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The energy sector is mutating with an increasing share of renewable energy. Renewable energy de
velopers are facing new challenges, in particular sizing systems that combine multiple production
sources and storage devices to match demand. Accordingly, this paper proposes a flexible metamodel
architecture and a Cþþ software implementation for the grassroots design of Hybrid Renewable Energy
System (HRES). The metamodel enables one to build optimization problem formulated as a Mixed Integer
Linear Problem (MILP) with a tailor made objective function to find the optimal size of HRES. The
flexibility of the metamodel lies in its ability to handle many hybrid system configurations for three
common types of usages of HRES, either for onsite demand, remote demand or a combination. It is
demonstrated with two specific case studies, a stand alone HRES composed of PV panels, battery set, and
a diesel generator; and a factory in a tropical island. This paper contributes to a better adoption of cleaner
production systems since it provides to decision makers a tool for HRES assessment.
1. Introduction

It has been scientifically proven the anthropic origin of the
current global warming is undisputed (Cook et al., 2013). Some
recent reports suggest that improving energy efficiency could help
significantly to maintain the warming to 1.5 �C above pre industrial
levels is a target set by the COP21 held in Paris in 2015 (Grubler
et al., 2018). One way to reach this goal is to develop innovative
solutions towards a more efficient use of renewable energies.
Consequently, the energy sector undergoes some important mu
tations to adapt to this situation by switching from a centralized
model to a decentralized one. This fosters new demands that must
be met with optimization tools, flexible enough to cope with any
system configurations. Following the supply chain analysis of
Garcia and You (2015), the French electricity grid qualifies as a
centralized model where a few huge power plants are spread over
the country to produce energy and a big energy distribution
network transports energy toward the final consumer. On the
ix).
contrary, a decentralized model can be described as multiple small
power plants producing energy transported in local grid toward
local consumers. A decentralizedmodel is deemedmore resilient to
large failure since the power production is multiple.

In this perspective, the design of Hybrid Renewable Energy
System (HRES) has a leverage effect in the development of decen
tralized production facilities. A HRES can be defined as a combi
nation of renewable and conventional energy sources. As a
guideline, Fig. 1 describes the different usage configurations of a
HRES considered in this work. Typically, energy consumption can
be remote (case 1 Fig. 1), on site with stand alone systems (case 2
Fig. 1), or both with grid connected systems (case 3 Fig. 1). When
consumption is remote, the electricity produced is entirely injected
to the grid and transported toward the final consumer. In this case,
optimization techniques are not necessary to size the system
(dashed line box in Fig. 1), because the aim is to produce and inject
as much as possible on the grid, and limitations arise only from
available investment, location and existing regulation. For the on
site consumption case 2, optimization tools are needed and
undersizing or curtailing of the renewable production system is
mandatory since energy surplus cannot be evacuated, implying the



Nomenclature

PprodPV Raw power from PV [W] float
PprodcurPV Net power from PV [W] float
EprodTotPV Total amount of net energy produced with PV panels

per year [Wh] float
NbPVSouth Number of PV modules south exposed e integer
NbPVNorth Number of PV modules north exposed e integer
Pinst PV rated power [W] float
PcurPV Power curtailment of PV panels [W] float
CapaU Storage useful capacity [Wh] float
Capa Storage capacity [Wh] float
Prated Nominal power of storage capacity [W] float
Psto Power output of the BESS [W] float
Esto Energy stored [Wh] float
EstoTot Total amount of energy exchanged through BESS per

year [Wh] float
PstoDisch Power in discharge of the BESS [W] float
PstoCh Power in charge of the BESS [W] float
Pbat Power from BESS before transformer and converter

[W] float
y1 Binary to prevent PstoDisch and PstoCh coexist e binary
Pge Power from DG [W] float
PgeMax Maximum DG power output [W] float
EgeTot Total amount of energy produced with DG per year

[Wh] float
y2 Binary to stop and start DG e binary
y3 Binary to count DG starting e binary
y4 Binary to count DG stopping e binary
y5 Binary to prevent y3 and y4 coexist e binary
Nbstart DG starting count over desired period e Integer
Operatingcost Cost of DG operation due to fuel consumption [V]

float
CAPEX CAPEX of the project [V] float
OPEX OPEX of the project [V] float
TLCC Total Life Cycle Cost [V] float
t Time [h]
dt Time step [h]
T Time higher than t
H Time horizon

n Year
N Life duration of the project
PunitPVSouth Production time series for one module South

exposed [W]
PunitPVNorth Production time series for one module North

exposed [W]
NbmaxPVSouth Number of maximum PV South exposed
NbmaxPVNorth Number of maximum PV North exposed
hTransfo PV Transformer yield if needed
hconv PV Converter yield
EstoInit Initialization parameter of BESS
hchBat BESS charging yield
hchConv BESS discharging yield
CapaUmax Maximum storage useful capacity for BESS [Wh]
DOD Depth of discharge
Prated Rated power of BESS [W]
PmaxDischConv Rated power in discharge for bidirectional

converter for BESS [W]
PmaxChConv Rated power in charge for bidirectional converter for

BESS [W]
PgeMaxLimit Maximum limit of maximum power delivered by DG

[W]
SwitchingPeriod Vector of index of time t corresponding of a

switching period (year, month, week)
Nbperiod Number of desired period over the year
TolPmoy Mean Diesel Generator power tolerance
NbstartMax Maximum DG starting over a period
fuelPrice DG starting count over desired period [V/L]
DGconsumption Value of fuel price [L/Wh]
Pconso Consumed power [W]
CAPEXPV CAPEX of PV module [V/W]
Wp Watt peak of a PV module [W]
CAPEXcapabat CAPEX of BESS in function of storage capacity

[V/Wh]
CAPEXpratedbat CAPEX of BESS in function of rated power [V/W]
CAPEXDG CAPEX of DG [V/W]
OPEXPV OPEX of PV module [V/W]
OPEXbat OPEX of BESS [V/Wh]
OPEXDG OPEX of DG [V/W]
i Internal Rate of Return (IRT)
use of an additional system (eg: diesel generator, grid connection)
to meet the capacity demand. Finally, case 3 merges cases 1 and 2
and it consists in producing and consuming electricity on site,
injecting electricity surplus to the grid and taking electricity from
the grid in the case of unmatched demand.

For the last two cases, optimization techniques should be used
since the HRES requires energy production sizing and manage
ment. Indeed, the production curve needs to match the load curve
set by the demand, which is not straightforward with the high
degree of intermittency of renewable energy. Two key challenges
then arise: to design appropriately the capacity of the Energy
Storage Systems (ESS) and the production system, to find a suitable
energy management strategy to match the production and load
curves within the constraints. In reality, both challenges are linked
to some extent since the better the management strategy is, the
smaller the ESS needs to be. On the contrary, the smaller the ESS is,
the harder it will be to find the appropriate management strategy.

As it can be seen on Fig. 1, the problem as a whole is modular
since several hybrid configurations can be conceived of and HRES
can be used for different purposes. Renewable energy developers
facing these issues need flexible tools. In our sense flexibility must
meet the following requirements: ability to model any HRES
configuration for the three type of demands, possibility for the user
to solve the optimization problem while he can define its own
objective function, in the context of grassroots design.

In this paper, after a literature overview on HRES design
methods and tools, we discuss a specific case study consisting in
sizing a stand alone PV/battery/diesel HRES for a textile factory
(Section 3). Above the specific HRES configuration of the case study
we adopt a macroscopic point of view to propose a generic meta
model of HRES (Section 4) which is the key toward the need for
flexibility as we discuss and define above. The last section displays
results of an imaginary case study to investigate the influence of
battery cost and the results of the factory case study. Finally, this
paper contributes to the adoption of cleaner production since it
offers a tool to facilitate decision making on opportunities to
develop HRES. According to recent studies and reports, the use of
renewable energies can provide a “host of benefits to society”
(Ellabban et al., 2014). Indeed, compared to non renewable energy
sources, the implementation of HRES allows to:

Reduce carbon dioxide emissions,



Fig. 1. A Hybrid Renewable Energy System representation and three types of matching energy demand.
Create local environmental and health benefits,
Facilitate energy access particularly in rural areas
Diversify the portfolio of energy technologies and resources
Increase potential employment activities.

To develop methodologies that can help the development of
HRES by minimizing their cost can improve sustainable develop
ment locally. Besides, the case study takes place in a tropical island
where the energy mix is often highly dependent on fossil fuel; the
proposal of a HRES is an effective cleaner production in terms of
fossil fuel usage.

2. Literature overview

The design of HRES has been largely studied over the past few
years by several approaches. Literature is full of papers about the
subject and are about:

Sizing techniques: these studies focuses on techniques to size
properly the different elements composing a HRES (Ferrari et al.,
2018). They are carried out with respect to the equipment
depending on the seasonal effects (Giallanza et al., 2018). Some
papers also deals with multi objective approach (Eriksson and
Gray, 2019). For an extended literature on sizing techniques
the reader can refer to several paper reviews (Al falahi et al.,
2017; Singh et al., 2016; Tezer et al., 2017),
Optimization models: The goal is to find an optimal allocation of
equipment satisfying constraints in time, size or use. Some
studies opt for novel optimization techniques (Derakhshan
et al., 2016; Eteiba et al., 2018; Fodhil et al., 2019; Gan et al.,
2016; Gonz�alez et al., 2016). Especially, novel optimization
techniques are of heuristic kind, which means that they are
based on rules that need to be defined. For instance, for a PV/
battery/diesel HRES rules for energy management strategy need
to be specified in order to cover all possibility. The main issue
with that kind of techniques is that the set of rules is case
dependent which means that if one retrieves the battery one
need to change the energy management strategy so redefine
which are all the possibilities and so redefine entirely the set of
rules. One can also cite a multi period optimization model by
using a P graphmodel for the design of HRES (Aviso et al., 2017).
Other studies deal with more classical optimization methodol
ogies for example based on a MILP model (Atia and Yamada,
2016; Rigo Mariani et al., 2017; Scheubel et al., 2017).
Life cycle assessment approaches: they aim at evaluating envi
ronmental impacts of HRES over their life span (Theodosiou
et al., 2015).
At last, many papers deal with case studies thanks to ready to
use software such as the well known HOMER pro used in
(Fodhil et al., 2019; Halabi and Mekhilef, 2018; Izadyar et al.,
2016; Yilmaz and Dincer, 2017). Sinha and Chandel (2014)
reviewed existing softwares for HRES sizing listed in Table 1
including HOMER.

Most of these software do not use optimization techniques, so
they are likely to give under optimal results. Moreover, some
softwares are no longer updated and used. Among the most used,
HOMER pro is a simulation software without optimization capa
bility, developed by the National Renewable Energy Laboratory
(NREL) in USA. It has the advantage to be connected to popular
databases regarding meteorology, technical aspects and con
sumption data. Therefore, users can get results in a simple and
quick way without the need and time to specify many input data.
However, users cannot fully control on the calculations, especially
hypotheses implicitly done on input data, models of physical ele
ments, calculation process and are limited to predefined indicators
like Net Present Value (NPV), Levelized Cost Of Energy (LCOE) … In
spite of HOMER is a ready to use tool, decision makers feel limited
to dig deeper into solutions. For instance adding a new constraint
on grid utilization is not possible in HOMER, while with our met
amodel one can add whatever mathematical constraints needed.

Eltamaly and Mohamed (2014) proposed an alternative simu
lation software, coded in FORTRAN, based on deterministic heu
ristic. Not able to perform optimization, the user is nevertheless
able to find a HRES size through iterating simulations, which can
take a long time and results are likely to be under optimal. Gan et al.
(2015) introduce a GUI and a simulation model for sizing PV/Wind/
Diesel Generator/Battery HRES. The simulation model is developed
for a single HRES configuration. Mokheimer et al. (2013) introduce
an algorithm to optimize the sizing of Wind/Solar/Reverse osmosis
HRES and show that obtained results are similar to the one obtain
with HOMER. Guinot (2013), developed the ODYSSEY platform,
carrying out a multiobjective optimization with the help of a Ge
netic Algorithm (GA) running over a simulation model based on
heuristics. Its strength lies in the accuracy of physical elements that
can be described, when using a GA based solver, with non linear
models: ageing of Batteries, hydrogen storage behavior, PV panel
model, etc … But, GA have several disadvantages. For instance, it is



Table 1
Existing software for sizing HRES.

Software Optimization technics Licence

HOMER By NREL (USA) NO Free
RETScreen By Ministry of Natural Resources (Canada) NO Free Demo
iHOGA by University of Zaragoza (Spain) YES Pro (Priced) Edu (free)
INSEL By University of Oldenburg (Germany) NO Priced
TRNSYS By University of Wisconsin And Colorado (USA) NO Priced
iGRHYSO(Spain) YES
HYBRIDS NO Priced
RAPSIM By University Energy Research Institute (Australia) NO Priced
SOMES By Utrecht University (Netherlands) YES
SOLSTOR By Sandia National Laboratory (USA) YES No longer update
HySim By Sandia National Laboratory (USA) NO No longer used
HybSim By Sandia National Laboratory (USA) NO
IPSYS NO
HySys (Spain) NO
Dymola/Modelica By Fraunhofer Institute for Solar Energy (Germany) NO
ARES by Cardiff School of engineering (UK) NO No longer available
SOLSIM (Germany) NO No longer available
ODYSSEY YES Priced
known that GA solutions are time consuming and that are sensitive
to penalty function used when constraints are not satisfied.

In terms of flexibility as we defined it, all the approaches above
are configuration dependent, cannot address all three problem
cases, Guinot (2013) excepted, and cannot customize easily the
objective function. In this paper, we start by describing a
configuration dependent case study. The model of the case study is
just used as an example and is not the main contribution of the
paper. The novelty lies in the metamodelization which consist of a
generic metamodel of an HRES. It describes with generic concepts
what an HRES is and for what purposed is it used. The
configuration dependent case study previously presented is split
and classified into the metamodel according to the generic con
cepts. Thus, it allows to formulate optimization models for the
grassroots design of HRES. Thus, the metamodelization give the
needed flexibility (as define in introduction) to its Cþþ
implementation.

The contributions in the literature all introduce models for
specific HRES (for instance PV/battery/diesel (Yilmaz and Dincer,
2017)). Therefore, they can only be used for the specific HRES
they study. The power of ourmetamodel is to offer the possibility to
cover all kind of HRES configuration and provide a capitalization
frame to build flexible tools. Despite we present a specific model in
our paper for the sake of illustration, one can implement in our
metamodel other mathematical models to cover its purpose.

Our model consists in a MILP implemented within our meta
model. Despite the inherent complexity of HRES, model structure is
size dependent so integer variables are necessary; for instance
revenue rate from power injection to grid can be size dependent. In
addition, by considering energy balance in HRES, it is possible to
formulate a linear model. Such an approximate modelling is
nevertheless sufficient when one focuses on grassroots design of
HRES, as we do in this paper. It could be used in early stages of HRES
development for exploring opportune alternatives. Fast calculation
are then mandatory and model accuracy is important but not a top
priority and MILP formulation is acceptable.

In summary, the novelty of the paper is the proposition of a
metamodel, which offers a generic and conceptual representation
of HRES. By implementing this metamodel, the resulting tool is
flexible in the sense defined in introduction section. We choose to
implement the metamodel with MILP models inside for easy for
mulations and fast calculations.
3. Case study

3.1. Case study presentation

The case study is about sizing a stand alone HRES for a textile
factory on a tropical Island, referred as a type 2 problem in Fig. 1.
The HRES is equipped with PV panel (PV), Diesel Generator (DG)
and Battery Energy Storage System (BESS). PV are installed on the
rooftop, hence the number of PV that can be installed is limited. The
case study aims at using our modular approach to find how many
PV to install, what is the optimal storage capacity as well as the
optimal rated power of the DG with a minimum cost. Fig. 2 illus
trates the problem. The main input data is the solar radiation time
series and the consumption time series.
3.2. Optimization model

The general formulation of the MILP optimization problem is as
follow:

8>>>>>>><
>>>>>>>:

mincðx!; y!; z!Þ
s:t:

h
!ð x!; y!; z!Þ 0
g!ð x!; y!; z!Þ � 0

x!2 ℝ
z!2 ℕ

y!2f0;1g

(1)

Integers and binaries are managed as continuous variables. The
nomenclature section displays the variables and the parameters of
the model. The objective of the current MILP model is to minimize
the total life cycle cost of the system: TLCC, by variation of the rated
power of the different components, under technical and economic
constraints.
3.2.1. Time modelling
The case study is calculated over a one year time horizon with

8760 time steps dt of 1 h since it exhibits enough features of the
time variation imposed of HRES.

To calculate the profitability of the project, n is the year flow
while N is the total life duration of the project. In the study, we
process the calculation over a year and we duplicate for every year



Fig. 2. Case study stand-alone HRES scheme.

Table 3
Battery Energy Storage System parameter values.
after. So, variables, like OPEX, that should vary over n are kept
constant from one year to the other.
Parameters Value Unit

PmaxChConv 1e18 [W]
PmaxDischConv 1e18 [W]
hchBat 0.97
hchConv 0.96
hdischBat 0.97
hdischConv 0.96
DOD 0.9
CapaUmax 1e20 [Wh]
3.2.2. PV panels
Solar radiation is taken from the Meteonorm database

(Meteotest, n.d.) and PVsyst software (PVsyst S.A, n.d.) is used to
convert solar radiation into time series of produced electricity for
one PV module. Table 2 gives the PV parameter values.

Production of electricity from PV is as follow

ct21;H; PprodPV ðtÞ NbPVSouth:PunitPVSouthðtÞ
þ NbPVNorth:PunitPVNorthðtÞ

ct21;H; PprodcurPV ðtÞ
�
PprodPV ðtÞ PcurPV ðtÞ

�
:hTransfo:hconv

And the total amount of energy produced from PV panels is

EprodTotPV
XH

t 1

PprodPV ðtÞ

EprodcurTotPV
XH

t 1

PprodcurPV ðtÞ

Moreover, it is necessary to add a constraint to prevent
curtailment power exceeding PV production:

ct21;H; 0 � PcurPV ðtÞ � PprodPV ðtÞ
Finally, the number of PV is constrained by the surface available

for PV installation on the roof top.

0 � NbPVSouth � NbmaxPVSouth

0 � NbPVNorth � NbmaxPVNorth
Table 2
PV parameter values.

Parameters Value Unit

PunitPVSouth PunitPVNorth From Meteonorm and Pvsyst [W]
hTransfo 1
hconv 0.94
Wp 290 [W]
NbmaxPVSouth 3738
NbmaxPVNorth 3738
3.2.3. Battery Energy Storage System
Table 3 gives the BESS parameter values. Converters and batte

ries yields are assumed to be constant. The useful storage capacity
CapaUmax and limitation in power output of the bidirectional
converter.

PmaxChConv and PmaxDischConv are set at very large values so that
calculation is not hindered by them. Storage capacity is free but will
likely be bounded in some studies since its cost impacts negatively
the objective function. The storage power output is � 0 when BESS
is in discharge and � 0 when BESS is in charge. Discharge power
and charge power are stored in separate variables:

ct21;H; PstoðtÞ PstoDischðtÞ þ PstoChðtÞ
By adding the two following constraints, PstoDischðtÞ and PstoChðtÞ

cannot coexist.

ct21;H; 0 � PstoDischðtÞ � y1ðtÞ:PmaxDischConv

ct21;H; ð1 y1ðtÞÞ:PmaxChConv � PstoChðtÞ � 0

Power from battery before converter is as follows

ct21;H; PbatðtÞ hchBat :hchConv:PstoChðtÞ
þ hdischBat :hdischConv:PstoDischðtÞ

And energy stored in battery is calculated from the following
equation

ct21;H; EstoðtÞ Estoðt 1Þ PbatðtÞ:dt
With Estoð0Þ being free from initialization constraints so that the

solver can choose by itself the initial value.
Constraints over power, energy and capacity of BESS are as

follows

ct21;H; Prated � PbatðtÞ � Prated



CapaU DOD:Capa

ct21;H; CapaU � EstoðtÞ � Capa

0 � CapaU � CapaUmax

The battery for the case study is a C/2 battery, so:

Capa 2:Prated
Table 5
Business Plan parameter values.
3.2.4. Diesel Generator
Table 4 gives the DG parameter values. Power output from DG is

as follow

ct21;H; 0 � PgeðtÞ: � PgeMax:y2ðtÞ (2)

With

0 � PgeMax: � PgeMaxLimit

And total amount of energy produced with DG is

EgeTot
XH

t 1

PgeðtÞ

Constraints are added to count start and stop events of DG:

ct21;H; y3ðtÞ y4ðtÞ y2ðtÞ y2ðt 1Þ

ct21;H; 0 � y3ðtÞ � y5ðtÞ

ct21;H; 0 � y4ðtÞ � 1 y5ðtÞ
For the solver in equation (2), choosing y2ðtÞ 1 and PgeðtÞ 0

is equivalent to y2ðtÞ 0 and PgeðtÞ 0. As this can cause wrong
value in y3 and consequently in DG starting count, we add the
following constraints to solve the issue:

ct21;H; 0 � y3ðtÞ � PgeðtÞ
DG suppliers request to DG users not to exceed a specific

amount of starting per day to prevent damage on the DG. Those
switching constraints are as follows

cT21;Nbperiod; NbstartðTÞ
XSwitchingPeriodðTÞþ1

t SwitchingPeriodðT�1Þþ1

y3ðtÞ

cT21;Nbperiod; 0 � NbstartðTÞ � NbstartMax

Calculation of operating cost of DG due to fuel consumption is
done with the following equation:
Table 4
DG parameter values.

Parameters Value Unit

PgeMaxLimit 1.2e6 [W]
TolPmoy 0.3
NbstartMax 5 per day
fuelPrice 0.72 [V/L]
DGconsumption 0.3e-3 [L/Wh]
Operatingcost
X8760

t 1

fuelPrice:DGconsumption:Pge:dt
3.2.5. Consumer
Because the factory case study takes place in a tropical area,

where there are no significant seasonal effects of the climate, and
because the factory activity is almost identical over the year, we
modelled the load curve as follows: the consumption was
measured and recorded on site during a month, then we take the
average hourly values to build a day time series. It was replicated
365 times and multiplied by 0 for each day off to make a one year
time series of consumer power PconsoðtÞ.

The factory's activities has the particularity to start 1 h before
sunrise and end 1 h after sunset. Thus, during this two time steps
the PV panels can't provide energy so the system will need to use
either the battery or the diesel generator. Moreover, the factory
does not run every day so the load curve present some dayswithout
any consumption which can be challenging for the systems.
3.2.6. Grid
In compliance with Fig. 2 the grid is built to interconnect PV,

BESS, DG and consumer:

ct21;H; PprodPV ðtÞ þ PstoðtÞ þ PgeðtÞ PconsoðtÞ
3.2.7. Business plan
Table 5 gives the Business plan parameter values. CAPEX and

OPEX are calculated as follows. OPEX varies over n but is identical
from one year to another.

CAPEX CAPEXPV : ðNbPVSouth þ NbPVNorthÞ:Wp

þ CAPEXcapaBat :Capaþ CAPEXpratedBat :Prated

þ CAPEXDG:PgeMax

OPEXðnÞ OPEXPV : CAPEXPV : ðNbPVSouth þ NbPVNorthÞ:Wp

þ OPEXbat :
�
CAPEXcapaBat :Capa

þ CAPEXpratedBat :Prated
�
þ OPEXDG:CAPEXDG:PgeMax

The total life cycle cost of the project is then calculated

TLCC CAPEX þ
XN

n 1

OPEXðnÞ þ OperatingcostðnÞ
ð1þ iÞn (3)
Parameters Value Unit

CAPEXPV 0.8 [V/W]
CAPEXcapaBat 0.5 [V/Wh]
CAPEXpratedBat 10% CAPEXcapaBat [V/W]
CAPEXDG 0.25 [V/W]
OPEXPV 3% CAPEXPV [V/W]
OPEXBat 4% CAPEXcapaBat [V/Wh]
OPEXDG 8% CAPEXDG [V/Wh]
i 0.8
N 25

NB: value are given by experts consultation.



3.2.8. Objective function
Regarding the general problem formulation applied to the stand

alone HRES demand case 2 in Fig. 1, we minimize the TLCC of the
project: minTLCC. In this case, minimizing TLCC (equation (3)) is
equivalent to minimizing LCOE since the general definition of LCOE
is:

LCOE TLCC
Total amount of produced energy . Usually, the total amount of

produced energy is a variable so that the LCOE formula is non
linear. But, in our case energy produced is equal to total
consumed energy since the system is stand alone. Total consumed
energy being known, minimizing LCOE is equivalent to minimizing
TLCC. In the demand cases 1 and 3 of Fig. 1, the total energy pro
duced is not equal to the total consumed energy, so LCOE is
nonlinear. We focus our work on grassroots design and MILP
models are suitable (as explain in I/B), therefore nonlinear formu
lation is not permitted and demand cases 1 and 3 are compliant
with min TLCC only (equation (3)).
4. Architecture of a flexible metamodel and implementation

4.1. About the metamodel

In this section, the modelling methodology of HRES is made
generic in terms of a metamodel and implemented in a flexible
software. The software is designed with an object oriented
approach and coded in Cþþ. It is built as a native CPLEX based
application by using CPLEX cþþ API (IBM, n.d.). Otherwise, the
software is able to read and write. mat file (Matlab matrix file)
thanks to Matlab cþþ API (MatWorks, n.d.). For the software
development, we used CPLEX 12.8, Matlab version 2015b and Vi
sual studio 2017.
4.2. Flexible metamodel

The object oriented metamodel architecture is sketched on
Fig. 3 with help of UML2 language and is based on interconnected
elements thanks to links described by object classes. For the sake of
conciseness, methods and class attributes are not displayed on the
figure. Classes are described hereafter:

SELECSYS: is the main program in charge of displaying the IHM
and orchestrating the software operation.
Fig. 3. The HRES flexible metam
GUI: is the Graphical User Interface.
Problem: the class has methods to import the configuration of
the HRES, import user defined parameters, create elements of
the problem, create link between element of the problem, build
the objective function of the optimization problem, build the
optimization model, solve the problem, extract results and
finally export results.
Algorithm: even though a MILP based software is proposed, the
class diagram is general enough to formulate problem with
other classical optimization methods MINLP, QP, etc …

Link: the class has the following attributes to define linkse ID to
identify the link, IDElement i to set which is the element at the
input/output (i 1 stand for input and i 2 stand for output),
TypeElement i to set the type of element at the input/output,
PortElement i to set the port number link to the input/outpute
and 1 method to give the value of its attributes.
Element: The element class stores the name of the external file
where parameters of the element are defined, read external files
where element parameters are stored, builds own optimization
model, gives results andwrites it in an external file. The Element
class has an attribute Node set by default to 0 and a child class
Node Element that has specific methods to get decision vari
ables of its connected element. In addition, Node attribute
inherited from Element class is set at 1 in the Node Element
class. This difference in Node value is needed to identify objects
of the class Element and objects of the class Node Element.

The metamodel not only gives flexibility on problem formula
tion in terms of HRES structure but also on objective function
definition. Indeed, all existing software listed on the literature
survey have predefined objective function such as Net Present
Value (NPV), Levelized Cost Of Energy (LCOE), IRT (Internal Rate of
Return), etc…Most of the time it is not possible for user to custom
its own objective function. Yet, decision makers like to test several
hypothesis or alternatives in order to make smart decisions. For
instance they can have the need to design an HRES that minimize
the PV curtailment, or the diesel generator starting, or the number
of battery cycle, etc … Those kind of objective function are not
included in commercial software. The proposed software imple
mentation is designed with a module to define a tailor made
objective function. Depending on the blocs the user combines in
its problem formulation, the software will list the available decision
odel in UML2 class diagram.



variables and the user will have the possibility to combine it in an
objective function equation with linear operators. Then, the soft
ware will generate an XML file that describes the user formulation
for the objective function. Finally, the Objective class can stores the
XML objective data: the objective function formulation and the
direction of the optimization (minimization or maximization). The
Objective classes hasmethods to build the objective function and to
write the objective function value in an external file.
4.3. Element class diagram

The element class diagram is sketched on Fig. 4. Elements like
PV, BESS or DG belong to the Element mother class and have their
own variables, parameters, and equations. Electrical Grid is a spe
cial class belonging to the Node Element class which belongs itself
to the Element class. It can handle any number and type of input
and output and recover the output value of connected elements.
Hence, Grid equations are defined as follow: sum of the input equal
sum of the output. Given that, if there exists a Wind turbine bloc in
the Elements library, it is possible to simply interchange PV bloc
with the Wind turbine bloc and calculate a new configuration
without redefining a complete optimization model.

By using this object oriented structure it is possible to formulate
a MILP model for HRES sizing in a modular way. Node Element and
Link classes are used to link Element one each other. The equations
introduced in the previous section are classified and put in their
respective Element classes. User specify which Element he want to
use in its problem. Then, themain program build the corresponding
MILPmodel by calling one by one themethods that build the model
of each Element specified. In this way, it builds the complete
optimization model.

Referring to Fig. 1 the demand case 1 problem is addressed
when the user uses elements of production and storage if needed,
plus Grid. Demand case 2 is tackled with elements of production
and storage coupled with grid and consumer elements. Finally, for
demand case 3, the user should use the same elements as for case 2
plus an electricity supplier element (not represented on Fig. 4 for
the sake of conciseness).
Fig. 4. HRES Elemen
5. Results and discussion

This section is made of two parts: the first part (5.1 and 5.2) aim
at performing a HRES sizing and a sensitivity analysis with respect
to various consumption profile. We first present an imaginary case
with a very low battery cost to force the solutions towards the use
of batteries. Then we update the battery cost to a real twenty fold
higher cost, which is closer to reality. The second part of the section
aims at presenting the final sizing results of a real factory in tropical
area. Several parameters related to consumption are varied, within
a week span and, we consider that a year made of 52 weeks of 7
days (364 days).
5.1. Imaginary case: low battery cost

First of all, the model is tested in imaginary case when battery
cost is low: CAPEXcapaBat 0:025 V=Wh. We make three scenarios
to highlight the sensitivity of the model to the consumption time
series, varying either the total amount of energy consumed per year
and/or the daily consumed amount and/or the number of consec
utive days of operation of the factory:

SC1: the total amount of energy consumed over the year is fixed
at 665MWh while the total amount of energy consumed over a
day varies with the number of consecutive consumption days in
the week. For this scenario, the initial consumption time series
is divided by 3, 4, 5, 6 and 7 to create a new time series for cases
of 3, 4, 5, 6 and 7 consecutive consumption days respectively.
The total amount of consumed energy over a day varies from
4.263MWh to 1.827MWh.
SC2: the number of consecutive consumption days is fixed at 7.
The total amount of energy consumed over the year and a day
varies from 185MWh to 665MWh and from 0.508MWh to
1.827MWh respectively.
SC3: the total amount of energy consumption per day is fixed
while the total amount of energy consumed over the year varies
as well as the number of consecutive consumption days. In this
scenario, the consumption time series of SC17 consecutive days
is taken.
t class diagram.







Fig. 7. Schema of the resulting HRES.
Regarding PV power, it is much larger than demand in midday
hours when the sun is high in the sky or when the day is off (day 7).
Then, curtailment is important around midday for day 1e6 and for
day 7, as an alternative storage in battery exists but remains low, as
Table 7 and Fig. 8 show.

As explained in the previous section, because the battery cost is
high, the storage capacity with battery is very small. For compari
son it is equivalent to the battery implemented in electric cars.
Battery is used marginally in comparison of the others elements.
We have looked for another solution without battery and obtained
a TLCC value equal to 808.3 kV, a 0.36% increase compared to the
solution with battery. May be the project developer would not
install the battery for a mere 0.36% gain. The second graph displays
the battery power and energy during the seven days period. The
battery power variation matches the one above. Here, when power
Fig. 8. Power curves of th
is positive, the battery is discharged to match partially the demand.
When negative, the battery is charged by the PV panels. The battery
energy curve shows that the battery starts the period displayed by
being fully loaded at 37.43 kWh and ends also fully loaded. It is also
never completely discharged with 3.74 kWh remaining at any time,
which corresponds to the deadband of the battery.
6. Conclusion

Bibliography analyses has shown a lack of alternative to iterative
solving HOMER software in HRES sizing tools while at the same
time HRES developers must meet new demands requiring optimi
zation. HOMER is the most used worldwide but is not adaptable to
the many problems tackle by a renewable project developer.
Bearing in mind the need for a flexible tool dealing with HRES
sizing and focusing on grassroots design, we have proposed a new
modular metamodel described with the help of UML2 and based on
a MILP optimization model formulation to solve three kinds of
usage problems, namely remote consumption through grid, on site
consumption and mixed grid connected consumption. We have
implemented it as a software and used it to solve several case
studies. First two imaginary cases have shown the ability of the
metamodel to represent and optimize HRES over a year time series,
including PV panels and diesel generators and a small battery ca
pacity. The MILP formulationwas especially useful to find solutions
with small battery capacity. We have noticed that the occurrence of
battery and its consequent usage is strongly dependent on its cost.
Finally, we have solved a real case study application of a small
e factory case study.



factory in a tropical island. The results are useful for decision
makers since it give elements for assessing the opportunities to
develop such HRES. Those results can be presented to clients and
are support for discussions and negotiations.

Our metamodel is flexible enough to be used for solving various
problem from classical on site consumption (case 2 Fig. 1) to self
use with partial injection (case 3 Fig. 1). Our metamodel can also
be adapted to deal with financial trading and arbitrage on Spot
electricity market. Moreover, it is possible to reformulate battery
model by taking into account the ageing of the battery which is
important for improving the business plan accuracy. Multi
objective optimization can also be performed, especially by
weighting the solutions based on technical and economic concern
with environmental impact. Doing so ensure to put the solution
back to its complex surrounding and tend to issue more flexible
solutions. Finally, going further in the software development to
make it competitive with HOMER is another perspective.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jclepro.2019.03.095.
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