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Abstract.

Jasmonic acid (JA) biosynthesis and signaling are activated in Arabidopsis cultivated in phosphate (Pi) 

deprived conditions. This activation occurs mainly in photosynthetic tissues and is less important in 

roots. In leaves, the enhanced biosynthesis of JA coincides with membrane glycerolipid remodeling 

triggered by the lack of Pi. We addressed the possible role of JA on the dynamics and magnitude of 

glycerolipid remodeling in response to Pi-deprivation and resupply. Based on combined analyses of 

gene expression, JA biosynthesis and glycerolipid remodeling in wild type Arabidopsis and in the coi1-

16 mutant, JA signaling seems important in the determination of the basal levels of 

phosphatidylcholine (PC), phosphatidic acid (PA), monogalactosyldiacylglycerol (MGDG) and 

digalactosyldiacylglycerol (DGDG). JA impact on MGDG steady state level and fluctuations seem 

contradictory. In the coi1-16 mutant, the steady state level of MGDG is higher, possibly due to a higher 

level of PA in the mutant, activating MGD1, and to an increased expression of MGD3. These results 

support a possible impact of JA in limiting the overall content of this lipid. Concerning lipid variations, 

upon Pi-deprivation, JA seems rather associated with a specific MGDG increase. Following Pi-resupply, 

whereas the expression of glycerolipid remodeling genes returns to basal level, JA biosynthesis and 

signaling genes are still upregulated, likely due to a JA-induced positive feedback remaining active. 

Distinct impacts on enzymes synthesizing MGDG, i.e. downregulating MGD3, possibly activating MGD1 

expression and limiting the activation of MGD1 via PA, might allow JA playing a role in a sophisticated 

fine tuning of galactolipid variations. 

Keywords

glycerolipid remodeling, jasmonic acid, MGD1, MGD3, phosphate signaling.
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Introduction.

Plants have to cope with frequent variations of nutrients in soils. Phosphorus, in the form of soluble 

inorganic phosphate (Pi), is one of the most limiting elements (Rellan-Alvarez et al. 2016). The response 

to Pi starvation has been extensively studied in Arabidopsis thaliana, a plant assimilating Pi mainly via 

PHT1 transporters (Mitsukawa et al. 1997; Muchhal et al. 1997; Nussaume et al. 2011; Okumura et al. 

1998). A lack of Pi triggers changes at multiple organization levels and time scales, ranging from early 

biochemical and metabolic tuning of Pi allocation, to genome scale transcription reprogramming, 

leading to an integrated metabolic, physiological and developmental response (Chiou and Lin 2011; 

Plaxton and Tran 2011; Yang and Finnegan 2010; Zhang et al. 2014). Primary long term phenotypic 

changes include: the secretion of phosphatases in the soil to scavenge Pi from organic sources, an 

enhanced expression of Pi transporters, a reduced growth of primary root and shoot, an enhanced 

growth of lateral roots and root hairs, an accumulation of anthocyanins and an intense remodeling of 

membrane glycerolipids, saving Pi from phospholipids (Peret et al. 2011). 

The major early effector in low Pi signaling is the transcription factor PHR1 (Phosphate starvation 

response 1) (Bustos et al. 2010; Misson et al. 2005; Misson et al. 2004; Rubio et al. 2001; Thibaud et 

al. 2010). Concerning the control of Pi incorporation, PHR1 triggers the expression of miR399 in the 

shoot of Arabidopsis, and this microRNA moves to the root where it represses the expression of PHO2, 

encoding a ubiquitin ligase involved in the degradation of PHO1 (Lin et al. 2008; Liu et al. 2014b; Pant 

et al. 2008) and of several members of Phosphate transporters PHT1 family (Huang et al. 2013). The 

PHO1 Pi transporter then accumulates in the root xylem parenchyma, and operates in the transfer of 

Pi up to the shoot (Hamburger et al. 2002; Liu et al. 2012). 

A later remodeling of lipids, marked by a replacement of phospholipids by Pi-free plastid glycolipids, is 

also under the control of PHR1 (Bustos et al. 2010; Pant et al. 2015). In brief, a phospholipid breakdown 

is triggered in non-plastidial membranes, mostly at the level of phosphatidylcholine (PC), involving the 

NPC4 and NPC5 phospholipases C (Gaude et al. 2008; Nakamura et al. 2005) and the PLD1 and PLD2 

phospholipases D (Cruz-Ramirez et al. 2006). The mechanisms involved in the decline of 

phosphatidylglycerol (PG) in the plastid is unknown. Concomitantly, the syntheses of phosphorus-free 

sulfoquinovosyldiacylglycerol (SQDG), monogalactosyldiacylglycerol (MGDG) and 

digalactosyldiacylglycerol (DGDG) increase in plastids (Awai et al. 2001; Boudiere et al. 2014; Dormann 

and Benning 2002; Essigmann et al. 1998; Hartel and Benning 2000; Jouhet et al. 2004; Jouhet et al. 

2003; Jouhet et al. 2007; Yu et al. 2002). In the thylakoids, a net PG-to-SQDG replacement occurs 

(Essigmann et al. 1998), whereas DGDG is exported from the plastid and relocates to the plasma 

membrane (Andersson et al. 2003) and tonoplast (Andersson et al. 2005), where a PC-to-DGDG 
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replacement occurs. DGDG also relocates to mitochondria (Jouhet et al. 2004; Michaud et al. 2016). 

Genes involved in this lipid remodeling, i.e. the SQDG synthase (SQD2), two MGDG synthase isoforms 

(MGD2 and MGD3) and DGDG synthases (DGD1 and DGD2), are therefore markers of the low Pi 

response and of the remodeling of lipids.

It was recently shown that Pi deficiency also induced the biosynthesis of jasmonic acid (JA) and its 

derivative JA-Isoleucine (JA-Ile), therefore activating the JA signaling pathway (Khan et al. 2016). The 

biosynthesis of JA relies on the supply of alpha-linolenic acid (C18:3) derived from MGDG and DGDG, 

converted into oxo-phytodienoic acyls (OPDA) via a plastid lipoxygenase/allene oxide synthase 

(LOX/AOS) pathway (Andreou et al. 2009). OPDA is exported to the peroxisome and then serves as 

precursor for the synthesis of JA (Andreou et al. 2009; Wasternack and Hause 2013). Based on qRT-

PCR studies, a lack of Pi induced the expression of gene markers of JA biosynthesis (lipoxygenase 2, 

LOX2) and signaling (jasmonate zim-domain protein 10, JAZ10) (Khan et al. 2016). A puzzling question 

is that, although multiple studies had been performed to analyze the transcriptomic response of roots 

and leaves of Arabidopsis to low Pi (Bustos et al. 2010; Hammond et al. 2003; Misson et al. 2005; 

Morcuende et al. 2007; Muller et al. 2007; Woo et al. 2012), only one reported a change in the 

expression of genes involved in JA biosynthesis and signaling (Morcuende et al. 2007). It was also 

shown that JAZ10 was initially not induced in the phr1-1 mutant, but reached the wild type induction 

level after 10 days on Pi-deficient medium, thus indicating an early (but partial) control by PHR1. The 

pho1-7 mutation (Khan et al. 2016) was introgressed into Arabidopsis lines impaired in JA biosynthesis 

(the aos mutant defective for AOS (Park et al. 2002)) and JA signaling (the coi1-34 mutant affecting the 

level of the COI1, an F-box protein interacting with JA-Ile (Acosta et al. 2013; Yan et al. 2013; Yan et al. 

2009)). In the obtained pho1-7 aos and pho1-7 coi1-34 double mutants, the expression of the low-Pi 

responsive gene MGD3 was significantly reduced compared to the pho1-7 parent. These experiments 

suggest that JA could influence MGD3 expression, either by a transcriptional activation of MGD3 that 

would be additive with the upregulation in response to low Pi, or by amplifying the magnitude of MGD3 

upregulation by low-Pi. Other studies support a link between galactolipid and JA levels. Consistently 

with the low Pi-response, Methyl-JA was shown to upregulate MGD1, in a context of increased DGDG 

production (Taki et al. 2005). By contrast, a mutant with 90% reduction of DGDG level due to the 

impairement of DGD1 also shows a JA overproduction (Lin et al. 2016). Altogether, these studies show 

that different lipid remodeling patterns, with opposite variations of galactolipid levels, coincide with 

an increase in JA, suggesting that a sophisticated system of regulation by this oxylipin might operate. 

In the present study, the transcriptomic changes induced by Pi deprivation and resupply were re-

examined, refining the kinetics of gene expression responses. Previous reports showing that JA 

biosynthesis and signaling were activated upon Pi starvation were confirmed (Khan et al. 2016), but 
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showed that the expression of corresponding genes following Pi-resupply was not necessarily tuned 

down back to basal levels. We also confirmed that the activation of JA biosynthesis was different in 

roots and shoots (Khan et al. 2016), correlating with different patterns of upregulation of JA 

biosynthesis and signaling genes. We then attempted to refine our understanding of the interplay 

between low-Pi response, JA signaling and the control of glycerolipid homeostasis.
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Results and discussion.

Transcriptional response to phosphate variations reveals different patterns of genes involved in 

jasmonic acid metabolism and signaling in different organs.

Arabidopsis seedlings were grown on modified media supplemented with either 500 µM KH2PO4 (High 

Pi or “HPi”) or 200 µM KCl (Low Pi or “LPi”). For the analysis of Pi deprivation and resupply, seeds were 

cultivated in LPi conditions for 7 days and then transferred for 30 min, 1 h or 3 h either to LPi (LPi-LPi; 

“Pi-deprived”) or HPi (LPi-HPi; “Pi-resupply”). Plants cultivated in HPi conditions for 7 days before 

transfer onto fresh HPi medium (HPi-HPi; “Pi-supplemented”) acted as controls (Fig. 1). Roots and 

shoots of Arabidopsis grown under these Pi regimen were carefully cut and collected using a razor 

blade, RNA was extracted and used to generate RNA-seq libraries. We thus obtained gene expression 

profiles in roots (Supplementary Table S1) and shoots (Supplementary Table S2) of Arabidopsis for each 

Pi regimen. 

Genes that were differentially expressed in Pi-supplemented and Pi-deprived conditions were 

determined. To that purpose, compiled RNA-seq data was obtained from 0.5, 1 and 3 hours following 

transfers from HPi to HPi (Pi-supplemented) and LPi to LPi (Pi-deprived), respectively, and used to 

compare transcript abundance in shoots and roots. Using the non-parametric NOISeq method (Zheng 

and Moriyama 2013), only genes with a stable expression for each Pi concentration could be 

considered, based on the NOISeq p-value cutoff set at 0.05. Differentially expressed genes were then 

selected based on a Log-fold-change ratio threshold, i.e.Log2FC > 1. 

In roots, 494 genes were down-regulated and 879 were up-regulated in low-Pi condition 

(Supplementary Table S3). In the list of upregulated genes, we sought enriched GO terms and 

functional annotations using the DAVID method (http://david.abcc.ncifcrf.gov) (Huang et al. 2007). 

Consistently with known effects of Pi deprivation, terms corresponding to phosphatase (P-value = 

1.8.10-8), phosphate ion transport (P-value = 3.8.10-10), glycerophospholipid catabolic process (P-value 

= 3.3.10-3), galactolipid biosynthetic process (P-value = 1.5.10-5), phosphatidylcholine 1-acylhydrolase 

activity (P-value = 8.1.10-2), cell wall biogenesis/degradation (P-value = 2.6.10-1) or transcription 

regulation (P-value = 5.4.10-1) were enriched. The term corresponding to cytochrome P450 proteins 

was also enriched (P-value = 8.1.10-4) although we could not determine the precise pathway(s) in which 

these CYP proteins could be involved. In details, glycerolipids marker genes known to be upregulated 

in low Pi (Misson et al. 2005; Morcuende et al. 2007) were confirmed, i.e. MGD2 (AT5G20410; Log2FC 

= 4.1), MGD3 (AT2G11810; Log2FC = 6.6), DGD1 (AT3G11670; Log2FC = 1.4), DGD2 (AT4G00550; 

Log2FC = 1.8), SQD2 (At5g01220; Log2FC = 4.3), PLD2 (AT3G05630; Log2FC = 4.5) and NPC4 

(AT3G03530; Log2FC = 4.5) (Supplementary Table S3).
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In shoots, 505 genes were down-regulated and 1,215 genes were up-regulated (Supplementary Table 

S4). We also sought enriched GO terms and functional annotations using the DAVID method in 

upregulated genes. As above, terms corresponding to acid phosphatase (P-value = 3.9.10-10), protein 

phosphatase 2C (P-value = 5.5.10-1), phosphate ion transport (P-value = 2.10-6), cellular phosphate ion 

homeostasis (P-value = 7.1.10-7), glycerophospholipid catabolic process (P-value = 6.2.10-3), 

galactolipid biosynthetic process (P-value = 1.1.10-3), P-type ATPase (P-value = 2.8.10-1), cell wall 

modification (P-value = 8.6.10-1) or transcription regulation (P-value = 5.2.10-1) were enriched, 

confirming past analyses. By contrast with roots, additional terms corresponding to oxylipin 

biosynthetic process (P-value = 9.7.10-2), together with cytochrome P450 (P-value = 3.2.10-2) and 

secondary metabolites biosynthesis, transport, and catabolism (P-value = 7.2.10-2) were also identified. 

Glycerolipids marker genes upregulated in low Pi (Misson et al. 2005; Morcuende et al. 2007) were 

also confirmed, i.e. MGD2 (Log2FC = 4.6), MGD3 (Log2FC = 8.6), DGD2 (Log2FC = 1.3), SQD2 (Log2FC = 

4.7), PLD2 (Log2FC = 5.4) and NPC4 (Log2FC = 5.7) (Supplementary Table S4). Transcriptional changes 

in shoots appeared therefore to involve oxylipins and, overall the magnitude of upregulation of marker 

genes was higher compared with roots. 

Overall, this comparison of Arabidopsis grown in Pi-supplemented vs. Pi-deprived conditions validates 

the study dataset. The enrichment of GO terms corresponding to oxylipins in the comparison 

performed with green tissues supports therefore the possible activation of Jasmonic acid biosynthesis 

pathway reported earlier (Khan et al. 2016), at least in shoots.

We then focused our analysis on the expression of genes involved for JA biosynthesis (AOS, AOC1, 

AOC2, AOC3, LOX2, LOX4, OPR3, JAR1, ACS1, ACS2, ACX1, AIM1, MFP2, KAT2, KAT5 and JMT), JA 

signaling (FT AP2/ERF, JAZ1 to JAZ10, COI1), and as a control, glycerolipid remodeling (NPC4, NPC5, 

PLD1, PLD2, MGD1, MGD2, MGD3, DGD1, DGD2). Differential expression was measured in roots and 

shoots, 0.5 h after medium transfer, and highlights the same marker genes as those detected after the 

non-parametric comparison using all gene expression levels measured 0.5, 1 and 3 hours following 

medium transfer (Table 1).  Concerning JA synthesis and signaling, AOS (in shoots), AOC1 (in both roots 

and shoots), AOC2 and AOC3 (in shoots), LOX2 (in roots and to some extent in shoots), LOX4 (about 

two-fold increase in both roots and shoots), JAZ5 (in roots) and JAZ7 (in shoots) appeared upregulated 

in low Pi condition. Some modulated responses could therefore be observed between roots and 

shoots, but in both cases, genes involved in JA biosynthesis and signaling were significantly upregulated 

in response to Pi deprivation. Interestingly about half of the selected genes coding for JA biosynthesis 

or signaling components contained in their promoter region, one or more Pi-deprivation responsive 

elements (P1BS box 1, a known PHR1 binding element (Rubio et al. 2001)) (Table 1).
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This comparison supports the fact that subsets of genes involved in JA biosynthesis might be co-

regulated with genes involved in glycerolipid remodeling in response to Pi availability. We wondered 

whether these genes could be tuned down back to control level upon addition of Pi. The design of our 

experiment allowed investigating whether genes could be finely tuned following such resupply. To 

determine if these genes returned to basal expression levels after resupply differentially expressed 

genes and GO enrichment following Pi-resupply were determined, comparing the expression levels 

after 0.5, 1 and 3 hours in shoots. To that purpose, a partition of differentially expressed genes was 

performed using a K-mean method, with the number of partitions set to 10 (Dolch et al. 2017; Liu et 

al. 2014a). Each cluster consisted of genes with similar expression patterns (i.e. expression curves after 

0.5, 1 and 3 hours) following Pi-resupply, with representative nearest mean curves, serving as 

prototypes for the clusters (shown in Fig. 2). Three clusters comprise genes upregulated following 

resupply, i.e. Cluster 2 consisting of genes with a strong and regular expression increase (Log2FC > 2), 

Cluster 4 with genes mainly upregulated 3 h following Pi-resupply and Cluster 5 with genes highly 

upregulated 1 h following Pi-resupply. Three clusters comprise genes downregulated following Pi-

resupply, i.e. Cluster 7 consisting of genes with moderate but significant expression decline, Cluster 8 

with genes mainly downregulated after 1 h resupply, and Cluster 10, a very large cluster containing 

genes with a regular expression decrease. This later cluster comprises genes with moderate to strong 

variation levels (Log2FC < -2). Based on GO term enrichment using two independent methods, GOseq 

(P-value < 5.10-2) and DAVID (P-value  1.10-2), we analyzed these clusters to detect possible biological 

processes (BP) or molecular functions (MF) with a correlated dynamics of gene expression following 

Pi-resupply (Fig. 2). GO terms enriched in Cluster 10 highlight genes involved in the maintenance and 

repair of photosynthetic machinery, chloroplast division, cell mitosis and leaf morphogenesis, 

illustrating that the developmental reorientation in shoots does not occur within a short period 

following Pi resupply, but should rather require a longer time to return back to their level in control 

conditions.

GO terms corresponding to BP Jasmonic acid mediated signaling pathway, BP Regulation of jasmonic 

acid mediated signaling or BP Response to jasmonic acid were found enriched in Clusters 2, 4 and 5, 

i.e. showing therefore an upregulation upon Pi-resupply, whereas GO terms corresponding to BP 

Phosphate ion homeostasis, BP Phosphorus metabolic process, BP Lipid storage, BP Sulfolipid 

biosynthetic process, BP Galactolipid metabolic process, MF 1,2-diacylglycerol 3-beta-

galactosyltransferase activity (i.e. synthesis of MGDG) were mainly found enriched in Cluster 8, 

showing a restoration of control expression level for these Pi-responsive genes (Fig. 2). 

This analysis highlights that although genes involved in glycerolipid remodeling and JA metabolism or 

signaling are upregulated when plants are deprived of Pi, they appear to have uncoupled patterns of 
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expression following Pi-resupply. We addressed therefore the following questions: could JA signaling 

be involved in the dynamics and/or magnitude of the glycerolipid remodeling triggered by Pi-

deprivation? Could JA signaling be involved in a reverse glycerolipid remodeling, returning back to 

initial state following Pi-resuply?

Jasmonic acid biosynthesis and signaling and glycerolipid remodeling are coupled following Pi 

deprivation and uncoupled following Pi resupply

The expression of some representative genes was examined via qRT-PCR (Fig. 3, white bars) in the 

leaves of wild type Col-0 Arabidopsis grown under different Pi regimen. 

- When comparing Pi-supplemented and Pi-deprived conditions, genes involved in JA 

biosynthesis were upregulated (LOX2, AOC1, AOC2) or unchanged (AOS). The selected reporter 

gene for JA signaling, JAZ10, was consistently upregulated in Pi-deprived condition. As 

expected, all representative genes involved in glycerolipid reprogramming were upregulated 

(NPC4, PLD2, MGD2, MGD3, DGD1, DGD2, SQD2). The expression of MGD1 increased slightly. 

- Upon Pi-resupply, genes involved in glycerolipid reprogramming were tuned down. Only 

MGD1 expression was enhanced. In contrast, all genes involved in JA biosynthesis and 

response were upregulated by the refeeding with Pi.

Previous reports have clearly demonstrated the production of JA and JA-Ile in Arabidopsis deprived of 

Pi, with different levels in roots and shoots (Khan et al. 2016). We sought whether the regulation of JA 

biosynthesis genes in the various Pi-regimen analyzed here, was also correlated with changes in JA 

levels in planta. To that purpose, we used an Arabidopsis transgenic line expressing the -

glucuronidase (GUS) reporter gene, fused with JAZ1 under the cauliflower mosaic virus 35S promoter, 

p35S::JAZ1-GUS (Thines et al. 2007). Based on the interaction of JA-Ile with COI1, a component of the 

Skp1/Cullin/F-box SCFCOI1 ubiquitin E3 ligase complex (Feys et al. 1994; Xie et al. 1998), JAZ1 is 

degraded. In this reporter system, an in vivo production of JA ad JA-Ile is therefore detected by a loss 

of GUS staining. The p35S::JAZ1-GUS transgenic line was cultivated under various phosphate regimen 

and the histochemical analysis was consistent with a low JA content in both roots and shoots in Pi-

supplemented condition (Fig. 4, A), a production of JA mainly localized in the stem and leaves in Pi-

deprived condition (Fig. 4, B) and no apparent decrease in JA content following Pi-resupply in leaves  

(Fig. 4, C). In planta, the level of JA appears therefore consistent with the variations of JA biosynthesis 

and response genes (Fig. 3, white bars).

We also sought whether the very rapid down-regulation of genes involved in glycerolipid remodeling 

(within hours following Pi-resupply) had an effect on a restoration of the control lipidomic profile. 

Using wild type samples collected in parallel, we extracted and analyzed glycerolipids 3 hours following 
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a resupply in Pi (Fig. 5, Col 0). We compared the profiles with that obtained in Pi-supplemented, used 

as a control. In photosynthetic tissues, plants grown in Pi-deprived medium exhibited the expected 

increase in SQDG, concomitant with a decrease in PG, consistent with the well-established SQDG-to-

PG replacement in thylakoid membranes. In shoots, MGDG level increased slightly, DGDG level nearly 

doubled, whereas that of phospholipids and particularly PC decreased, consistently with the DGDG-to-

PC exchange triggered by Pi deprivation. In roots, although lipid contents where much lower and more 

technically challenging to quantify, variations of SQDG, PG and MGDG were not observed in these non-

green tissues, decrease in phospholipids were not statistically significant, whereas an increase of DGDG 

was clearly induced in Pi-deprived condition. In both roots and shoots, within a day following Pi-

resupply, no significant change could be observed. Contrary to the down tuning of genes involved in 

glycerolipid remodeling (Fig. 3), these analyses did not support any glycerolipid remodeling back to 

control level rapidly after a resupply in Pi. 

Taken together, these analyses show that JA biosynthesis and signaling genes are upregulated in Pi-

deprived condition compared to Pi-supplemented condition, however, following Pi-resupply, 

expression of these genes is even more activated. Jasmonic acid presence in Pi-deprived condition and 

following a resupply in Pi is confirmed in planta. It is likely that JA and JA-derivatives accumulated upon 

Pi deprivation might maintain an upregulation of JA biosynthesis genes even though Pi signaling is 

attenuated, following the well-known positive feedback of the JA pathway, namely JA-induced JA 

biosynthesis (Sasaki et al. 2001). Only MGD1 expression followed the trend of JA biosynthesis and 

signaling genes, suggesting that this gene might be related to this interplay between JA signaling and 

responses to Pi variations.

Comparison of the gene expression reprogramming and the lipid remodeling in the WT and coi1 

genetic backgrounds.

To confirm the link between JA signaling and glycerolipid remodeling induced by Pi variations, we 

considered a genetic background impaired in JA signaling. In previous works, the expression of the low-

Pi responsive MGD3 gene had been analyzed in the pho1-7 aos and pho1-7 coi1-34 double mutants: 

its expression was significantly reduced compared to the pho1-7 parent, suggesting that JA might 

control lipid remodeling. However, the increase of SQDG, MGDG and DGDG relatively to phospholipids 

was unchanged in pho1-7 aos and pho1-7 coi1-34 double mutants compared to pho1-7 (Khan et al. 

2016). Here, we used a coi1-16 mutant, impaired at the level of the COI1 dependent JA perception, 

subjected to various Pi regimen, to consider all possible Pi-responsive pathways. The coi1-16 

background is also known to contain a mutation in the PEN2 gene (Westphal et al. 2008), a glycosyl 

hydrolase involved in the synthesis of antifungal glucosinolates (Bednarek et al. 2009). The coi1-16 
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mutant was previously used to unravel the interplay between JA and the response to potassium 

variations, with no effect which could be attributed to the pen2 mutation (Armengaud et al. 2010). No 

biotic stress was exerted in the present study and only genes related to the COI1 role and lipidome 

remodeling were examined. We compared gene expression and glycerolipid profiles in WT (Col-0) 

plants and coi1-16 lines (Fig. 3, black bars and Fig. 5).

In the coi1-16 mutant, the expression of most genes involved in JA biosynthesis or signaling was 

consistently reduced compared to the wild type, and was unaltered by variations in Pi, besides a very 

low upregulation observed for JAZ1 or JAZ10. Interestingly, the expression of AOC1 follows a pattern 

of a Pi-responsive gene in the coi1-16 background (Fig. 3, black bars) although no P1BS box could be 

detected in its promoter region (Table 1). This suggests that expression of AOC1 is controlled in 

response to Pi-availability by an unknown pathway and that JA masks this control by enhancing AOC1 

expression.

Genes involved in Pi-dependent glycerolipid remodeling are differentially expressed in the coi1-16 

background (Fig. 3, black bars). PLD2 and MGD2 show little changes. The overall expression of NPC4, 

MGD3 and DGD1 and to some extent of DGD2 and SQD2 is increased compared to WT, in particular in 

Pi-deprived condition, suggesting a negative control by JA. MGD1 seems to show a slightly opposite 

response to Pi variations in coi1-16 compared to Col-0, with a downregulated expression in Pi-deprived 

condition, unchanged after Pi-resupply (Fig. 3). However, this slight decrease observed in multiple 

analyses was not statistically significant based on a Dunett’s test. MGD3 expression is significantly 

activated in low-Pi in both WT and coi1-16, with a magnitude of upregulation moderated by JA. By 

contrast with previous analyses in the pho1-7 coi1-34 double mutants and pho1-7 parent (Khan et al. 

2016), data shown in Fig. 3 suggest that the basal level of MGD3 expression is increased in the coi1-16 

mutant when compared to Col-0. Although we have no clear explanation, this apparent discrepancy 

might be due to the pho1-7 mutation, impairing phosphate assimilation constitutively. In this previous 

work, the decreased expression in MGD3 was apparently contradictory with the observed increase in 

galactolipids (Khan et al. 2016); here the level of expression of MGD3 (together with an increased level 

of PA, a known activator of MGD1, see below) is consistent with the higher level of MGDG in the coi1-

16 mutant. Altogether, these results suggest that JA exerts a sophisticated tuning of the expression of 

genes involved in glycerolipid homeostasis, regulating genes controlling phospholipid homeostasis in 

the endomembrane system (NPC4) and galactolipid metabolism in chloroplasts (MGD3, DGD1, and to 

some extent MGD1, DGD2 and SQD2). 

We sought whether these results were consistent with previous analyses of transcriptome change in 

Arabidopsis subjected to JA. In a recent comprehensive study, a whole-genome transcriptional 
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expression analysis was performed based on RNA extracted from leaves over 14 consecutive time 

points within 16 h following application of methyl JA (Hickman et al. 2017). Expression patterns of 

differentially expressed genes were clustered in 27 groups, 1 to 14 exhibiting an increased expression 

whereas 15 to 27, a downregulation. In this dataset, MGD1 belonged to cluster 8 (consistent with the 

tendency observed in Fig. 3) and MGD3 to cluster 16 (supporting the higher expression level we 

observed in the coi1-16 mutant). This confirms the results reported on Figure 3 with a balanced control 

of MGDG synthesizing genes by JA, via opposite effects on MGD1 and MGD3.  

When analyzing glycerolipids in the coi1-16 mutant exposed to various Pi regimen, the most striking 

differences are observed in leaves at the levels of MGDG, DGDG, PC and phosphatidic acid (PA) (Fig. 5, 

A). Firstly, the basal level of PC appears lower in coi1-16 and responds to Pi-deprivation like the WT. 

PC is the sole lipid showing a strong modification at its fatty acid composition level (Fig. 6). In this 

analysis, diacyls are expressed as the sum of carbon contained in the two fatty acid and the number of 

double bonds they harbor. PC-34 corresponds mainly to PC containing one fatty acid with 16 carbons 

and one fatty acid with 18 carbons and PC-36 corresponds to PC containing two 18-carbon fatty acids. 

In the coi1-16, PC-34-2 relative proportion increases, whereas that of PC-36-3 and PC-36-4 decrease, 

suggesting that molecular species enriched in fatty acids with 18 carbons are responsible for the global 

decrease in PC. Secondly, PA level is significantly higher in the coi1-16 background. For this lipid 

intermediate, no change in fatty acid content is detected and no variation is observed in response to 

Pi. These data do not provide any evidence for the origin of this pool of PA, should it derive from a sub-

pool or PC or another source. The subcellular distribution of this PA pool and its generation machinery 

being unknown, we could not speculate on the mechanism of its production in response to JA. It is 

known that PA can reach the chloroplast and activate galactolipid synthesis (Benning 2009; Botella et 

al. 2016; Dubots et al. 2012). Thirdly, and consistently with a high PA level, MGDG content appears 

higher than in the wild type, and remains unchanged regardless of Pi variations. DGDG level is twice as 

high in coi1-16 as that in Col-0, and is even more increased in response to Pi-deprivation. The fatty acyl 

profiles in MGDG and DGDG showed little changes, except a slight increase in 18:3/18:3 in DGDG in 

roots (from 56.4% of total DGDG fatty acyls in Col-0 to 64.5% in coi16-1), reflecting an important 

contribution of MGD1 in most conditions in the synthesis of the bulk of galactolipids and a visible 

impact of the action of MGD3 in root non-photosynthetic plastids. It has been previously reported that 

even when MGD3 was overexpressed, basal level of MGDG could show no change (Murakawa et al. 

2014). Here, the increase in MGDG in the coi16-1 background appears therefore most importantly due 

to MGD1 activation by PA.
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Altogether these results highlight that more mechanisms are involved, rather than just a regulation by 

gene transcription, in the complex modulation of lipid homeostasis by JA. Interestingly, all mechanisms 

dissected here converge toward a control of galactolipid level.

Conclusion

We confirmed previous reports showing that JA biosynthesis and signaling are activated in Arabidopsis 

photosynthetic tissues when plants are cultivated in Pi-deprived conditions. Given the well-known role 

of JA in response to insects, this discovery was initially evaluated as a possible link between Pi 

deficiency and an enhanced herbivory resistance. JA could however act on other cellular responses, as 

shown here. In leaves, activation of JA coincides with a glycerolipid remodeling triggered by the lack 

of Pi. Concerning a possible action of JA on glycerolipid remodeling, our analysis of the coi1-16 mutant 

is consistent with a control of the basal levels of MGDG, which is higher in this mutant possibly via an 

increased production of PA (an activator of MGDG synthesis) and by an increased expression of MGD3. 

This supports a role of JA in lowering MGDG production, at least by inhibiting MGD3 expression. By 

contrast, upon Pi-deprivation, a role of JA in MGDG increase seems to occur, possibly by a moderate 

stimulation of the expression of MGD1, which needs to be confirmed in the future. When adding Pi to 

deprived plants, whereas glycerolipid remodeling genes are tuned back to normal, JA biosynthesis and 

signaling genes are even more activated. Our study shows that in this apparently reverse condition, JA 

also plays a role, and is therefore uncoupled from the low-Pi response. As a preliminary investigation 

of mechanisms involved, the effect of JA on two MGDG synthesis enzymes, i.e. a control of the 

activation of MGD1 (via an increase in PA) and a repression of MGD3 expression, might contribute to 

a fine tuning of MGDG variations in either Pi-deprivation or Pi-resupply. The existence of this balanced 

control of MGDG synthesis is supported by the complete loss of MGDG tuning in response to Pi 

variations in the coi1-16 and is consistent with previous whole gene expression analyses. JA interplay 

with plant response to Pi variations is therefore complex, highlighting a fine tuning of the magnitude 

of gene expression levels in response to Pi. In the future, important questions need to be addressed, 

including the understanding of the lag between the rapid restoration of glycerolipid remodeling gene 

expression following Pi-resupply and the actual restoration of the glycerolipid profile; the elucidation 

of the mechanisms involved in the control of glycerolipid homeostasis by JA; and the evaluation of a 

possible involvement of JA in other glycerolipid remodeling processes occurring in response to other 

abiotic and biotic stresses and in relation with other hormonal controls.

Material and Methods.

Plant material and growth conditions.
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All Arabidopsis thaliana lines used in this study were in the Col-0 ecotype. The coi1-16 mutant and 

p35S::JAZ1-GUS (Thines et al. 2007) transgenic lines were provided by Dr Anthony Champion (IRD 

Montpellier). For all experiments plants were grown on modified Murashige and Skoog (MS) medium 

(Arnaud et al. 2014) supplemented with 2 µM FeCl2 and either 500 µM KH2PO4 (High Pi or “HPi”) or 

200 µM KCl (Low Pi or “LPi”). For the analysis of Pi starvation and resupply, seeds were cultivated in 

LPi conditions for 7 days and then transferred for 30 min, 1 hour or 3 hours either on LPi (LPi-LPi; “Pi-

deprived”) or HPi (LPi-HPi; “Pi-resupply”). The untreated control for these experiments was performed 

by growing plants on HPi conditions for 7 days before transferring them onto fresh HPi medium 

conditions during the appropriate control time (HPi-HPi; “Pi-supplemented”). Cultivations were 

performed on solid or liquid medium, as indicated (Kanno et al. 2016). For cultivation on agar plates, 

Low Pi Plant Agar (SIGMA A1296) was added to the supplemented MS medium at 0.8%. Seedlings were 

stratified in darkness (4°C, 24 hours), and grown in a 16-h-light/8-h-dark photoperiod at 21-24°C, in 

white light in vertical plates. For experiments using GUS reporters, seedlings were grown in liquid 

culture (24 wells falcon sterile plates, 3 mL MS medium per well, 10-15 seeds per well). Transfers were 

performed by moving directly the seedlings into the new medium. For lipids analyses and transcript 

level measurements, seedlings were germinated on stripes of Sefar Nitex 100 µM (30 - 40 seeds per 

stripe) placed into square plates of solid agar medium, and grown vertically. Transfers were performed 

by moving the Nitex stripes on new medium.

RNA extraction and RT-qPCR analyses

At least 30 individual seedlings were harvested per condition and stored in liquid nitrogen. A minimum 

of three biological replicates were collected per genotype/treatment. RNA was then isolated using the 

RNeasy Plant Mini Kit (Qiagen), following the manufacturer’s instructions. Possible traces of DNA were 

eliminated with the RNase-Free DNase Set (Qiagen). 1 μg of RNA was used to obtain complementary 

DNA (cDNA) with the QuantiTect Reverse Transcription Kit (Quiagen). The quantitative polymerase 

chain reactions (qPCR) were carried out using SsoAdvanced™ Universal SYBR® Green Supermix (Biorad) 

and Biorad CFX96 Real-time PCR Detection System, according to the manufacturer’s instructions. Three 

technical replicates were analyzed for each biological replicate. The TUB2 gene (AT1G75785) was used 

as reference. Primer pairs (forward, fwd and reverse, rev) used for amplification were the following: 

MGD1 (AT4G31780) fwd, TGGTTCGAGTCTCCGTAGGT and rev, CAAAGCTCTCCGGAACCACT; MGD2 

(AT5G20410) fwd, ACAAGAAATTGGCATCTGCAT and rev, TGGTCCAGCTTTTGTGATGA; MGD3 

(AT2G11810) fwd, AGAGGCCGGTTTAATGGAGT and rev, CATCAGAGGATGCACGCTAA; DGD1 

(AT3G11670) fwd, ACGGTGAAGATGCAGTCGAG and rev, CCACAAACTTCCCCATGGCT; DGD2 

(AT4G00550) fwd, ACGCTGACTCGCTATTTCACAAC and rev, TTTCCCATCGCCAAGGCTTCTG; SQD2 

(At5G01220) fwd, TACCTGAAGCTCGGATTGCT and rev, TGTGAGAGTTCATCGCCTTG; PLD2 
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(AT3G05630) fwd, TCACGACAAGCAAGAACAGGTTAG and rev, AGTGCAGAGGAAGAGCACCATC; NPC4 

(AT3G03530) fwd, TCCAAACCCGGGTCATCCTA and rev, GTTCATAACCGCGGAGGACA; AOC1 

(AT3G25760) fwd, ACTCCTACTCGAGCTCTCTCTCAG and rev, GTTCTTGAACTTTGCTTGGTCTGG; AOC2 

(AT3G25770) fwd, ACTGGAGCCTAGCGGAGTTA and rev, ACACAGCGATACGAGAAACAT; AOS 

(AT5G42650) fwd, GGTGGCGAGGTTGTTTGTGATTG and rev, TTCCTAACGGCGACGTACCAAC; LOX2 

(AT2G18790) fwd, CAAGGATGCTGGCCTCTTAC and rev, TCGTCTCGTAACCATGAAAATC; LOX4 

(AT1G72520) fwd, GGAAGACCACATCATCGGTCAAC and rev, AAACGGTTCGTCTCTAACGCTTG; JAZ1 

(AT1G19180) fwd, AGCTTCACTTCACCGGTTCTTGGA and rev, TCTTGTCTTGAAGCAACGTCGTCA; JAZ10 

(AT5G13220) fwd, TCGCAAGGAGAAAGTCACTGCAAC and rev, CGATTTAGCAACGACGAAGAAGGC; TUB2 

(AT5G62690) fwd, GAGCCTTACAACGCTACTCTGTCTGTC and rev, 

ACACCAGACATAGTAGCAGAAATCAAG.

RNA-seq analyses

Roots and shoots of Arabidopsis grown under various Pi regimen were carefully cut and collected using 

a razor blade and RNA was extracted as described above. RNA quality and integrity were determined 

using the Nanodrop 1000 Spectrophotometer and Agilent Bioanalyser. Only high-quality RNA samples 

(Abs260/280 nm ratios of 2.0–2.1) were used for RNA-seq library generation with the Illumina Truseq 

Stranded Total RNA sample prep kit. RNA-seq libraries were multiplexed and loaded per lane into the 

Illumina HiSeq flow cell v3. All sequencing protocols were carried out as per the manufacter’s 

instructions using the Illumina HiSeq 1000 and HiSeq control software. RNA-seq reads were analysed 

using the Cufflinks package (Trapnell et al. 2012), version 2.1.1 and mapped onto the Arabidopsis 

TAIR10 genome (Kim et al. 2015) with the TAIR10 transcriptome annotation, using the DESeq2 method 

(Love et al. 2014; Varet et al. 2016). Clustering was achieved based on expression profiles as described 

previously (Dolch et al. 2017). In brief, partition of differentially expressed genes was performed using 

a K-mean method, with a number of partitions set to 6 and a clustering based on a Euclidian distance 

(Liu et al. 2014a). For each group we sought whether gene ontology (GO) terms could be enriched, 

either by the DAVID method (http://david.abcc.ncifcrf.gov) (Huang et al. 2007), using the 

corresponding Refseq gene IDs and with a default p-value threshold of 0.1, or using the GOseq R 

package (Young et al. 2010) with an identical p-value threshold. Based on GO enriched terms, a focused 

analysis of acyl-lipid and oxylipin pathways was performed. Illumina reads of all samples have been 

submitted to the Sequence Read Archive at the National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov/sra) under accession number SRP133280.

Lipid extraction and analyses.
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Roots and shoots of Arabidopsis grown under various Pi regimen were carefully cut and collected using 

a razor blade and a minimum of 100 µg fresh weight were stored in liquid nitrogen (3 biological 

replicates). Samples were lyophilized and lipids were extracted by the Folch method (Folch et al. 1957). 

Total glycerolipids were quantified from their fatty acids: in an aliquot fraction of extracted lipids, a 

known quantity of 15:0 was added and the fatty acids were converted into methyl esters (FAME) by a 

1 hour incubation in 3 mL 2.5% H2SO4 in pure methanol at 100°C (Jouhet et al. 2003). The reaction was 

stopped by addition of 3 mL water and 3 mL hexane. The hexane phase was analyzed by a gas 

chromatography-flame ionization detector (GC-FID) (Perkin Elmer) on a BPX70 (SGE) column. FAME 

were identified by comparison of their retention times with those of standards (Sigma) and quantified 

by the surface peak method using 15:0 for calibration. For quantification of lipid classes by high-

performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), fractions of 

extracted lipids corresponding to 25 nmol were suspended in 100 µL of chloroform/methanol 2:1, (v/v) 

containing 125 pmol of internal standards and analyzed as previously described (Jouhet et al. 2017). 

Internal standards were either obtained from Avanti Polar Lipids Inc. (for diacylglycerol, DAG 18:0-

22:6; phosphatidylcholine, PC 18:0-18:0; phosphatidylethanolamine, PE 18:0-18:0; 

phosphatidylinositol, PI 18:0-18:0; phosphatidylserine, PS 18:0-18:0; phosphatidylglycerol, PG 18:0-

18:0; phosphatidic acid, PA 18:0-18:0 and diphophatidylglycerol, DPG 14:0-14:0-14:0-14:0), 

synthesized by D. Lafont (Amara et al. 2010; Amara et al. 2009) (for galactolipids, MGDG 18:0-18:0 and 

DGDG 16:0-16:0) or purified from spinach thylakoid (Deme et al. 2014) and hydrogenated (Buseman 

et al;2006) (for sulfoquinovosyldiacylglycerol, SQDG 16:0-18:0). The HPLC separation method was 

adapted from (Rainteau et al. 2012). Lipid classes were separated using an Agilent 1200 HPLC system 

using a 150 mm×3 mm (length × internal diameter) 5 µm diol column (Macherey-Nagel), at 40°C. The 

mobile phases consisted of hexane/isopropanol/water/ammonium acetate 1 M, pH 5.3 

[625/350/24/1, (v/v/v/v)] (A) and isopropanol/water/ammonium acetate 1M, pH 5.3 [850/149/1, 

(v/v/v)] (B). The injection volume was 20 µL. After 5 min, the percentage of B was increased linearly 

from 0% to 100% in 30 min and stayed at 100% for 15 min. This elution sequence was followed by a 

return to 100% A in 5 min and an equilibration for 20 min with 100% A before the next injection, leading 

to a total runtime of 70 min. The flow rate of the mobile phase was 200 µL/min. The distinct glycerolipid 

classes were eluted successively as a function of the polar head group. Mass spectrometric analysis 

was done on a 6460 triple quadrupole mass spectrometer (Agilent) equipped with a Jet stream 

electrospray ion source under following settings: drying gas heater, 260°C; drying gas flow 13 L.min-1; 

sheath gas heater, 300°C; sheath gas flow; 11 L.min-1; nebulizer pressure, 25 psi; capillary voltage, ± 

5000 V; nozzle voltage, ± 1000. Nitrogen was used as collision gas. The quadrupoles Q1 and Q3 were 

operated at widest and unit resolution respectively. PC analysis was carried out in positive ion mode 

by scanning for precursors of m/z 184 at collision energy (CE) of 34 eV. SQDG analysis was carried out 
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in negative ion mode by scanning for precursors of m/z -225 at a CE of -56eV.  PE, PI, PS, PG, PA, MGDG 

and DGDG measurements were performed in positive ion mode by scanning for neutral losses of 141 

Da, 277 Da, 185 Da, 189 Da, 115 Da, 179 Da and 341 Da at CEs of 20 eV, 12 eV, 20 eV, 16 eV, 16 eV, 8 

eV and 8 eV, respectively. Quantification was done by multiple reaction monitoring (MRM) with 30 ms 

dwell time. DAG and TAG species were identified and quantified by MRM as singly charged ions 

[M+NH4]+ at a CE of 16 and 22 eV respectively with 30 ms dwell time. DPG species were quantified by 

MRM as singly charged ions [M-H]- at a CE of -45 eV with 50 ms dwell time. Mass spectra were 

processed by MassHunter Workstation software (Agilent) for identification and quantification of lipids. 

Lipid amounts (pmol) were corrected for response differences between internal standards and 

endogenous lipids and by comparison with a quality control (QC). QC extract corresponds to an 

Arabidopsis lipid extract previously qualified and quantified by thin layer chromatography and gas 

chromatography coupled to ion flame detection (Jouhet et al. 2017).

GUS activity analyzes.

An Arabidopsis transgenic line expressing the -glucuronidase (GUS) reporter gene, fused with JAZ1 

under the cauliflower mosaic virus 35S promoter, p35S::JAZ1-GUS (Thines et al. 2007) was cultivated 

under various phosphate regimen. Seedlings were prefixed, immediately after collection in ice-cold 

90% acetone for 20 min on ice, then rinsed with cold water for 5 min, vacuum infiltrated for 10 min on 

ice with staining solution (50 mM sodium phosphate buffer pH 7.0, 0.2% Triton-X-100, 10 mM 

potassium ferrocyanide, 10 mM potassium ferricyanide, 1 mM X-Gluc) and incubated at 37°C in the 

dark for the indicated time. Samples were then cleared by progressive dehydration through ethanol 

series up to 100% and progressively re-hydrated prior to observation. Imaging was then performed 

using an Olympus SZX12 binocular microscope (with WHS-10X magnification system) equipped with a 

Nikon DXM1200C digital camera.
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Table 1. Differential expression of genes involved in jasmonic acid biosynthesis and signaling in Pi-starved 
versus Pi-replete conditions. In the “Pi-supplemented” conditions, plants were grown for 7 days on HPi medium 
and then transferred to a fresh HPi medium. In the “Pi-deprived” condition, plants were grown for 7 days on LPi 
medium and then transferred to a fresh LPi medium. After 7 days, plants were transferred on an identical 
medium and then collected for RNA extraction. Based on whole genome RNA seq data, the differential expression 
of selected genes was determined in both shoots and roots and expressed in Log2FC. Genes involved in gene 
remodeling triggered by Pi deprivations, known to be upregulated, are given as internal control. 

Pi-deprived vs. Pi-supplemented (0.5h)
Short description P1BS box I Shoots Log2FC Roots Log2FC

JA biosynthesis 
AOS AT5G42650 allene oxide synthase 0 2.03587 -0.300299
AOC1 AT3G25760 allene oxide cyclase 1 0 2.84213 2.56893
AOC2 AT3G25770 allene oxide cyclase 2 1 1.04551 0.550625
AOC3 AT3G25780 allene oxide cyclase 3 0 1.04178 -0.311482
LOX2 AT3G45140 lipoxygenase 2 1 0.940651 1.53607
LOX4 AT1G72520 lipoxygenase 4 2 0.958026 0.773372
OPR3 AT2G06050 oxophytodienoate-reductase 3 1 0.757211 0.30015
JAR1 AT2G46370 Auxin-responsive GH3 family protein 0 0.740317 0.0841236
ACS1 AT4G05160 AMP-dependent synthetase and ligase family protein 0 0.642895 0.145448
ACS2 AT5G63380 AMP-dependent synthetase and ligase family protein 0 0.420248 -0.330739
ACX1 AT4G16760 acyl-CoA oxidase 1 0 0.409011 0.4213446
AIM1 AT4G29010 enoyl-CoA hydratase/isomerase family 1 0.408754 0.221613
MFP2 AT3G06860 multifunctional protein 2 0 0.246093 0.366468
KAT2 AT2G33150 peroxisomal 3-ketoacyl-CoA thiolase 3 3 0.200535 0.201582
KAT5 AT5G48880 peroxisomal 3-keto-acyl-CoA thiolase 2 1 0.190344 0.440682
JMT AT1G19640 jasmonic acid carboxyl methyltransferase 0 -0.465981 -0.171726
JA signaling 
FT AP2/ERF AT3G50260 cooperatively regulated by ethylene and jasmonate 1 1 1.46763 -0.124066
JAZ1 AT1G19180 jasmonate-zim-domain protein 1 2 0.818662 -0.202647
JAZ2 AT1G74950 jasmonate-zim-domain protein 2 0 0.323852 -0.0255306
JAZ3 AT3G17860 jasmonate-zim-domain protein 3 2 0.726571 0.123497
JAZ4 AT1G48500  jasmonate-zim-domain protein 4 1 0.45042 0.196468
JAZ5 AT1G17380 jasmonate-zim-domain protein 5 0 1.00279 -0.515517
JAZ6 AT1G72450 jasmonate-zim-domain protein 6 1 0.353224 -0.181203
JAZ7 AT2G34600 jasmonate-zim-domain protein 7 0 0.314164 1.26975
JAZ8 AT1G30135 jasmonate-zim-domain protein 8 0 0.428381 0.465424
JAZ9 AT1G70700 jasmonate-zim-domain protein 9 2 -0.264564 -0.540653
JAZ10 AT5G13220 jasmonate-zim-domain protein 10 0 -0.160352 0.389158
COI1 AT2G39940 RNI-like superfamily protein 0 -0.19787 -0.168118
Glycerolipid remodelling
NPC4 AT3G03530 non-specific phospholipase C4 3 6.29128 4.74817
NPC5 AT3G03540 non-specific phospholipase C5 1 Nd Nd
PLD1 AT3G16785 phospholipase D zeta 1 0 0.204936 0.0101217
PLD2 AT3G05630 phospholipase D zeta 2 4 5.93978 4.34813
MGD1 AT4G31780 monogalactosyldiacylglycerol synthase 1 2 0.38767 0.695703
MGD2 AT5G20410 monogalactosyldiacylglycerol synthase 2 4 4.49902 4.39337
MGD3 AT2G11810 monogalactosyldiacylglycerol synthase 3 0 8.67635 6.48075
DGD1 AT3G11670 digalactosyldiacylglycerol synthase 1 1 0.718678 1.45735
DGD2 AT4G00550 digalactosyldiacylglycerol synthase 2 0 1.845 1.9015
SQD2 AT5G01220 sulfoquinovosyldiacylglycerol synthase 4 4.45593 4.45593
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Figure Legends

Figure 1. Experimental design. Three phosphate growing conditions were compared. In the “Pi-supplemented” 

conditions, plants were grown for 7 days on HPi medium and then transferred to a fresh HPi medium. In the “Pi-

deprived” condition, plants were grown for 7 days on LPi medium and then transferred to a fresh LPi medium. In 

the “Pi-resupply” condition, plants were grown for 7 days on LPi medium and then transferred to a fresh HPi. 

Plants were then collected for various analyses, i.e. 0.5, 1 and 3 hours after transfer. In some analyses, plants 

were collected 24 hours after transfer.

Figure 2. K-mean clustering of gene expression profiles in Pi-deprived Arabidopsis following a resupply with 

phosphate. Plants were grown for 7 days on LPi medium and then transferred to a fresh HPi, corresponding to 

the “Replenished” condition. Plants were then collected 0.5, 1 and 3 hours after transfer. RNA was extracted and 

gene expression determined as described in the Methods section. A partition of differentially expressed genes 

was performed using a K-mean method, with a number of partitions set to 10 and a clustering based on a 

Euclidian distance (Liu et al. 2014a). Each cluster consists of genes with similar expression profiles following Pi-

resupply, with representative nearest mean curves shown, serving as prototypes. Three clusters comprise genes 

upregulated following Pi resupply (Clusters 2, 4 and 5), whereas three clusters comprise genes which expression 

is downregulated (Clusters 7, 8, 10). Based on gene ontology (GO) term enrichment using two independent 

methods, GOseq (P-value < 5.10-2) and DAVID (P-value  1.10-2), genes involved in enriched molecular function 

(MF) and biological processes (BP) related to phosphate incorporation and homeostasis, glycerolipid remodeling 

and jasmonic acid biosynthesis and signaling are indicated. 

Figure 3. Expression of genes involved in JA biosynthesis and signaling and in lipid remodeling in the WT Col0 

strain and in the coi1-16 mutant of Arabidopsis thaliana. Plants were cultivated as described in Fig. 1. Leaves 

were carefully collected 3 hours after medium transfer, RNA were extracted and gene expression levels were 

evaluated by RT-qPCR. Data were normalized as described in Methods, using the expression of TUB2 as a 

reference. Experiments correspond to biological triplicates. Error bars show standard deviations. White bars, 

expression levels in Col0; solid bars, expression levels in coi1-16. Two-way ANOVA Dunett’s test: (*) P-value < 

10-1; (**) P-value < 10-2; (***) P-value < 10-3; (****) P-value < 10-4.

Figure 4. Histochemical detection of the GUS activity in Arabidopsis 35S::JAZ1::GUS transgenic plants, 

submitted to different phosphate growing conditions. A, Pi-supplemented condition. Plants were grown for 7 

days on HPi medium and then transferred to a fresh HPi medium for 24 hours. Scale bar: 1mm. B, Pi-deprived 

condition. Plants were grown for 7 days on LPi medium and then transferred to a fresh LPi medium for 24 hours. 

Scale bar: 500 µm. C, Pi-resupply condition. Plants were grown for 7 days on LPi medium and then transferred 

to a fresh HPi medium for 24 hours. Scale bar: 500 µm.

Figure 5. Glycerolipid profiles in Arabidopsis thaliana Col-0 and coi-16 mutant treated in various phosphate 

regimen. A. Glycerolipid profiles in shoots. B. Glycerolipid profiles in roots. Plants were grown as shown in Fig. 

1, i.e. 7 days on HPi medium and then transferred to a fresh HPi medium for 3 hours in Pi-supplemented condition 

(Pi-supplem.); 7 days on LPi medium and then transferred to a fresh LPi medium for 3 hours in Pi-deprived 
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condition and eventually 7 days on LPi medium and then transferred to a fresh HPi medium for 3 hours in Pi-

resupply condition. Roots and shoots were carefully collected, and glycerolipids were extracted as described in 

Methods. Each lipid class is expressed in nmol per mg of dry weight (DW). Green bars, glycerolipid profiles in Col-

0; brown bars, glycerolipid profiles in coi1-16. Data correspond to three independent biological replicates. Error 

bars correspond to standard deviation. DAG, diacylglycerol; DGDG, digalactosyldiacylglycerol; DPG, 

diphosphatidylglycerol; MGDG, monogalactosyldiacylglycerol; PA, phosphatidic acid; PC, phosphatidylcholine; 

PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; SQDG, 

sufoquinovosyldiacylglycerol, TAG, triacylglycerol. Significant differences between Col-0 and coi1-16 are 

indicated by a star (p-value < 0.05; two-tailed t-test).

Figure 6. Leaf phosphatidylcholine diacyl profiles in Arabidopsis thaliana Col-0 and coi-16 mutant treated in 

various phosphate regimen. Plants were grown as shown in Fig. 1, i.e. 7 days on HPi medium and then 

transferred to a fresh HPi medium for 3 hours in Pi-supplemented condition (Pi-supplem.); 7 days on LPi medium 

and then transferred to a fresh LPi medium for 3 hours in Pi-deprived condition and eventually 7 days on LPi 

medium and then transferred to a fresh HPi medium for 3 hours in Pi-resupply condition. Shoots were carefully 

collected, and glycerolipids were extracted as described in Methods. Phosphatidylcholine (PC) diacyl moieties 

were analyzed as described in Methods. Data correspond to three independent biological replicates. Error bars 

correspond to standard deviation. Diacyls are expressed as the sum of carbon contained in the two fatty acids 

and the number of double bonds they harbor. For instance, PC containing a 16:0 and an 18:2 fatty acids is 

expressed as PC-34-2; PC containing two 18:2 fatty acids is expressed as PC-36-4. Green bars, PC profiles in Col-

0; brown bars, PC profiles in coi1-16. Data correspond to three independent biological replicates. Significant 

differences between Col-0 and coi1-16 are indicated by a star (p-value < 0.05; two-tailed t-test).
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A. Pi-supplemented B. Pi-deprived C. Pi-resupply
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