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Covariance matrices play a central role in a wide range of multivariate statistical methods including for example principal component analysis which is a well known dimensionality reduction technique. Therefore, a large amount of work has been devoted to analyzing the sensitivity of their eigenstructure to influential observations. In order to evaluate the effect of deleting one or a small subset of observations, several approximations to the eigenelements of the perturbed matrix have been proposed. This paper provides a theoretical and numerical comparison of the main approximations. A special emphasis is given to those based on Rayleigh quotients which are seldom used. A general approach, using new inequalities in the study of covariance matrices, is proposed in order to evaluate their accuracy without having to recompute the exact perturbed eigenvalues and eigenvectors. This approach is of specific interest from a computational standpoint. Theoretical developments are illustrated with a numerical study which emphasizes the accuracy of approximations based on Rayleigh quotients.

Introduction

We consider a n × p data matrix X in which the n rows are the observation vectors x t i ∈ R p , i = 1, . . . , n. Letting x = (1/n) n i=1 x i denote the mean vector of dimension p, the covariance matrix S = (1/n) n i=1 (x ix) (x ix) t is involved in a wide range of statistical methods including principal component analysis or multiple regression for example. Since S is known to be highly prone to influential observations, sensitivity aspects for principal component analysis have been discussed in several papers including [START_REF] Critchley | Influence in principal component analysis[END_REF] , [START_REF] Pack | Influential observations in principal component analysis: a case-study[END_REF], [START_REF] Tanaka | Sensitivity analysis in principal component analysis: Influence on the subspace spanned by principal components[END_REF], [START_REF] Jolliffe | Principal Component Analysis[END_REF], [START_REF] Prendergast | A note on sensitivity of principal component subspaces and the efficient detection of influential observations in high dimensions[END_REF], [START_REF] Prendergast | A new and practical influence measure for subsets of covariance matrix sample principal components with applications to high dimensional datasets[END_REF] among many others. In order to assess the influence of a small subset I of r observations on the eigenstructure of S, a possible approach consists of studying the effect of removing these r observations on the eigenelements of S. If we note a significant modification of the eigenelements, we know that these observations are strongly influential on the results. In this framework, letting S denote the covariance matrix obtained without the subset of observations indexed by I, several authors have studied the relationship between the eigenelements of S and those of S. More specifically, providing approximations to the eigenelements of S allows to detect influential subsets of observations without having to recompute the exact modified eigenvalues and eigenvectors. Hadi & Nyquist [START_REF] Hadi | Further theoretical results and a comparison between two methods for approximating eigenvalues of perturbed covariance matrices[END_REF] and Wang & Nyquist [START_REF] Wang | Effects on the eigenstructure of a data matrix when deleting an observation[END_REF] study the effect of deleting a single observation while Wang & Liski [START_REF] Wang | Effects of observations on the eigensystem of a sample covariance matrix[END_REF], Enguix-González et al. [START_REF] Enguix-González | Influence analysis in principal component analysis through power-series expansions[END_REF] and Bénasséni [START_REF] Bénasséni | A correction of approximations used in sensitivity study of principal component analysis[END_REF] focus on the general case where I comprises several observations. In these works, approximations to the eigenvalues and eigenvectors are obtained by retaining the first terms in power expansions of these parameters. Independently of these works, Bénasséni [START_REF] Bénasséni | Perturbation poids des unités statistiques et approximation en analyse en composantes principales[END_REF] suggests using approximations based on Rayleigh quotients together with inequalities given in [START_REF] Wilkinson | The algebraic eigenvalue problem[END_REF]. Finally, it should be noted that approximations for the covariance matrix are still the subject of an ongoing research in a wider framework as emphasized by works published in the past decade including for example [START_REF] Enguix-González | A better approximation of moments of the eigenvalues and eigenvectors of the sample covariance matrix[END_REF] which considers the moments of the eigenelements or [START_REF] Enguix-González | Using conditional bias in principal component analysis for the evaluation of joint influence on the eigenvalues of the covariance matrix[END_REF] dealing with the conditional biais of eigenvalues.

The contribution of this work is twofold. First, since approximations based on power ex-pansions have never been compared with those based on Rayleigh quotients, some elements of comparison are provided. This comparison is based on some simple theoretical relations together with the numerical study of a data table which is intended to provide some guidance on the approximations to choose in practice. Second, inequalities recently given in [START_REF] Chatelin | Eigenvalues of Matrices[END_REF] are introduced in order to evaluate the accuracy of approximations without having to recompute the eigenelements of S. It is proved that these inequalities always provide a sharper evaluation than those used in [START_REF] Bénasséni | Perturbation poids des unités statistiques et approximation en analyse en composantes principales[END_REF]. This is a central result from a computational standpoint since it is of crucial importance to have, as far as possible, the more precise evaluation of the approximations without having to recompute the perturbed eigenelements.

The paper is organized as follows. First, a brief review of approximations based on power expansions is provided in the next section in order to acquaint the reader with the field of research. Section 3 is devoted to approximations based on Rayleigh quotients.

The main contribution of the paper can be found in Section 4 which introduces new inequalities in the study of covariance matrices in order to provide an improved evaluation of approximations. A numerical illustration of the results, based on the soil composition data in [START_REF] Kendall | Multivariate Analysis[END_REF], can be found in Section 5 in the framework of principal component analysis while Section 6 is devoted to some practical conclusions.

In this work, the eigenvalues λ 1 > λ 2 . . . > λ p ≥ 0 of S are assumed simple and associated to the normalized eigenvectors φ 1 , φ 2 , . . . φ p . In the same way, the eigenvalues λ1 > λ2 . . . > λp ≥ 0 of the perturbed matrix S are also assumed simple and associated to the eigenvectors φ1 , φ2 , . . . φp .

Approximations based on power expansions 2.1 Theoretical background on matrix perturbations

Referring to [START_REF] Enguix-González | Influence analysis in principal component analysis through power-series expansions[END_REF] or [START_REF] Bénasséni | A correction of approximations used in sensitivity study of principal component analysis[END_REF] and letting x I = (1/r) i∈I x i , we know that, when a subset of observations indexed by I is deleted, the covariance matrix S is transformed to S which can be expressed as:

S = S + r n -r S - 1 r i∈I (x i -x) (x i -x) t + r n -r 2 -(x I -x) (x I -x) t (1) 
We then have a perturbation of the form

S = S + ǫM + ǫ 2 N with ǫ = r n-r , M = S - (1/r) i∈I (x i -x) (x i -x) t and N = -(x I -x) (x I -x) t .
Following matrix perturbation theory detailed in [START_REF] Wilkinson | The algebraic eigenvalue problem[END_REF] for example or referring to [START_REF] Sibson | Studies in robustness of multidimensional scaling: perturbational analysis of classical scaling[END_REF], we know that, if ǫ is sufficiently small, for each simple eigenvalue λ of S there is an eigenvalue λ of S given by a convergent power series:

λ = λ + γ 1 ǫ + γ 2 ǫ 2 + . . . + γ m ǫ m + O(ǫ m+1 ) (2)
with a corresponding eigenvector which can also be expressed under a convergent power series:

φ = φ + ψ 1 ǫ + ψ 2 ǫ 2 + . . . + ψ m ǫ m + O(ǫ m+1 ) (3) 
The parameters γ 1 ,γ 2 , . . .,γ m and ψ 1 ,ψ 2 ,. . .,ψ m are derived by equating the coefficients of ǫ, ǫ 2 ,. . .,ǫ m in the equation S φ = λ φ. It should also be noted that the perturbation λk of λ k may not necessarily be the kth largest eigenvalue of S if the subset of observations indexed by I has initially a strong influence on λ k for example. In this case, we assume simply that the eigenvalues λk have been reordered in decreasing order and that their corresponding eigenvectors φk have been relabeled.

Formulae for the approximations derived from power expansions

For any integer m ≥ 1, retaining only terms of order lower or equal to m in ǫ in ( 2) and [START_REF] Tanaka | Sensitivity analysis in principal component analysis: Influence on the subspace spanned by principal components[END_REF] provides the approximations λ(m) and φ(m) of order m for the eigenvalues and eigenvectors of S. This is the general approach suggested in [START_REF] Wang | Effects of observations on the eigensystem of a sample covariance matrix[END_REF], [START_REF] Enguix-González | Influence analysis in principal component analysis through power-series expansions[END_REF] and [START_REF] Bénasséni | A correction of approximations used in sensitivity study of principal component analysis[END_REF]. Assuming that ǫ = r n-r is sufficiently small to ensure the convergence of the above power series, Enguix-González et al.

[10] provide the following approximations for k = 1, . . . , p:

λ(1) k = λ k + r n -r λ k - 1 r i∈I α 2 ki (4) λ(2) k = λ(1) k + r n -r 2   -α 2 kI - j =k 1 λ j -λ k 1 r i∈I α ki α ji 2   (5) φ(1) k = φ k + r n -r j =k 1 r i∈I α ki α ji φ j λ j -λ k (6) 
where α ki = φ t k (x ix), for i = 1, . . . , n and α kI = ( i∈I α ki )/r.

Details on the derivation of the above expressions are given in [START_REF] Bénasséni | A correction of approximations used in sensitivity study of principal component analysis[END_REF]. The reader is referred to [START_REF] Enguix-González | Influence analysis in principal component analysis through power-series expansions[END_REF] for the formula of φ(2) k which is fairly long and therefore omitted in this paper. In the remaining of the paper, we define also the approximations of order zero as λ(0) = λ and φ(0) = φ for notational convenience.

Finally, when studying the influence of a single observation, note that approximations are simply obtained by taking r = 1, I = {i} and ǫ = 1 n-1 in the previous developments. The reader more specifically interested by this case will refer to a series of papers including [START_REF] Critchley | Influence in principal component analysis[END_REF], [START_REF] Hadi | Further theoretical results and a comparison between two methods for approximating eigenvalues of perturbed covariance matrices[END_REF] and [START_REF] Wang | Effects on the eigenstructure of a data matrix when deleting an observation[END_REF].

3 Approximations based on Rayleigh quotients 3.1 Rayleigh quotients as approximations to the perturbed eigenvalues Assuming that weights are given to the observations, Bénasséni [START_REF] Bénasséni | Perturbation poids des unités statistiques et approximation en analyse en composantes principales[END_REF] studies the effects of modifying these weights on the eigenvalues and eigenvectors of the covariance matrix. Deleting a small subset of observations indexed by I is therefore a particular case of his approach which consists simply of modifying to zero the corresponding weights. As approximations to λk for k = 1, . . . , p, this author suggests using the Rayleigh quotient q

(0) k = φ(0) k t S φ(0) k / φ(0) k t φ(0)
k for S and the initial normalized eigenvector φ(0) k , and the Rayleigh quotient q

(1)

k = φ(1) k t S φ(1) k / φ(1) k t φ(1)
k for S and the approximation of order one φ(1) k to φk .

Error analysis

From a computational standpoint, it is of major interest to evaluate the accuracy of approximations without having to recompute the exact eigenelements of S. In order to do this, Bénasséni [START_REF] Bénasséni | Perturbation poids des unités statistiques et approximation en analyse en composantes principales[END_REF] suggests using inequalities provided in [START_REF] Wilkinson | The algebraic eigenvalue problem[END_REF]. Focusing on λk and its corresponding eigenvector φk and, from now on, assuming without change of notation that φ(m)

k has been normalized, let η (m) k = S φ(m) k -q (m) k φ(m) k 2
for m = 0, 1 where . 2 stands for the two norm. Assume that c

(m) k ∈ R + * is a nonzero positive constant such that λj -q (m) k > c (m) k
for j = 1, . . . , p with j = k. Then the accuracy of q (m) k as approximation to λk , and of φ(m) k as approximation to φk , is analyzed in [START_REF] Bénasséni | Perturbation poids des unités statistiques et approximation en analyse en composantes principales[END_REF] using the following inequalities given in [13, pp.172-176] :

φk - φ(m) k 2 2 ≤ η (m) k c (m) k 2   1 + η (m) k c (m) k 2   (7) 
and if η

(m) k /c (m) k < 1: λk -q (m) k ≤   (η (m) k ) 2 c (m) k   /   1 - η (m) k c (m) k 2   (8) 
Using

φk 2 = φ(m) k 2
= 1, note that [START_REF] Hadi | Further theoretical results and a comparison between two methods for approximating eigenvalues of perturbed covariance matrices[END_REF], can be written with the cosine between φk and φ(m) k as:

1 -η (m) k 2 /2 c (m) k 2 1 + η (m) k /c (m) k 2 ≤ cos φk , φ(m) k . (9) 
In practice, it is necessary to give the parameter c (m) k a value in the previous inequalities.

When studying the influence of a single observation, it should be noted that (1) can be expressed as

S = n n -1 S - 1 n -1 (x i -x) (x i -x) t (10) 
so that we have a rank one perturbation. In this case, the parameter c

(m) k
is given a value in [START_REF] Bénasséni | Perturbation poids des unités statistiques et approximation en analyse en composantes principales[END_REF] using bounds, derived from the Courant-Fischer theorem, for the eigenvalues λj of the symmetric matrix S , j = 1, . . . , p, j = k. In the case where several observations are deleted this author suggests a fairly lengthy procedure assuming that these observations are removed one after the other, so that we have a series of rank one perturbations.

4 New developments

Some relations between the approximations

In his work, Bénasséni [START_REF] Bénasséni | Perturbation poids des unités statistiques et approximation en analyse en composantes principales[END_REF] only considers the approximations of order one λ(1) k for the eigenvalues of S and provides no comparison with approximations based on Rayleigh quotients. However, it is easy to derive the following simple relations.

First note that q (0) k can be written as:

q (0) k = λ k + r n -r λ k - 1 r i∈I α 2 ki - r n -r 2 α 2 kI (11)
using [START_REF] Critchley | Influence in principal component analysis[END_REF]. Therefore we see that we have always λ(1) k ≥ q (0)

k . Furthermore, a simple comparison of ( 11) with [START_REF] Prendergast | A note on sensitivity of principal component subspaces and the efficient detection of influential observations in high dimensions[END_REF] shows that:

λ(2) k -q (0) k = - r n -r 2 j =k 1 λ j -λ k 1 r i∈I α ki α ji 2 .
In particular, when focusing on the largest eigenvalue which plays for example a central role in PCA, this difference is non negative so that we have λ(2)

1 ≥ q (0)
1 . In a similar way, when considering the smallest eigenvalue, we get λ(2) p ≤ q (0)

p . We omit the derivation of q (1) k which is tedious and leads to a formula too complicated to be interpreted. However, it should be noted that this approximation involves terms up to the order 4 in ǫ = r n-r .

Improved inequalities in error analysis

In practice, it is of crucial importance to have bounds as close as possible to the true values of λk -q

(m) k and cos φk , φ (m) 
k in Inequalities ( 8) and ( 9). This will allow for an evaluation as precise as possible of the real accuracy of the approximations without having to recompute the perturbed analysis. For this purpose, we introduce below new inequalities in the study of covariance matrices in order to get an improved error analysis Indeed, Inequalities ( 7), ( 8) and ( 9) introduced in Subsection 3.2 can be improved using error analysis developed in [16, pp.180-184]. More precisely, it is easily derived from Corollary 4.6.4 in this reference that:

λk -q (m) k ≤ (η (m) k ) 2 c (m) k (12) 
and

sin φk , φ(m) k ≤ η (m) k c (m) k (13) 
under the condition:

η (m) k < c (m) k . (14) 
It is obvious that ( 12) is more accurate than [START_REF] Wang | Effects on the eigenstructure of a data matrix when deleting an observation[END_REF]. A similar remark holds for (13) wich improves [START_REF] Wang | Effects of observations on the eigensystem of a sample covariance matrix[END_REF]. This last point is easily checked by converting (13) into

cos 2 φk , φ(m) k ≥ 1 -η (m) k /c (m) k 2 . ( 15 
)
Then letting a = η

(m) k /c (m) k 2 , A = 1 -a and B = [1 -(a/2)(1 + a)] 2 , Inequality (9) becomes cos 2 φk , φ (m) 
k ≥ B so that we have simply to prove that A ≥ B. Developing B, we get B = A + (a 2 /4)(a 2 + 2a -3). Thus we have that A ≥ B if and only if the polynomial a 2 + 2a -3 is negative. This is the case when a belongs to [-3, 1]. Therefore the result follows since 0 ≤ a < 1 from [START_REF] Enguix-González | A better approximation of moments of the eigenvalues and eigenvectors of the sample covariance matrix[END_REF].

Furthermore, when dealing with the eigenvector associated to the largest eigenvalue, Chatelin [16, p.204] points out that Inequality (13) can also be refined into the following tangent based inequality:

tan φ1 , φ(m) 1 ≤ η (m) 1 c (m) 1 (16) 
since this eigenvalue is assumed to be simple. More precisely, letting α denote the angle between the two vectors φ1 and φ(m)

1 , we have α ≤ arctan η (m) 1 /c (m) 1 ≤ arcsin η (m) 1 /c (m) 1
since 0 ≤ arctan x ≤ arcsin x for all x ∈ [0, 1]. Thus we obtain a better approximation of α when using the function arctan rather than the function arcsin showing that ( 16) improves (13).

Improved value for the parameter c (m) k

The sharpness of the bounds in Inequalities ( 12), ( 13) and ( 16) depends on the value of the parameter c obtained through the Courant-Fischer theorem in [START_REF] Bénasséni | Perturbation poids des unités statistiques et approximation en analyse en composantes principales[END_REF] . More precisely, using this reference we know there is at least one eigenvalue of S in each of the intervals defined for j = 1, . . . , p by b can be easily derived as c

(m) j , B (m) j = q (m) j -η (m) j , q (m) j + η (m) j
(m) k = min b (m) k -B (m) k+1 , b (m) k-1 -B (m) k if k ∈ {2, . . . , p -1}, c (m) 1 = b (m) 1 -B (m) 2 if k = 1 and c (m) p = b (m) p-1 -B (m) p if k = p.
It should be noted that for very close eigenvalues, giving a value to this parameter can be a real issue. However, once a value satisfying ( 14) is obtained, we know from ( 12) that, for k = 1, . . . , p, the eigenvalues λk lie in the intervals q

(m) k -(η (m) k ) 2 /c (m) k , q (m) k + (η (m) k ) 2 /c (m) k
which are sharper than the Krylov-Weinstein intervals as soon as [START_REF] Enguix-González | A better approximation of moments of the eigenvalues and eigenvectors of the sample covariance matrix[END_REF] holds. These new intervals can be used to obtain a larger value for the parameter c

(m)
k , thus improving ( 12), ( 13) and ( 16). This process could be iterated, but no significative improvment is generally observed.

Finally, it was noted in (10) that we have a rank one perturbation when deleting a single observation. Several inequalities and relations for this specific case are given in [START_REF] Bénasséni | Perturbation poids des unités statistiques et approximation en analyse en composantes principales[END_REF], [START_REF] Hadi | Further theoretical results and a comparison between two methods for approximating eigenvalues of perturbed covariance matrices[END_REF] and [START_REF] Wang | Effects on the eigenstructure of a data matrix when deleting an observation[END_REF]. The reader is also referred to more recent works [START_REF] Ipsen | Refined perturbation bounds for eigenvalues of hermitian and non-hermitian matrices[END_REF], [START_REF] Bénasséni | Lower bounds for the largest eigenvalue of a symmetric matrix under perturbations of rank one[END_REF], [START_REF] Cheng | The bounds of the eigenvalues for rank-one modification of hermitian matrix[END_REF] who suggest new bounds for the perturbed eigenvalues. Although Krylov-Weinstein intervals generally provide a satisfying value for the parameter c (m) k , these recent works can also be interesting in the determination of the largest possible constant c (m) k in order to make Inequalities ( 12), ( 13) and ( 16) sharper.

Numerical study

The numerical illustration of the results pertains to principal component analysis. It is based on the soil composition data in [START_REF] Kendall | Multivariate Analysis[END_REF] which have already been used in several works including , among others, [START_REF] Critchley | Influence in principal component analysis[END_REF], [START_REF] Tanaka | Sensitivity analysis in principal component analysis: Influence on the subspace spanned by principal components[END_REF], [START_REF] Wang | Effects on the eigenstructure of a data matrix when deleting an observation[END_REF], [START_REF] Wang | Effects of observations on the eigensystem of a sample covariance matrix[END_REF], [START_REF] Enguix-González | Influence analysis in principal component analysis through power-series expansions[END_REF], [START_REF] Bénasséni | A correction of approximations used in sensitivity study of principal component analysis[END_REF] or [START_REF] Enguix-González | Using conditional bias in principal component analysis for the evaluation of joint influence on the eigenvalues of the covariance matrix[END_REF] for sensitivity study of covariance based principal component analysis. The data table consists of 20 observations measured on 4 variables. We have the following four eigenvalues for the corresponding covariance matrix: λ 1 = 82.30827, λ 2 = 6.73891, λ 3 = 0.44783, λ 4 = 0.24552. In the first subsection, we study the effect of deleting each of the 20 observations on the two largest eigenvalues (which account for more than 99% of the total variation in principal component analysis) and on their corresponding eigenvectors. In the following subsection, we study the effects of deleting subsets of two observations on the largest eigenvalue. These subsets are those considered for the numerical study in [START_REF] Wang | Effects of observations on the eigensystem of a sample covariance matrix[END_REF] .

Approximations when deleting one observation

Table 1 provides for each subset I = {i}, the perturbed eigenvalue λ1 , its order one and two approximations λ(1) 1 and λ(2) 1 , the Rayleigh quotients q (0)

1 ans q

(1)

1 and the differences between each approximation and the true perturbed eigenvalue λ1 . In the last two columns we find the bounds to λ1 -q (0) 1 and λ1 -q

(1) 1

given by Inequality [START_REF] Bénasséni | Perturbation poids des unités statistiques et approximation en analyse en composantes principales[END_REF].

The first comment regarding the results in this table is that λ(1) 1 is by far the less accurate approximation in all cases. In contrast q

(1) 1 always provides extremely sharp approximations since it deviates from λ1 by 1.76 × 10 -3 in the worst case (when deleting observation 4) and that the error is only 2.13 × 10 -13 when deleting observation number 16. It should be noted that λ(2)

1 also provides fairly satisfying approximations although clearly less accurate than q

(1) 1 . The Rayleigh quotient q (0) 1 is outperformed by λ(2) 1 but remains significantly sharper than λ(1)

1 . Furthermore, it is worth pointing out that λ(1) 1 always overestimates the perturbed eigenvalue while the other three estimations slightly underestimate it. Note also that the results agree with inequalities λ(1)

1 ≥ q (0) 1 and λ(2) 1 ≥ q (0)
1 given in Subsection 4.1. Second, Inequality [START_REF] Bénasséni | Perturbation poids des unités statistiques et approximation en analyse en composantes principales[END_REF] provides bounds sufficiently close to λ1 -q (0) 1 and λ1 -q

(1) 1 to evaluate correctly the accuracy of Rayleigh quotients as approximations to λ1 without having to recompute the perturbed analysis. Third, it is easily seen from ( 10) that the maximum value for the perturbed eigenvalue is obtained when x i = x with λ1 = (20λ 1 )/19 = 86.64028. We have the highest perturbed eigenvalue when deleting observations number 3, 5, 10, 12, 14, 16, 20 which are fairly close to x and in these cases we get the sharper approximations to λ1 .

Focusing now on the second largest eigenvalue, Table 2 provides results similar to those of Table 1.

It turns out that λ(1)

2 is the less accurate approximation to λ2 . Except when deleting observation 13, the Rayleigh quotient q (1)

2 again provides the best approximation with a very good accuracy since in the worst case corresponding to this observation we have λ2 -q (1) 2 = 7.69 × 10 -4 . For this observation, λ(2) 2 is slightly better but less accurate in all the other cases while performing fairly well in general. The Rayleigh quotient q (0) 2 performs in a similar way as q (0) 1.86 × 10 -4 1.17 × 10 -9

I λ1 λ(1) 1 λ(2) 1 q (0) 1 q (1) 1 λ1 - λ(1) 1 λ1 - λ(2) 1 λ1 -q (0) 1 λ1 -q (1) 1 λ1 -q (0) 1 ≤ λ1 -q ( 
Table 1: Approximations and error analysis for the largest eigenvalue with r = 1. to λ2 -q (0) 2 and λ2 -q

I λ2 λ (1) 2 λ(2) 2 q 
(0) 2 q (1) 2 λ2 - λ(1) 2 λ2 - λ(2) 2 λ2 -q (0) 2 λ2 -q (1) 2 λ2 -q (0) 2 ≤ λ2 -q (1) 2 ≤ 
(1) 2

by Inequality [START_REF] Bénasséni | Perturbation poids des unités statistiques et approximation en analyse en composantes principales[END_REF] are not so close to these quantities as they were previously. For a part, this can be explained by the fact that we have a smaller value for c (0) 2 and c

(1)

2 than for c (0)

1 and c

(1)

1 when considering the largest eigenvalue. Indeed, for m = 0, 1 the gap λ3 -q (m) 2 is smaller than the gap λ2 -q (m) 1

. However, if we except the case observation 4, we know from this bound that λ2 -q (1) 2 never exceeds 1.02 × 10 -3 and this is sufficient for practical interpretation.

Results for the eigenvectors corresponding to the two largest eigenvalues are given in Table 3 which provides the sines sin φk , φ k and sin φk , φ

k for k = 1, 2 and their bounds provided by Inequality [START_REF] Wilkinson | The algebraic eigenvalue problem[END_REF].

First, we consider the eigenvector associated to the largest eigenvalue. It could be noted that the maximum value of the sine bewteen the unperturbed and perturbed eigenvector is obtained when deleting observation 4. This value corresponds to an angle of 2.85 • . In this case, as in all the other ones, the order one approximation performs fairly well since its sine with the perturbed eigenvector is equal to only 0.00494 which corresponds to an angle of 0.28 • . Furthermore bounds provided by Inequality [START_REF] Wilkinson | The algebraic eigenvalue problem[END_REF] are always extremely close to the exact value of sin φ1 , φ

Focusing now on the eigenvector corresponding to the second largest eigenvalue, the maximum of sin φ2 , φ 2 is again obtained when deleting observation 4 with the value of 0.08114. Even in this case, the order one approximation is fairly close to the perturbed eigenvector since sin φ2 , φ

= 0.01954. In contrast to the previous eigenvector, it is worth pointing out that bounds provided by Inequality [START_REF] Wilkinson | The algebraic eigenvalue problem[END_REF] are not always sufficiently close to the true values of the sine to give an exact account of the accuracy for these approximations.

Finally, since the angles between the eigenvectors studied in the table are always very close to zero, we do not provide the tangent of these angles which only deviates from the sine by an extremely small amount.

Approximations when deleting subsets of two observations.

Now, we study approximations to the perturbed largest eigenvalue and its corresponding eigenvector when deleting the subsets of two observations considered for the numerical illustration in [START_REF] Wang | Effects of observations on the eigensystem of a sample covariance matrix[END_REF]. Results similar to those of the previous section are provided in Tables 4 and5.

We note that deleting subsets of two observations can result in larger variations of the through the perturbation.

I sin φ1 , φ 1 sin φ1 , φ (1) 
1 sin φ1 , φ 1 ≤ sin φ1 , φ (1) 1 
≤ sin φ2 , φ 2 sin φ2 , φ (1) 
2 sin φ2 , φ 2 ≤ sin φ2 , φ (1) 
1 q (0) 1 q (1) 1 λ1 - λ(1) 1 λ1 - λ(2) 1 λ1 -q (0) 1 λ1 -q (1) 1 λ1 -q (0) 1 ≤ λ1 -q ( 

Approximations provided by λ(1)

k should be avoided as well as the Rayleigh quotients q (0) k which are not sufficiently accurate.

Second, when considering eigenvectors, we note a satisfying accuracy of approximations of order one φ(1) k . Again, when the eigenvalue corresponding to the eigenvector of interest is sufficiently distant from the other ones, we have a correct evaluation of this accuracy by Inequality [START_REF] Wilkinson | The algebraic eigenvalue problem[END_REF].

  sharper are these inequalities. In order to get a suitable value for this parameter, some other results in[16, p.180-181] turn out to be also of specific interest since they often improve significantly the value of the parameter c (m) k

  which are often referred to as Krylov-Weinstein intervals. When the interval b (m) k , B (m) kis isolated from the p -1 other ones, we know that it contains precisely one eigenvalue. Then, assuming that the Rayleigh quotients satisfy q

1 in Table 1 .

 in1 It should be noted that again λ(1) 2 always overestimates the perturbed eigenvalue but in contrast to Table 1, the other three approximations can as well slightly underestimate or overestimate λ2 . Another difference with Table 1 is that bounds provided

  16 86.63917 86.63923 86.63917 86.63917 86.63917 -5.48 × 10 -5 3.36 × 10 -8 6.79 × 10 -7 2.13 × 10 -13 7.21 × 10 -7 2.59 × 10 -13

							1) 1	≤
	1 81.59976 81.8333 81.59769 81.58031 81.59969	-0.23355	0.00207	0.01945	6.87 × 10 -5	0.01988	6.91 × 10 -5
	2 77.18681 77.64932 77.18511 77.17611 77.18667	-0.46251	0.00170	0.01070	1.42 × 10 -4	0.01115	1.46 × 10 -4
	3 86.52309 86.52844 86.52306 86.52255 86.52309	-0.00535	2.53 × 10 -5 5.38 × 10 -4 5.20 × 10 -9	5.40 × 10 -4	5.22 × 10 -9
	4 77.34975 77.64477 77.32399 77.17133 77.34799	-0.29503	0.02576	0.17842	1.76 × 10 -3	0.18922	1.78 × 10 -3
	5 86.57878 86.58112 86.57875 86.57801 86.57878	-0.00234	2.99 × 10 -5 7.71 × 10 -4 1.06 × 10 -7	7.74 × 10 -4	1.07 × 10 -7
	6 76.85039 77.33877 76.8502 76.84922 76.85037	-0.48838	1.86 × 10 -4 1.17 × 10 -3 1.53 × 10 -5	1.28 × 10 -3	1.66 × 10 -5
	7 79.95562 80.27544 79.95368 79.94044 79.95552	-0.31981	0.00194	0.01518	1.02 × 10 -4	0.01544	1.02 × 10 -4
	8 74.71505 75.29919 74.71264 74.70229 74.71477	-0.58414	0.00241	0.01276	2.72 × 10 -4	0.01326	2.79 × 10 -4
	9 74.45165 75.05167 74.4498 74.44174 74.45144	-0.60002	0.00185	9.91 × 10 -3 2.04 × 10 -4	0.01073	2.19 × 10 -4
	10 86.02449 86.05404 86.02442 86.02318 86.02449	-0.02955	7.21 × 10 -5 1.30 × 10 -3 3.99 × 10 -8	1.33 × 10 -3	4.04 × 10 -8
	11 85.32593 85.38314 85.3254 85.31697 85.32593	-0.05721	5.31 × 10 -4 0.001782881 8.62 × 10 -7	9.06 × 10 -3	8.63 × 10 -7
	12 86.58382 86.58643 86.58381 86.58359 86.58382	-0.00261	1.06 × 10 -5 2.26 × 10 -4 2.48 × 10 -9	2.32 × 10 -4	2.53 × 10 -9
	13 84.13095 84.20755 84.12781 84.07951 84.13094	-0.07660	0.00314	0.05143	6.97 × 10 -6	0.05293	6.99 × 10 -6
	14 86.52446 86.52855 86.52439 86.52267 86.52446	-0.00410	6.56 × 10 -5 1.78 × 10 -3 3.46 × 10 -7	1.82 × 10 -3	3.50 × 10 -7
	15 82.72790 82.91768 82.72732 82.72175 82.72788	-0.18978	5.84 × 10 -4 6.15 × 10 -3 1.37 × 10 -5	6.26 × 10 -3	1.39 × 10 -5
	17 83.27902 83.42004 83.27668 83.25055 83.27899	-0.14101	0.00234	0.02847	3.27 × 10 -5	0.02925	3.29 × 10 -5
	18 80.80479 81.08976 80.80396 80.79763 80.80476	-0.28497	8.28 × 10 -4 7.16 × 10 -3 3.42 × 10 -5	7.57 × 10 -3	3.59 × 10 -5
	19 78.33933 78.75217 78.33900 78.33701 78.33931	-0.41283	3.31 × 10 -4 2.33 × 10 -3 2.18 × 10 -5	2.53 × 10 -3	2.37 × 10 -5
	20 86.37150 86.38477 86.37149 86.37133 86.37150	-0.01328	9.05 × 10 -6 1.73 × 10 -4 1.09 × 10 -9		

  .0928 7.09266 7.09276 7.09264 -1.56 × 10 -4 -1.90 × 10 -5 -1.15 × 10 -4 -1.71 × 10 -6 1.23 × 10 -3 1.82 × 10 -5

	1 6.80760 6.83824 6.80935 6.82480 6.80764	-0.03065	-0.00175	-0.01721	-4.90 × 10 -5	0.22557	7.06 × 10 -4
	2 7.03262 7.04231 7.03372 7.03961 7.03271	-0.00969	-0.00110	-0.00699	-9.02 × 10 -5	0.08423	1.02 × 10 -3
	3 6.73724 6.75509 6.73721 6.73727 6.73724	-0.01785	2.51 × 10 -5	-3.39 × 10 -5	1.36 × 10 -6	7.24 × 10 -3	1.53 × 10 -6
	4 5.66955 5.87923 5.68474 5.81532 5.66891	-0.20968	-0.01519	-0.14577	6.36 × 10 -4	2.52388	0.02060
	5 6.10058 6.15035 6.10049 6.10071 6.10057	-0.04977	9.24 × 10 -5	-1.22 × 10 -4	1.36 × 10 -5	0.01169	1.59 × 10 -5
	6 7.09264 77 6.91733 6.91920 6.93203 6.91743	-0.02277		-0.01470	-9.66 × 10 -5	0.17207	1.12 × 10 -3
	8 7.03111 7.04295 7.03284 7.04029 7.03131	-0.01184	-0.00173	-0.00917	-1.96 × 10 -4	0.09986	2.08 × 10 -3
	9 7.07835 7.08123 7.07877 7.080583 7.07840	-0.00288	-4.22 × 10 -4 -2.23 × 10 -3 -4.77 × 10 -5	0.02615	5.16 × 10 -4
	10 6.95776 6.96488 6.95776 6.95811 6.95776	-0.00712	-3.17 × 10 -6 -3.48 × 10 -4	3.59 × 10 -7	0.01375	3.83 × 10 -7
	11 6.55595 6.59092 6.55642 6.56447 6.55595	-0.03497	-4.69 × 10 -4	-0.00851	2.69 × 10 -6	0.11689	1.33 × 10 -5
	12 6.85444 6.86361 6.85422 6.85150 6.85444	-0.00917	2.21 × 10 -4	0.00293	1.79 × 10 -6	0.00536	2.30 × 10 -6
	13 5.50884 5.62489 5.50826 5.54759 5.50807	-0.11605	5.83 × 10 -4	-0.03875	7.69 × 10 -4	0.84790	8.23 × 10 -4
	14 6.04911 6.07404 6.04375 6.02038 6.04857	-0.02493	0.00536	0.02873	5.42 × 10 -4	0.05689	5.82 × 10 -4
	15 6.98255 6.99306 6.98304 6.98777 6.98256	-0.01051	-4.84 × 10 -4	-0.00522	-1.04 × 10 -5	0.06610	1.34 × 10 -4
	16 7.08039 7.08097 7.08038 7.08031 7.08039 -5.88 × 10 -4	3.51 × 10 -6	7.55 × 10 -5	1.05 × 10 -9	7.94 × 10 -5	1.15 × 10 -9
	17 6.48050 6.53032 6.48147 6.50067 6.48043	-0.04981	-9.70 × 10 -4	-0.02017	7.06 × 10 -5	0.3604578	3.20 × 10 -4
	18 7.04966 7.05459 7.04998 7.05253 7.04967	-0.00492	-3.18 × 10 -4 -2.87 × 10 -3 -1.18 × 10 -5	0.03878	1.56 × 10 -4
	19 7.09124 7.09159 7.09128 7.09148 7.09125 -3.43 × 10 -4 -3.48 × 10 -5 -2.38 × 10 -4 -2.45 × 10 -6 2.68 × 10 -3	2.73 × 10 -5
	20 7.08664 7.08696 7.08664 7.08662 7.08664 -3.23 × 10 -4	1.23 × 10 -6	2.54 × 10 -5	9.25 × 10 -12	3.36 × 10 -4	4.31 × 10 -9

Table 2 :

 2 Approximations and error analysis for the second largest eigenvalue with r = 1.

Table 3 :

 3 Approximations and error analysis for the eigenvectors associated to the two largest eigenvalues with r = 1.

	I	λ1	λ(1) 1	λ(2)

Table 4 :

 4 Approximations and error analysis for the largest eigenvalue with r = 2.

	1) 1	≤

1 sin φ1 , φ 1 ≤ sin φ1 , φ

(1)

1 sin φ1 , φ 1 ≤ sin φ1 , φ

(1)

Table 5 :

 5 Approximations and error analysis for the eigenvector associated to the largest eigenvalue with r = 2.

eigenvalue of interest than when deleting single observations. Indeed, the perturbed eigenvalue is lower than 70 in the first six lines of Table 4. Furthermore for all the subsets I studied in this table we have a decrease of the eigenvalue, while we note that this eigenvalue is increased in several cases in Table 1. Despite these significative variations of the eigenvalue, we see that the Rayleigh quotient q (1)

1 always provides a very accurate approximation to λ1 since the maximum gap λ1 -q

(1) 1 = 0.02602 observed for I = {4, 8} remains fairly moderate.

It should also be noted that q

(1) 1 always performs better than λ(2)

1 . This point is fairly well illustrated considering again the case of I = {4, 8} for which we have λ1 -λ(2) 1 = 0.12692. The Rayleigh quotient q (0) 1 provides less accurate approximations than λ(2) 1 but should generally be preferred to λ(1) 1 if we except some cases. Finally, it is worth pointing out that bounds to λ1 -q (0) 1 and λ1 -q

(1) 1 provided by Inequality [START_REF] Bénasséni | Perturbation poids des unités statistiques et approximation en analyse en composantes principales[END_REF] are always very close to the true values of these two differences thus avoiding to recompute the perturbed analysis.

Turning now to the sine values in Table 5 , we note the largest variations of the eigenvector when deleting the subsets I = {4, 7}, I = {4, 8} and I = {4, 9}. However, the order one approximation φ(1)

1 remains fairly satisfying in all the cases since the maximum value of sin φ1 , φ

1 obtained when deleting the subset I = {4, 8} does not exceed 0.02042 which corresponds to an angle of only 1.17 • .

Concluding remarks

The previous numerical study provides some indications on the sharpness of the various approximations considered in the paper. As a result, it may be useful to provide practitioners with some guidance on the choice of approximations for perturbed covariance matrices.

First, when focusing on eigenvalues, Rayleigh quotients q

k (based on the perturbed matrix S and the approximations of order one φ(1) k ) seem to always provide reliable approximations to λk . They should generally be preferred to the approximation of order two λ(2) k . Furthermore, their accuracy can be evaluated in a precise way by Inequality [START_REF] Bénasséni | Perturbation poids des unités statistiques et approximation en analyse en composantes principales[END_REF] if the eigenvalue of interest is not too close to the other eigenvalues, as emphasized by results in Table 1 when considering the largest eigenvalue. This is a definite advantage over other approximations.

It should also be noted that these Rayleigh quotients seem to perform fairly well even for values of ǫ = r n-r which are not necessarily very close to zero. This point is made clear in the first lines of Table 4 where ǫ = 2 18 = 0.11 and the eigenvalue λ1 is significantly decreased