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Abstract

The VIPAFLEET project aims at developing a framework to manage a fleet of Individual Public
Autonomous Vehicles (VIPA). We consider a fleet of cars distributed at specified stations in an
industrial area to supply internal transportation, where the cars can be used in different modes of
circulation (tram mode, elevator mode, taxi mode). We treat in this paper the pickup and delivery
problem related to the taxi mode by means of flows in time-expanded networks. This enables us
to compute optimal offline solutions, to propose strategies for the online situation, and to evaluate
their performance in comparison with the optimal offline solution.

Key words: fleet management, offline and online pickup and delivery problem

1. Introduction

The project VIPAFLEET aims at contributing to sustainable mobility through the develop-
ment of innovative urban mobility solutions by means of fleets of Individual Public Autonomous
Vehicles (VIPA) allowing passenger transport in closed sites like industrial areas, medical com-
plexes, campuses, or airports. This innovative project involves different partners in order to
ensure the reliability of the transportation system [20]. A VIPA is an autonomous vehicle that
does not require a driver nor an infrastructure to operate, it is developed by Easymile and Ligier
[18, 19] thanks to innovative computer vision guidance technologies [25, 24], whereas the fleet
management aspect is studied in [9]. A fleet of VIPAs shall be used in a closed site to transport
employees and visitors e.g. between parkings, buildings and from or to a restaurant. The fleet
is distributed at specified stations within the site. To supply internal transportation, a VIPA can
operate in three different circulation modes:

• Tram mode: VIPAs continuously run on predefined lines or cycles in a predefined direction
and stop at a station if requested to let users enter or leave.

• Elevator mode: VIPAs run on predefined lines and react to requests by moving to a station
to let users enter or leave, thereby changing their driving direction if needed.
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• Taxi mode: VIPAs run on a connected network to serve transport requests (from any start
to any destination station in the network within given time windows).

This leads to a Pickup-and-Delivery Problem (PDP) under special constraints in a metric space
encoding the considered closed site, where a fleet of servers shall transport goods or persons from
a certain origin to a certain destination. If persons have to be transported, we usually speak about
a Dial-a-Ride Problem. Many variants are studied in the literature, including the Dial-a-Ride
Problem with time windows [13, 14]. In our case, we are confronted with an online situation,
where the transport requests are released over time [3, 6, 12]. Problems of this type are known
to be NP-hard, see e.g. [23], which also applies to the problem variant considered here, see
Section 2 for details.

In [10], we focus on the economic aspect of the problem where the objective is to minimize
costs; several algorithms are presented and evaluated w.r.t. minimizing the total tour length for
the tram and elevator mode that handle the requests coming online, solve a PDP, and generate
tours for the VIPAs in order to serve the transport requests.

In this paper, we treat the PDP related to the taxi mode as the most advanced circulation mode
for VIPAs in the dynamic fleet management system[11]. The transport requests are released over
time and need to be served within a specified time window. We consider the case that, at each
time, at most one customer can be transported by a VIPA (where one customer can be a group
of people less than the capacity of the VIPA), and a VIPA cannot serve other requests until the
current one is delivered. Note that, due to the time windows and the above additional restrictions,
it is not always possible to serve all transport requests. Hence, the studied PDP includes firstly to
accept/reject requests and secondly to generate tours for the VIPAs to serve the accepted requests.
Thus, we treat here both the quality-of-service aspect of the problem (with the goal to accept as
many requests as possible) and the economic aspect (with the goal to serve the accepted requests
at minimum costs, expressed in terms of minimizing the total tour length of the constructed
tours), see again Section 2 for details.

In Section 3, we provide a solution approach for the studied PDP by means of flows in time-
expanded networks as, e.g., proposed by [15, 16, 22] for other variants of PDPs. Hereby, we need
to distinguish between the online and the offline version of the problem: the online version occurs
in practice (since the transport requests become known over time), whereas the offline version is
important in theory to rate the quality of solutions for the online problem, by comparison with
the optimal offline solution (computed knowing the entire request sequence already in advance).

In Section 3.1, we present a way to compute optimal offline solutions for the PDP related to
the taxi mode. In Section 3.2, we consider three approaches: besides a simple heuristic, we apply
the two well-known meta-strategies Replan and Ignore (which have been analysed in [2, 4, 5] for
the Online Traveling Salesman Problem and can be applied to any online problem in time-stamp
model, see e.g. [2, 4, 17, 26]). Both solve the online version of the PDP by computing a sequence
of offline subproblems on certain subsequences of requests.

In Section 4, we evaluate the performance of the proposed strategies in comparison with the
optimal offline solution both in theory (with the help of competitive analysis, see Section 4.1),
and in practice (with the help of some computational results, see Section 4.2). We close with
some concluding remarks on our approaches and some future lines of research.

Parts of the here presented results are taken from [9, 11].
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2. Problem Description and Model

As proposed in [9], we embed the VIPAFLEET management problem in the framework of a
metric task system.

We encode the closed site where the VIPAFLEET system is running as a metric space M =

(V, d) induced by a connected network G = (V, E), where the nodes correspond to stations, edges
to their physical links in the closed site, and the distance d between two nodes vi, v j ∈ V to the
length of a shortest path from vi to v j in G.

In V , we have a distinguished origin vo ∈ V , the depot of the system, where all VIPAs are
parked when the system is not running, i.e., outside a certain time horizon [0,T ].

An operator manages a fleet of k VIPAs each with a capacity for Cap passengers. The fleet
management shall allow the operator to decide when and how to move the VIPAs in the network,
and to assign requests to VIPAs.

Hereby, any request r j is defined as a 6-tuple r j = (t j, x j, y j, p j, q j, z j) where

• t j ∈ [0,T ] is the release date (i.e., the time when r j becomes known),
• x j ∈ V is the origin node,
• y j ∈ V is the destination node,
• p j ∈ [0,T ] is the earliest possible pickup time,
• q j ∈ [0,T ] is the latest possible delivery time,
• z j specifies the number of passengers,

where t j, p j, and q j are certain discrete time points within [0,T ] that satisfy t j ≤ p j, p j +

d(x j, y j) ≤ q j and where z j ≤ Cap needs to be satisfied 4. The operator monitors the evolution of
the requests over time and

• decides which requests can be accepted (note that some requests may have to be rejected
if, e.g., more requests are specified for a same time window than VIPAs are available in
the fleet), and

• creates tasks to serve accepted requests by moving the VIPAs to some station to pickup,
transport and deliver users.

More precisely, a task is defined by

τ j = (t j, x j, t
pick
j , y j, t

drop
j , z j).

It is created by the operator in order to serve an accepted request r j = (t j, x j, y j, p j, q j, z j) and
is sent at time t j to a VIPA indicating that z j passengers have to be picked up at station x j

at time tpick
j and delivered at station y j at time tdrop

j , where p j ≤ tpick
j ≤ q j − d(x j, y j) and

p j + d(x j, y j) ≤ tdrop
j ≤ q j must hold.

We denote by TA the set of tasks generated by the operator in order to serve the accepted
requests.

In order to fulfill the tasks, the operator creates tours for the VIPAs. Each tour consists
of moves from one station in V to another station in V and of actions to pickup and deliver
passengers. Hereby, we require that

4Note that a request r j with z j > Cap can be replaced by d
z j

Cap e many requests r′j respecting the constraint z′j ≤ Cap.
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• each move carries at most one request (to fulfill the idea of a transportation by taxi, not
shared with any other customer),

• all z j passengers of one request r j are transported by the same VIPA in a direct way, i.e.,
on a shortest path from x j to y j.

That means, we do not allow load preemption, but we are interested in serving each request in a
load non-preemptive manner. That way, the capacity of a VIPA is respected in any move due to
the constraint z j ≤ Cap for all r j ∈ σ.

A transportation schedule S for (M,TA) consists of a collection of tours {Γ1, . . . ,Γk} and is
feasible when

• each of the k VIPAs has exactly one tour that starts and ends in the depot,
• each accepted request r j is served within time window [p j, q j] in a load non-preemptive way.

Our goal is to construct transportation schedules S for the VIPAs operating in taxi mode
respecting all the above constraints with the objective to accept as many requests as possible and
to serve the accepted requests at minimum costs. This leads to the following problem:

Problem 1 (Taxi Mode Problem (M, σ, p,T, k,Cap) (TMP)). Given a metric space M = (V, d)
induced by a connected network G = (V, E), a sequence of requests σ, profits p for accepted
requests, a time horizon [0,T ] and k VIPAs of capacity Cap, determine a maximum subset σA of
accepted requests and find a feasible transportation schedule S = {Γ1, . . . ,Γk} of minimum total
tour length to serve all requests in σA.

Note that the Taxi Mode Problem is always feasible (since rejecting all requests is a solution).

3. Solving the Taxi Mode Problem

The input for the Online or Offline Taxi Mode Problem (M, σ, p,T, k,Cap) consists of the
following data:

• a weighted graph G = (V, E,w) where the nodes correspond to stations, edges to their
links, and edge weights w : E → R+ determine the driving times between two neighbored
stations u, v ∈ V ,

• a sequenceσ = {r1, . . . , rh} of requests r j = (t j, x j, y j, p j, q j, z j) with t j ≤ p j, p j+d(x j, y j) ≤
q j, as well as z j ≤ Cap,

• per request a profit p(r j) for serving the request r j,
• a time horizon [0,T ],
• the total number k of VIPAs, and the capacity Cap of the VIPAs as the maximum number

of passengers which can be simultaneously transported in one VIPA.

The output of the Online or Offline Taxi Mode Problem is the decision to accept/reject the re-
quests (in terms of a subset σA ⊆ σ of accepted requests) and a feasible transportation schedule
S serving all accepted requests.

The goal is to accept as many requests as possible and to serve them at minimum costs by a
transportation schedule S = {Γ1, . . . ,Γk} of minimum total tour length.

Hereby, choosing sufficiently high profits, e.g. p(r j) > diam(G)d(x j, y j) with diam(G) diam-
eter of the network G, and sufficiently small costs, e.g. c(a) equal to its length in G, guarantees
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that indeed as many requests as possible are accepted, while small but positive costs ensure that
unnecessary movements of VIPAs are avoided5.

In order to solve the Online TMP, three approaches are considered:

• a simple Earliest Pickup Heuristic that incrementally constructs tours by always choosing
from the subsequence σ(t′) of currently waiting requests (i.e., already released but not yet
served requests) this request with smallest possible start time and appending it to the tour
with shortest distance from its current end to the requested origin;

• the two well-known meta-strategies Replan and Ignore that determine which requests from
σ(t′) can be accepted, and compute optimal (partial) tours to serve them, where

– Replan performs these tours until new requests are released, but

– Ignore completely performs these tours before it checks for newly released requests.

Therefore, as applying a Replan or Ignore strategy to the Online TMP involves the computation
of (partial) optimal offline solutions (i.e. an optimal solution under the condition that the whole
sequence of requests is known in advance), we start with considerations on solving the Offline
TMP (see Section 3.1).

3.1. Solving the Offline Taxi Mode Problem

In order to solve the Offline TMP, we build a time-expanded request network GT = (VT , AT )
based on σ and the original network G.
The node set VT = V+ ∪ Vx ∪ Vy ∪ V− is composed of

• the nodes (v0, 0) ∈ V+ as source and (v0,T ) ∈ V− as sink that correspond to the depot at the
beginning and at the end of the time horizon,

• all possible origins (x j, t
pick
j ) of all requests r j in σ, for all p j ≤ tpick

j ≤ q j − d(x j, y j) in Vx,

• all possible destinations (y j, t
drop
j ) of all r j in σ, for all p j + d(x j, y j) ≤ tdrop

j ≤ q j) in Vy.

The arc set AT = A+ ∪ AR ∪ AL ∪ A− is composed of

• source arcs from (v0, 0) to all reachable origins (x j, t
pick
j ) in Vx with d(v0, x j) ≤ tpick

j in A+,

• request arcs from each (x j, t
pick
j ) ∈ Vx to (y j, t

pick
j + d(x j, y j)) ∈ Vy in AR,

• link arcs from all destinations (y j, t
drop
j ) ∈ Vy to all reachable origins (xi, t

pick
i ) ∈ Vx with

tdrop
j + d(y j, xi) ≤ tpick

i in AL,
• sink arcs from all destinations in Vy to (v0,T ) in A−.

Note, that the time-expanded network GT is acyclic by construction.
The VIPAs shall form a flow f through this time-expanded request network GT . To correctly

initialize the system, we use the node (v0, 0) ∈ V+ as source for the flow f and set its balance
accordingly to the number k of available vehicles, see (1b). For all internal nodes (v, t) ∈ VT \

{(v0, 0), (v0,T )}, we use normal flow conservation constraints, see (1c), which also automatically
ensures that a flow of value k is entering the sink (v0,T ) ∈ V−.

5Note that it is even possible to use different profits for requests of different users to ensure e.g. that the requests of
disabled people are accepted and served in any case.
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A request arc from (x j, t
pick
j ) to (y j, t

pick
j + d(x j, y j)) has a capacity 1 for the VIPA flow. We

distinguish |σ| subsets A j
R of arcs in AR where each subset A j

R consists of the request arcs of the
corresponding request r j, so that we have AR =

⋃|σ|
j=1 A j

R. To ensure that a request can be rejected
and is not served more than once, we require that the sum of the flow traversing all the request
arcs in A j

R of the corresponding request r j is at most 1, see (1d). By the previous constraints, the
flow f is (automatically) bounded on all other arcs by 1.

Note that source, flow conservation and nonnegativity constraints (1b), (1c), (1e) together
give rise to a totally unimodular matrix (in fact, to the node/arc incidence matrix of the digraph
underlying the network GT ), but due to the inequalities (1d) the entire constraint matrix is not
totally unimodular s.t. integrality constraints (1f) are required (to prevent fractional solutions).

We consider a max-profit flow problem to decide which requests can be served. Accordingly,
our objective function (1a) considers profits p(a) for the flow f on all a ∈ AR whereas all other
arcs a = ((u, t), (v, t + d(u, v))) have zero profits, the costs correspond to the traveled distances
c(a) := d(u, v) on all arcs.

The corresponding integer linear program is as follows:

max
∑
a∈AR

p(a) f (a) −
∑
a∈AT

c(a) f (a) (1a)

s.t.
∑

a∈δ+(v0,0)

f (a) = k (1b)∑
a∈δ−(v,t)

f (a) =
∑

a∈δ+(v,t)

f (a) ∀(v, t) < V+ ∪ V− (1c)∑
a∈A j

R

f (a) ≤ 1 ∀A j
R ∈ AR (1d)

f (a) ≥ 0 ∀a ∈ AT (1e)
f (a) ∈ Z ∀a ∈ AT (1f)

where δ−(v, t) denotes the set of outgoing arcs of (v, t), and δ+(v, t) denotes the set of incoming
arcs of (v, t).

The above integer linear program solves the offline version of the Taxi Mode Problem (where
the whole sequence σ of requests is known at time t = 0) to optimality.

Theorem 1. The integer linear program (1) provides an optimal solution of the Offline Taxi
Mode Problem.

Proof. Let f ∗ be the optimal flow according to (1). Accepted requests clearly correspond to
request arcs a ∈ AR with f ∗(a) = 1 so that we have

σA = {r j ∈ σ : f ∗(a) = 1 for one a ∈ A j
R}.

Moreover, it is clear that accepted requests are indeed served. The computed flow f ∗ in the
time-expanded request network GT can be interpreted as transportation schedule, since we can
recover the tracks of the k VIPAs over time from the flow f ∗ on the arcs a ∈ AT with f ∗(a) > 0 by
standard flow decomposition as in [1]. In our case, the correspondence between the flow in GT

and the moves in the VIPA tours Γi is particularly easy to see, because constraints (1d) together
6



with the flow conservation constraints (1c) imply also for the flow on all source, link and sink
arcs an upper bound of 1 so that clearly f ∗(a) ∈ {0, 1} holds for all a ∈ AT . Therefore, a flow of
1 on

• a source arc a ∈ A+ from (v0, 0) to an origin (x j, t
pick
j ) ∈ Vx means that one VIPA starts its

tour with a move along a shortest path from v0 to x j and performs a pickup action at x j;

• a request arc a ∈ AR from an origin (x j, t
pick
j ) in Vx to its destination (y j, t

pick
j + d(x j, y j))

means that request r j is served by a move of one VIPA along a shortest path from x j to y j

and that a drop action is performed at y j;

• a link arc a ∈ AL from a destination (y j, t
drop
j ) in Vy to an origin (xi, t

pick
i ) in Vx means that

the VIPA continues its tour by a move along a shortest path from y j to xi and performs a
pickup action at xi;

• a sink arc a ∈ A− from a destination (y j, t
drop
j ) in Vy to (v0,T ) means that the VIPA closes

its tour by returning to the depot via a move along a shortest path from y j to v0.

Again, due to f ∗(a) ∈ {0, 1}∀a ∈ AT , the composition of the tours is also particularly easy.
For each source arc ((v0, 0), (x j, t

pick
j )) = a ∈ A+ with f ∗(a) = 1, there is exactly one request arc

a′ ∈ AR which is the only outgoing arc from (x j, t
pick
j ) and has, due to flow conservation, also

f ∗(a′) = 1. From each destination (y j, t
drop
j ) with an incoming request arc a′ with f ∗(a′) = 1,

there is, due to flow conservation, exactly one outgoing link or sink arc a with f ∗(a) = 1.
Hence, the arcs a ∈ AT with f ∗(a) = 1 exactly correspond to k arc-disjoint directed paths from
the source (v0, 0) to the sink (v0,T ), and each of these paths equals one tour Γi of one VIPA
(composed by an alternating sequence of moves and actions).

Finally, provided that the profits are high enough, the chosen objective function (1a) guaran-
tees that σA is maximum and that the tours Γ1, . . . ,Γk have indeed minimum total tour length.

Example 2. Consider an instance (M, σ, p, 11, 2, 1) of the Offline TMP with

• the network G with a depot v0 with arcs having uniform distance, see Figure 1,

a

g

b

v0

f

c

e

Figure 1: This figure illustrates the network G of the instance (M, σ, p, 11, 2, 1) of the Offline TMP from Example 2.

• two unit-speed servers (i.e. two VIPAs that travel 1 unit of length in 1 unit of time) with
capacity Cap = 1 originally located at the depot v0,
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• the following sequence σ of 6 requests:

r1 = (0, a, c, 1, 4, 1) r3 = (1, e, f , 2, 4, 1) r5 = (5, b, c, 6, 8, 1)
r2 = (1, c, f , 6, 9, 1) r4 = (3, b, a, 6, 9, 1) r6 = (5, c, e, 5, 8, 1)

• profits p(r j) = 4d(x j, y j) for accepted requests r j.

An optimal solution f ∗ in the resulting time-expanded request network GT is illustrated in
Figure 2. We have σA = {r1, r2, r3, r4, r5, r6} and the following tours for the two VIPAs:

Γ1 = (v0, 0)→ (a, 1)
r1
−→ (c, 3)→ (c, 5)

r6
−→ (e, 6)→ (c, 7)

r2
−→ ( f , 9)→ (v0,T )

Γ2 = (v0, 1)→ (e, 2)
r3
−→ ( f , 3)→ (b, 6)

r5
−→ (c, 7)→ (b, 8)

r4
−→ (a, 9)→ (v0,T )

The total number of accepted requests is 6 with profit 4 · 8 served with a total tour length of 18,
hence the value of the optimal offline solution is 14.

v0, 0 v0, 1 v0, 11

a, 1 a, 2 a, 7 a, 8 a, 9

b, 6 b, 7 b, 8

c, 3 c, 4 c, 5 c, 6 c, 7 c, 8

e, 2 e, 3 e, 6 e, 7 e, 8

f, 3 f, 4 f, 8 f, 9

r
1

r2

r
3

r 4

r
5

r 6

Figure 2: This figure shows the arcs with positive flow in the time-expanded request network GT for the instance
(M, σ, p, 11, 2, 1) of the Offline TMP from Example 2. The computed flow f ∗ in the time-expanded request network GT
can be interpreted as transportation schedule. The tour of the first VIPA is indicated by dashed arcs, and the tour of the
second VIPA by dotted arcs. The total number of accepted requests is 6 served with a total tour length of 18.

3.2. Solving the Online Taxi Mode Problem
To handle the online situation (where the requests in σ are released over time during a time

horizon [0,T ]), we consider three approaches: besides a simple heuristic, we apply the two well-
known meta-strategies Replan and Ignore that solve the online version of the PDP by solving a
sequence of offline subproblems for certain time intervals [t′,T ′] within [0,T ] on accordingly
modified request networks.

Earliest Pickup Heuristic. This simple heuristic incrementally constructs tours by always choos-
ing from the subsequence σ(t′) of currently waiting requests this request with smallest possible
start time and appending it to the tour with shortest distance from its current end to the requested
origin, or rejecting the request if it is not reachable from all tours. Let Γi be a tour and (vi, ti) be
its current end. A request r j = (t j, x j, y j, p j, q j, z j) is reachable from (vi, ti) if

ti + d(vi, x j) ≤ q j − d(x j, y j)

is a possible pickup time of r j.
8



Algorithm 1 (Earliest Pickup Heuristic (EPH))
Input: (M, σ, p,T, k,Cap)
Output: σA and tours Γ1, . . . ,Γk

1: initialize σA = ∅, σ(t′) = {r j ∈ σ : t j = 0}, and Γi = (v0, 0) for 1 ≤ i ≤ k
2: WHILE σ(t′) , ∅ DO:

select r j ∈ σ(t′) with t j minimal
let d = ∞ and ` = 0
FOR i = 1 to k DO:

IF r j is reachable from current end (vi, ti) of Γi THEN
let di = d(vi, x j), IF di < d THEN d = di, ` = i

IF d = ∞ THEN reject r j and remove it from σ(t′) (as r j is not reachable from any Γi)
ELSE

accept r j and move it from σ(t′) to σA

update tour Γ` to Γ` = Γ` → (x j, t j + d)→ (y j, t j + d + d(x j, y j)
update σ(t′) by newly released requests

3: close all tours by returning to the depot
4: return σA and Γ1, . . . ,Γk

Example 3. Consider the instance (M, σ, p, 11, 2, 1) of the TMP from Example 2. EPH proceeds
with this request sequence σ as follows. At the beginning, EPH initializes σA = ∅, the two tours
Γ1 = Γ2 = (v0, 0) and, as r1 = (0, a, c, 1, 4, 1) is released at time t′ = 0, σ(t′) = {r1}.

EPH takes r1 and computes d = 1 and l = 1, updates Γ1 to

Γ1 = (v0, 0)→ (a, 1)
r1
−→ (c, 3)

and moves r1 from σ(t′) to σA. At time t′ = 1, r2 = (1, c, f , 6, 9, 1) and r3 = (1, e, f , 2, 4, 1) are
released and enter σ(t′). By p2 = 6 > 2 = p3, EPH selects r3 and computes d = 1 and l = 2,
updates Γ2 to

Γ2 = (v0, 1)→ (e, 2)
r3
−→ ( f , 3)

and moves r3 from σ(t′) to σA. Now, σ(t′) = {r2} causes EPH to select r2. EPH computes d = 0
and l = 1, updates Γ1 to

Γ1 = (v0, 0)→ (a, 1)
r1
−→ (c, 3)→ (c, 6)

r2
−→ ( f , 8)

and moves r2 from σ(t′) to σA. At time t′ = 3, r4 = (3, b, a, 6, 9, 1) is released and enters σ(t′).
EPH takes r4 and computes d = 3 and l = 2, updates Γ2 to

Γ2 = (v0, 1)→ (e, 2)
r3
−→ ( f , 3)→ (b, 6)

r4
−→ (a, 7)

and moves r4 from σ(t′) to σA. At time t′ = 5, r5 = (5, b, c, 6, 8, 1), r6 = (5, c, e, 5, 8, 1) are
released and enter σ(t′). By p5 = 6 > 5 = p6, EPH selects r6 and rejects it as it is not reachable
from the ends of both tours. Then r5 is left and also rejected as it is not reachable, too. Finally,
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EPH closes both tours by returning to the depot and returns σA = {r1, r2, r3, r4} and the following
tours for the two VIPAs:

Γ1 = (v0, 0)→ (a, 1)
r1
−→ (c, 3)→ (c, 6)

r2
−→ ( f , 8)→ (v0, 10)

Γ2 = (v0, 1)→ (e, 2)
r3
−→ ( f , 3)→ (b, 6)

r4
−→ (a, 7)→ (v0, 8)

The total number of accepted requests is 4 with profit 4 · 6 served with a total tour length of 14,
hence EPH(σ) = 10.

Ignore. Recall that the overall idea of an Ignore strategy is to construct, starting at time t′ = 0, for
the subsequence σ(t′) of currently waiting requests a (partial) optimal offline solution (which in-
cludes to determine which requests from σ(t′) can be accepted, and to compute optimal (partial)
tours to serve them) and to completely perform these tours before it checks for newly released
requests, updates σ(t′) and computes an optimal offline solution for the new subsequence σ(t′).

In our case with several servers, some partial tours for σ(t′) may be shorter than others such
that waiting until all partial tours are completed may let some servers idle. Hence, we propose
a variant of Ignore that updates σ(t′) whenever (at least) one server becomes idle (as it finished
serving its tour) and plans new partial tours for σ(t′) with the k′ currently idle servers, i.e., on the
subset S (t′, k′) ⊆ {Γ1, . . . ,Γk} of finishes subtours. This is summarized in the algorithm IGNORE.

Algorithm 2 (IGNORE)
Input: (M, σ, p,T, k,Cap)
Output: σA and tours Γ1, . . . ,Γk

1: initialize t′ = 0, σA = ∅, σ(t′) = ∅, and Γi = (v0, 0) for 1 ≤ i ≤ k
2: WHILE t′ < T DO:

let k′ be the number of currently idle servers
IF k′ > 0 THEN:

update t′ and σ(t′) = {r j ∈ σ : t j ≤ t′}
call I-OFFLINE with σA, σ(t′) and the tours S (t′, k′) of the idle servers
completely perform the (modified) tours in S (t′, k′)

3: close all tours by returning to the depot
4: return σA and Γ1, . . . ,Γk

To compute the optimal solutions for the subsequences σ(t′) with the help of I-OFFLINE, we
build a time-expanded request network GI(t′) in a similar way as GT for the offline situation. The
only difference is that we do not have a single source (as (v0, 0) in GT ), but that we need to use
the current positions of the idle VIPAs as sources (i.e., the current ends of the tours in S (t′, k′)),
collected in a position vector P(t′) with t′ as start time. Accordingly, we obtain

V+ = {(Pi(t′), t′) : (Pi(t′), t′) current end of tour Γi ∈ S (t′, k′)}

as set of source nodes and add the arcs from (Pi(t′), t′) to the sink (v0,T ) for all such nodes. In
GI(t′), we solve the max profit flow problem (1) where (1b) is replaced by∑

a∈δ+(v,t′)

f (a) = k′(v) ∀(v, t′) ∈ V+

10



and k′(v) denotes the number of idle VIPAs situated in v at time t′ (thus all k′(v) sum up to k′).
From the flow computed in GI(t′), it is straitforward to determine newly accepted requests

(corresponding to request arcs a ∈ AR with f (a) > 0) and to construct (partial) tours Γ1, . . . ,Γk

for the VIPAs in the same way as described for the offline situation (thereby ignoring sink arcs).
The whole process can be summarized in the algorithm I-OFFLINE.

Algorithm 3 (I-OFFLINE)
Input: σA, σ(t′), S (t′, k′) ⊆ {Γ1, . . . ,Γk}

Output: modified σA and modified tours in S (t′, k′)
1: determine VIPA start positions P(t′) as ends of tours in S (t′, k′)
2: create the request network GI(t′)
3: solve the modified max profit flow problem (1) on GI(t′)
4: update σA and tours in S (t′, k′) accordingly and return them

Example 4. Consider the instance (M, σ, p, 11, 2, 1) of the TMP from Example 2. IGNORE
proceeds with this request sequence σ as follows. At the beginning, IGNORE initializes σA = ∅,
σ(t′) = ∅, and the two tours Γ1 = Γ2 = (v0, 0). At time t′ = 0, both VIPAs are idle s.t. k′ = 2 > 0.
Request r1 = (0, a, c, 1, 4, 1) is released and moves from σ to σ(t′). IGNORE computes the
partial offline solution for σ(t′) = {r1} and P(t′) = (v0, v0) on the network GI(0), see Figure 3.
IGNORE solves the max profit flow problem (1) on GI(0), obtains

v0, 0 v0, T

a, 1 a, 2

c, 3 c, 4

r
1

r
1

Figure 3: The request network GI (0) for Ignore.

Γ1 = (v0, 0)→ (a, 1)
r1
−→ (c, 3)

Γ2 = (v0, 0)

moves r1 from σ(t′) to σA and starts VIPA 1 to serve Γ1, whereas VIPA 2 stays idle in the depot.
At time t′ = 1, r2 = (1, c, f , 6, 9, 1) and r3 = (1, e, f , 2, 4, 1) are released and move from σ to

σ(t′). As VIPA 2 is idle, IGNORE computes the partial offline solution for σ(t′) = {r2, r3} and
P(t′) = (−, v0) on the network GI(1), see Figure 4. IGNORE solves the modified max profit flow
problem (1) on GI(1), obtains

Γ2 = (v0, 1)→ (e, 2)
r3
−→ ( f , 3)→ (c, 6)

r2
−→ ( f , 8)
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v0, 1 v0, Tc, 6 c, 7

e, 2 e, 3

f, 3 f, 4 f, 8 f, 9

r
3

r
3 r

2

r
2

Figure 4: The request network GI (1) for Ignore.

moves r2, r3 from σ(t′) to σA and starts VIPA 2 to serve Γ2.
At time t′ = 3, Γ1 is served by VIPA 1, r4 = (3, b, g, 6, 9, 1) is released and moves from σ

to σ(t′). IGNORE computes the partial offline solution for σ(t′) = {r4} and P(t′) = (c,−) on the
network GI(3), see Figure 5. IGNORE solves the modified max profit flow problem (1) on GI(3),

v0, Tc, 3

b, 6 b, 7 b, 8

a, 7 a, 8 a, 9

r
4

r
4

r
4

Figure 5: The request network GI (3) for Ignore.

obtains

Γ1 = (c, 3)→ (b, 6)
r4
−→ (a, 7)

moves r4 from σ(t′) to σA and starts VIPA 1 to serve Γ1.
At time t′ = 7, Γ1 is served by VIPA 1, hence IGNORE checks for newly released requests

and updates σ(t′) = {r5, r6}. IGNORE computes the partial offline solution for σ(t′) = {r5, r6}

and P(t′) = (a,−) on the network GI(7), see Figure 6. and obtains that none of r5, r6 is reachable

v0, Tc, 5 c, 6 c, 7 c, 8

b, 6 b, 7

a, 7

e, 6 e, 7 e, 8

r
5

r
5

r
6

r
6

r
6

Figure 6: The request network GI (7) for Ignore.

from (a, 7) such that both r5, r6 are rejected. Finally, IGNORE closes both tours by returning to
the depot and returns σA = {r1, r2, r3, r4} and the following tours for the two VIPAs:

Γ1 = (v0, 0)→ (a, 1)
r1
−→ (c, 3)→ (b, 6)

r4
−→ (a, 7)→ (v0, 8)

Γ2 = (v0, 2)→ (e, 3)
r3
−→ ( f , 4)→ (c, 6)

r2
−→ ( f , 8)→ (v0, 10)

The total number of accepted requests is 4 with profit 4 · 6 served with a total tour length of 14,
hence IGNORE(σ) = 10.
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Replan. Recall that the overall idea of a replan strategy is to consider at each moment in time
t′ ∈ [0,T ] the subsequence σ(t′) of currently waiting requests, to determine which requests from
σ(t′) can be accepted, to compute optimal (partial) tours to serve them, and to perform these tours
until new requests are released and to recompute σ(t′) and the tours (keeping already accepted
requests).

Hereby, finding optimal (partial) tours corresponds to solve, in each replanning step, an opti-
mal offline solution on the subsequence σ(t′). This is summarized in the algorithm REPLAN.

Algorithm 4 (REPLAN)
Input: (M, σ, p,T, k,Cap)
Output: σA and tours Γ1, . . . ,Γk

1: initialize σA = ∅, σ(t′) = {r j ∈ σ : t j = 0}, and Γi = (v0, 0) for 1 ≤ i ≤ k
2: WHILE t′ < T DO: call R-OFFLINE(σA, σ(t′), Γ1, . . . ,Γk)

perform the (modified) tours until new requests become known, update t′ and σ(t′)
3: return σA and Γ1, . . . ,Γk

To compute those optimal solutions for the subsequences σ(t′), we build a time-expanded
request network GR(t′) = (V ′, A′) based on σ(t′) and the original network G and consider a flow
in GR(t′) that corresponds to the studied (partial) tours.

We construct GR(t′) = (V ′, A′) in a similar way as GT for the offline situation. The main
difference is that we do not have a single source (as (v0, 0) in GT ), but that we need to use the
possible start positions and possible start times of the VIPAs as sources.

For that, we extract the possible start positions P(t′) and start times S (t′) for the VIPAs from
the current tours Γ1, . . . ,Γk. At the beginning, i.e. at time t = 0, we clearly have P(t′)i = v0 and
S (t′)i = 0. At any later time point t′, the start positions and start times are as follows: if VIPA i
is currently serving a request r j, then we have P(t′)i = y j and S (t′)i = tdrop

j ; otherwise, P(t′)i is
the current position v of VIPA i and S (t′)i = t′.

Accordingly, the node set V ′ = V+ ∪ Vx ∪ Vy ∪ (v0,T ′) is composed of

• the VIPAs start positions and start times (P(t′)i, S (t′)i) for 1 ≤ i ≤ k as sources in V+,
• all possible origins (x j, t

pick
j ) of all r j ∈ σ(t′) and all p j ≤ tpick

j ≤ q j − d(x j, y j) in Vx,

• all possible destinations (y j, t
drop
j ) of all r j ∈ σ(t′) and all p j + d(x j, y j) ≤ tdrop

j ≤ q j in Vy,

• a sink node (v0,T ′) with T ′ = max{tdrop
j , r j ∈ σ(t′)}.

The arc set A′ = A+ ∪ AR ∪ AL ∪ A− is composed of

• source arcs from all nodes (P(t′)i, S (t′)i) ∈ V+ to all reachable origins (x j, t
pick
j ) ∈ Vx with

t′ + d(v, x j) ≤ tpick
j ,

• request arcs from each (x j, t
pick
j ) ∈ Vx to (y j, t

pick
j + d(x j, y j)) ∈ Vy in AR,

• link arcs from all destinations (y j, t
drop
j ) ∈ Vy to all reachable origins (xi, t

pick
i ) ∈ Vx with

tdrop
j + d(y j, xi) ≤ tpick

i in AL,

• sink arcs from all destinations (y j, t
drop
j ) ∈ Vy to (v0,T ′) in A−.
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To keep previously accepted requests, we partition σ(t′) into the subsequences

• σA(t′) of previously accepted but until time t′ not yet served requests and
• σN(t′) = {r j ∈ σ : t j = t′} of requests that are newly released at time t′,

and partition the request arcs accordingly in ARA and ARN . Moreover, we distinguish the subsets
A j

RA
and A j

RN
of request arcs of the corresponding previously accepted request r j ∈ σA(t′) resp.

newly released request r j ∈ σN(t′).
In GR(t′), we solve the following max profit flow problem

max
∑
a∈AR

p(a) f (a) −
∑
a∈A′

c(a) f (a) (2a)

s.t.
∑

a∈δ+(v,t)

f (a) = k(v) ∀(v, t) ∈ V+ (2b)∑
a∈δ−(v,t)

f (a) =
∑

a∈δ+(v,t)

f (a) ∀(v, t) ∈ Vx ∪ Vy (2c)∑
a∈A j

RA

f (a) = 1 ∀A j
RA
⊆ ARA (2d)

∑
a∈A j

RN

f (a) ≤ 1 ∀A j
RN
⊆ ARN (2e)

f (a) ≥ 0 ∀a ∈ A′ (2f)
f (a) ∈ Z ∀a ∈ A′ (2g)

where again δ−(v, t) denotes the set of outgoing arcs of (v, t), δ+(v, t) the set of incoming arcs of
(v, t) and k(v) the number of VIPAs initially situated in v.

Constraints (2d) ensure that previously accepted requests are served whereas constraints (2e)
allow to reject newly released requests.

Source, flow conservation and nonnegativity constraints (2b), (2c), (2f) together give again
rise to a totally unimodular matrix, but due to (2d) and (2e) the entire constraint matrix is not
totally unimodular s.t. integrality constraints (2g) are again required.

From the computed flow f ′ in the request network GR(t′), it is straitforward to determine
newly accepted requests (corresponding to request arcs a ∈ ARN with f ′(a) > 0) and to construct
(partial) tours Γ1, . . . ,Γk for the VIPAs in the same way as described for the offline situation.

The whole process can be summarized in the algorithm R-OFFLINE.

Algorithm 2 (R-OFFLINE)
Input: σA, σ(t′), Γ1, . . . ,Γk

Output: modified σA and modified tours Γ1, . . . ,Γk

1: determine VIPA start positions P(t′) and start times S (t′) from Γ1, . . . ,Γk

2: create the request network GR(t′)
3: solve the max profit flow problem (2) on GR(t′)
4: update σA and Γ1, . . . ,Γk accordingly and return them
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Example 5. Consider the instance (M, σ, p, 11, 2, 1) of the TMP from Example 2. REPLAN
proceeds with this request sequence σ as follows. At the beginning, REPLAN initializes σA = ∅,
and the two tours Γ1 = Γ2 = (v0, 0). At time t′ = 0, r1 = (0, a, c, 1, 4, 1) is released. REPLAN
computes the partial offline solution forσA(0) = ∅, σN(0) = {r1}, S (0) = (0, 0) and P(0) = (v0, v0)
on the network GR(0), see Figure 7. REPLAN solves the max profit flow problem (2) on GR(0),

v0, 0 v0, T

a, 1 a, 2

c, 3 c, 4

r
1

r
1

Figure 7: The request network GR(0) from Example 5.

obtains

Γ1 = (v0, 0)→ (a, 1)
r1
−→ (c, 3)→ (v0,T )

Γ2 = (v0, 0)→ (v0,T )

accepts r1 and moves VIPA 1 towards a.
At time t′ = 1, r2 = (1, c, f , 6, 9, 1) and r3 = (1, e, f , 2, 4, 1) are released. REPLAN computes the
partial optimal offline solution for σA(1) = {r1}, σN(1) = {r2, r3}, S (1) = (1, 1) and P(1) = (a, v0)
on the network GR(1), see Figure 8.

v0, 1 v0, T

a, 1 a, 2

c, 3 c, 4 c, 6 c, 7

e, 2 e, 3

f, 3 f, 4 f, 8 f, 9

r1 r1

r
2

r
2

r
3

r
3

Figure 8: The request network GR(1) from Example 5.

REPLAN solves the max profit flow problem (2) on GR(1), obtains

Γ1 = (a, 1)
r1
−→ (c, 3)→ (c, 6)

r2
−→ ( f , 8)→ (v0,T )

Γ2 = (v0, 1)→ (e, 2)
r3
−→ ( f , 3)→ (v0,T )

accepts r2 and r3, moves VIPA 1 towards c (serving r1) and VIPA 2 towards e.
At time t′ = 3, r1 and r3 are served and r4 = (3, b, a, 6, 9, 1) is released. REPLAN computes the
partial optimal offline solution for σA(3) = {r2}, σN(3) = {r4}, S (3) = (3, 3) and P(3) = (c, f ) on
the network GR(3), see Figure 9.
REPLAN solves the max profit flow problem (2) on GR(3), obtains

Γ1 = (c, 3)→ (c, 6)
r2
−→ ( f , 8)→ (v0,T )

Γ2 = ( f , 3)→ (b, 6)
r4
−→ (a, 7)→ (v0,T )
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v0, T

c, 3 c, 6 c, 7

f, 3 f, 8 f, 9

b, 6 b, 7 b, 8

a, 7 a, 8 a, 9

r2 r2

r 4 r 4 r 4

Figure 9: The request network GR(3) from Example 5.

and accepts r4. REPLAN moves VIPA 2 towards (b, 6) on one of the two shortest paths s.t.
VIPA 2 moves either towards e and then towards c or towards g and then towards a. In both
cases VIPA 2 can reach (b, 6).
At time t′ = 5, r5 = (5, b, c, 6, 8, 1), r6 = (5, c, e, 5, 8, 1) are released. REPLAN computes
the partial optimal offline solution for σA(5) = {r2, r4}, σN(5) = {r5, r6}, S (5) = (5, 5) and
P(5) = (c, c) on the network GR(5), see Figure 10. Note that the tours obtained do not change
whether P(5) = (c, a) or P(5) = (c, c). In Figure 10, P(5) = (c, c).

v0, Tc, 5 c, 6 c, 7 c, 8

f, 8 f, 9

b, 5 b, 6 b, 7 b, 8

a, 7 a, 8 a, 9

e, 6 e, 7 e, 8

r2 r2

r 4 r 4 r 4

r
5

r
5

r
5

r
6

r
6

r
6

Figure 10: The request network GR(5) from Example 5.

REPLAN solves the max profit flow problem (2) on GR(5), obtains

Γ1 = (c, 5)
r6
−→ (e, 6)→ (c, 7)

r2
−→ ( f , 9)→ (v0,T )

Γ2 = (c, 5)→ (b, 6)
r5
−→ (c, 7)→ (b, 8)

r4
−→ (a, 9)→ (v0,T )

and accepts r5 and r6.
In total, REPLAN accepts all 6 requests with σA = {r1, r2, r3, r4, r5, r6} and serves them by the
tours

Γ1 = (v0, 0)→ (a, 1)
r1
−→ (c, 3)→ (c, 5)

r6
−→ (e, 6)→ (c, 7)

r2
−→ ( f , 9)→ (v0,T )

Γ2 = (v0, 0)→ (v0, 1)→ (e, 2)
r3
−→ ( f , 3)→ (b, 6)

r5
−→ (c, 7)→ (b, 8)

r4
−→ (a, 9)→ (v0,T )

with a total tour length of 18, and a profit 4 · 8 hence REPLAN(σ) = 14.

Discussion of the approaches. In view of the behavior of the three proposed algorithms ob-
served on the instance from Example 2, we note that requests that are released long time be-
fore the time window to serve them cause difficulties for all three algorithms. Such a request
r j = (t j, x j, y j, p j, q j, z j) (like r2 in the example) causes

• EPH and IGNORE to construct a tour Γi serving r j at its end where VIPA i stays idle within
Γi until p j (see Γ1 of EPH between (c, 3) and (c, 6) = (x2, p2) when VIPA 1 starts to serve
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r2) whereas other requests released meanwhile are not reachable from the end of Γi (like
r5, r6 in the example).

• REPLAN to accept r j which may cause later to reject other requests released later on if
they cannot be integrated into a tour serving r j.

Moreover, while EPH and REPLAN check newly released requests immediately and also decide
immediately about their acceptance / rejection, IGNORE checks for newly released requests only
when a VIPA becomes idle. This may result in late decisions about the acceptance / rejection
of requests (like for r5, r6 in the example which are rejected shortly before the end of their time
window, at the latest possible pickup time), and may even result in a rejection after the time
window of the request.

Hence, we conclude that (even the here considered variant of) IGNORE is not suitable for
the Online TMP since the way how to construct tours may result in many rejected requests and
the decision to accept/reject a request may be taken late, which does not comply to the quality-
of-service aspect of the fleet management. Therefore, we focus on the other two approaches
and perform computational results only for EPH and REPLAN, with the expectation that EPH is
faster, but REPLAN achieves a higher acceptance rate.

4. Evaluating the performance of the online strategies

We shall evaluate the online algorithms EPH and REPLAN in a two-fold manner:

• in theory with the help of competitive analysis (Section 4.1),
• in practice with the help of some computational results (Section 4.2).

4.1. Competitive analysis
It is standard to evaluate the quality of online algorithms with the help of competitive analysis.

A detailed introduction to online optimization and competitive analysis can be found e.g. in the
book by Borodin and El-Yaniv [8].

Competitive analysis can be viewed as a game between an online algorithm ALG and a
malicious adversary who tries to generate a worst-case request sequence σ which maximizes the
ratio between the online cost ALG(σ) and the optimal cost OPT(σ) where the adversary knows
the entire request sequence σ in advance.

An online algorithm ALG for an online maximization problem is called c-competitive if
ALG produces for any request sequence σ of the studied problem a feasible solution with costs
ALG(σ) such that

OPT(σ) ≤ c · ALG(σ)

for some given c ≥ 1. The competitive ratio of ALG is the infimum over all c such that ALG is
c-competitive.

We are interested in analyzing the online algorithms EPH and REPLAN for the Online TMP.
In fact, we obtain the more general result that no (deterministic) online algorithm ALG for

the Online TMP is competitive against a common type of adversary.
An oblivious adversary knows the complete behavior of a (deterministic) online algorithm

ALG and chooses a worst-case sequence for ALG. Hereby, an oblivious adversary is allowed to
move VIPAs towards the origins x j of not yet released requests r j (but also has to respect the
time windows [p j, q j] to serve accepted requests r j).
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We show that an oblivious adversary can force any (deterministic) online algorithm ALG for
the Online TMP to reject all requests of a sequence while the adversary can accept and serve all
requests, implying that ALG is not competitive.

Theorem 6. There is no competitive (deterministic) online algorithm for the Online TMP against
an oblivious adversary.

Proof. The idea for a worst case sequence for an online algorithm ALG is as follows. The
adversary releases the requests r j ∈ σ in such a way that the delay between the release date t j

and the latest possible pickup time q j − d(x j, y j) is smaller than the distance d(v0, x j). That way,
ALG has to reject all requests (and its VIPA stays in the depot v0), whereas the adversary moves
its VIPA already towards the origin x0 of the first request r0 before r0 has been released and is
able to arrive at x0 at time q0 − d(x0, y0) and can accept and serve r0 and all following requests in
the sequence σ. For that, we consider an instance (M, σ, p,T, 1, 1) of the Online TMP with

• the network G with depot v0 from Figure 11

v0

v2

v1

2

2

1

Figure 11: This figure illustrates the network G of the instance (M, σ, p,T, 1, 1) of the Online TMP with an oblivious
adversary.

• the following sequence σ = {r0, r1, r2, . . . , r`} of requests with

r j = ( j + 1, v1, v2, j + 2, j + 3, 1) for all even j with 0 ≤ j ≤ `,

r j = ( j + 1, v2, v1, j + 2, j + 3, 1) for all odd j with1 ≤ j ≤ `,

• profits p(r j) = 2d(x j, y j) for accepted requests r j.

The online algorithm ALG treats the sequence σ as follows. At time t = 1, the first request
r0 = (1, v1, v2, 2, 3, 1) is released. As the origin x0 = v1 of r0 is not reachable from the depot
before or at the latest possible pickup time q0 − d(v1, v2) = 2 due to d(v0, v1) = 2, ALG rejects r0
and the VIPA operated by ALG stays in the depot v0. At time t = 2, request r1 = (2, v2, v1, 3, 4, 1)
is released. Again, the origin x1 = v2 of r1 is not reachable from the depot before or at the latest
possible pickup time q1 − d(v1, v2) = 3 due to d(v0, v2) = 2. Hence, ALG also rejects r1 and the
VIPA operated by ALG stays in v0. This is repeated for any further request rl ∈ σ so that all
r j ∈ σ are rejected by ALG and we clearly have

ALG(σ) = 0.

In contrary, the adversary moves its VIPA at time t = 0 from the depot v0 towards x0 = v1, arrives
at p0 = 2 in v1 and accepts and serves r0 by moving to y0 = v2, arriving there at time 3 = p1,
Thus, the adversary can accept and serve r1 by moving to v1 = y1, arriving there at time 4 = p2.
This is repeated for any further request r j in σ (that the VIPA operated by the adversary always
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arrives at x j at time p j) so that the adversary can accept and serve all requests r j in σ. At the end
of the sequence the adversary returns its VIPA to the depot to close its tour. Thus we obtain

OPT(σ) = (` + 1) · 2d(v1, v2) − ((` + 1) · d(v1, v2) + 2 + 2) = (` + 1) · d(v1, v2) − 4 = ` − 3.

This shows
OPT(σ)
ALG(σ)

= ∞

so that there is no finite number c bounding the ratio between OPT(σ) and ALG(σ) for all
possible request sequences σ of the Online TMP.

Since the worst-case request sequence used to show the non-competitivity result is only based
on the reachability of requests, but not on a particular strategy of an online algorithm, we con-
clude:

Corollary 7. Neither EPH nor REPLAN is competitive for the Online TMP against an oblivious
adversary.

4.2. Computational results
This section deals with computational experiments for the optimal offline solution of the

TMP, the heuristic EPH and the replan strategy for the Online TMP. In fact, due to the very
special request structures of the previously presented worst-case instances to prove the non-
competitiveness of any online algorithm for the Online TMP, we expect a better behavior of the
proposed strategies for the Online TMP in average.

The computational results presented in Table 1 support this expectation. They compare the
total number of accepted (and thus served) requests by EPH and REPLAN with the optimal
offline solution OPT. The computations use randomly generated instances with 20 stations, 5
to 10 VIPAs, time-horizons between 180 and 240 time units, and between 90 and 300 cus-
tomer requests. These instances are based on the network from the industrial site of Michelin at
Clermont-Ferrand and randomly generated request sequences resembling typical instances that
occurred during an experimentation in Clermont-Ferrand performed from October 2015 until
February 2016 [24].

The operating system for all tests is Linux CentOS with kernel version 2.6.32 clocked at
2.40 GHz, with 1 TB RAM. The approaches are implemented in Python and Gurobi 8.21 is used
for solving the ILPs. The results are summarized in Table 1.

EPH computes in very short times solutions (always less than 1 second), but can only reach
in average an acceptance rate of about 32% compared to the optimal offline solution OPT.

Also REPLAN computes solutions for each replanning step within a short time, and can
achieve a reasonable ratio w.r.t. the total number of accepted requests between the optimal offline
solution OPT and REPLAN (in average around 65%).

5. Concluding remarks

We note for the Offline TMP, that in the special case of tight time windows satisfying p j +

d(x j, y j) = q j (which clearly results in p j = tpick
j and q j = tdrop

j ) for all r j ∈ σ, there is exactly
one request arc per request s.t. the constraints (1d) reduce to

f (a) ≤ 1 for all a ∈ AR. (3)
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Table 1: This table shows the computational results for 600 test instances of EPH and REPLAN in comparison to
OFFLINE for the TMP. The instances are grouped by the number of requests (1st column), the time horizon (2nd
column) and the number of VIPAs (3rd column) with 100 instances per parameter set. Average values are shown for the
total number |σA | of accepted requests of OFFLINE, REPLAN and EPH and the ratio between them ( REPLAN

OPT and EPH
OPT )

and for the total tour length TT L needed to serve the accepted requests. Finally we provide the time needed to compute
the optimal offline solution, the average runtime of REPLAN per recomputation step and the maximum runtime maxR of
the recomputation steps of REPLAN. The average runtime of EPH is not shown as it never exceeds one second.

|σA | TTL runtime (s)
req T k |σA |OPT |σA |R ratioR % |σA |EPH ratioEPH% TT LOPT TT LR TT LEPH OPT REPLAN maxR
94 180 10 77 52,13 67,7 25,15 32,66 667,5 424 267,05 11,9 0,49 1,6
188 180 10 112 70,45 62,9 47,26 42,19 831 580 430,64 151 3 10,83
295 240 10 146,86 97,2 66,19 43,63 29,7 1005 750,57 458,32 76867,86 13,56 45,54
97 240 5 62,04 39,19 63,17 18,78 30,27 527,16 298,82 187,68 1650,94 0,29 1,23
194 240 5 93,76 55,84 59,56 27,6 29,43 680,44 490 286,55 229,76 1,8 7,85
290 240 5 115,94 80,64 69,55 31,93 27,54 759,94 500,6 291,3 121985,32 7,18 29,8

Therefore, in the case with tight time windows, the totally unimodular matrix implied by the
source and flow conservation constraints (i.e., the node-arc incidence matrix of the digraph un-
derlying GT ) is only composed with identity matrices (for the nonnegativity and the capacity
constraints (3)) such that the entire constraint matrix becomes totally unimodular. This implies:

Corollary 8. The Offline Taxi Mode Problem with tight time windows can be solved in polyno-
mial time.

In the general case, this is not true, but our experiments showed that the running times to
solve the Offline Taxi Mode Problem are still reasonable, see Table 1.

Regarding the quality of the solutions obtained by EPH and REPLAN, we summarize from
the previous section that

• in theory, neither EPH nor REPLAN is competitive against an oblivious adversary since
for all (deterministic) online algorithms ALG for the Online TMP, there is no finite c s.t.
for all instances σ we have that ALG(σ) ≥ c OPT(σ);

• in practice, EPH is faster, REPLAN provides solutions of reasonably quality within short
time for each recomputation step and achieves a better acceptance rate, see again Table 1.

We can conclude that the here proposed REPLAN strategy is already a promising algorithm to
handle the Online TMP for the taxi mode in the studied VIPAFLEET management system.

As future work, we plan to improve the runtime of REPLAN by reducing the time-expanded
network built in each replanning step without loss of optimality. Such an approach has been
applied by [7] to a service network design problem and by [21] to a multi-depot multi-vehicle
bus scheduling problem for timetabled trips (by using time-space-based instead of connection-
based networks which leads to a crucial reduction of the size of the mathematical models).

We also plan to study another variant of the TMP without the here required condition that, at
each time, at most one request r j can be served by a VIPA and that this has to be done in a direct
way along a shortest path from x j to y j. Dropping this condition would open the possibility to
serve several requests simultaneously by a same VIPA (as long as the capacity Cap is respected),
but that while serving request r j, sometimes detours are necessary to stations not lying on a short-
est path from x j to y j in order to pickup or drop passengers from other requests. This problem
variant will lead to a more complex model and also computing solutions is more involved, but
may lead to a higher rate of accepted requests and, therefore, to a higher quality-of-service level
for the fleet management.
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