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Abstract

Covariance matrices play a central role in a wide range of multivariate statistical methods

including for example principal component analysis which is a well known dimensionality

reduction technique. Therefore, a large amount of work has been devoted to analyzing the

sensitivity of their eigenstructure to influential observations. In order to evaluate the effect of

deleting one or a small subset of observations, several approximations to the eigenelements of

the perturbed matrix have been proposed. This paper provides a theoretical and numerical

comparison of the main approximations. A special emphasis is given to those based on

Rayleigh quotients which are seldom used. A general approach, using new inequalities in

the study of covariance matrices, is proposed in order to evaluate their accuracy without

having to recompute the exact perturbed eigenvalues and eigenvectors. This approach is of

specific interest from a computational standpoint. Theoretical developments are illustrated

with a numerical study which emphasizes the accuracy of approximations based on Rayleigh

quotients.
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1 Introduction

We consider a n× p data matrix X in which the n rows are the observation vectors xt
i ∈ R

p,

i = 1, . . . , n. Letting x = (1/n)
∑n

i=1 xi denote the mean vector of dimension p, the co-

variance matrix S = (1/n)
∑n

i=1 (xi − x) (xi − x)t is involved in a wide range of statistical

methods including principal component analysis or multiple regression for example. Since

S is known to be highly prone to influential observations, sensitivity aspects for principal

component analysis have been discussed in several papers including [1] , [2], [3], [4], [5], [6]

among many others. In order to assess the influence of a small subset I of r observations

on the eigenstructure of S, a possible approach consists of studying the effect of removing

these r observations on the eigenelements of S. If we note a significant modification of the

eigenelements, we know that these observations are strongly influential on the results. In this

framework, letting S̃ denote the covariance matrix obtained without the subset of observa-

tions indexed by I, several authors have studied the relationship between the eigenelements

of S and those of S̃. More specifically, providing approximations to the eigenelements of S̃

allows to detect influential subsets of observations without having to recompute the exact

modified eigenvalues and eigenvectors. Hadi & Nyquist [7] and Wang & Nyquist [8] study

the effect of deleting a single observation while Wang & Liski [9], Enguix-González et al. [10]

and Bénasséni [11] focus on the general case where I comprises several observations. In these

works, approximations to the eigenvalues and eigenvectors are obtained by retaining the first

terms in power expansions of these parameters. Independently of these works, Bénasséni [12]

suggests using approximations based on Rayleigh quotients together with inequalities given

in [13]. Finally, it should be noted that approximations for the covariance matrix are still the

subject of an ongoing research in a wider framework as emphasized by works published in

the past decade including for example [14] which considers the moments of the eigenelements

or [15] dealing with the conditional biais of eigenvalues.

The contribution of this work is twofold. First, since approximations based on power ex-
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pansions have never been compared with those based on Rayleigh quotients, some elements

of comparison are provided. This comparison is based on some simple theoretical relations

together with the numerical study of a data table which is intended to provide some guidance

on the approximations to choose in practice. Second, inequalities recently given in [16] are

introduced in order to evaluate the accuracy of approximations without having to recom-

pute the eigenelements of S̃. It is proved that these inequalities always provide a sharper

evaluation than those used in [12]. This is a central result from a computational standpoint

since it is of crucial importance to have, as far as possible, the more precise evaluation of the

approximations without having to recompute the perturbed eigenelements.

The paper is organized as follows. First, a brief review of approximations based on power

expansions is provided in the next section in order to acquaint the reader with the field of

research. Section 3 is devoted to approximations based on Rayleigh quotients.

The main contribution of the paper can be found in Section 4 which introduces new in-

equalities in the study of covariance matrices in order to provide an improved evaluation of

approximations. A numerical illustration of the results, based on the soil composition data

in [17], can be found in Section 5 in the framework of principal component analysis while

Section 6 is devoted to some practical conclusions.

In this work, the eigenvalues λ1 > λ2 . . . > λp ≥ 0 of S are assumed simple and associated

to the normalized eigenvectors φ1,φ2, . . .φp. In the same way, the eigenvalues λ̃1 > λ̃2 . . . >

λ̃p ≥ 0 of the perturbed matrix S̃ are also assumed simple and associated to the eigenvectors

φ̃1, φ̃2, . . . φ̃p.

2 Approximations based on power expansions

2.1 Theoretical background on matrix perturbations

Referring to [10] or [11] and letting xI = (1/r)
∑

i∈I xi, we know that, when a subset of

observations indexed by I is deleted, the covariance matrix S is transformed to S̃ which can

be expressed as:

S̃ = S+

(
r

n− r

)[
S−

1

r

∑

i∈I

(xi − x) (xi − x)t
]
+

(
r

n− r

)2 [
− (xI − x) (xI − x)t

]
(1)

We then have a perturbation of the form S̃ = S + ǫM + ǫ2N with ǫ = r
n−r

, M = S −

3



(1/r)
∑

i∈I (xi − x) (xi − x)t and N = − (xI − x) (xI − x)t. Following matrix perturbation

theory detailed in [13] for example or referring to [18], we know that, if ǫ is sufficiently small,

for each simple eigenvalue λ of S there is an eigenvalue λ̃ of S̃ given by a convergent power

series:

λ̃ = λ+ γ1ǫ+ γ2ǫ
2 + . . .+ γmǫm +O(ǫm+1) (2)

with a corresponding eigenvector which can also be expressed under a convergent power

series:

φ̃ = φ+ψ1ǫ+ψ2ǫ
2 + . . .+ψmǫm +O(ǫm+1) (3)

The parameters γ1,γ2, . . .,γm and ψ1,ψ2,. . .,ψm are derived by equating the coefficients of ǫ,

ǫ2,. . .,ǫm in the equation S̃φ̃ = λ̃φ̃. It should also be noted that the perturbation λ̃k of λk

may not necessarily be the kth largest eigenvalue of S̃ if the subset of observations indexed

by I has initially a strong influence on λk for example. In this case, we assume simply

that the eigenvalues λ̃k have been reordered in decreasing order and that their corresponding

eigenvectors φ̃k have been relabeled.

2.2 Formulae for the approximations derived from power expansions

For any integer m ≥ 1, retaining only terms of order lower or equal to m in ǫ in (2) and (3)

provides the approximations λ̃(m) and φ̃
(m)

of order m for the eigenvalues and eigenvectors

of S̃.

This is the general approach suggested in [9], [10] and [11]. Assuming that ǫ = r
n−r

is

sufficiently small to ensure the convergence of the above power series, Enguix-González et al.

[10] provide the following approximations for k = 1, . . . , p:

λ̃
(1)
k = λk +

(
r

n− r

)(
λk −

1

r

∑

i∈I

α2
ki

)
(4)

λ̃
(2)
k = λ̃

(1)
k +

(
r

n− r

)2

−α2

kI −
∑

j 6=k

1

λj − λk

(
1

r

∑

i∈I

αkiαji

)2

 (5)

φ̃
(1)
k = φk +

(
r

n− r

)∑

j 6=k

(
1

r

∑

i∈I

αkiαji

)
φj

λj − λk

(6)

where αki = φt
k (xi − x), for i = 1, . . . , n and αkI = (

∑
i∈I αki)/r.
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Details on the derivation of the above expressions are given in [11]. The reader is referred to

[10] for the formula of φ̃
(2)
k which is fairly long and therefore omitted in this paper.

In the remaining of the paper, we define also the approximations of order zero as λ̃(0) = λ

and φ̃
(0)

= φ for notational convenience.

Finally, when studying the influence of a single observation, note that approximations are

simply obtained by taking r = 1, I = {i} and ǫ = 1
n−1 in the previous developments. The

reader more specifically interested by this case will refer to a series of papers including [1],

[7] and [8].

3 Approximations based on Rayleigh quotients

3.1 Rayleigh quotients as approximations to the perturbed eigenvalues

Assuming that weights are given to the observations, Bénasséni [12] studies the effects of

modifying these weights on the eigenvalues and eigenvectors of the covariance matrix. Delet-

ing a small subset of observations indexed by I is therefore a particular case of his ap-

proach which consists simply of modifying to zero the corresponding weights. As approx-

imations to λ̃k for k = 1, . . . , p, this author suggests using the Rayleigh quotient q
(0)
k =

(
φ̃
(0)
k

)t
S̃φ̃

(0)
k /

(
φ̃
(0)
k

)t
φ̃
(0)
k for S̃ and the initial normalized eigenvector φ̃

(0)
k , and the Rayleigh

quotient q
(1)
k =

(
φ̃
(1)
k

)t
S̃φ̃

(1)
k /

(
φ̃
(1)
k

)t
φ̃
(1)
k for S̃ and the approximation of order one φ̃

(1)
k to

φ̃k.

3.2 Error analysis

From a computational standpoint, it is of major interest to evaluate the accuracy of ap-

proximations without having to recompute the exact eigenelements of S̃. In order to do this,

Bénasséni [12] suggests using inequalities provided in [13]. Focusing on λ̃k and its correspond-

ing eigenvector φ̃k and, from now on, assuming without change of notation that φ̃
(m)
k has

been normalized, let η
(m)
k =

∥∥∥S̃φ̃(m)
k − q

(m)
k φ̃

(m)
k

∥∥∥
2
for m = 0, 1 where ‖.‖2 stands for the two

norm. Assume that c
(m)
k ∈ R

+∗ is a nonzero positive constant such that
∣∣∣λ̃j − q

(m)
k

∣∣∣ > c
(m)
k

for j = 1, . . . , p with j 6= k. Then the accuracy of q
(m)
k as approximation to λ̃k, and of

φ̃
(m)
k as approximation to φ̃k, is analyzed in [12] using the following inequalities given in [13,
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pp.172-176] :
∥∥∥φ̃k − φ̃

(m)
k

∥∥∥
2

2
≤

(
η
(m)
k

c
(m)
k

)2

1 +

(
η
(m)
k

c
(m)
k

)2

 (7)

and if η
(m)
k /c

(m)
k < 1:

∣∣∣λ̃k − q
(m)
k

∣∣∣ ≤


(η

(m)
k )

2

c
(m)
k


 /


1−

(
η
(m)
k

c
(m)
k

)2

 (8)

Using
∥∥∥φ̃k

∥∥∥
2
=
∥∥∥φ̃(m)

k

∥∥∥
2
= 1, note that (7), can be written with the cosine between φ̃k and

φ̃
(m)
k as:

1−

[(
η
(m)
k

)2
/2
(
c
(m)
k

)2] [
1 +

(
η
(m)
k /c

(m)
k

)2]
≤ cos

(
φ̃k, φ̃

(m)
k

)
. (9)

In practice, it is necessary to give the parameter c
(m)
k a value in the previous inequalities.

When studying the influence of a single observation, it should be noted that (1) can be

expressed as

S̃ =
n

n− 1

[
S−

1

n− 1
(xi − x) (xi − x)t

]
(10)

so that we have a rank one perturbation. In this case, the parameter c
(m)
k is given a value in

[12] using bounds, derived from the Courant-Fischer theorem, for the eigenvalues λ̃j of the

symmetric matrix S̃ , j = 1, . . . , p, j 6= k. In the case where several observations are deleted

this author suggests a fairly lengthy procedure assuming that these observations are removed

one after the other, so that we have a series of rank one perturbations.

4 New developments

4.1 Some relations between the approximations

In his work, Bénasséni [12] only considers the approximations of order one λ̃
(1)
k for the eigen-

values of S̃ and provides no comparison with approximations based on Rayleigh quotients.

However, it is easy to derive the following simple relations.

First note that q
(0)
k can be written as:
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q
(0)
k = λk +

(
r

n− r

)(
λk −

1

r

∑

i∈I

α2
ki

)
−

(
r

n− r

)2

α2
kI (11)

using (1). Therefore we see that we have always λ̃
(1)
k ≥ q

(0)
k . Furthermore, a simple compari-

son of (11) with (5) shows that:

λ̃
(2)
k − q

(0)
k = −

(
r

n− r

)2∑

j 6=k

1

λj − λk

(
1

r

∑

i∈I

αkiαji

)2

.

In particular, when focusing on the largest eigenvalue which plays for example a central role

in PCA, this difference is non negative so that we have λ̃
(2)
1 ≥ q

(0)
1 . In a similar way, when

considering the smallest eigenvalue, we get λ̃
(2)
p ≤ q

(0)
p .

We omit the derivation of q
(1)
k which is tedious and leads to a formula too complicated to be

interpreted. However, it should be noted that this approximation involves terms up to the

order 4 in ǫ = r
n−r

.

4.2 Improved inequalities in error analysis

In practice, it is of crucial importance to have bounds as close as possible to the true values

of
∣∣∣λ̃k − q

(m)
k

∣∣∣ and cos
(
φ̃k, φ̃

(m)
k

)
in Inequalities (8) and (9). This will allow for an evaluation

as precise as possible of the real accuracy of the approximations without having to recompute

the perturbed analysis. For this purpose, we introduce below new inequalities in the study

of covariance matrices in order to get an improved error analysis

Indeed, Inequalities (7), (8) and (9) introduced in Subsection 3.2 can be improved using

error analysis developed in [16, pp.180-184]. More precisely, it is easily derived from Corollary

4.6.4 in this reference that:

∣∣∣λ̃k − q
(m)
k

∣∣∣ ≤
(η

(m)
k )

2

c
(m)
k

(12)

and

sin
(
φ̃k, φ̃

(m)
k

)
≤

η
(m)
k

c
(m)
k

(13)

under the condition:

η
(m)
k < c

(m)
k . (14)
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It is obvious that (12) is more accurate than (8). A similar remark holds for (13) wich

improves (9). This last point is easily checked by converting (13) into

cos2
(
φ̃k, φ̃

(m)
k

)
≥ 1−

(
η
(m)
k /c

(m)
k

)2
. (15)

Then letting a =
(
η
(m)
k /c

(m)
k

)2
, A = 1 − a and B = [1− (a/2)(1 + a)]2, Inequality (9)

becomes cos2
(
φ̃k, φ̃

(m)
k

)
≥ B so that we have simply to prove that A ≥ B. Developing B,

we get B = A+ (a2/4)(a2 +2a− 3). Thus we have that A ≥ B if and only if the polynomial

a2+2a−3 is negative. This is the case when a belongs to [−3, 1]. Therefore the result follows

since 0 ≤ a < 1 from (14).

Furthermore, when dealing with the eigenvector associated to the largest eigenvalue, Chatelin

[16, p.204] points out that Inequality (13) can also be refined into the following tangent based

inequality:

tan
(
φ̃1, φ̃

(m)
1

)
≤

η
(m)
1

c
(m)
1

(16)

since this eigenvalue is assumed to be simple. More precisely, letting α denote the angle

between the two vectors φ̃1 and φ̃
(m)
1 , we have α ≤ arctan

(
η
(m)
1 /c

(m)
1

)
≤ arcsin

(
η
(m)
1 /c

(m)
1

)

since 0 ≤ arctanx ≤ arcsinx for all x ∈ [0, 1]. Thus we obtain a better approximation of α

when using the function arctan rather than the function arcsin showing that (16) improves

(13).

4.3 Improved value for the parameter c
(m)
k

The sharpness of the bounds in Inequalities (12), (13) and (16) depends on the value of

the parameter c
(m)
k . The larger c

(m)
k is, the sharper are these inequalities. In order to get

a suitable value for this parameter, some other results in [16, p.180-181] turn out to be

also of specific interest since they often improve significantly the value of the parameter

c
(m)
k obtained through the Courant-Fischer theorem in [12] . More precisely, using this

reference we know there is at least one eigenvalue of S̃ in each of the intervals defined for

j = 1, . . . , p by
[
b
(m)
j , B

(m)
j

]
=
[
q
(m)
j − η

(m)
j , q

(m)
j + η

(m)
j

]
which are often referred to as

Krylov-Weinstein intervals. When the interval
[
b
(m)
k , B

(m)
k

]
is isolated from the p − 1 other
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ones, we know that it contains precisely one eigenvalue. Then, assuming that the Rayleigh

quotients satisfy q
(m)
1 > q

(m)
2 > . . . > q

(m)
p (after having been reordered if necessary), a value

for c
(m)
k can be easily derived as c

(m)
k = min

(
b
(m)
k −B

(m)
k+1, b

(m)
k−1 −B

(m)
k

)
if k ∈ {2, . . . , p− 1},

c
(m)
1 = b

(m)
1 −B

(m)
2 if k = 1 and c

(m)
p = b

(m)
p−1 −B

(m)
p if k = p.

It should be noted that for very close eigenvalues, giving a value to this parameter can be

a real issue. However, once a value satisfying (14) is obtained, we know from (12) that, for

k = 1, . . . , p, the eigenvalues λ̃k lie in the intervals

[
q
(m)
k − (η

(m)
k )

2
/c

(m)
k , q

(m)
k + (η

(m)
k )

2
/c

(m)
k

]

which are sharper than the Krylov-Weinstein intervals as soon as (14) holds. These new

intervals can be used to obtain a larger value for the parameter c
(m)
k , thus improving (12),

(13) and (16). This process could be iterated, but no significative improvment is generally

observed.

Finally, it was noted in (10) that we have a rank one perturbation when deleting a single

observation. Several inequalities and relations for this specific case are given in [12], [7] and

[8]. The reader is also referred to more recent works [19],[20], [21] who suggest new bounds for

the perturbed eigenvalues. Although Krylov-Weinstein intervals generally provide a satisfying

value for the parameter c
(m)
k , these recent works can also be interesting in the determination

of the largest possible constant c
(m)
k in order to make Inequalities (12), (13) and (16) sharper.

5 Numerical study

The numerical illustration of the results pertains to principal component analysis. It is based

on the soil composition data in [17] which have already been used in several works including ,

among others, [1], [3], [8], [9], [10], [11] or[15] for sensitivity study of covariance based principal

component analysis. The data table consists of 20 observations measured on 4 variables. We

have the following four eigenvalues for the corresponding covariance matrix: λ1 = 82.30827,

λ2 = 6.73891, λ3 = 0.44783, λ4 = 0.24552. In the first subsection, we study the effect of

deleting each of the 20 observations on the two largest eigenvalues (which account for more

than 99% of the total variation in principal component analysis) and on their corresponding

eigenvectors. In the following subsection, we study the effects of deleting subsets of two

observations on the largest eigenvalue. These subsets are those considered for the numerical

study in [9] .
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5.1 Approximations when deleting one observation

Table 1 provides for each subset I = {i}, the perturbed eigenvalue λ̃1, its order one and two

approximations λ̃
(1)
1 and λ̃

(2)
1 , the Rayleigh quotients q

(0)
1 ans q

(1)
1 and the differences between

each approximation and the true perturbed eigenvalue λ̃1. In the last two columns we find

the bounds to
∣∣∣λ̃1 − q

(0)
1

∣∣∣ and
∣∣∣λ̃1 − q

(1)
1

∣∣∣ given by Inequality (12).

The first comment regarding the results in this table is that λ̃
(1)
1 is by far the less accurate

approximation in all cases. In contrast q
(1)
1 always provides extremely sharp approximations

since it deviates from λ̃1 by 1.76× 10−3 in the worst case (when deleting observation 4) and

that the error is only 2.13× 10−13 when deleting observation number 16. It should be noted

that λ̃
(2)
1 also provides fairly satisfying approximations although clearly less accurate than

q
(1)
1 . The Rayleigh quotient q

(0)
1 is outperformed by λ̃

(2)
1 but remains significantly sharper

than λ̃
(1)
1 . Furthermore, it is worth pointing out that λ̃

(1)
1 always overestimates the perturbed

eigenvalue while the other three estimations slightly underestimate it. Note also that the

results agree with inequalities λ̃
(1)
1 ≥ q

(0)
1 and λ̃

(2)
1 ≥ q

(0)
1 given in Subsection 4.1.

Second, Inequality (12) provides bounds sufficiently close to
∣∣∣λ̃1 − q

(0)
1

∣∣∣ and
∣∣∣λ̃1 − q

(1)
1

∣∣∣ to

evaluate correctly the accuracy of Rayleigh quotients as approximations to λ̃1 without having

to recompute the perturbed analysis.

Third, it is easily seen from (10) that the maximum value for the perturbed eigenvalue

is obtained when xi = x with λ̃1 = (20λ1)/19 = 86.64028. We have the highest perturbed

eigenvalue when deleting observations number 3, 5, 10, 12, 14, 16, 20 which are fairly close

to x and in these cases we get the sharper approximations to λ̃1.

Focusing now on the second largest eigenvalue, Table 2 provides results similar to those

of Table 1.

It turns out that λ̃
(1)
2 is the less accurate approximation to λ̃2. Except when deleting

observation 13, the Rayleigh quotient q
(1)
2 again provides the best approximation with a very

good accuracy since in the worst case corresponding to this observation we have λ̃2 − q
(1)
2 =

7.69×10−4. For this observation, λ̃
(2)
2 is slightly better but less accurate in all the other cases

while performing fairly well in general. The Rayleigh quotient q
(0)
2 performs in a similar way

as q
(0)
1 in Table 1. It should be noted that again λ̃

(1)
2 always overestimates the perturbed

eigenvalue but in contrast to Table 1, the other three approximations can as well slightly

underestimate or overestimate λ̃2. Another difference with Table 1 is that bounds provided
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I λ̃1 λ̃
(1)
1 λ̃

(2)
1 q

(0)
1 q

(1)
1 λ̃1 − λ̃

(1)
1 λ̃1 − λ̃

(2)
1 λ̃1 − q

(0)
1 λ̃1 − q

(1)
1

∣∣∣λ̃1 − q
(0)
1

∣∣∣ ≤
∣∣∣λ̃1 − q

(1)
1

∣∣∣ ≤

1 81.59976 81.8333 81.59769 81.58031 81.59969 -0.23355 0.00207 0.01945 6.87× 10−5 0.01988 6.91× 10−5

2 77.18681 77.64932 77.18511 77.17611 77.18667 -0.46251 0.00170 0.01070 1.42× 10−4 0.01115 1.46× 10−4

3 86.52309 86.52844 86.52306 86.52255 86.52309 -0.00535 2.53× 10−5 5.38× 10−4 5.20× 10−9 5.40× 10−4 5.22× 10−9

4 77.34975 77.64477 77.32399 77.17133 77.34799 -0.29503 0.02576 0.17842 1.76× 10−3 0.18922 1.78× 10−3

5 86.57878 86.58112 86.57875 86.57801 86.57878 -0.00234 2.99× 10−5 7.71× 10−4 1.06× 10−7 7.74× 10−4 1.07× 10−7

6 76.85039 77.33877 76.8502 76.84922 76.85037 -0.48838 1.86× 10−4 1.17× 10−3 1.53× 10−5 1.28× 10−3 1.66× 10−5

7 79.95562 80.27544 79.95368 79.94044 79.95552 -0.31981 0.00194 0.01518 1.02× 10−4 0.01544 1.02× 10−4

8 74.71505 75.29919 74.71264 74.70229 74.71477 -0.58414 0.00241 0.01276 2.72× 10−4 0.01326 2.79× 10−4

9 74.45165 75.05167 74.4498 74.44174 74.45144 -0.60002 0.00185 9.91× 10−3 2.04× 10−4 0.01073 2.19× 10−4

10 86.02449 86.05404 86.02442 86.02318 86.02449 -0.02955 7.21× 10−5 1.30× 10−3 3.99× 10−8 1.33× 10−3 4.04× 10−8

11 85.32593 85.38314 85.3254 85.31697 85.32593 -0.05721 5.31× 10−4 0.001782881 8.62× 10−7 9.06× 10−3 8.63× 10−7

12 86.58382 86.58643 86.58381 86.58359 86.58382 -0.00261 1.06× 10−5 2.26× 10−4 2.48× 10−9 2.32× 10−4 2.53× 10−9

13 84.13095 84.20755 84.12781 84.07951 84.13094 -0.07660 0.00314 0.05143 6.97× 10−6 0.05293 6.99× 10−6

14 86.52446 86.52855 86.52439 86.52267 86.52446 -0.00410 6.56× 10−5 1.78× 10−3 3.46× 10−7 1.82× 10−3 3.50× 10−7

15 82.72790 82.91768 82.72732 82.72175 82.72788 -0.18978 5.84× 10−4 6.15× 10−3 1.37× 10−5 6.26× 10−3 1.39× 10−5

16 86.63917 86.63923 86.63917 86.63917 86.63917 −5.48× 10−5 3.36× 10−8 6.79× 10−7 2.13× 10−13 7.21× 10−7 2.59× 10−13

17 83.27902 83.42004 83.27668 83.25055 83.27899 -0.14101 0.00234 0.02847 3.27× 10−5 0.02925 3.29× 10−5

18 80.80479 81.08976 80.80396 80.79763 80.80476 -0.28497 8.28× 10−4 7.16× 10−3 3.42× 10−5 7.57× 10−3 3.59× 10−5

19 78.33933 78.75217 78.33900 78.33701 78.33931 -0.41283 3.31× 10−4 2.33× 10−3 2.18× 10−5 2.53× 10−3 2.37× 10−5

20 86.37150 86.38477 86.37149 86.37133 86.37150 -0.01328 9.05× 10−6 1.73× 10−4 1.09× 10−9 1.86× 10−4 1.17× 10−9

Table 1: Approximations and error analysis for the largest eigenvalue with r = 1.

11



I λ̃2 λ̃
(1)
2 λ̃

(2)
2 q

(0)
2 q

(1)
2 λ̃2 − λ̃

(1)
2 λ̃2 − λ̃

(2)
2 λ̃2 − q

(0)
2 λ̃2 − q

(1)
2

∣∣∣λ̃2 − q
(0)
2

∣∣∣ ≤
∣∣∣λ̃2 − q

(1)
2

∣∣∣ ≤

1 6.80760 6.83824 6.80935 6.82480 6.80764 -0.03065 -0.00175 -0.01721 −4.90× 10−5 0.22557 7.06× 10−4

2 7.03262 7.04231 7.03372 7.03961 7.03271 -0.00969 -0.00110 -0.00699 −9.02× 10−5 0.08423 1.02× 10−3

3 6.73724 6.75509 6.73721 6.73727 6.73724 -0.01785 2.51× 10−5 −3.39× 10−5 1.36× 10−6 7.24× 10−3 1.53× 10−6

4 5.66955 5.87923 5.68474 5.81532 5.66891 -0.20968 -0.01519 -0.14577 6.36× 10−4 2.52388 0.02060

5 6.10058 6.15035 6.10049 6.10071 6.10057 -0.04977 9.24× 10−5 −1.22× 10−4 1.36× 10−5 0.01169 1.59× 10−5

6 7.09264 7.0928 7.09266 7.09276 7.09264 −1.56× 10−4 −1.90× 10−5 −1.15× 10−4 −1.71× 10−6 1.23× 10−3 1.82× 10−5

7 6.91733 6.94011 6.91920 6.93203 6.91743 -0.02277 -0.00187 -0.01470 −9.66× 10−5 0.17207 1.12× 10−3

8 7.03111 7.04295 7.03284 7.04029 7.03131 -0.01184 -0.00173 -0.00917 −1.96× 10−4 0.09986 2.08× 10−3

9 7.07835 7.08123 7.07877 7.080583 7.07840 -0.00288 −4.22× 10−4 −2.23× 10−3 −4.77× 10−5 0.02615 5.16× 10−4

10 6.95776 6.96488 6.95776 6.95811 6.95776 -0.00712 −3.17× 10−6 −3.48× 10−4 3.59× 10−7 0.01375 3.83× 10−7

11 6.55595 6.59092 6.55642 6.56447 6.55595 -0.03497 −4.69× 10−4 -0.00851 2.69× 10−6 0.11689 1.33× 10−5

12 6.85444 6.86361 6.85422 6.85150 6.85444 -0.00917 2.21× 10−4 0.00293 1.79× 10−6 0.00536 2.30× 10−6

13 5.50884 5.62489 5.50826 5.54759 5.50807 -0.11605 5.83× 10−4 -0.03875 7.69× 10−4 0.84790 8.23× 10−4

14 6.04911 6.07404 6.04375 6.02038 6.04857 -0.02493 0.00536 0.02873 5.42× 10−4 0.05689 5.82× 10−4

15 6.98255 6.99306 6.98304 6.98777 6.98256 -0.01051 −4.84× 10−4 -0.00522 −1.04× 10−5 0.06610 1.34× 10−4

16 7.08039 7.08097 7.08038 7.08031 7.08039 −5.88× 10−4 3.51× 10−6 7.55× 10−5 1.05× 10−9 7.94× 10−5 1.15× 10−9

17 6.48050 6.53032 6.48147 6.50067 6.48043 -0.04981 −9.70× 10−4 -0.02017 7.06× 10−5 0.3604578 3.20× 10−4

18 7.04966 7.05459 7.04998 7.05253 7.04967 -0.00492 −3.18× 10−4 −2.87× 10−3 −1.18× 10−5 0.03878 1.56× 10−4

19 7.09124 7.09159 7.09128 7.09148 7.09125 −3.43× 10−4 −3.48× 10−5 −2.38× 10−4 −2.45× 10−6 2.68× 10−3 2.73× 10−5

20 7.08664 7.08696 7.08664 7.08662 7.08664 −3.23× 10−4 1.23× 10−6 2.54× 10−5 9.25× 10−12 3.36× 10−4 4.31× 10−9

Table 2: Approximations and error analysis for the second largest eigenvalue with r = 1.
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to
∣∣∣λ̃2 − q

(0)
2

∣∣∣ and
∣∣∣λ̃2 − q

(1)
2

∣∣∣ by Inequality (12) are not so close to these quantities as they

were previously. For a part, this can be explained by the fact that we have a smaller value

for c
(0)
2 and c

(1)
2 than for c

(0)
1 and c

(1)
1 when considering the largest eigenvalue. Indeed, for

m = 0, 1 the gap
∣∣∣λ̃3 − q

(m)
2

∣∣∣ is smaller than the gap
∣∣∣λ̃2 − q

(m)
1

∣∣∣ . However, if we except the

case observation 4, we know from this bound that
∣∣∣λ̃2 − q

(1)
2

∣∣∣ never exceeds 1.02× 10−3 and

this is sufficient for practical interpretation.

Results for the eigenvectors corresponding to the two largest eigenvalues are given in

Table 3 which provides the sines sin
(
φ̃k,φk

)
and sin

(
φ̃k, φ̃

(1)
k

)
for k = 1, 2 and their bounds

provided by Inequality (13).

First, we consider the eigenvector associated to the largest eigenvalue. It could be noted

that the maximum value of the sine bewteen the unperturbed and perturbed eigenvector is

obtained when deleting observation 4. This value corresponds to an angle of 2.85◦. In this

case, as in all the other ones, the order one approximation performs fairly well since its sine

with the perturbed eigenvector is equal to only 0.00494 which corresponds to an angle of

0.28◦. Furthermore bounds provided by Inequality (13) are always extremely close to the

exact value of sin
(
φ̃1, φ̃

(1)
1

)
.

Focusing now on the eigenvector corresponding to the second largest eigenvalue, the

maximum of sin
(
φ̃2,φ2

)
is again obtained when deleting observation 4 with the value of

0.08114. Even in this case, the order one approximation is fairly close to the perturbed

eigenvector since sin
(
φ̃2, φ̃

(1)
2

)
= 0.01954. In contrast to the previous eigenvector, it is worth

pointing out that bounds provided by Inequality (13) are not always sufficiently close to the

true values of the sine to give an exact account of the accuracy for these approximations.

Finally, since the angles between the eigenvectors studied in the table are always very close

to zero, we do not provide the tangent of these angles which only deviates from the sine by

an extremely small amount.

5.2 Approximations when deleting subsets of two observations.

Now, we study approximations to the perturbed largest eigenvalue and its corresponding

eigenvector when deleting the subsets of two observations considered for the numerical illus-

tration in [9]. Results similar to those of the previous section are provided in Tables 4 and

5.

We note that deleting subsets of two observations can result in larger variations of the
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I sin
(
φ̃1,φ1

)
sin
(
φ̃1, φ̃

(1)
1

)
sin
(
φ̃1,φ1

)
≤ sin

(
φ̃1, φ̃

(1)
1

)
≤ sin

(
φ̃2,φ2

)
sin
(
φ̃2, φ̃

(1)
2

)
sin
(
φ̃2,φ2

)
≤ sin

(
φ̃2, φ̃

(1)
2

)
≤

1 0.01609 9.56× 10−4 0.01644 9.62× 10−4 0.01988 0.00153 0.19303 0.01056

2 0.01218 1.40× 10−3 0.01267 1.44× 10−3 0.01213 0.00142 0.11768 0.01250

3 0.00259 8.07× 10−6 0.00261 8.09× 10−6 0.00912 4.62× 10−4 0.03408 4.94× 10−4

4 0.04974 4.94× 10−3 0.05280 4.99× 10−3 0.08114 0.01954 0.72248 0.06298

5 0.00309 3.64× 10−5 0.00311 3.64× 10−5 0.01097 0.00154 0.04563 0.00168

6 0.00393 4.50× 10−4 0.00428 4.88×−10−3 0.01491 0.00125 0.16533 0.01317

8 0.01356 1.98× 10−3 0.01408 2.03× 10−3 0.01310 0.00194 0.12507 0.01782

9 0.01169 1.68× 10−3 0.01266 1.80× 10−3 0.00725 0.00107 0.06553 0.00883

10 0.00403 2.23× 10−5 0.00411 2.26× 10−5 0.01092 2.32× 10−4 0.04628 2.43× 10−4

11 0.01066 1.05× 10−4 0.01078 1.05× 10−4 0.01321 7.59× 10−4 0.13947 0.00148

12 0.00167 5.52× 10−6 0.00171 5.63× 10−6 0.02195 5.32× 10−4 0.02915 5.96× 10−4

13 0.02555 2.98× 10−4 0.02630 2.98× 10−4 0.05398 0.01230 0.42319 0.01285

14 0.00468 6.52× 10−5 0.00477 6.60× 10−5 0.07252 0.00970 0.10386 0.01011

15 0.00897 4.24× 10−4 0.00913 4.28× 10−4 0.01053 5.52× 10−4 0.10247 0.00454

16 8.97× 10−5 5.16× 10−8 9.52× 10−5 5.70× 10−8 0.00335 1.25× 10−5 0.00347 1.32× 10−5

17 0.01918 6.50× 10−4 0.01971 6.55× 10−4 0.03624 0.00383 0.25215 0.00729

18 0.00962 6.66× 10−4 0.01017 6.97× 10−4 0.00999 6.86× 10−4 0.07882 0.00486

19 0.00549 5.31× 10−4 0.00597 5.76× 10−4 0.00213 2.16× 10−4 0.02021 0.00203

20 0.00142 3.58× 10−6 0.00153 3.84× 10−6 0.00274 7.34× 10−6 0.00715 2.55× 10−5

Table 3: Approximations and error analysis for the eigenvectors associated to the two largest eigenvalues with r = 1.
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I λ̃1 λ̃
(1)
1 λ̃

(2)
1 q

(0)
1 q

(1)
1 λ̃1 − λ̃

(1)
1 λ̃1 − λ̃

(2)
1 λ̃1 − q

(0)
1 λ̃1 − q

(1)
1

∣∣∣λ̃1 − q
(0)
1

∣∣∣ ≤
∣∣∣λ̃1 − q

(1)
1

∣∣∣ ≤

{8, 9} 64.59310 67.25005 64.58126 64.56084 64.59026 -2.65695 0.01184 0.03226 0.00284 0.03616 0.00316

{4, 9} 67.51718 69.72595 67.4481 67.32138 67.50241 -2.20877 0.06908 0.19580 0.01476 0.20842 0.01501

{4, 8} 67.98219 69.98722 67.85527 67.61002 67.95618 -2.00502 0.12692 0.37218 0.02602 0.40664 0.02660

{6, 9} 69.40391 69.40294 69.40242 69.39558 69.40366 9.72× 10−4 0.00149 0.00834 2.52× 10−4 0.00892 2.66× 10−4

{2, 9} 69.74526 69.73074 69.74115 69.72109 69.74455 0.01451 0.00410 0.02417 7.04× 10−4 0.02512 7.19× 10−4

{2, 8} 69.98911 69.99202 69.98832 69.98402 69.98899 -0.00291 7.86× 10−4 0.00509 1.21× 10−4 0.00565 1.33× 10−4

{2, 6} 70.01929 72.14491 70.01294 69.99965 70.01808 -2.12561 0.00636 0.01964 0.00121 0.02072 0.00126

{3, 8} 78.83587 79.36442 78.83242 78.82489 78.83542 -0.52854 0.00345 0.01099 4.54× 10−4 0.01144 4.59× 10−4

{2, 4} 72.60356 72.46791 72.58774 72.46791 72.60172 0.13565 0.01582 0.13565 0.00184 0.14414 0.00188

{4, 7} 75.53263 75.23992 75.50596 75.22661 75.53053 0.29271 0.02667 0.30602 0.00210 0.33028 0.00212

Table 4: Approximations and error analysis for the largest eigenvalue with r = 2.
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I sin
(
φ̃1,φ1

)
sin
(
φ̃1, φ̃

(1)
1

)
sin
(
φ̃1,φ1

)
≤ sin

(
φ̃1, φ̃

(1)
1

)
≤ I sin

(
φ̃1,φ1

)
sin
(
φ̃1, φ̃

(1)
1

)
sin
(
φ̃1,φ1

)
≤ sin

(
φ̃1, φ̃

(1)
1

)
≤

{8, 9} 0.02254 0.00667 0.02525 0.00745 {2, 8} 0.00856 0.00132 0.00951 0.00146

{4, 9} 0.05637 0.01548 0.06010 0.01574 {2, 6} 0.01740 0.00432 0.01833 0.00449

{4, 8} 0.07724 0.02042 0.08464 0.02089 {3, 8} 0.01220 0.00251 0.01269 0.00253

{6, 9} 0.01128 0.00197 0.01205 0.00207 {2, 4} 0.04477 0.00522 0.04759 0.00532

{2, 9} 0.01950 0.00333 0.02026 0.00340 {4, 7} 0.06609 0.00548 0.07148 0.00553

Table 5: Approximations and error analysis for the eigenvector associated to the largest eigenvalue with r = 2.
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eigenvalue of interest than when deleting single observations. Indeed, the perturbed eigen-

value is lower than 70 in the first six lines of Table 4. Furthermore for all the subsets I

studied in this table we have a decrease of the eigenvalue, while we note that this eigenvalue

is increased in several cases in Table 1. Despite these significative variations of the eigenvalue,

we see that the Rayleigh quotient q
(1)
1 always provides a very accurate approximation to λ̃1

since the maximum gap
∣∣∣λ̃1 − q

(1)
1

∣∣∣ = 0.02602 observed for I = {4, 8} remains fairly moderate.

It should also be noted that q
(1)
1 always performs better than λ̃

(2)
1 . This point is fairly well

illustrated considering again the case of I = {4, 8} for which we have λ̃1−λ̃
(2)
1 = 0.12692. The

Rayleigh quotient q
(0)
1 provides less accurate approximations than λ̃

(2)
1 but should generally

be preferred to λ̃
(1)
1 if we except some cases. Finally, it is worth pointing out that bounds to∣∣∣λ̃1 − q

(0)
1

∣∣∣ and
∣∣∣λ̃1 − q

(1)
1

∣∣∣ provided by Inequality (12) are always very close to the true values

of these two differences thus avoiding to recompute the perturbed analysis.

Turning now to the sine values in Table 5 , we note the largest variations of the eigenvector

when deleting the subsets I = {4, 7}, I = {4, 8} and I = {4, 9}. However, the order one

approximation φ̃
(1)
1 remains fairly satisfying in all the cases since the maximum value of

sin
(
φ̃1, φ̃

(1)
1

)
obtained when deleting the subset I = {4, 8} does not exceed 0.02042 which

corresponds to an angle of only 1.17◦.

6 Concluding remarks

The previous numerical study provides some indications on the sharpness of the various

approximations considered in the paper. As a result, it may be useful to provide practitioners

with some guidance on the choice of approximations for perturbed covariance matrices.

First, when focusing on eigenvalues, Rayleigh quotients q
(1)
k (based on the perturbed matrix S̃

and the approximations of order one φ̃
(1)
k ) seem to always provide reliable approximations to

λ̃k. They should generally be preferred to the approximation of order two λ̃
(2)
k . Furthermore,

their accuracy can be evaluated in a precise way by Inequality (12) if the eigenvalue of interest

is not too close to the other eigenvalues, as emphasized by results in Table 1 when considering

the largest eigenvalue. This is a definite advantage over other approximations.

It should also be noted that these Rayleigh quotients seem to perform fairly well even for

values of ǫ = r
n−r

which are not necessarily very close to zero. This point is made clear in

the first lines of Table 4 where ǫ = 2
18 = 0.11 and the eigenvalue λ̃1 is significantly decreased
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through the perturbation.

Approximations provided by λ̃
(1)
k should be avoided as well as the Rayleigh quotients q

(0)
k

which are not sufficiently accurate.

Second, when considering eigenvectors, we note a satisfying accuracy of approximations of

order one φ̃
(1)
k . Again, when the eigenvalue corresponding to the eigenvector of interest is

sufficiently distant from the other ones, we have a correct evaluation of this accuracy by

Inequality (13).
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