally offset for clarity.
Insets: Zoom-in of the 0.7 anomaly (indicated by an arrow) at zero magnetic field.
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Figure 2: Waterfall plots of differential conductance, G, as a function of source-drain bias,
Vds, at different values of side-gate voltage Vsg (gate step: 5mV). The three plots were taken
on device D1 at different out-of-plane magnetic fields: (a) 0T, (b) 0.3T and (c) 0.5T. The
spanned Vds range varies with Vsg, and hence with G. This follows from the procedure used to
take into account the effect of the series resistance, RS. In this procedure, we assumed RS to
be monotonically increasing with the current Isd flowing across the device. This assumption
was motivated by the need to account for non-linearities in the series resistance coming
primarily from the source/drain contacts to the two-dimensional hole gas. At Vsd = 0, RS

is a constant all over the spanned Vsg range. At finite Vsd, RS varies with Vsg due to the Vsg
dependence of G. As a result, the corrected Vds range tends to decrease when lowering Vsg,
and hence increasing G.
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Figure 3: (a)-(c) Numerical derivative of G with respect to Vsg as a function of Vsg and
magnetic field applied along the x (a), y (b) and z (c) directions (data from device D1).
(d)-(f) Zeeman splittings EZ,n = |En,↑ − En,↓| as a function of magnetic field along the x (d),
y (e) and z (f) directions. Red, blue, and green open symbols correspond to the first, second,
and third spin-split subbands, respectively. The g factors for each subband are obtained
from the slope of the linear fits to the Zeeman relation EZ,n(B) (solid lines). The results are
given in Table 1.
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Table 1: This table summarizes the results of g-factor measurements on device D1 and D3.
These g-factors are obtained from the slope of the linear fits in Fig. 3 (d)-(f)) and Fig. S3
(c).

g1 g2 g3

D1
Bx 1.00 ± 0.15 0.82 ± 0.12 -
By 1.00 ± 0.15 0.91 ± 0.19 0.76 ± 0.16
Bz 15.0 ± 2.3 12.0 ± 1.8 13.0 ± 2.8

D3 Bz 12.7 ± 2.2 11.8 ± 1.8 10.4 ± 1.6
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Supplementary materials: Ballistic one-dimensional hole

transport in Ge/SiGe heterostructure

Hall measurements

The details of the heterostructure used in the present work are given in Fig. S1 (a).S1,S2

To characterize the basic electronic properties of this heterostructure, gated Hall-bar devices

(Fig. S1 (b)) were fabricated and measured at 0.3 K. Representative measurements of

longitudinal resistivity, ρxx, and Hall resistance, ρxy, are shown in Fig. S1 (c). Shubnikov-de

Haas (SdH) oscillations and quantum Hall plateaus are observed in ρxx and ρxy, , respectively.

The two-dimensional hole density, ns, and the hole mobility, µ, are plotted as a function of

Vtg in Fig. S1 (d). In the shown Vtg range, ns depends linearly on Vtg, reaching the largest

value of 0.8× 1010 cm−2 at the most negative Vtg. This is close to maximal hole density that

could be achieved. In fact, by going to more negative Vtg, i.e. Vtg < −4 V, we encountered

two types of problems: the accumulation of a parasite hole gas at the interface with the gate

oxide,S3,S4 and gate leakage.

Measurement of the Zeeman energy

In this section we illustrate the procedure to measure Zeeman energy splittings. The

color plot in Fig. S2 is a representative example of a dG/dVsg as a function of Vds and Vsg

at Bz = 0.4 T. The magnetic field is large enough to lift spin degeneracy. The diamond-

shape blue regions centered around Vds = 0 V correspond to conductance plateaus at integer

multiples of e2/h. White/red lines bordering the diamonds define the edges of the plateaus.

These lines are not always clearly visible. Dashed lines have been drawn to highlight their

position. These lines correspond to aligning the energy of a subband edge with the Fermi

energy of either the source or the drain lead. As a result, the apexes of the diamonds, defined
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by the crossings of consecutive dashed lines, are located at a source-drain bias voltage equal

to the energy spacing between consecutive subband edges. The horizontal half-widths of

the odd diamonds provide a direct quantitative measurement of the Zeeman energies EZ,n,

as illustrated in Fig. S2. The measurement accuracy can be conservatively estimated by

varying the slope of the dashed lines until it becomes apparent that they no longer follow the

dG/dVsg ridges. Because the dG/dVsg ridges happen to be generally broad and sometimes

even hard to identify, we end up with rather large measurement uncertainties.

Besides providing access to the Zeeman splitting energies, the stability diagram of Fig. S2

can be used to extract the gate lever-arm parameter, α, which is the proportionality factor

relating a gate voltage variation to the corresponding shift in the electrochemical potential

in the 1D wire. In practice, for the n-th orbital subband α is obtained from the ratio between

EZ,n and the height (measured along the Vsg axis) of the 2n−1 diamond. We find that α

decreases noticeably with n and, to a lower extent, it varies with ~B. For the case of Fig. S2

we find α ≈ 5× 10−3eV/V for n = 1, α ≈ 3.3× 10−3eV/V for n=2, and α ≈ 2.3× 10−3eV/V

for n = 3.

In the limit of vanishing ~B, the odd diamonds shrink and disappear while the even

diamonds grow. At B = 0, the 2n diamond has a horizontal half-width set by the energy

spacing ∆n,n+1 between the n-th and the (n+1)-th orbital subband. We measure ∆1,2 ≈ 0.65

meV and ∆2,3 ≈ 0.5 meV.

Data from device D3

Figure S3 shows a set of data from a third device (D3) made from the same heterostruc-

ture. This device has the same gate layout as D1 as shown in Fig. 1 (a) of the main text. It

was measured with only one orientation of the applied magnetic field, perpendicular to the

device plane (z-axis). The procedure to correct for the series resistances, and the data analy-

sis was the same as for the previous devices. The results are qualitatively and quantitatively
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similar to those from device D1.
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Figure S1: (a) Schematic diagram of Ge/Si0.2Ge0.8 heterostructure with top gate. (b) Optical
image of a gated Hall bar structure. White broken lines indicate six ohmic contacts. A top
gate (yellow) overlaps each ohmic contacts and mesa structure. The mesa structure with a
channel (L = 80 µm and W = 20 µm) is seen through the top gate. The channel direction is
[1̄10]. A serial resistance Rserial = 1 MΩ is connected to the channel. Constant bias voltage
is applied and when the channel resistance is much lower than the Rserial a constant current
flows. The current through the channel Ids, longitudinal voltage Vch and Hall voltage VH
are measured at 300 mK as a function of gate voltage Vtg or out-of-plane magnetic field
B and converted to longitudinal sheet resistivity ρxx = Vch/Ids ∗W/L and Hall resistivity
ρxy = VH/Ids. (c) Typical results of ρxx and ρxy vs B for Vds = 100 mV and Vtg = -4 V. Clear
longitudinal resistivity oscillation (Shubnikov–de Haas effect) and Hall resistivity plateaus
(quantum Hall effect) are observed (red and blue lines, respectively). At B = 3 T, the filling
factor ν = 1. Around B = 5 T, ν = 2/3. (d) Hall density ns and hole mobility µ vs Vtg. ns
is estimated from (classical) Hall effect in small magnetic fields and mobility µ is calculated
for the relation µ = (ensρxx)−1 at B = 0, where e is the electron charge.
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Figure S2: Color plot of dG/dVsg as a function of Vds and Vsg at B = 0.4 T. The spanned
Vds range varies with Vsg. The dashed lines highlight dG/dVsg ridges forming a sequence of
diamond-shape regions. The odd diamonds form from the spin splitting of the 1D subbands.
Their half-width gives the Zeeman energy as indicated by the horizontal arrows.
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Figure S3: Experimental data for device D3. (a) Differential conductance G as a function
of Vds at different Vsg and Bz = 0, (b) Linear transconductance dG/dVsg as a function of Vsg
and Bz, and (c) Ez vs Bz. Large out-of-plane g factors are observed as in device D1 (see
Table 1 in the main text).
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