published or not. The documents may come

Automatic Generation of Model-Input Validators

Automatic Generation of Model-Input Validators

Muthiah Annamalai

San José, CA email: muthiah.annamalai@mavs.uta.edu Modeling tools can take designs in their restricted modeling language with aim of transforming such designs into a more low-level forms, originally more cumbersome and error prone to specify manually; i.e. modeling tools provide a reprieve against tedium, and error prone tasks. In such scenarios it is not quite clear what maybe the restriction on the input specification for the given tool that will not cause the generated output to be in an error state; such restrictions are not clear at the outset against the ensemble of modifications required to be made on the high-level specification. We understand the modeling tool to also be its software implementation in an imperative programming language, with a corresponding program structure tree (PST) [START_REF] Johnson | The program structure tree: computing control regions in linear time[END_REF]. In this paper we show a method to automatically generate input specification validator for a given modeling tool from its PST.

Key requirements for such validators on input, are the savings in time it would otherwise takes to reach error states (during input specification conversion to modeling tool target output) within the modeling tool and then delayed "edit → model → error → re-edit" cycle; i.e. input specification validators provide a rational way out of this delayed error discovery and better efficacy of target model output generation within limits of the tool. Logical AND of all these intermediate states present in the input specification for the modeling tool is cause for error. 3. Logical OR of any of conditions on the above paths cause for invalid input 4. Add this specification as a rule to the input validator. 3. We have a list of Error states and their reachability conditions 4. Summary of rules can be flipped into a design rule validator 1. This algorithm uses a edge-reverse version of graph where head and tail nodes are reversed for each edge, making a complementary graph G' 2. We traverse this graph (G') in any valid topological order by evaluating the modelinput specification for the conditions in the graph 3. Such evaluation maybe progressive and partial only 5. User can be advised against each rule by appropriately reconstructing the pathway an error state was reached. 1. Typically unrolling the stack of DFS that lead to the error state will provide significant information to the user on the causative actions that lead to the error. 6. Such a report can be used preemptively to shorten the design validation cycle right at the input

Modeler Tool

Fig. 2. Modeler Tool input validator generation process using algorithm from this work

The output of the meta-algorithm is a validator tool for the input design specification and may be continually updated. We may also hypothesize that such input validators generated automatically can be parts of very large machine-learning based goal-seeking evolution design algorithms which will more effectively scan the search space very efficiently by negating bad designs quickly using such validators. The validator generated from the above algorithm (orange box in Fig. 2) can be used concomitantly with the model inspector as shown:

Augmented Validator

An automatically generated model-input validator can also be augmented with customized rules not inferred from the modeling tool PST. Such a validator design can be called an augmented validator. One may use this meta-algorithm periodically, first as a good starting point to build model-input validators, and then again to update the validator as code-base of modeling tool changes over time.

Fig. 4. An illustration of augmented validator in action

Conclusion

In this paper we have proposed an automatic technique for model input validator generation based upon the compiler theory of PST and graph applications. This work is expected to be of use in various domains of design automation in fields like electronics, medicinal software, and other mission critical software applications, to improve quality of modeling tool and secure the design space exploration.

Overall our work shows how to improve quality of existing modeling software tools at a limited cost.

Fig

 Fig 1a. I/O relationship of modeler tool and need for pre-emptive validation of output at time of high-level input specification.

Fig 1b .

 1b Fig 1b. Control-flow-graph and program structure tree of a simple program as presented in [1].

Fig. 3 :

 3 Fig. 3: Automatically generated model input validator can inspect the high-level specification and generate a useful report of the work toward better output low-level code compliance ahead-of-time.