
HAL Id: hal-02083127
https://hal.science/hal-02083127

Submitted on 8 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

“Functional-first” recommendations for beneficial
microservices migration and integration. Lessons

learned from an industrial experience
Jean-Philippe Gouigoux, Dalila Tamzalit

To cite this version:
Jean-Philippe Gouigoux, Dalila Tamzalit. “Functional-first” recommendations for beneficial microser-
vices migration and integration. Lessons learned from an industrial experience. IEEE INTERNA-
TIONAL CONFERENCE ON SOFTWARE ARCHITECTURE (ICSA 2019), Mar 2019, Hamburg,
Germany. �10.1109/icsa-c.2019.00040�. �hal-02083127�

https://hal.science/hal-02083127
https://hal.archives-ouvertes.fr

“Functional-first” recommendations for beneficial

microservices migration and integration
Lessons learned from an industrial experience

Jean-Philippe GOUIGOUX

Chief Technical Officer

R&D department

MGDIS SA

Vannes, France

gouigoux-jp@mgdis.fr

Dalila TAMZALIT

LS2N – CNRS UMR 6004

Université de Nantes

Nantes, France

Dalila.Tamzalit@univ-nantes.fr

Abstract. MGDIS is a French software development company

which successfully migrated her monolith application towards a

microservices architecture. This migration was due to a major

strategic and technical change and needed an investment of 17

300 person.days over three years. While some results were

initially targeted, others were not expected at all. However, with

hindsight following an afterward in-depth analysis, they

eventually proved to be unexpected best-practices that should be

adopted for successful microservices adoption. These lessons

learned are outlined following four crucial aspects: functional

approach, norms and standards, microservices granularity and

their semantics, and finally technical and integration outcomes.

Keywords—microservices; migration; Web Oriented

Architecture; business alignment; reuse by integration; business

experience.

I. INTRODUCTION AND CONTEXT

MGDIS SA1 is a French software development and vendor
applications that target public collectivities, helping them in
managing lifecycle and payments of financial subsidies and
scholar grants. In this business sector, a complete Information
System is typically installed on premise mainly, composed
with almost two hundred different applications and used in
total by around one thousand agents. The main characteristics
of this market are a large importance of systems
interoperability and a complete product lifecycle generally
around ten years.

Due to the upcoming obsolescence of the existing
applications, MGDIS board of directors decided in 2013 a
complete rewrite from scratch using a modern web-based
architecture, following the World Wide Web Consortium
(W3C) recommendations [3]. MGDIS main goal at that time
was to reduce the cost of interoperability, allowing long term
improvement of the system by collaborating or embedding
external software capabilities. The main strategy used to
fulfill these goals was from the beginning based on
Information System Alignment2 [4, 5, 6, 7]. Namely, obtained
components need to be as autonomous and decoupled as
possible, so as to ease development and avoid eventual clutter
from technical debt.

In 2015, the first obtained version of the new application
has been tested by one pilot customer, namely a regional
council with a few hundreds of agents and a few tens of

1 http://www.mgdis.fr

thousands of external users of the associated web site. This
customer operated the new version of the software and served
as a beta-tester for some of the features during one year. In
2016, the application was stable enough to be deployed to
other customers, some of them on premise and some of them
using the same software operated directly by MGDIS as a
Software as a Service [8]. These three years of development
as well as eighteen months in operation provided some
feedback on this software rewrite, among which the most
important findings are presented in the following.

Authors’ first paper [30] gave a first round of feedback,
mainly focused on lessons learned about technical issues
(service granularity, deployment and orchestration). The
present paper attempts at generalizing on a global best
practice, lessons learnt by MGDIS from this migration
process. The paper is organized as follows: after the
presentation in this first section of the industrial context and
objectives, the paper presents a successful approach to obtain
a long-living software. Section II outlines on the importance
of following a functional rather than technical segmenting.
Section III presents the importance of using norms and
standards. Section IV focuses on the best ways for slicing
correctly microservices while Section V shows the
importance of business semantics of the identified
microservices. Section VI mentions the importance of the
technical side during migration while Section VII presents the
benefits of the software in its new shape, on the integration
and finally Section VII concludes this paper by opening a
couple of future works.

II. ON THE IMPORTANCE OF FOLLOWING A FUNCTIONAL

SEGMENTING

Like any other software company deciding to turn a
monolithic application into a group of autonomous services
interacting with each other, MGDIS had to address several
well-known issues, among which the first and main one is
choosing how to split the former monolith into granular
APIs. Knowing the technical bits does not help in any way in
knowing where to cut.

The main lesson learned in the past three years, and
highlighted in this paper, re-architecting the software
application is that the functional approach must lead the
technical approach. However, most of the schemas templates
in software architecture are technically-oriented. Using the

2 In France, the term “urbanization” is also widely used.

mailto:gouigoux-jp@mgdis.fr
mailto:Dalila.Tamzalit@univ-nantes.fr

four-layer representation from the CIGREF3’s white paper
[31] considerably helped to the success of the project by
offering an appropriate way to associate the functional with
the technical.

This four-level diagram, represented in Figure 1, has long
been used in relation with Business / IT alignment and
Information System cartography. It helped a lot in finding the
right decomposition of a monolith software into modular
services.

An essential return on experience from the industrial
migration is that the cutting planes should not come from
the layer 3 (technical) but from the layer 2 (functional),
since this embodies all business functions that are then
technically implemented at the level 3.

Figure 1: the four-level IT map diagram

As a software editor, the use of the four-level urbanization
diagram progressively became the central point of the whole
software production. It was part of every developers’
objectives to reflect every step of the production info all four
level of this diagram. Every single person in a feature team
was asked to be able to relate his work to the process, the
functionality, the software and the hardware. For example, a
developer would always be able to explain how the code he or
she crafted was related to which function, used by which
customer process, and which infrastructure it would be
installed on.

When considering technical outcomes of the three-year
migration, it turned out that most of them also derived

3 The Cigref, an association created in 1970, is a network of major

French companies and public administrations whose mission is to

make possible digital success.

from the functional approach. The following will describe
the most significant outcomes in further details.

III. GOING STANDARD / NORMALIZATION APPROACH

Using a functional rather than technical point of view to
carve services out of the existing application led MGDIS to
massive use of norms and standards where they existed and
Domain Driven Design [18] to establish proper and internal
pivotal format and canonical entities where no standards
existed. These norms, standards, pivotal format and canonical
entities are used for the definition of microservices contracts.
Their use to define the architecture turned out to be the major
change in terms of impact on the resulting application.

Using standards is a well-accepted requirement in
enterprise architecture, but not always respected.
Microservices dedicated to supporting one particular business
standard make for a good alignment between IT and processes
[32]. They are in fact the glue between the functional and
the technical layers in the four-layers diagram.

MGDIS’ approach was that everything related to business
had to be standards-driven. When a norm existed, its respect
was made mandatory. When no norm existed, a canonical
entity was laid out and pivotal formats open sourced so as to
help standardization. The final application uses tens of
business norms (vCard, OAuth2, SAML, SCIM, XACML,
GeoJSON, CMIS, ODPv2 to name just a few) alongside with
hundreds of technical norms (RFC, IETF, ISO, etc.), the latter
being current practice but the former definitely not so. The
fact that Swagger turns into Open API Initiative is also a move
towards better normalization. Interestingly, norms and
standards generally come from consortium making experts in
the business domain agree on a precise (thus technical)
representation of their field, and one can mention this
initiative of IT Standard for Business4.

IV. ON MICROSERVICE GRANULARITY

The use of the prefix “micro” tends to express the fact that
actual size of the service itself is of importance. Yet, opinions
are multiple about what the size of a microservice should be
[13, 14, 15] and there is not even an agreement on the unit that
should be used (Lines Of Code, weight of the library, number
of methods in the API, etc.). The field is also blurred with the
appearing of nanoservices and lambda [16] / serverless [17]
architectures.

The main recommendation of this article is to give up
those technical considerations and base the microservices
slicing on functional ones, just like for any correctly-realized
componentization. Instead of using notions from level 3, this
means using semantics from level 2 of the IT alignment
diagram (see figure 1).

V. IMPORTANCE OF SEMANTICS

A surprising outcome of this three-year-long experience
aligning all the production to standards was that semantics
turned out to be a major challenge. Since every microservices
had to be easily replaceable and API contracts where, as a
consequence, of major importance, business semantics

4 https://www.itforbusiness.org/

https://www.itforbusiness.org/

gradually took a more and more important place. This is
closely related to the DDD approach of ubiquitous language,
that has to reconcile business and technical users. Semantics
is the basis for the second layer of the diagram.

At some point, one person among the thirty developers
was dedicated to creating pivotal formats and canonical
entities, with associated standardized vocabularies and
definition. This allowed for precise shared understanding of
the business stakes. Reasoning in terms of semantics and
choosing the exact right word for every situation helped in
solving more and more complex situations by the means of
software. Expressions, and particularly business jargon, are
often overly simplified wordings of a more complex situation,
and getting better at semantics helped a lot in finding the right
model for a business concept. For example, one easily
assumes that an adjective on a noun designating a concept
translates into an attribute of the associated entity in a model.
In a fair number of situations, the attribute is in fact borne by
the relationship between the entity and some other entity
given by the context. To give an extremely simplified
example, it is said that a person can be in credit, but adding a
Boolean attribute to store this quality actually does not make
sense, since a person can only be in credit towards a given
other person or entity, and can very well be in debt at the same
time towards others. Semantics has been such a strong move
at MGDIS that modeling of its own internal process has been
realized using the four-level diagram and a semantics
document has been issued to align every employee with the
right names to describe our commercial and technical content.

VI. BENEFITS IN INTEGRATION

Though important technical benefits have been obtained
in the design, migration and execution of the software itself as
soon as 2015 (first deployments), the following years in
production saw even bigger benefits when the services started
to be used in integration-based scenarios. The following are
examples of possible benefits when using business-oriented
APIs in the design of a software application and its
implementation as an embedded part of the customers IT
system.

The long-awaited reuse of software components by
MGDIS has been a reality in 2015, when a microservice used
to manage business events has been developed in 80 days for
a first application, then integrated in 10 days in a second
application and finally integrated in a few days only starting
from the third one. The integration was purely based on HTTP
mechanisms, namely API calls, webhooks and iFrame
integration. From the four-layer diagram point of view, the
integration is the capability to offer additional business
functions (layer 2) by technically mixing software services
(layer 3).

In 2016, an application has been created purely by MGDIS
marketing service, only helped by an integrator to inject data
and provide the UI integration with dedicated stylesheets, etc.
This is an example of “Low Code” / “Zero Code” before the
terms were largely coined in the past years.

In the process of instrumenting European Subsidies
distribution, a high level of traceability and auditability was
required and initial analyses showed coding the corresponding
features would take a few hundreds man.days. A careful

decomposition in atomic features made possible to match
most of them with existing software services in MGDIS’
Business Capability Map, dropping the time needed to
implement to only a few tens of man.days, while increasing
quality, since the corresponding components had already been
used in production for more than a year for most of them.

The penultimate example below shows a particularly high
return on investment for the decomposition of the monolith
into an API-based application. The business case was to
automate the main business process provided by the
application, in order to accommodate a particular scenario
where lots of scholarship grants had to be treated in a very
short delay, namely when students obtain their “Baccalaureat”
with honours and earn a financial help if they stay in the
region for their further studies. In order to accommodate this
new customer request, it would have been necessary to add
mass-treatment capability into the software application, but
also the ability to generically search into a list of data where
links to the students were not direct. In addition, some new
business rules had to be designed into the software to take into
account this new way of distributing subsidies, while making
their application generic, since all French regions do not use
the same mechanism. Finally, an archiving feature has to be
put in place too, as the administrative requisite were strong in
this scenario. All in all, the estimation of the necessary
development in the application was a bit more than 400
man.days. Since this was too expensive for a development, a
brainstorming session was carried which led to a fully
integration-based solution around the existing API. Microsoft
Excel was used to query the requests and students’
information from the software API using PowerQuery. Then,
the students results listing was incorporated into a dedicated
worksheet and PowerQuery used again to link the data
together and apply business rules (most users being proficient
in Excel would then easily change these rules without any
external help). Finally, a VBA macro would loop over the
prepared data to execute for every line a list of API calls to
recreate the business operations needed to declare a student
financial help, automatically instruct and prepare its payment.
Error management was small but functional, with an
additional column used to indicate whether success was
reached or not. Finally, the electronic archiving feature was
directly obtained by the fact that all operations were grouped
in a single Excel workbook, which can easily be made read-
only and sent into a dedicated server folder that would then be
taken into account by the archiving process. This Excel file
took less than 10 days to design, approve by the customer and
document, thus proving MGDIS with the highest gain ever
through API use.

Finally, the “guichet unique” example is another high-
value-added scenario where the correct decomposition of
APIs has led a capital role. Before the microservices
architecture, the monolithic application provided SOAP web
services, but those were a mere exposition on the technical
innings of the application. The goal of the “guichet unique” is
to provide the user with a single web application where he or
she can describe a project and request funding from many
administrations. Such a website had been prototyped by
MGDIS around 2012, but more than 600 man.days were feed
without success. Using the new architecture and in particular
the fact that APIs were separated between the “project”
resource and the “finance” resource (including from the REST

point of view), the same goal was obtained in 2016, with only
100 man.days (half of it being used for security enhancement),
making this the first “guichet unique” in France, between the
Pays-de-la-Loire Region and the Vendée Departement. Not
only the right granularity of the APIs made possible to realize
this breakthrough, but it allowed the company to achieve it in
extremely short delays. Once again, spending much time
obtaining a near-perfect comprehension of the functional and
business situation still provided for an excellent return on
investment in time.

VII. TECHNICAL OUTCOMINGS

The fact that the functional point of view drove the whole
migration operation does not mean that the technical point of
view was forgotten and many best practices were also learned
with relation to the third layer of the diagram.

Choosing the right tool for the right function. One of
the main advantages of a microservices application in
technical terms is the possibility of using the best techniques,
languages, frameworks and dependencies for each services,
independently from the other services. This was not possible
in the monolith version of the application, where a single
application forced to use a single programming platform. By
opposition, the business functions for managing individuals
and legal entities have been served during three years by a re-
conditionned .NET service, only being rewritten in NodeJS at
the very end of the project, for deployment reasons (Docker
being only supported on Linux at that time). Another
advantage of microservices is that it has also made it possible
to let the technical teams in charge of the choice of their tools
and languages and by rendering them responsible of their
choices according to the whole application. In a monolithic
application, this unique “one shot for five years” choice is so
important that high management tends to take part in it and
include strategic constraints, which is not the case with a
microservices implementation.

Evolving business should be supported by evolving
technical tools. Each technical service has to constantly
follow the evolution of its dependencies in time. This is easy
when the technology is stable enough and takes this issue into
account. An example of a stable platform is Java and its
tooling. This is much more a challenge when the technology
is young and changing rapidly. Such an example is the
deployment, which not only followed 11 versions of Docker5,
but also followed every technology evolution, from simple
use of Dockerfile to Docker Compose, then Consul as a
services registry, followed by a traditional coupling with
HAProxy6, and finally support of Traefik7 in order to solve
this problem. When the implementation is modular and
closely aligned to the business functions, changing the former
is not an issue, as the latter stays stable meanwhile.

The technical format should describe changes and not
states. Master Data Management, from a functional point of
view, deals with business entities, which change constantly.
JSONPatch (RFC 6902) proved extremely useful to
implement a semantics-correct referential. Indeed, traditional

5 Docker: Enterprise Container Platform https://www.docker.com/
6 HAProxy - The Reliable, High Performance TCP/HTTP Load

Balancer http://www.haproxy.org/
7 https://traefik.io/, the Cloud Native Edge Router.

approach to Master Data Management is to store the different
versions of an entity. This leads to more volume, and has
always caused trouble in development because of the
complexity of dealing with concurrent modifications. Coming
back to the semantics of an entity modification, which
basically is a set of atomic operations of creating / value
modification / deletions, accompanied with metadata like the
value date of the change, the origin and author of the change,
etc. helped creating referentials that generate no locks, hence
a better performance. In addition, this approach made it
extremely easy to comply with regulations about traceability
and auditability, since all modifications are stored. Pushing
this atomicity to the client also helped reduce bandwidth use
and greatly improve the GUI performance by extending
asynchronicity.

Security also benefited from a functional approach.
Though security is often seen as a purely technical issue,
cutting down services from their business domain function
helped achieving Defense In Depth with multi-layers
dependencies without jeopardizing users comfort. Indeed,
stopping a service software process for security reasons would
lead to only one function being unavailable to the users, thus
strongly limiting the impact on business. The fact that
microservices allowed for many security curtains made them
great as an implementation of the security in depth paradigm.
ANSSI Principal Engineer Philippe Wolf8 illustrated this
pattern as “mango versus coconut”, where the external
services are soft and easily targeted but the more one approach
the core if the information system, the tougher it gets. By
opposition, a coconut is hard to break in, but will release all
its juice once a simple hole is made. Where security in depth
has typically been realized with one to two levels of firewall
or dedicated networks, microservices frequently allow for
three to five levels of security.

VIII. CONCLUSION AND FUTURE WORK

Many additional technical outcomes have been collected
along MGDIS’ three-year long journey into microservices
adoption, but the present article focused on the majority that
were related to the “functional first” approach.

Correct management of multitenancy, challenges on
microservices security (and also great advantages that their
compartmenting provides), specific use of general technical
tools like messaging queues, schemaless databases and retry
policies made for lots of returns that may be addressed in
future works. We will first follow our research work on
identifying microservices granularity. Despite the common
acceptation of DDD [18] and norms as criteria for services
granularity, there is still work for additional approaches, and
works like [29] have already studied the field with an
approach based on performance improvement by finer
granularity, providing a quantitative view of the above
qualitative proposal for optimal granularity searching.

Though the investment in this architecture has been
considerable for a company the size of MGDIS, it should be
noted that a vast majority of legal tenders and prospects have

8 Philippe Wolf (IGA / French Government Cybersecurity Agency)

- Conference at ENSI Bretagne Sud on state of the art in

cybersecurity – Vannes, 25 September 2014.

https://www.docker.com/
http://www.haproxy.org/
https://traefik.io/

been won over in the last two years, and the expected return
over investment is currently diminishing to an estimated five
years sales, the estimated lifecycle of the product being ten
years, not taking into account the better durability of a
modular software.

REFERENCES

[1] [Henderson &al. 93] Henderson, J. C., & Venkatraman, H. (1993).

Strategic alignment: Leveraging information technology for
transforming organizations. IBM systems journal, 32(1), 472-484.

[2] http://fr.slideshare.net/ewolff/nanoservices-and-microservices-with-

java [last accessed on January 12th, 2017]
[3] https://www.w3.org/TR/2004/NOTE-ws-arch-20040211

[4] Hirschheim, R., & Sabherwal, R. (2001). Detours in the path toward

strategic information systems alignment. California management
review, 44(1), 87-108.

[5] Chan, Y. E., Huff, S. L., Barclay, D. W., & Copeland, D. G. (1997).

Business strategic orientation, IS strategic orientation, and strategic
alignment. Information systems research, 8(2), 125-150.

[6] Galliers, R. D., & Leidner, D. E. (2014). Strategic information

management: challenges and strategies in managing information

systems. Routledge.
[7] Cassidy, A. (2016). A practical guide to information systems strategic

planning. CRC press.
[8] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski,

A., & Zaharia, M. (2010). A view of cloud computing. Communications

of the ACM, 53(4), 50-58.
[9] Linthicum, D. S. (2000). Enterprise application integration. Addison-

Wesley Professional.
[10] Keller, W. (2002). Enterprise Application Integration. Erfahrungen aus

der Praxis. dpunkt.
[11] Chappell, D. (2004). Enterprise service bus. " O'Reilly Media, Inc.".
[12] Schmidt, M. T., Hutchison, B., Lambros, P., & Phippen, R. (2005). The

enterprise service bus: making service-oriented architecture real. IBM

Systems Journal, 44(4), 781-797.
[13] Newman, S. (2015). Building microservices. " O'Reilly Media, Inc.".
[14] Fowler, M., & Lewis, J. (2014). Microservices. ThoughtWorks.

http://martinfowler. com/articles/microservices. html [last accessed on

February 17, 2015].
[15] Namiot, D., & Sneps-Sneppe, M. (2014). On micro-services

architecture. International Journal of Open Information Technologies.
[16] Marz, N., & Warren, J. (2015). Big Data: Principles and best practices

of scalable realtime data systems. Manning Publications Co.
[17] Diot, C., & Gautier, L. (1999). A distributed architecture for multiplayer

interactive applications on the Internet. IEEE network, 13(4), 6-15.
[18] Eric Evans (2003). Domain Driven Design, Tackling Complexity in the

Heart of Software.
[19] Gregory Hohpe & Bobby Woolf (2004). Entreprise Integration Patterns.
[20] http://download.microsoft.com/documents/australia/soa/gartner.pdf
[21] O'Brien, L., Brebner, P., & Gray, J. (2008, May). Business

transformation to SOA: aspects of the migration and performance and

QoS issues. In Proceedings of the 2nd international workshop on

Systems development in SOA environments (pp. 35-40). ACM.
[22] Rosen, M., Lublinsky, B., Smith, K. T., & Balcer, M. J. (2012). Applied

SOA: service-oriented architecture and design strategies. Wiley & Sons.
[23] http://ieeexplore.ieee.org/document/5476743/
[24] N. Bieberstein, R. Laird, K. Jones, T. Mitra (May 5, 2008). Executing

SOA: A Practical Guide for the Service-Oriented Architect. IBM Press.

[25] http://apiux.com/2013/09/12/webhooks/
[26] https://sendgrid.com/blog/whats-webhook/

[27] https://opensource.com/article/17/7/software-standards

[28] https://www.enterprisetech.com/2017/06/14/well-enslaved-
proprietary-clouds-unless-collaborate/

[29] O. Mustafa, J. Marx Gómez (2017). Optimizing economics of

microservices by planning for granularity level.

http://soft.vub.ac.be/~cfscholl/ProWeb17/ProWeb_2017_paper_8.pdf
[30] J.-P. Gouigoux and D. Tamzalit. From monolith to microservices:

Lessons learned on an industrial migration to a web oriented

architecture. In Software Architecture Workshops (ICSAW), 2017
IEEE International Conference on, pages 62–65. IEEE, 2017.

[31] https://www.cigref.fr/cigref_publications/RapportsContainer/Parus200
3/2003_-_Accroitre_l_agilite_du_systeme_d_information_web.pdf

[32] P. Edwards, M. Peters, and G. Sharman. The effectiveness of

information systems in supporting the extended supply chain, Journal

of business logistics, Wiley Online Library, vol. 22, Number 1, pages
1--27, 2001.

https://www.w3.org/TR/2004/NOTE-ws-arch-20040211
http://ieeexplore.ieee.org/document/5476743/
http://apiux.com/2013/09/12/webhooks/
https://sendgrid.com/blog/whats-webhook/
https://opensource.com/article/17/7/software-standards
https://www.enterprisetech.com/2017/06/14/well-enslaved-proprietary-clouds-unless-collaborate/
https://www.enterprisetech.com/2017/06/14/well-enslaved-proprietary-clouds-unless-collaborate/
http://soft.vub.ac.be/~cfscholl/ProWeb17/ProWeb_2017_paper_8.pdf
https://www.cigref.fr/cigref_publications/RapportsContainer/Parus2003/2003_-_Accroitre_l_agilite_du_systeme_d_information_web.pdf
https://www.cigref.fr/cigref_publications/RapportsContainer/Parus2003/2003_-_Accroitre_l_agilite_du_systeme_d_information_web.pdf

