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ABSTRACT

This paper illustrates examples of shaping the longitudinal electric field component of light which is relevant for
tightly focused beams. Given that the latter is not directly accessible via conventional beam shaping techniques
we elaborate on the interplay between the transverse polarization and longitudinal electric field components. A
Helmholtz decomposition of the transverse electric field components in the transverse plane permits on the one
hand to draw insightful analogies with electro- and magnetostatics and with fluid dynamics. On the other hand,
it allows to clearly isolate the remaining degree of freedom in the transverse electric field components for a given
longitudinal electric field component and with that to generalize the concepts of radial and azimuthal polarization.
We discuss degrees of freedom and show how one can exploit the findings to generate novel customized vector
beams. Furthermore, we present a thought experiment to study beams containing evanescent waves.
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1. INTRODUCTION

Tightly focused light typically leads to a non-negligible longitudinal polarization component,1,2 where the terms
longitudinal and transverse electric field components refer to the components of the electric field that are parallel
or perpendicular, respectively, to the direction of the mean Poynting flux. The exception arises for the special case
of the beam’s transverse electric field components being divergence free in the two-dimensional transverse plane;
under these circumstances the longitudinal polarization component exactly vanishes despite tight focusing.3,4

The simplest example for that is azimuthal polarization.2

Whereas technically this additional electric field component does not actually introduce a new degree of
freedom in the sense that all electric and magnetic field components are still fixed if we fix two electric or magnetic
field components in a plane, it allows new interesting beams with spatially varying polarization, where all three
electric field components are relevant. Classic examples are the so-called needle beam5,6 or the Möbius strip in
the polarization.7–9 Tight focusing of a circularly polarized Gaussian10 leads to a nonzero angular momentum
through the additional longitudinal field component. Such behaviour is of course of crucial relevance when
studying tightly focused beams interacting with matter, and recent experiments have revealed the importance
of taking the longitudinal electric field component into account for a complete and accurate picture.11,12 It has
also been shown that the longitudinal electric field component can even dominate the interaction with matter.13

Apart from that, there is current substantial interest in ”structured light”,14–16 that is, generating customized
light fields that suit specific needs in applications in a range of fields and extending these ideas to all three
electric field components.3,17

Usually, the longitudinal polarization Ez can be easily computed from the divergence equation as function of
the transverse electric field components E⊥ = (Ex, Ey) via

Ez = Ez(E⊥). (1)



In this paper we want to ask the following question: How can we shape Ez and what degrees of freedom do we
have to control the polarization in the transverse electric field components E⊥? In other words, we are asking
how we can invert Eq. (1)

E⊥ = E⊥(Ez). (2)

That is of course not a well-posed problem, since the solution of Eq. (2) is not unique. However, as we shall see
in what follows, the degree of freedom categorizing solutions of Eq. (2) has a simple geometric interpretation.
This paper focuses primarily on the electric field. An experimental visualization of the structures presented in
this work would entail some atom-light interactions, and it is well known that the electric field dominates the
magnetic field when interacting with charges in a medium (see, e.g.,18).

2. MODEL

The three electric field components of a tightly focused monochromatic beam (frequency ω0, wavelength λ =
2πc/ω0) in free space are described by

∇2E(r⊥, z) + k20E(r⊥, z) = 0, (3)

∇ ·E(r⊥, z) = ∇⊥ ·E⊥ + ∂zEz = 0. (4)

We have introduced k20 = ω2
0/c

2 = (2π/λ)2, the transverse coordinates r⊥ = (x, y), and the transverse electric
field components E⊥ = (Ex, Ey). Note that E represents the complex amplitude vector of the beam; the full
electric field has an additional trivial time-dependence exp(−iω0t) that is omitted here. For a given amplitude
vector in the focal plane∗ Ef(r⊥) = E(r⊥, z = 0), the propagation in the positive z direction can be easily
computed in the transverse spatial Fourier domain as

Ê(k⊥, z) = Êf(k⊥)eikz(k⊥)z, (5)

where kz(k⊥) =
√
k20 − k2

⊥ and k⊥ = (kx, ky); the symbol ˆ denotes the Fourier transform with respect to r⊥.

Before we discuss the equations of motion further, let us first make some general remarks on vector fields.
A Helmholtz decomposition permits the decomposition of any three-dimensional vector field F that is twice
continuously differentiable as F = −∇φ+∇×A. In the two transverse dimensions, the corresponding formula
for F⊥ is given by

F⊥(r⊥) = −∇⊥V (r⊥) +

(
0 1
−1 0

)
∇⊥W (r⊥), (6)

or, written component-wise

F⊥,i(r⊥) = −∂iV (r⊥) +
∑
j

εij∂jW (r⊥). (7)

Here, V (r⊥) and W (r⊥) denote arbitrary (sufficiently well behaved) scalar potentials and εij represents the usual
Levi-Civita symbol. We apply this Helmholtz-decomposition to the two transverse components of the optical
field:3

Ef
⊥(r⊥) = −∇⊥V (r⊥) +

(
0 1
−1 0

)
∇⊥W (r⊥). (8)

Let us now return to our equations of motion Eqs. (3)-(4). At this point it is important to notice that Ef

cannot be arbitrarily prescribed in all three components due to the coupling of different components via Eq. (4).
Here, the Helmholtz decomposition becomes very useful, since it exactly separates fields that give rise to a
longitudinal electric field component and labeled here as EV and fields which leave the longitudinal electric field

∗Any other z = constant plane could also be used.



component unaffected, labeled here as EW . The latter, including the labeling, becomes apparent when taking
the divergence of E = (E⊥, Ez) and using Eq. (8):

∇E = ∇⊥E⊥ + ∂zEz

= −∆⊥V + ∂zEz = 0. (9)

Here, we used the fact that
∑

i,j ∂iεij∂jW = 0 and thus only V gives rise to the longitudinal electric field
component. Note, that this decomposition corresponds to transverse electric and transverse magnetic fields.
Component-wise, we can write down EV

⊥,i = −∂iV and EW
⊥,i =

∑
j εij∂jW .

In summary, EV
⊥ is curl-free in the transverse plane and EW

⊥ is divergence-free in the transverse plane by
construction†. The former completely determines the longitudinal electric field component and the latter does
not affect it. In that sense, the two associated fields can be considered generalized radial and azimuthal polarized
fields, respectively.4

Let us return to our original question [Eq. (2)], which is how can we shape Ez with the transverse components
and what is the remaining degree of freedom. Given a desired longitudinal electric field component Ez, it is clear
that EV

⊥ is given via E⊥ = −∇⊥V and the potential V is obeys the following Poisson equation:

∆⊥V (r⊥) = ∂zEz|z=0(r⊥). (10)

Because the z dependence of Ez is known [see Eq. (5)], Ef
z can be readily obtained in Fourier space from

− k2
⊥V̂ (k⊥) = ikz(k⊥)Êf

z(k⊥). (11)

All three electric field components are fixed if we prescribe any two field components of E (and/or B) in a
plane. Thus, given that we prescribed the longitudinal electric field component Ef

z only, there is exactly one
degree of freedom left. This remaining degree of freedom is reflected by the fact that we can add an arbitrary
(sufficiently well-behaved) field EW

⊥ .

To fix the field EW
⊥ , we can add an additional constraint to the field E⊥ in the transverse plane. For example,

if we wanted to obtain a generalized radially polarized field (in the transverse plane), we would set EW = 0. Other
polarization imply similar constraints for the field W : A linear transverse polarization with αEx = (1 − α)Ey

with 0 ≤ α ≤ 1, requires
[αkx − (1− α)ky] V̂ (k⊥) = [αky + (1− α)kx] Ŵ (k⊥); (12)

and a circular transverse polarization, with Ex = ±iEy, requires

V̂ (k⊥) = ±iŴ (k⊥). (13)

In this picture, the well-known fact that any nonzero linearly or circularly polarized field necessarily gives rise
to a longitudinal polarization component becomes immediately clear; in these cases V is nonzero and has a
nontrivial spatial dependence, and hence Eq. (10) gives rise to a nonzero Ez.

Concluding this section, we write down the full solution for given potentials V and W in transverse Fourier
space as

Ê(k⊥, z) = i


 −kx−ky

k2
⊥

kz(k⊥)

 V̂ (k⊥) +

 ky
−kx

0

 Ŵ (k⊥)

 eikz(k⊥)z. (14)

†The electric field in vacuum always fulfills ∇·E = 0. Hence, the restriction “in the transverse two-dimensional plane”
is crucial in the present context.



Figure 1. (a) Considering tight focusing (σ = λ/2) of Eq. (15) leads to evanescent waves as indicated by the contributions
of |Êf

z (k2
⊥ ≥ k20)| > 0. These can be chopped off in Fourier space (b). Filtering out components at k⊥ = 0 is in this

case not necessary, since Ef
z (k⊥ = 0) = 0 is already fulfilled. (c-d) show the longitudinal electric field component after

filtering.

3. ANALOGIES

Simple analogies of the two-dimensional fields E⊥ with electro- and magnetostatics or fluid dynamics4 allow
the further elucidation of the interplay between longitudinal and transverse electric field components: By con-
sidering Eq. (10) in the z = 0-plane and associating −∂zEz(z = 0) with a two-dimensional charge density, it
is clear that we can think of the function V as the respective ”induced potential” and Ef,V then emerges as
the gradient field to the latter. Similarly, we can identify the potential W with the only nonzero component
As

z of the magnetic vector potential, which then allows the association of the induced static magnetic field with
Ef,W ‡. Another possible choice is to relate the function W with the scalar stream function of fluid dynamics.
These analogies are carried out in4 in detail and allow a simple intuitive approach of how one can picture the
decomposition Ef

⊥ = Ef,V
⊥ + Ef,W

⊥ and relate them to the longitudinal electric field component Ez.

4. EXAMPLES

This section is devoted to illustrate previous ideas with examples.

4.1 Double charged Vortex Beam with transverse circular polarization

As a simple first example, let us consider a double charged vortex in the longitudinal electric field component
with circular transverse polarization (V = iW ) as follows:

Ef
z (r⊥, z = 0) = LG20 =

√
1

2π

(x+ iy)2

σ3
exp

[
− r2⊥

2σ2

]
(15)

Let us for the following consider σ = λ/2. For keeping the function Eq. (15) physical despite of decreasing the
width σ to a value that is significantly lower than the wavelength we must impose certain physical constraints:
On the one hand, we must ensure that the divergence equation is satisfied for solutions propagating in the
z-direction, which implies that Êf

z (k⊥ = 0) = 0 must be fulfilled. On the other hand, for finding valid bulk
solutions we must impose that no evanescent fields are present, Êf

z (k2
⊥ ≥ k20) = 0. In the case of Eq. (15), the

first condition is satisfied automatically. For meeting the second condition we use the same filtering in spatial
Fourier space as in.3,4 The effect is shown in Fig. 1(a-d).

The corresponding induced potentials V and W are uniquely determined, V from the prescribed Ef
z (z = 0)

and W since we said in the beginning of this section that we want to consider circular polarization in the
transverse electric field components, i.e. V = ±iW . They are depicted in Fig. 2. Clearly, these potentials
directly induce the transverse electric field components as gradient field and as field tangential to the contour
lines. Given the high symmetry in the system, it is sufficient to only show the real part of Ef

x , since all other field
components and imaginary parts are basically rotated and/or parity transformed versions of that. Figure Fig. 3
illustrates the decomposition of <(Ef

x ) into <(Ef,V
x ) and <(Ef,W

x ). Whereas the dipole <(Ef
x ) looks very simple,

‡Note, that for both presented analogies are formal only, and the actual magnetic field of the vector beam differs from
the one presented here.



Figure 2. Induced potential <(V ) (left panel) and =(V ) (right panel) of the double charged Eq. (15). The black arrows
represent the corresponding gradient field EV

⊥ = −∇⊥V and the white arrows the tangential field along the contour lines
EW
⊥,j/i = −

∑
k εjk∂kV .

Figure 3. The real part of Ex and its nontrivial decomposition into the real part <(Ef,V
x ) and <(Ef,W

x ) of generalized
radial and azimuthal components is shown.

the corresponding generalized radial <(Ef,V
x ) and azimuthal fields <(Ef,W

x ) look a bit more involved. Note, that
whereas <(Ef

x ) has roughly twice the amplitude of <(Ef
z ), one can easily reduce the amplitudes of the transverse

electric field components without affecting the longitudinal electric field component by simply setting Ef,W
⊥ = 0.

This allows to decrease the amplitude ratio between transverse and longitudinal electric field component from
roughly 2:1 to almost 1:1.

4.2 Evanescent Trefoil

In the previous section we considered a tightly focused double charged vortex in the longitudinal electric field
component. We had to filter away evanescent waves to make the solution physical. In this section, we would
like to present a thought experiment: We consider an artificial light source located in the z = 0 plane. That
allows us to consider a light distribution with a significant amount of evanescent waves in the near field. Such a
distribution is physical, as the evanescent waves are damped in both ±z directions. Hence, it permits to consider
the opposite case to the previous section, where we can retain the evanescent part of the beam, however we have
to spectrally filter parts of the beam around the origin k2⊥ = 0.

Vortex knots have been studied in a range of different fields during the last two decades including water
waves,19 as soliton solutions in the Skyrme-Faddev model,20 in frustrated magnets,21 in excitable media22–25

and in optics.3,26–28 A proposal for imprinting optical knots onto BECs has been made in.29,30 Propagating
the light distribution shown in Fig. 4 away from the focal plane yields a vortex knot in shape of a trefoil in the



Figure 4. (a) Beam profile with high spatial complexity per voxel λ3 leads to a large amount of evanescent waves (b).
Whereas the thought experiment described admits these evanescent waves, we have to spectrally filter to ensure Ef

z (k⊥ =
0) = 0, visible as the little hole in the center of (b). Propagating this function yields a vortex trefoil in the longitudinal
electric field component (c).

longitudinal electric field component in the near field of the source. Note, that for the propagation evanescent
waves were taken into account.

5. CONCLUSIONS

In this paper we have reviewed how one can realize an arbitrary (sufficiently well-behaved) longitudinal electric
field component and how one can use the the remaining degree of freedom to tune the polarization in the
transverse plane. We discussed evanescent waves and presented a thought experiment that allows to propagate
a trefoil vortex knot in the longitudinal electric field component containing evanescent waves. Furthermore, we
discussed analogies to fluid dynamics that allow to intuitively understand the relation among longitudinal and
transverse electric field components.
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