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A mathematical extension of the weak value formalism to the simultaneous measurement of mul-
tiple parameters is presented in the context of an optical focused vector beam scatterometry experi-
ment. In this example, preselection and postselection are achieved via spatially-varying polarization
control, which can be tailored to optimize the sensitivity to parameter variations. Initial experi-
ments for the two-parameter case demonstrate that this method can be used to measure physical
parameters with resolutions at least 1000 times smaller than the wavelength of illumination.

The concepts of weak value and weak measurement
were introduced by Aharonov, Albert and Vaidman in
1988 [1–3] as an alternative to the standard measure-
ment formalism of quantum mechanics. For a quantity
associated with an operator B, a standard measurement
is related to the expected value 〈Φ|B|Φ〉/〈Φ|Φ〉, where Φ
is the state vector for the quantum state being measured.
Since the state is normalized, the inner product in the de-
nominator is typically taken as unity. Clearly, for Hermi-
tian operators, this expected value is real and limited to
the range of values spanned by the eigenvalues of B. On
the other hand, weak measurements are based on weak
values defined as 〈Φpost|B|Φpre〉/〈Φpost|Φpre〉, where Φpre

and Φpost are preselected and postselected states. It is
easy to see that there is no bound to a weak value since
the denominator can be made arbitrarily small by appro-
priate preselection and postselection. In fact, weak val-
ues need not even be real-valued. Weak measurements
have been employed, for example, to measure very small
angular deviations with great precision [4–7].

While weak values are usually presented in the lan-
guage of quantum theory, their formalism applies to clas-
sical measurements as well. Indeed, not only can the
essential elements of some of their most successful exper-
imental applications be explained classically [4, 5] (with
some exceptions [8]), but many pre-existing important
interferometric techniques can be interpreted in terms
of weak values, in which the preselected state describes
the illumination, and postselection is achieved by a filter-
ing process of the resulting light, either spatially, direc-
tionally, temporally, spectrally, or in polarization. Three
examples of this are phase contrast microscopy [9, 10],
which earned Zernike the Nobel Prize in Physics in 1956,
differential interference contrast microscopy [11], and off-
null ellipsometry [12].

In this Letter, we present a method for simultane-
ous measurement of multiple parameters, inspired by the
weak value formalism. We concentrate on the measure-
ment of several morphological parameters of a periodic
structure with subwavelength features. This example has

practical applications in the semiconductor industry, in
which manufacturers require precise measurements of in-
tegrated circuit components (e.g., stacked silicon wafers),
often on sub-nanometer scales. Typical parameters of in-
terest include the period, critical dimension (CD), over-
lay error, line edge roughness, trench depth and profile,
film thickness, and wafer alignment and orientation [13–
15]. Here we present the theory for the measurement of
several parameters, as well as experimental results for a
two-parameter measurement of CD and orientation an-
gle, which must be controlled during the etching process
to reduce overlay error. The measurement scheme, which
we refer to as focused vector beam scatterometry, is illus-
trated in Fig. 1(a). A polarized beam is focused onto the
structure, then the scattered light is re-collimated, passed
through a polarization analyzer, and measured. The key
of this method is to design the incident polarization and
the analyzer (either of which may be spatially inhomoge-
neous in general) to optimize the sensitivity of the mea-
surement. The experimental layout is similar to that of
coherent Fourier scatterometry [16, 17], which also uses
a focused beam but lacks optimized polarization control.

Let us begin with a mathematical description of this
approach. In the linear regime, the test structure is
characterized by its scattering matrix R(u′,u), which
provides the coupling between an incident plane wave
and a reflected plane wave with directions specified by
the transverse direction cosines u′ = (u′x, u

′
y) and u =

(ux, uy), respectively (see Fig. 1(b)). The directional
variables u′ and u are mapped by the objective lens onto
the spatial pupil positions of the collimated input and
output beams. After focusing, the incident field is repre-
sented by a vector angular spectrum, A(u′), which gives
the complex amplitude and polarization of the plane wave
component in the direction u′. The angular spectrum of
the field reflected by the structure is then given by

AR(u) =

∫
R(u′,u)A(u′) d2u′. (1)

After collection and collimation by the lens, the analyzer
transmits a given polarization P(u) at each point, and
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FIG. 1. (a) Schematic of a focused vector beam scatterom-
etry experiment in which preselection and postselection are
achieved via spatially-varying polarization control. NPBS =
non-polarizing beamsplitter. (b) The structure’s scattering
matrix R(u′,u) provides the coupling between incident and
reflected plane waves with directions u′ and u.

the transmitted intensity is measured at the CCD. This
measured intensity can be written as

I(u) = |P†(u)AR(u)|2 = |〈P|R|A〉|2, (2)

where P† is a conjugate transpose and

〈P|R|A〉(u) =

∫
P†(u)R(u′,u)A(u′) d2u′. (3)

The goal is to simultaneously measure a set of N
morphological parameters of the structure, denoted as
p = (p1, p2, ..., pN ), such as those mentioned above. Be-
cause we are considering small ranges of the values of
interest, we can assume that the scattering matrix has
approximately linear dependence on these parameters:

R(u′,u;p) ≈ R0(u′,u) +
∑
n

pnRn(u′,u), (4)

where the index of summation runs from 1 to N . For
simplicity, these parameters are normalized to be dimen-
sionless and for their ranges of variation of interest to
correspond to |pn| ≤ 1, with pn = 0 corresponding to the
nominal structure. The measured intensity is then

I(u;p) ≈

∣∣∣∣∣〈P|R0|A〉+
∑
n

pn〈P|Rn|A〉

∣∣∣∣∣
2

(5a)

= |〈P|R0|A〉|2
∣∣∣∣∣1 +

∑
n

pn
〈P|Rn|A〉
〈P|R0|A〉

∣∣∣∣∣
2

. (5b)

The form shown in Eq. (5b) is factorized to em-
phasize the connection to weak measurements, where
〈P|Rn|A〉/〈P|R0|A〉 is analogous to the weak value of
Rn. (More precisely, it is the weak value of R−α0 RnR−1+α0

with preselected and postselected states R1−α
0 |A〉 and

〈P|Rα0 , respectively, for any real α.)

The key to a good measurement is to tailor A and P
so that these weak values are real and have variations
on the order of unity, and so that their dependences on
u are as distinguishable as possible. This is achieved by
letting

〈P|R0|A〉 = −
∑
n

p̄n(u)〈P|Rn|A〉, (6)

where p̄1(u), . . . , p̄N (u) are a set of real functions of u.
The output intensity distribution is then given by

I(u;p) ≈

∣∣∣∣∣∑
n

[pn − p̄n(u)]〈P|Rn|A〉(u)

∣∣∣∣∣
2

. (7)

The design of a good measurement system then reduces
to a suitable choice of pupil-dependent reference func-
tions p̄n(u), from which A(u) and/or P(u) can be deter-
mined. In our setup we choose the analyzer to be uni-
form (P is constant), implying that a spatially-varying
input polarization A(u) would be required for optimal
sensitivity. Let us consider the simple case where the
test structure introduces no directional coupling, i.e.,
R(u′,u;p) = R(u;p) δ(u − u′). This is the case, for
example, for a uniform multilayer thin film or a periodic
structure with subwavelength period. The condition in
Eq. (6) can be written as

P†

(
R0(u) +

∑
n

p̄n(u)Rn(u)

)
A(u) = 0, (8)

which leads to the following solution for the incident an-
gular spectrum:

A(u) = A(u)

[
0 1
−1 0

](
R0 +

∑
n

p̄nRn

)T
P∗, (9)

where A(u) is an arbitrary envelope function, the super-
script T denotes a matrix transpose, and P∗ is a complex
conjugate. For structures that couple different directions,
the solution for A in terms of P and the functions p̄n is
similar although more complicated, sometimes requiring
an iterative process.

Note that by substituting Eq. (9) into Eq. (7), the mea-
sured intensity can be written as a multivariate quadratic
function of the form

I(u;p) ≈ |A(u)|2
∑
n′,n′′

(pn′ − p̄n′)Γn′n′′(pn′′ − p̄n′′), (10)

where the coefficients Γn′n′′(u) (which depend on Rn and
P) are the elements of a real, positive semidefinite Her-
mitian N×N matrix. In practice, for a fixed input polar-
ization state, one can expand Eq. (10) and calculate the
quadratic coefficients directly from a set of experimen-
tal calibration images of reference structures with known
parameters. The advantage of this approach is that it
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FIG. 2. Experimentally measured (top row) and optimized simulated (bottom row) input polarizations and output intensity
distributions for a two-parameter measurement of critical dimension and sample orientation. (a,d) Incident polarization and
normalized intensity after transmission through the beamsplitter. An annular apodization profile was used to prevent unwanted
backreflections on-axis. The transmitted polarization P of the output analyzer is shown in the upper left corner. Right- and
left-handed polarization states are represented by green and red ellipses, respectively. (b,e) Output intensity distributions for
49 experimental/simulated measurements, normalized to the same scale as the input intensity. The axis labels indicate the
parameter values associated with the intensity distributions shown in each row and column. (c,f) Differences between each
intensity distribution and the mean distribution over the parameter range.

accounts for some sources of systematic error, including
any deviation between the experimentally achieved in-
put polarization and the theoretical distribution. Using
the calibrated intensity profile, the physical parameters
associated with an observed intensity from an unknown
structure may then be determined using maximum likeli-
hood estimation (MLE) techniques. The estimation un-
certainty is inversely proportional to the square root of
the eigenvalues of the Fisher information matrix, which
can be computed from I(u;p). For further details on the
use of MLE in this context, see Ref. [18].

As an example of this method, we now present
the results of a two-parameter measurement of a one-
dimensional lamellar silicon grating structure with 0.4
µm period. The two measured parameters were the grat-
ing’s critical dimension (CD) and its orientation angle
(relative to horizontal) in the plane perpendicular to the
optical axis. The illumination wavelength was 1.064 µm,
so the subwavelength grating diffracted only a single
propagating order, introducing no directional coupling.

The basic layout for the experiment is contained in Fig. 1;
additional details on the experimental apparatus and im-
plementation can be found in Appendix I.

The preliminary measurements presented here were
taken using a uniform linear analyzer oriented at 45◦

and a uniform incident polarization. The input polar-
ization, illustrated in Fig. 2(a), was chosen to minimize
the transmission through the analyzer, resulting in the
closest possible approximation of the conditions for opti-
mal sensitivity to parameter variations. Future measure-
ments are planned using a spatially-varying polarization
generator (currently under development) and a uniform
elliptical analyzer. Fig. 2(d) shows a simulation of the op-
timal input polarization and analyzer for this configura-
tion, which were designed to maximize the eigenvalues of
the Fisher information matrix over the parameter range
of interest. The optimized functions p̄1(u) and p̄2(u)
associated with this input polarization are provided in
Appendix II.

A total of 49 measurements, shown in Figs. 2(b,e) for
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the experimental and simulated cases, were collected for
seven structures with critical dimensions between 158 nm
and 176 nm oriented at angles between −6◦ and 6◦. The
variations in intensity over this parameter range can be
visualized by subtracting the mean intensity from each
measurement, as seen in Figs. 2(c,f). Notice that the
maximum variation of the experimental intensity from
the mean is approximately 20% as large as the peak in-
tensity. In comparison, the simulated spatially-varying
polarization produces intensity variations up to 70% of
the peak value, making the effects of the structure pa-
rameters more easily distinguishable.

The parameters associated with each experimental im-
age were estimated using MLE techniques and compared
to the “true” parameter values obtained from a series
of focused ion beam (FIB) measurements and manual
readings of the sample’s rotation stage. The uncertain-
ties in these assumed “true” values may be as large as
1 to 2 nm and 0.2◦, respectively. The true and mea-
sured parameters for each measurement are plotted in
Fig. 3, along with the parameter values associated with
eight additional reference measurements that were used
for calibration purposes. The red ellipses represent the
predicted standard deviation errors from a shot-noise-
limited measurement of 7500 photons, as calculated from
the Fisher information matrix. On average, the estima-
tion errors for CD and sample orientation are 0.78 nm
and 0.39◦, respectively. In general, the measurement er-
ror is expected to scale in proportion to the wavelength of
illumination; this suggests, for example, that the average
error for CD could be reduced to 0.39 nm by repeating
the experiment with a green (532 nm) laser. This is on
par with current industry needs, which demand measure-
ments with accuracies on the order of a few angstroms.

Notice also from Fig. 3 that the estimation errors for
structures with similar true parameter values are highly
correlated. In some cases (for example, the structure
with 161 nm CD), this could signify inaccuracies in the
assumed “true” parameter values and/or errors in other
properties of the structure, such as the grating depth.
Another likely contributor is the presence of systematic
error (e.g., stress birefringence in the objective) that can-
not be fully accounted for by the calibration procedure,
which is solely based on measurements of the output in-
tensity. Nevertheless, the relative errors between the two
parameters (i.e., the error bar orientations) exhibit sim-
ilar behavior to the Poisson statistical model. Compar-
ing to Fig. 2(b), one can see that the estimation error
is generally smallest when the output intensity is lowest,
which occurs for sample orientations near +6◦. Again,
this is consistent with the statistical model, which pre-
dicts small errors under low-light conditions due to the
large fractional change in intensity associated with pa-
rameter variations. Note that the specific variations in
intensity over the parameter space observed in this mea-
surement are not a fundamental feature of the measure-
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FIG. 3. Estimated parameters from each of the 49 images
shown in Fig. 2(b). Error bars connect each estimate to the
associated true parameter values. The ellipses represent the
minimum standard deviation error expected from a measure-
ment of 7500 photons.

ment scheme, but rather a consequence of the geome-
try of the sample and the chosen input polarization and
analyzer. It is possible to define polarization distribu-
tions that, with more versatile polarization control, en-
able even more accurate parameter estimates, as demon-
strated below.

In order to predict the accuracy of future experiments
using the optimized elliptical analyzer and spatially-
varying input polarization shown in Fig. 2(d), we per-
formed a Monte Carlo simulation in which the structure
parameters were estimated from simulated intensity dis-
tributions containing a discrete number of photons. The
results for 1000 photons are shown in Fig. 4, along with
ellipses representing the expected standard deviation er-
ror. By repeating the simulation for 7500 photons, the
performance of the optimal solution can be compared
against the approximate error of the current experimen-
tal implementation. The most dramatic improvement oc-
curs for the nominal structure having 167 nm CD and 0◦

orientation; for this case, the experimental standard de-
viation confidence intervals (based on the calibrated in-
tensity profile) are ±0.70 nm and ±0.35◦. Under optimal
conditions, these intervals are reduced to ±0.06 nm and
±0.04◦. For all values within the parameter ranges of
interest, the error in CD is reduced by at least a fac-
tor of 3, while the orientation error is reduced by at
least a factor of 1.25. Additional simulations corrobo-
rate that over smaller parameter ranges (for example,
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FIG. 4. Retrieved parameters from output intensities con-
taining 1000 photons, simulated for the input polarization
and analyzer shown in Fig. 2(d). Data is shown for 10000 tri-
als over 49 true parameter values (each shown in a different
color). The ellipses represent the expected standard deviation
errors for each true parameter value.

±3 nm CD and ±1◦ rotation), an optimized spatially-
varying input polarization could provide an even more
significant advantage over a spatially uniform one. As
mentioned earlier, the reason for this improvement is that
a spatially-varying polarization can be optimized at each
point to produce an output intensity with a larger frac-
tional change with respect to variations in each parame-
ter.

In summary, we have described a weak-measurement-
inspired technique for the simultaneous measurement of
multiple parameters. The specific implementation of
this technique was a focused beam scatterometry ex-
periment in which preselection and postselection were
achieved via polarization control. Initial experiments in-
volving a grating with 0.4 µm period demonstrate that
even with simplistic polarization control, this method can
produce measurements of physical parameter variations
with subnanometer precision. This compares favorably
with existing coherent Fourier scatterometry techniques,
which have been used to perform similar measurements
with uncertainties of one to two nanometers [17]. Re-
cent advances in the semiconductor industry have en-
abled the production of structures with periods of 20 nm
and below [14]; on this smaller scale, the scatterome-
try measurement presented here is expected to provide
even greater sensitivity since a given physical variation
would represent a larger relative change in the structure
geometry. Future experiments with improved polariza-
tion control and/or shorter illumination wavelengths are

also expected to further improve the accuracy of the
measurement. These measurements may include addi-
tional parameters such as grating depth and sidewall an-
gle, which will test the viability of the method for the
several-parameter case.
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Appendix

I. EXPERIMENTAL DETAILS

A more detailed schematic of the experimental setup is
shown in Fig. 5. The polarization generator consists of a
linear polarizer and quarter-wave plate, which may be ro-
tated to generate any spatially uniform elliptical polariza-
tion state. The resulting polarization was measured (af-
ter transmission through the non-polarizing beamsplit-
ter) using an imaging polarimeter consisting of a rotat-
ing quarter-wave plate and a fixed linear polarizer. A
Bertrand lens was used to image the pupil of the objec-
tive onto the detector.

CMOS camera
Linear analyzer

Bertrand lens

Imaging
polarimeter

Objective
(0.81 NA)

NPBS

LP QWP
Laser

(1064 nm)

Structure
under test

FIG. 5. Schematic of the experimental setup used for a two-
parameter measurement of a silicon lamellar grating. LP =
linear polarizer, QWP = quarter-wave plate, NPBS = non-
polarizing beamsplitter.

II. OPTIMIZED PUPIL FUNCTIONS

The optimized functions p̄1(u) and p̄2(u) associated
with the input polarization shown in Fig. 2(d) in the
main text are plotted in Fig. 6 below. These functions
can be interpreted as the departure from perfect nulling
(i.e., zero output intensity) associated with each param-
eter, normalized to the range of interest. In other words,
they determine the range of variation associated with
each weak value of Rn at each point in the pupil. The
most important feature of these plots is that each param-
eter has a pupil function with distinct spatial variations
on the order of unity, enabling accurate estimates over
the entire range of interest with minimum coupling be-
tween parameters.

–3

–2

–1

0

1

2

3

FIG. 6. Optimized pupil functions p̄1(u) (left) and p̄2(u)
(right) for a measurement of CD and sample orientation using
the elliptical analyzer shown in the inset of Fig. 2(d) in the
main text.
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