

Repair of myocardial infarction with human adult muscle-derived stem cells "MuStem"

Alice Rannou, Gilles Toumaniantz, Thibaut Larcher, Isabelle Leroux, Mireille Ledevin, A Hivonnait, S. Menoret, Ignacio Anegon, F. Charpentier, Karl Rouger, et al.

► To cite this version:

Alice Rannou, Gilles Toumaniantz, Thibaut Larcher, Isabelle Leroux, Mireille Ledevin, et al.. Repair of myocardial infarction with human adult muscle-derived stem cells "MuStem". 6eme congrés international de Myologie, Mar 2019, Bordeaux, France. 2019. hal-02083270

HAL Id: hal-02083270 https://hal.science/hal-02083270

Submitted on 28 Mar 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Repair of myocardial infarction with human adult muscle-derived stem cells "MuStem"

Rannou A ^{1,2,3,#}, Toumaniantz G ^{2,3}, Larcher T ¹, Leroux I ¹, Ledevin M ¹, Hivonnait A ², Menoret S ⁴, Anegon I ⁴, Charpentier F², Rouger K^{1*}, Guével L^{1,3*}

1 Panther INRA/Oniris UMR 703, Oniris, Nantes, France 2 INSERM UMR 1087/CNRS UMR 6291, Institut du Thorax, Nantes, France 3 University of Nantes, Nantes, France 4 INSERM UMR 1064/facility TRIP/UMRS3556, Center for Research in Transplantation and Immunology, Nantes, France * Equal contribution

alice.rannou@univ-nantes.fr

UNIVERSITÉ DE NANTES

Introduction

Myocardial infarction is a leading cause of morbidity and mortality worldwide. Although medical and surgical treatments can significantly improve patient outcomes, no treatment is currently available to generate new contractile tissue or reverse ischemic myocardium. Driven by the recent understanding that repair mechanism could be made in the injured myocardium, the use of stem cells has emerged as a promising therapeutic approach with high expectations. The literature describes the use of cells from various sources with demonstration of tissue and/or functional benefits in both animal models and Human; however, more studies are needed to directly compare cells of various origins in efforts to draw conclusions on the most appropriate source in order to positively impact on the heart tissue and function remodelling.

Over the past ten years, we isolated a marginal adult stem cell population, we called MuStem cells, from dog and human successively and assigned to them a robust myogenic regenerative potential into dystrophic or injured muscle context. A panel of interesting features described below was also added to their characterization.

List of opening questions: Can MuStem cells rescue cardiac function? Can they impact on tissue remodelling? Do they

course of the phenotype in terms of function and structural remodelling.

The percentage of ejection fraction is obtained with the plane of incidence « small axis » combined with recording in « time-movement » mode The left ventricle end diastolic diameter is analysed to highlight a potential ventricular dilatation.

+ ligature

➤ Histology

Posterior wall Diameters at end diastole (DFD) or systole (DFS) ECG: to explore cardiac arrhythmias 6 derivations are realized Parameters obtained: ✓ Cardiac frequency Duration of P-wave, QRS complex & QT interval

Each heart has been cut off in slices frozen or put in paraffin to allow full histological investigations.

WGA (Wheat germ agglutinin) is a lectin used to highlight extracellular matrix.

hLamin A/C protein is used to label human cells into rat tissue.

Results – Part I

acute context of heart disease following its local administration.

Functional and structural benefits consequently to hMuStem cell injection without demonstration of rhythm disturbances

Echographic analysis

engraft in cardiac tissue ?

Results – Part II

Large tissue remodelling induced following hMuStem cell injection

Anterior wall

✓ hMuStem cells partially restore the heart function that results in hypokinesia in treated rats and to an improvement of the LVEF 3 weeks post-injection.

ECG analysis

Three distinct area: Infarct (Inf), Border Zone (BZ) & Viable Area (VA)

- ✓ Increase of mean fiber diameter in infarcted area in rat receiving NaCl or MuStem cells compared to viable area (A.)
- \checkmark Increased anisocytosis with increase of small (<10µm) and large

Human nuclei (green), connective tissue (red)

Human nuclei (brown), cytoplasm (pink)

- ✓ Ability of the human MuStem cells to **fit** and to **maintain** into the host tissue **3** weeks post-injection.
- ✓ Predominant localization of human cells in **connective tissue**. However some are in cytoplasm of small cells.
- \checkmark Presence of cells in the depth of the heart with at least 15 cells per slices.

(>25µm) fibers (B. & C.) in MuStem cell-injected rats.

Conclusion & Perspectives

Ability of hMuStem cells:

injection

1) To generate **functional and structural benefits** in the infarcted heart

3) To engraft and survive into infarcted cardiac tissue 3 weeks post-

2) To limit the extension of the fibrotic process

BIOREGATE

Acknowledgements

n 🛓 n

- To **confirm these results**, the next steps will be:
 - ✓ To provide quantitative data on the engraftment rate of MuStem cells.
 - \checkmark To learn about the **phenotype** they acquire *in situ*:
 - ➤ Differentiation ? Proliferative / quiescent state ? \succ Cell death ?

Fonds Européen de développement régiona

This work was supported by a grant from the RFI Bioregate. It was also supported FEDER-FLS the 2014-2020 (n° PL0003686).

✓ To investigate the ability of MuStem cells to induce angiogenesis \checkmark To determine the nature of small cells identified in remodelling tissue